1
|
Singh MK, Han S, Kim S, Kang I. Targeting Lipid Metabolism in Cancer Stem Cells for Anticancer Treatment. Int J Mol Sci 2024; 25:11185. [PMID: 39456967 PMCID: PMC11508222 DOI: 10.3390/ijms252011185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Cancer stem cells (CSCs), or tumor-initiating cells (TICs), are small subpopulations (0.0001-0.1%) of cancer cells that are crucial for cancer relapse and therapy resistance. The elimination of each CSC is essential for achieving long-term remission. Metabolic reprogramming, particularly lipids, has a significant impact on drug efficacy by influencing drug diffusion, altering membrane permeability, modifying mitochondrial function, and adjusting the lipid composition within CSCs. These changes contribute to the development of chemoresistance in various cancers. The intricate relationship between lipid metabolism and drug resistance in CSCs is an emerging area of research, as different lipid species play essential roles in multiple stages of autophagy. However, the link between autophagy and lipid metabolism in the context of CSC regulation remains unclear. Understanding the interplay between autophagy and lipid reprogramming in CSCs could lead to the development of new approaches for enhancing therapies and reducing tumorigenicity in these cells. In this review, we explore the latest findings on lipid metabolism in CSCs, including the role of key regulatory enzymes, inhibitors, and the contribution of autophagy in maintaining lipid homeostasis. These recent findings may provide critical insights for identifying novel pharmacological targets for effective anticancer treatment.
Collapse
Affiliation(s)
- Manish Kumar Singh
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sunhee Han
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sungsoo Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
2
|
Hapeman JD, Galwa R, Carneiro CS, Nedelcu AM. In vitro evidence for the potential of EGFR inhibitors to decrease the TGF-β1-induced dispersal of circulating tumour cell clusters mediated by EGFR overexpression. Sci Rep 2024; 14:19980. [PMID: 39198539 PMCID: PMC11358385 DOI: 10.1038/s41598-024-70358-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/14/2024] [Indexed: 09/01/2024] Open
Abstract
Most cancer-related deaths are due to the spread of tumour cells throughout the body-a process known as metastasis. While in the vasculature, these cells are referred to as circulating tumour cells (CTCs) and can be found as either single cells or clusters of cells (often including platelets), with the latter having the highest metastatic potential. However, the biology of CTC clusters is poorly understood, and there are no therapies that specifically target them. We previously developed an in vitro model system for CTC clusters and proposed a new extravasation model that involves cluster dissociation, adherence, and single-cell invasion in response to TGF-β1 released by platelets. Here, we investigated TGF-β1-induced gene expression changes in this model, focusing on genes for which targeted drugs are available. In addition to the upregulation of the TGF-β1 signalling pathway, we found that (i) genes in the EGF/EGFR pathway, including those coding for EGFR and several EGFR ligands, were also induced, and (ii) Erlotinib and Osimertinib, two therapeutic EGFR/tyrosine kinase inhibitors, decreased the TGF-β1-induced adherence and invasion of the CTC cluster-like line despite the line expressing wild-type EGFR. Overall, we suggest that EGFR inhibitors have the potential to decrease the dispersal of CTC clusters that respond to TGF-β1 and overexpress EGFR (irrespective of its status) and thus could improve patient survival.
Collapse
Affiliation(s)
- Jorian D Hapeman
- Department of Biology, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Rakshit Galwa
- Department of Biology, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Caroline S Carneiro
- Department of Biology, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada
| | - Aurora M Nedelcu
- Department of Biology, University of New Brunswick, Fredericton, NB, E3B 5A3, Canada.
| |
Collapse
|
3
|
Remsik J, Boire A. The path to leptomeningeal metastasis. Nat Rev Cancer 2024; 24:448-460. [PMID: 38871881 PMCID: PMC11404355 DOI: 10.1038/s41568-024-00700-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/29/2024] [Indexed: 06/15/2024]
Abstract
The leptomeninges, the cerebrospinal-fluid-filled tissues surrounding the central nervous system, play host to various pathologies including infection, neuroinflammation and malignancy. Spread of systemic cancer into this space, termed leptomeningeal metastasis, occurs in 5-10% of patients with solid tumours and portends a bleak clinical prognosis. Previous, predominantly descriptive, clinical studies have provided few insights. Recent development of preclinical leptomeningeal metastasis models, alongside genomic, transcriptomic and proteomic sequencing efforts, has provided groundwork for mechanistic understanding and identification of long-needed therapeutic targets. Although previously understood as an anatomically isolated compartment, the leptomeninges are increasingly appreciated as a major conduit of communication between the systemic circulation and the central nervous system. Despite the unique nature of the leptomeningeal microenvironment, the general principles of metastasis hold true: cells metastasizing to the leptomeninges must gain access to the new environment, survive within the space and evade the immune system. The study of leptomeningeal metastasis has the potential to uncover novel site-specific metastatic principles and illuminate the physiology of the leptomeningeal space. In this Review, we provide a biology-focused overview of how metastatic cells reach the leptomeninges, thrive in this nutritionally sparse environment and evade the detection of the omnipresent immune system.
Collapse
Affiliation(s)
- Jan Remsik
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Laboratory for Immunology of Metastatic Ecosystems, Center for Cancer Biology, VIB, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
| | - Adrienne Boire
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Brain Tumour Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
4
|
Hu Y, Zang W, Feng Y, Mao Q, Chen J, Zhu Y, Xue W. mir-605-3p prevents liver premetastatic niche formation by inhibiting angiogenesis via decreasing exosomal nos3 release in gastric cancer. Cancer Cell Int 2024; 24:184. [PMID: 38802855 PMCID: PMC11131241 DOI: 10.1186/s12935-024-03359-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Cancer-induced pre-metastatic niches (PMNs) play a decisive role in promoting metastasis by facilitating angiogenesis in distant sites. Evidence accumulates suggesting that microRNAs (miRNAs) exert significant influence on angiogenesis during PMN formation, yet their specific roles and regulatory mechanisms in gastric cancer (GC) remain underexplored. METHODS miR-605-3p was identified through miRNA-seq and validated by qRT-PCR. Its correlation with the clinicopathological characteristics and prognosis was analyzed in GC. Functional assays were performed to examine angiogenesis both in vitro and in vivo. The related molecular mechanisms were elucidated using RNA-seq, immunofluorescence, transmission electron microscopy, nanoparticle tracking analysis, enzyme-linked immunosorbent assay, luciferase reporter assays and bioinformatics analysis. RESULTS miR-605-3p was screened as a candidate miRNA that may regulate angiogenesis in GC. Low expression of miR-605-3p is associated with shorter overall survival and disease-free survival in GC. miR-605-3p-mediated GC-secreted exosomes regulate angiogenesis by regulating exosomal nitric oxide synthase 3 (NOS3) derived from GC cells. Mechanistically, miR-605-3p reduced the secretion of exosomes by inhibiting vesicle-associated membrane protein 3 (VAMP3) expression and affects the transport of multivesicular bodies to the GC cell membrane. At the same time, miR-605-3p reduces NOS3 levels in exosomes by inhibiting the expression of intracellular NOS3. Upon uptake of GC cell-derived exosomal NOS3, human umbilical vein endothelial cells exhibited increased nitric oxide levels, which induced angiogenesis, established liver PMN and ultimately promoted the occurrence of liver metastasis. Furthermore, a high level of plasma exosomal NOS3 was clinically associated with metastasis in GC patients. CONCLUSIONS miR-605-3p may play a pivotal role in regulating VAMP3-mediated secretion of exosomal NOS3, thereby affecting the formation of GC PMN and thus inhibiting GC metastasis.
Collapse
Affiliation(s)
- Yilin Hu
- Department of Gastrointestinal Surgery, Affliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Street, Nantong, Jiangsu, 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Nantong Key Laboratory of Gastrointestinal Oncology, Nantong, 226001, China
| | - Weijie Zang
- Department of Gastrointestinal Surgery, Affliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Street, Nantong, Jiangsu, 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Nantong Key Laboratory of Gastrointestinal Oncology, Nantong, 226001, China
| | - Ying Feng
- Department of Gastrointestinal Surgery, Affliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Street, Nantong, Jiangsu, 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Nantong Key Laboratory of Gastrointestinal Oncology, Nantong, 226001, China
| | - Qinsheng Mao
- Department of Gastrointestinal Surgery, Affliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Street, Nantong, Jiangsu, 226001, China
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Nantong Key Laboratory of Gastrointestinal Oncology, Nantong, 226001, China
| | - Junjie Chen
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China
- Nantong Key Laboratory of Gastrointestinal Oncology, Nantong, 226001, China
| | - Yizhun Zhu
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau, 999078, China.
| | - Wanjiang Xue
- Department of Gastrointestinal Surgery, Affliated Hospital of Nantong University, Medical School of Nantong University, 20 Xisi Street, Nantong, Jiangsu, 226001, China.
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, 226001, China.
- Nantong Key Laboratory of Gastrointestinal Oncology, Nantong, 226001, China.
| |
Collapse
|
5
|
Abdul-Rahman T, Roy P, Herrera-Calderón RE, Khidri FF, Omotesho QA, Rumide TS, Fatima M, Roy S, Wireko AA, Atallah O, Roy S, Amekpor F, Ghosh S, Agyigra IA, Horbas V, Teslyk T, Bumeister V, Papadakis M, Alexiou A. Extracellular vesicle-mediated drug delivery in breast cancer theranostics. Discov Oncol 2024; 15:181. [PMID: 38780753 PMCID: PMC11116322 DOI: 10.1007/s12672-024-01007-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Breast cancer (BC) continues to be a significant global challenge due to drug resistance and severe side effects. The increasing prevalence is alarming, requiring new therapeutic approaches to address these challenges. At this point, Extracellular vesicles (EVs), specifically small endosome-released nanometer-sized EVs (SEVs) or exosomes, have been explored by literature as potential theranostics. Therefore, this review aims to highlight the therapeutic potential of exosomes in BC, focusing on their advantages in drug delivery and their ability to mitigate metastasis. Following the review, we identified exosomes' potential in combination therapies, serving as miRNA carriers and contributing to improved anti-tumor effects. This is evident in clinical trials investigating exosomes in BC, which have shown their ability to boost chemotherapy efficacy by delivering drugs like paclitaxel (PTX) and doxorubicin (DOX). However, the translation of EVs into BC therapy is hindered by various challenges. These challenges include the heterogeneity of EVs, the selection of the appropriate parent cell, the loading procedures, and determining the optimal administration routes. Despite the promising therapeutic potential of EVs, these obstacles must be addressed to realize their benefits in BC treatment.
Collapse
Affiliation(s)
| | - Poulami Roy
- Department of Medicine, North Bengal Medical College and Hospital, Siliguri, India
| | - Ranferi Eduardo Herrera-Calderón
- Center for Research in Health Sciences (CICSA), Faculty of Medicine, Anahuac University North Campus, 52786, Huixquilucan, Mexico
| | | | | | | | | | - Sakshi Roy
- School of Medicine, Queens University Belfast, Northern Ireland, UK
| | | | - Oday Atallah
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Subham Roy
- Hull York Medical School, University of York, York, UK
| | - Felix Amekpor
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Shankhaneel Ghosh
- Institute of Medical Sciences and SUM Hospital, Siksha 'O' Anusandhan, Bhubaneswar, India
| | | | | | | | | | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, Heusnerstrasse 40, University of Witten-Herdecke, 42283, Wuppertal, Germany.
| | - Athanasios Alexiou
- University Centre for Research and Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India.
- Department of Research and Development, Funogen, 11741, Athens, Greece.
- Department of Research and Development, AFNP Med, 1030, Vienna, Austria.
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia.
| |
Collapse
|
6
|
Kubo T, Nishimura N, Kaji K, Tomooka F, Shibamoto A, Iwai S, Suzuki J, Kawaratani H, Namisaki T, Akahane T, Yoshiji H. Role of Epiregulin on Lipopolysaccharide-Induced Hepatocarcinogenesis as a Mediator via EGFR Signaling in the Cancer Microenvironment. Int J Mol Sci 2024; 25:4405. [PMID: 38673992 PMCID: PMC11050651 DOI: 10.3390/ijms25084405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/06/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Lipopolysaccharides (LPSs) have been reported to be important factors in promoting the progression of hepatocellular carcinoma (HCC), but the corresponding molecular mechanisms remain to be elucidated. We hypothesize that epiregulin (EREG), an epidermal growth factor (EGF) family member derived from hepatic stellate cells (HSCs) and activated by LPS stimulation, is a crucial mediator of HCC progression with epidermal growth factor receptor (EGFR) expression in the tumor microenvironment. We used a mouse xenograft model of Huh7 cells mixed with half the number of LX-2 cells, with/without intraperitoneal LPS injection, to elucidate the role of EREG in LPS-induced HCC. In the mouse model, LPS administration significantly enlarged the size of xenografted tumors and elevated the expression of EREG in tumor tissues compared with those in negative controls. Moreover, CD34 immunostaining and the gene expressions of angiogenic markers by a reverse transcription polymerase chain reaction revealed higher vascularization, with increased interleukin-8 (IL-8) expression in the tumors of the mice group treated with LPS compared to those without LPS. Our data collectively suggested that EREG plays an important role in the cancer microenvironment under the influence of LPS to increase not only the tumor cell growth and migration/invasion of EGFR-positive HCC cells but also tumor neovascularization via IL-8 signaling.
Collapse
Affiliation(s)
| | - Norihisa Nishimura
- Department of Gastroenterology, Nara Medical University, 840, Shijo-cho, Kashihara 634-8522, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Zhang Y, Liu X, Zhu L, Zhou Z, Cui Y, Zhou CX, Li TJ. Notch activation promotes bone metastasis via SPARC inhibition in adenoid cystic carcinoma. Oral Dis 2024; 30:1220-1233. [PMID: 36951790 DOI: 10.1111/odi.14573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 12/29/2022] [Accepted: 03/10/2023] [Indexed: 03/24/2023]
Abstract
OBJECTIVES We aimed to investigate bone metastasis induced by Notch signalling pathway dysregulation and to demonstrate that SPARC is a potential therapeutic target in adenoid cystic carcinoma (AdCC) with Notch dysregulation. MATERIALS AND METHODS This retrospective study enrolled 144 AdCC patients. RNA-sequencing and enrichment analyses were performed using 32 AdCC samples. Osteonectin/SPARC and the Notch activation indicator Notch intracellular domain (NICD) were detected using immunohistochemistry. Cell proliferation and migration assays were conducted using stably NICD over-expressing cells. The effect of SPARC on osteoclast differentiation in NICD cells was investigated using western blotting, quantitative reverse transcription PCR, tartrate-resistant acid phosphatase staining and resorption assays. RESULTS RNA-sequencing analysis showed that genes down-regulated in Notch-mutant AdCCs, such as SPARC, were enriched in ossification and osteoblast differentiation. Most (75/110, 68.2%) Notch1-wild-type AdCCs showed SPARC over-expression, whereas 30 out of 34 (88.2%) Notch1-mutant tumours showed low SPARC expression. SPARC over-expression was then found negatively to be correlated with NICD expression in 144 AdCCs. NICD over-expression promoted cell growth, migration and osteoclast differentiation, which could be partly reversed by exogenous SPARC. CONCLUSIONS Notch activation in AdCC contributes to bone metastasis through SPARC inhibition. The study results suggest that SPARC may represent a prognostic biomarker and potential therapeutic target.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, Beijing, China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, China
| | - Xiaoxiao Liu
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, Beijing, China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, China
| | - Lijing Zhu
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, Beijing, China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, China
| | - Zheng Zhou
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, Beijing, China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, China
| | - Yajuan Cui
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, Beijing, China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, China
| | - Chuan-Xiang Zhou
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, Beijing, China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, China
| | - Tie-Jun Li
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, Beijing, China
- National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
- Research Unit of Precision Pathologic Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, China
| |
Collapse
|
8
|
Cambria E, Coughlin MF, Floryan MA, Offeddu GS, Shelton SE, Kamm RD. Linking cell mechanical memory and cancer metastasis. Nat Rev Cancer 2024; 24:216-228. [PMID: 38238471 PMCID: PMC11146605 DOI: 10.1038/s41568-023-00656-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/07/2023] [Indexed: 03/01/2024]
Abstract
Metastasis causes most cancer-related deaths; however, the efficacy of anti-metastatic drugs is limited by incomplete understanding of the biological mechanisms that drive metastasis. Focusing on the mechanics of metastasis, we propose that the ability of tumour cells to survive the metastatic process is enhanced by mechanical stresses in the primary tumour microenvironment that select for well-adapted cells. In this Perspective, we suggest that biophysical adaptations favourable for metastasis are retained via mechanical memory, such that the extent of memory is influenced by both the magnitude and duration of the mechanical stress. Among the mechanical cues present in the primary tumour microenvironment, we focus on high matrix stiffness to illustrate how it alters tumour cell proliferation, survival, secretion of molecular factors, force generation, deformability, migration and invasion. We particularly centre our discussion on potential mechanisms of mechanical memory formation and retention via mechanotransduction and persistent epigenetic changes. Indeed, we propose that the biophysical adaptations that are induced by this process are retained throughout the metastatic process to improve tumour cell extravasation, survival and colonization in the distant organ. Deciphering mechanical memory mechanisms will be key to discovering a new class of anti-metastatic drugs.
Collapse
Affiliation(s)
- Elena Cambria
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Mark F Coughlin
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Marie A Floryan
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Giovanni S Offeddu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sarah E Shelton
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Roger D Kamm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
9
|
Gali A, Bijnsdorp IV, Piersma SR, Pham TV, Gutiérrez-Galindo E, Kühnel F, Tsolakos N, Jimenez CR, Hausser A, Alexopoulos LG. Protein kinase D drives the secretion of invasion mediators in triple-negative breast cancer cell lines. iScience 2024; 27:108958. [PMID: 38323010 PMCID: PMC10844833 DOI: 10.1016/j.isci.2024.108958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/28/2023] [Accepted: 01/15/2024] [Indexed: 02/08/2024] Open
Abstract
The protein kinase D (PKD) family members regulate the fission of cargo vesicles at the Golgi complex and play a pro-oncogenic role in triple-negative breast cancer (TNBC). Whether PKD facilitates the secretion of tumor-promoting factors in TNBC, however, is still unknown. Using the pharmacological inhibition of PKD activity and siRNA-mediated depletion of PKD2 and PKD3, we identified the PKD-dependent secretome of the TNBC cell lines MDA-MB-231 and MDA-MB-468. Mass spectrometry-based proteomics and antibody-based assays revealed a significant downregulation of extracellular matrix related proteins and pro-invasive factors such as LIF, MMP-1, MMP-13, IL-11, M-CSF and GM-CSF in PKD-perturbed cells. Notably, secretion of these proteins in MDA-MB-231 cells was predominantly controlled by PKD2 and enhanced spheroid invasion. Consistently, PKD-dependent secretion of pro-invasive factors was more pronounced in metastatic TNBC cell lines. Our study thus uncovers a novel role of PKD2 in releasing a pro-invasive secretome.
Collapse
Affiliation(s)
- Alexia Gali
- Biomedical Systems Laboratory, National Technical University of Athens, 15780 Athens, Greece
- Protavio Ltd, Demokritos Science Park, 15341 Athens, Greece
| | - Irene V. Bijnsdorp
- Department of Urology, Cancer Center Amsterdam, Cancer Center Amsterdam, Amsterdam UMC, de Boelelaan 1117, Amsterdam 1081 HV, the Netherlands
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, OncoProteomics Laboratory, de Boelelaan 1117, , Amsterdam 1081 HV, the Netherlands
| | - Sander R. Piersma
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, OncoProteomics Laboratory, de Boelelaan 1117, , Amsterdam 1081 HV, the Netherlands
| | - Thang V. Pham
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, OncoProteomics Laboratory, de Boelelaan 1117, , Amsterdam 1081 HV, the Netherlands
| | | | - Fiona Kühnel
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569 Stuttgart, Germany
| | - Nikos Tsolakos
- Protavio Ltd, Demokritos Science Park, 15341 Athens, Greece
| | - Connie R. Jimenez
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, OncoProteomics Laboratory, de Boelelaan 1117, , Amsterdam 1081 HV, the Netherlands
| | - Angelika Hausser
- Institute of Cell Biology and Immunology, University of Stuttgart, 70569 Stuttgart, Germany
- Stuttgart Research Center for Systems Biology, University of Stuttgart, 70569 Stuttgart, Germany
| | - Leonidas G. Alexopoulos
- Biomedical Systems Laboratory, National Technical University of Athens, 15780 Athens, Greece
- Protavio Ltd, Demokritos Science Park, 15341 Athens, Greece
| |
Collapse
|
10
|
Liao H, Wang H, Zheng R, Yu Y, Zhang Y, Lv L, Zhang B, Chen J. LncRNA CARMN suppresses EMT through inhibiting transcription of MMP2 activated by DHX9 in breast cancer. Cell Signal 2024; 113:110943. [PMID: 37890687 DOI: 10.1016/j.cellsig.2023.110943] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/14/2023] [Accepted: 10/24/2023] [Indexed: 10/29/2023]
Abstract
Long non-coding RNAs (lncRNAs) have been shown to drive cancer progression. However, the function of lncRNAs and the underlying mechanism in early-stage breast cancer(BC) have rarely been investigated. Datasets of pre-invasive ductal carcinoma in situ (DCIS), invasive ductal BC (IDC) and normal breast tissue from TCGA and GEO databases were used to conduct bioinformatics analysis. LncRNA CARMN was identified as a tumor suppressor in early-stage BC and related to a better prognosis. CARMN over-expression inhibited MMP2 mediated migration and EMT in BC. Further analysis showed that CARMN was located in the nucleus and functioned as an enhancer RNA (eRNA) in mammary epithelial cell. Mechanically, CARMN binding protein DHX9 was identified by RNA pull-down and mass spectrometry (MS) assays and it also bound to the MMP2 promoter to activate its transcription. As a decoy, CARMN competitively bound to DHX9 and blocked MMP2 transcriptional activation, thereby inhibiting metastasis and EMT of BC cells. These findings reveal the important role of CARMN as a tumor suppressor in the metastasis and a potential biomarker for progression in early-stage BC.
Collapse
Affiliation(s)
- Han Liao
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Han Wang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Renjing Zheng
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanhang Yu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Zhang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lianqiu Lv
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Zhang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jianying Chen
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
11
|
Chen YR, Xu ZX, Jiang LX, Dong ZW, Yu PF, Zhang Z, Gu GL. Analysis of clinicopathological features and prognostic factors of breast cancer brain metastasis. World J Clin Oncol 2023; 14:445-458. [PMID: 38059189 PMCID: PMC10696216 DOI: 10.5306/wjco.v14.i11.445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/29/2023] [Accepted: 10/16/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Breast cancer (BC) has become the most common malignancy in women. The incidence and detection rates of BC brain metastasis (BCBM) have increased with the progress of imaging, multidisciplinary treatment techniques and the extension of survival time of BC patients. BM seriously affects the quality of life and sur-vival prognosis of BC patients. Therefore, clinical research on the clinicopathological features and prognostic factors of BCBM is valuable. By analyzing the clinicopathological parameters of BCBM patients, and assessing the risk factors and prognostic indicators, we can perform hierarchical diagnosis and treatment on the high-risk population of BCBM, and achieve clinical benefits of early diagnosis and treatment. AIM To explore the clinicopathological features and prognostic factors of BCBM, and provide references for diagnosis, treatment and management of BCBM. METHODS The clinicopathological data of 68 BCBM patients admitted to the Air Force Medical Center, Chinese People's Liberation Army (formerly Air Force General Hospital) from 2000 to 2022 were collected. Another 136 BC patients without BM were matched at a ratio of 1:2 based on the age and site of onset for retrospective analysis. Categorical data were subjected to χ2 test or Fisher's exact probability test, and the variables with P < 0.05 in the univariate Cox proportional hazards model were incorporated into the multivariate model to identify high-risk factors and independent prognostic factors of BCBM, with a hazard ratio (HR) > 1 suggesting poor prognostic factors. The survival time of patients was estimated by the Kaplan-Meier method, and overall survival was compared between groups by log-rank test. RESULTS Multivariate Cox regression analysis showed that patients with stage III/IV tumor at initial diagnosis [HR: 5.58, 95% confidence interval (CI): 1.99-15.68], lung metastasis (HR: 24.18, 95%CI: 6.40-91.43), human epidermal growth factor receptor 2 (HER2)-overexpressing BC and triple-negative BC were more prone to BM. As can be seen from the prognostic data, 52 of the 68 BCBM patients had died by the end of follow-up, and the median time from diagnosis of BC to the occurrence of BM and from the occurrence of BM to death or last follow-up was 33.5 and 14 mo, respectively. It was confirmed by multivariate Cox regression analysis that patients with neurological symptoms (HR: 1.923, 95%CI: 1.005-3.680), with bone metastasis (HR: 2.011, 95%CI: 1.056-3.831), and BM of HER2-overexpressing and triple-negative BC had shorter survival time. CONCLUSION HER2-overexpressing, triple-negative BC, late tumor stage and lung metastasis are risk factors of BM. The presence of neurological symptoms, bone metastasis, and molecular type are influencing prognosis factors of BCBM.
Collapse
Affiliation(s)
- Yu-Rui Chen
- Department of General Surgery, Air Force Clinical College, China Medical University, Beijing 100142, China
| | - Zu-Xin Xu
- Department of General Surgery, Fifth Clinical College (Air Force Clinical College) of Anhui Medical University, Beijing 100142, China
| | - Li-Xin Jiang
- Department of General Surgery, Air Force Clinical College, China Medical University, Beijing 100142, China
| | - Zhi-Wei Dong
- Department of General Surgery, Air Force Medical Center, Air Force Clinical College of China Medical University, Beijing 100142, China
| | - Peng-Fei Yu
- Department of General Surgery, Air Force Medical Center, Air Force Clinical College of China Medical University, Beijing 100142, China
| | - Zhi Zhang
- Department of General Surgery, Air Force Medical Center, Air Force Clinical College of China Medical University, Beijing 100142, China
| | - Guo-Li Gu
- Department of General Surgery, Fifth Clinical College (Air Force Clinical College) of Anhui Medical University, Beijing 100142, China
- Department of General Surgery, Air Force Medical Center, Air Force Clinical College of China Medical University, Beijing 100142, China
| |
Collapse
|
12
|
Yang L, Zhang K, Zheng D, Bai Y, Yue D, Wu L, Ling H, Ni S, Zou H, Ye B, Liu C, Deng Y, Liu Q, Li Y, Wang D. Platelet-Based Nanoparticles with Stimuli-Responsive for Anti-Tumor Therapy. Int J Nanomedicine 2023; 18:6293-6309. [PMID: 37954456 PMCID: PMC10637234 DOI: 10.2147/ijn.s436373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023] Open
Abstract
In addition to hemostasis and coagulation, years of studies have proved that platelets are involved in the whole process of tumor progression, including tumor invasion, intravasation, extravasation, and so on. It means that this property of platelets can be used in anti-tumor therapy. However, traditional platelet-based antitumor drugs often cause autologous platelet damage due to lack of targeting, resulting in serious side effects. Therefore, the researchers designed a variety of anti-tumor drug delivery systems based on platelets by targeting platelets or platelet membrane coating. The drug delivery systems have special response modes, which is crucial in the design of nanoparticles. These modes enhance the targeting and improve the anti-tumor effect. Here, we present a review of recent discoveries in the field of the crosstalk between platelets and tumors and the progress of platelet-based anti-tumor nanoparticles.
Collapse
Affiliation(s)
- Linlan Yang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Kaijiong Zhang
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Dongming Zheng
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Yuxin Bai
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Daifan Yue
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Lichun Wu
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Han Ling
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Sujiao Ni
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Haimin Zou
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Bo Ye
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Chang Liu
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Yao Deng
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Qiancheng Liu
- Department of Clinical Laboratory of Mianyang People’s Hospital, Mianyang, People’s Republic of China
| | - Yan Li
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Dongsheng Wang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| |
Collapse
|
13
|
Ni Y, Liang Y, Li M, Lin Y, Zou X, Han F, Cao J, Li L. The updates on metastatic mechanism and treatment of colorectal cancer. Pathol Res Pract 2023; 251:154837. [PMID: 37806170 DOI: 10.1016/j.prp.2023.154837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/20/2023] [Accepted: 09/30/2023] [Indexed: 10/10/2023]
Abstract
Colorectal cancer (CRC) is a main cause of cancer death worldwide. Metastasis is a major cause of cancer-related death in CRC. The treatment of metastatic CRC has progressed minimally. However, the potential molecular mechanisms involved in CRC metastasis have remained to be comprehensively clarified. An improved understanding of the CRC mechanistic determinants is needed to better prevent and treat metastatic cancer. In this review, based on evidence from a growing body of research in metastatic cancers, we discuss the cellular and molecular mechanisms involved in CRC metastasis. This review reveals both the molecular mechanisms of metastases and identifies new opportunities for developing more effective strategies to target metastatic relapse and improve CRC patient outcomes.
Collapse
Affiliation(s)
- Yunfei Ni
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - You Liang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Mingzhou Li
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Yang Lin
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Xin Zou
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Fangyi Han
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Jianing Cao
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China
| | - Liang Li
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China; Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Guangdong Provincial Key Laboratory of Molecular Tumor Pathology, Guangzhou, Guangdong, China.
| |
Collapse
|
14
|
George N, Bhandari P, Shruptha P, Jayaram P, Chaudhari S, Satyamoorthy K. Multidimensional outlook on the pathophysiology of cervical cancer invasion and metastasis. Mol Cell Biochem 2023; 478:2581-2606. [PMID: 36905477 PMCID: PMC10006576 DOI: 10.1007/s11010-023-04686-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 02/20/2023] [Indexed: 03/12/2023]
Abstract
Cervical cancer being one of the primary causes of high mortality rates among women is an area of concern, especially with ineffective treatment strategies. Extensive studies are carried out to understand various aspects of cervical cancer initiation, development and progression; however, invasive cervical squamous cell carcinoma has poor outcomes. Moreover, the advanced stages of cervical cancer may involve lymphatic circulation with a high risk of tumor recurrence at distant metastatic sites. Dysregulation of the cervical microbiome by human papillomavirus (HPV) together with immune response modulation and the occurrence of novel mutations that trigger genomic instability causes malignant transformation at the cervix. In this review, we focus on the major risk factors as well as the functionally altered signaling pathways promoting the transformation of cervical intraepithelial neoplasia into invasive squamous cell carcinoma. We further elucidate genetic and epigenetic variations to highlight the complexity of causal factors of cervical cancer as well as the metastatic potential due to the changes in immune response, epigenetic regulation, DNA repair capacity, and cell cycle progression. Our bioinformatics analysis on metastatic and non-metastatic cervical cancer datasets identified various significantly and differentially expressed genes as well as the downregulation of potential tumor suppressor microRNA miR-28-5p. Thus, a comprehensive understanding of the genomic landscape in invasive and metastatic cervical cancer will help in stratifying the patient groups and designing potential therapeutic strategies.
Collapse
Affiliation(s)
- Neena George
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Planetarium Complex, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Poonam Bhandari
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Planetarium Complex, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Padival Shruptha
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Planetarium Complex, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Pradyumna Jayaram
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Planetarium Complex, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sima Chaudhari
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Planetarium Complex, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Planetarium Complex, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
15
|
Chen Y, Huo R, Kang W, Liu Y, Zhao Z, Fu W, Ma R, Zhang X, Tang J, Zhu Z, Lyu Q, Huang Y, Yan M, Jiang B, Chai R, Bao Z, Hu Z, Wang W, Jiang T, Cao Y, Wang J. Tumor-associated monocytes promote mesenchymal transformation through EGFR signaling in glioma. Cell Rep Med 2023; 4:101177. [PMID: 37652019 PMCID: PMC10518634 DOI: 10.1016/j.xcrm.2023.101177] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 03/12/2023] [Accepted: 08/09/2023] [Indexed: 09/02/2023]
Abstract
The role of brain immune compartments in glioma evolution remains elusive. We profile immune cells in glioma microenvironment and the matched peripheral blood from 11 patients. Glioblastoma exhibits specific infiltration of blood-originated monocytes expressing epidermal growth factor receptor (EGFR) ligands EREG and AREG, coined as tumor-associated monocytes (TAMo). TAMo infiltration is mutually exclusive with EGFR alterations (p = 0.019), while co-occurring with mesenchymal subtype (p = 4.7 × 10-7) and marking worse prognosis (p = 0.004 and 0.032 in two cohorts). Evolutionary analysis of initial-recurrent glioma pairs and single-cell study of a multi-centric glioblastoma reveal association between elevated TAMo and glioma mesenchymal transformation. Further analyses identify FOSL2 as a TAMo master regulator and demonstrates that FOSL2-EREG/AREG-EGFR signaling axis promotes glioma invasion in vitro. Collectively, we identify TAMo in tumor microenvironment and reveal its driving role in activating EGFR signaling to shape glioma evolution.
Collapse
Affiliation(s)
- Yiyun Chen
- Division of Life Science, Department of Chemical and Biological Engineering, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong SAR, China; SIAT-HKUST Joint Laboratory of Cell Evolution and Digital Health, HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen, China
| | - Ran Huo
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Weirong Kang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong SAR, China
| | - Yuwei Liu
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong SAR, China
| | - Zheng Zhao
- Division of Life Science, Department of Chemical and Biological Engineering, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong SAR, China; Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Weilun Fu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Ruochen Ma
- Division of Life Science, Department of Chemical and Biological Engineering, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Xiaomeng Zhang
- Division of Life Science, Department of Chemical and Biological Engineering, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Jihong Tang
- Division of Life Science, Department of Chemical and Biological Engineering, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Zhihan Zhu
- Division of Life Science, Department of Chemical and Biological Engineering, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Qingyang Lyu
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong SAR, China
| | - Yi Huang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong SAR, China
| | - Mengli Yan
- Division of Life Science, Department of Chemical and Biological Engineering, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Biaobin Jiang
- Division of Life Science, Department of Chemical and Biological Engineering, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Ruichao Chai
- Division of Life Science, Department of Chemical and Biological Engineering, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong SAR, China; SIAT-HKUST Joint Laboratory of Cell Evolution and Digital Health, HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen, China; Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Zhaoshi Bao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zheng Hu
- SIAT-HKUST Joint Laboratory of Cell Evolution and Digital Health, HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen, China; CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Weiping Wang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Laboratory of Molecular Engineering and Nanomedicine, Dr. Li Dak-Sum Research Centre, The University of Hong Kong, Hong Kong SAR, China.
| | - Tao Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China; Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
| | - Yong Cao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing, China.
| | - Jiguang Wang
- Division of Life Science, Department of Chemical and Biological Engineering, and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong SAR, China; SIAT-HKUST Joint Laboratory of Cell Evolution and Digital Health, HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen, China; Hong Kong Center for Neurodegenerative Diseases, InnoHK, Hong Kong SAR, China.
| |
Collapse
|
16
|
Nakamura T, Nishikawa Y, Shiokawa M, Takeda H, Yokode M, Matsumoto S, Muramoto Y, Ota S, Yoshida H, Okada H, Kuwada T, Marui S, Matsumori T, Maruno T, Uza N, Kodama Y, Hatano E, Seno H. ELF3 suppresses gallbladder cancer development through downregulation of the EREG/EGFR/mTOR complex 1 signalling pathway. J Pathol 2023; 261:28-42. [PMID: 37345534 DOI: 10.1002/path.6144] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/01/2023] [Accepted: 05/16/2023] [Indexed: 06/23/2023]
Abstract
The prognosis of gallbladder cancer (GBC) remains poor, and a better understanding of GBC molecular mechanisms is important. Genome sequencing of human GBC has demonstrated that loss-of-function mutations of E74-like ETS transcription factor 3 (ELF3) are frequently observed, with ELF3 considered to be a tumour suppressor in GBC. To clarify the underlying molecular mechanisms by which ELF3 suppresses GBC development, we performed in vivo analysis using a combination of autochthonous and allograft mouse models. We first evaluated the clinical significance of ELF3 expression in human GBC tissues and found that low ELF3 expression was associated with advanced clinical stage and deep tumour invasion. For in vivo analysis, we generated Pdx1-Cre; KrasG12D ; Trp53R172H ; Elf3f/f (KPCE) mice and Pdx1-Cre; KrasG12D ; Trp53R172H ; Elf3wt/wt (KPC) mice as a control and analysed their gallbladders histologically. KPCE mice developed larger papillary lesions in the gallbladder than those developed by KPC mice. Organoids established from the gallbladders of KPCE and KPC mice were analysed in vitro. RNA sequencing showed upregulated expression of epiregulin (Ereg) in KPCE organoids, and western blotting revealed that EGFR/mechanical targets of rapamycin complex 1 (mTORC1) were upregulated in KPCE organoids. In addition, ChIP assays on Elf3-overexpressing KPCE organoids showed that ELF3 directly regulated Ereg. Ereg deletion in KPCE organoids (using CRISPR/Cas9) induced EGFR/mTORC1 downregulation, indicating that ELF3 controlled EGFR/mTORC1 activity through regulation of Ereg expression. We also generated allograft mouse models using KPCE and KPC organoids and found that KPCE organoid allograft tumours exhibited poorly differentiated structures with mTORC1 upregulation and mesenchymal phenotype, which were suppressed by Ereg deletion. Furthermore, EGFR/mTORC1 inhibition suppressed cell proliferation and epithelial-mesenchymal transition in KPCE organoids. Our results suggest that ELF3 suppresses GBC development via downregulation of EREG/EGFR/mTORC1 signalling. EGFR/mTORC1 inhibition is a potential therapeutic option for GBC with ELF3 mutation. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Takeharu Nakamura
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshihiro Nishikawa
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Gastroenterology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masahiro Shiokawa
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Haruhiko Takeda
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masataka Yokode
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shimpei Matsumoto
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuya Muramoto
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Sakiko Ota
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroyuki Yoshida
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hirokazu Okada
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takeshi Kuwada
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Saiko Marui
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomoaki Matsumori
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takahisa Maruno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Norimitsu Uza
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuzo Kodama
- Department of Gastroenterology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Etsuro Hatano
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
17
|
Zhang R, Chen J, Wang S, Zhang W, Zheng Q, Cai R. Ferroptosis in Cancer Progression. Cells 2023; 12:1820. [PMID: 37508485 PMCID: PMC10378139 DOI: 10.3390/cells12141820] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/01/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Ferroptosis is a newly discovered iron-dependent form of regulated cell death driven by phospholipid peroxidation and associated with processes including iron overload, lipid peroxidation, and dysfunction of cellular antioxidant systems. Ferroptosis is found to be closely related to many diseases, including cancer at every stage. Epithelial-mesenchymal transition (EMT) in malignant tumors that originate from epithelia promotes cancer-cell migration, invasion, and metastasis by disrupting cell-cell and cell-cell matrix junctions, cell polarity, etc. Recent studies have shown that ferroptosis appears to share multiple initiators and overlapping pathways with EMT in cancers and identify ferroptosis as a potential predictor of various cancer grades and prognoses. Cancer metastasis involves multiple steps, including local invasion of cancer cells, intravasation, survival in circulation, arrest at a distant organ site, extravasation and adaptation to foreign tissue microenvironments, angiogenesis, and the formation of "premetastatic niche". Numerous studies have revealed that ferroptosis is closely associated with cancer metastasis. From the cellular perspective, ferroptosis has been implicated in the regulation of cancer metastasis. From the molecular perspective, the signaling pathways activated during the two events interweave. This review briefly introduces the mechanisms of ferroptosis and discusses how ferroptosis is involved in cancer progression, including EMT, cancer angiogenesis, invasion, and metastasis.
Collapse
Affiliation(s)
- Rongyu Zhang
- Department of Biochemistry & Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jinghong Chen
- Department of Biochemistry & Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Saiyang Wang
- Department of Biochemistry & Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wenlong Zhang
- Department of Biochemistry & Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Quan Zheng
- Center for Singl-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Rong Cai
- Department of Biochemistry & Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
18
|
Arena GO, Forte S, Abdouh M, Vanier C, Corbeil D, Lorico A. Horizontal Transfer of Malignant Traits and the Involvement of Extracellular Vesicles in Metastasis. Cells 2023; 12:1566. [PMID: 37371036 PMCID: PMC10297028 DOI: 10.3390/cells12121566] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/31/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Metastases are responsible for the vast majority of cancer deaths, yet most therapeutic efforts have focused on targeting and interrupting tumor growth rather than impairing the metastatic process. Traditionally, cancer metastasis is attributed to the dissemination of neoplastic cells from the primary tumor to distant organs through blood and lymphatic circulation. A thorough understanding of the metastatic process is essential to develop new therapeutic strategies that improve cancer survival. Since Paget's original description of the "Seed and Soil" hypothesis over a hundred years ago, alternative theories and new players have been proposed. In particular, the role of extracellular vesicles (EVs) released by cancer cells and their uptake by neighboring cells or at distinct anatomical sites has been explored. Here, we will outline and discuss these alternative theories and emphasize the horizontal transfer of EV-associated biomolecules as a possibly major event leading to cell transformation and the induction of metastases. We will also highlight the recently discovered intracellular pathway used by EVs to deliver their cargoes into the nucleus of recipient cells, which is a potential target for novel anti-metastatic strategies.
Collapse
Affiliation(s)
- Goffredo O. Arena
- Department of Surgery, McGill University, Montréal, QC H3A 0G4, Canada;
- Fondazione Istituto G. Giglio, 90015 Cefalù, Italy
- Mediterranean Institute of Oncology, 95029 Viagrande, Italy;
| | - Stefano Forte
- Mediterranean Institute of Oncology, 95029 Viagrande, Italy;
| | - Mohamed Abdouh
- Cancer Research Program, Research Institute, McGill University Health Centre, Montréal, QC H3A 0G4, Canada;
| | - Cheryl Vanier
- Touro University Nevada College of Medicine, Henderson, NV 89014, USA;
| | - Denis Corbeil
- Biotechnology Center (BIOTEC) and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany;
| | - Aurelio Lorico
- Mediterranean Institute of Oncology, 95029 Viagrande, Italy;
- Touro University Nevada College of Medicine, Henderson, NV 89014, USA;
| |
Collapse
|
19
|
Loric S, Denis JA, Desbene C, Sabbah M, Conti M. Extracellular Vesicles in Breast Cancer: From Biology and Function to Clinical Diagnosis and Therapeutic Management. Int J Mol Sci 2023; 24:7208. [PMID: 37108371 PMCID: PMC10139222 DOI: 10.3390/ijms24087208] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/03/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Breast cancer (BC) is the first worldwide most frequent cancer in both sexes and the most commonly diagnosed in females. Although BC mortality has been thoroughly declining over the past decades, there are still considerable differences between women diagnosed with early BC and when metastatic BC is diagnosed. BC treatment choice is widely dependent on precise histological and molecular characterization. However, recurrence or distant metastasis still occurs even with the most recent efficient therapies. Thus, a better understanding of the different factors underlying tumor escape is mainly mandatory. Among the leading candidates is the continuous interplay between tumor cells and their microenvironment, where extracellular vesicles play a significant role. Among extracellular vesicles, smaller ones, also called exosomes, can carry biomolecules, such as lipids, proteins, and nucleic acids, and generate signal transmission through an intercellular transfer of their content. This mechanism allows tumor cells to recruit and modify the adjacent and systemic microenvironment to support further invasion and dissemination. By reciprocity, stromal cells can also use exosomes to profoundly modify tumor cell behavior. This review intends to cover the most recent literature on the role of extracellular vesicle production in normal and cancerous breast tissues. Specific attention is paid to the use of extracellular vesicles for early BC diagnosis, follow-up, and prognosis because exosomes are actually under the spotlight of researchers as a high-potential source of liquid biopsies. Extracellular vesicles in BC treatment as new targets for therapy or efficient nanovectors to drive drug delivery are also summarized.
Collapse
Affiliation(s)
- Sylvain Loric
- INSERM U538, CRSA, Saint-Antoine University Hospital, 75012 Paris, France; (J.A.D.)
| | | | - Cédric Desbene
- INSERM U538, CRSA, Saint-Antoine University Hospital, 75012 Paris, France; (J.A.D.)
| | - Michèle Sabbah
- INSERM U538, CRSA, Saint-Antoine University Hospital, 75012 Paris, France; (J.A.D.)
| | - Marc Conti
- INSERM U538, CRSA, Saint-Antoine University Hospital, 75012 Paris, France; (J.A.D.)
- INTEGRACELL SAS, 91160 Longjumeau, France
| |
Collapse
|
20
|
Patras L, Shaashua L, Matei I, Lyden D. Immune determinants of the pre-metastatic niche. Cancer Cell 2023; 41:546-572. [PMID: 36917952 PMCID: PMC10170403 DOI: 10.1016/j.ccell.2023.02.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 03/16/2023]
Abstract
Primary tumors actively and specifically prime pre-metastatic niches (PMNs), the future sites of organotropic metastasis, preparing these distant microenvironments for disseminated tumor cell arrival. While initial studies of the PMN focused on extracellular matrix alterations and stromal reprogramming, it is increasingly clear that the far-reaching effects of tumors are in great part achieved through systemic and local PMN immunosuppression. Here, we discuss recent advances in our understanding of the tumor immune microenvironment and provide a comprehensive overview of the immune determinants of the PMN's spatiotemporal evolution. Moreover, we depict the PMN immune landscape, based on functional pre-clinical studies as well as mounting clinical evidence, and the dynamic, reciprocal crosstalk with systemic changes imposed by cancer progression. Finally, we outline emerging therapeutic approaches that alter the dynamics of the interactions driving PMN formation and reverse immunosuppression programs in the PMN ensuring early anti-tumor immune responses.
Collapse
Affiliation(s)
- Laura Patras
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Lee Shaashua
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Irina Matei
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
| | - David Lyden
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
21
|
Tomasik B, Bieńkowski M, Górska Z, Gutowska K, Kumięga P, Jassem J, Duchnowska R. Molecular aspects of brain metastases in breast cancer. Cancer Treat Rev 2023; 114:102521. [PMID: 36736124 DOI: 10.1016/j.ctrv.2023.102521] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/29/2023]
Abstract
Brain metastases (BM) are a common and devastating manifestation of breast cancer (BC). BM are particularly frequent in the HER2-positive and triple-negative breast cancer phenotypes and usually occur following the metastatic spread to extracranial sites. Several genes mediating BM and biomarkers predicting their risk in BC have been reported in the past decade. These findings have advanced the understanding of BM pathobiology and paved the way for developing new therapeutic strategies but they still warrant a thorough clinical validation. Hence, a better understanding of the mechanistic aspects of BM and delineating the interactions of tumor cells with the brain microenvironment are of utmost importance. This review discusses the molecular basis of the metastatic cascade: the epithelial-mesenchymal transition, cancer, and tumor microenvironment interaction and intravasation, priming of the metastatic niche in the brain, and survival in the new site. We also outline the postulated mechanisms of BC cells' brain tropism. Finally, we discuss advances in the field of biomarkers (both tissue-based and liquid-based) that predict BM from BC.
Collapse
Affiliation(s)
- Bartłomiej Tomasik
- Department of Oncology and Radiotherapy, Medical University of Gdańsk, 17 Smoluchowskiego St., 80-214 Gdansk, Poland.
| | - Michał Bieńkowski
- Department of Pathology, Medical University of Gdańsk, 17 Smoluchowskiego St., 80-214 Gdańsk, Poland.
| | - Zuzanna Górska
- Department of Oncology, Military Institute of Medicine, 128 Szaserów St., 04-141 Warsaw, Poland.
| | - Klaudia Gutowska
- Department of Internal Diseases and Endocrinology, Medical University of Warsaw, 02-091 Warsaw, Poland; Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland.
| | - Paulina Kumięga
- Faculty of Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland.
| | - Jacek Jassem
- Department of Oncology and Radiotherapy, Medical University of Gdańsk, 17 Smoluchowskiego St., 80-214 Gdansk, Poland.
| | - Renata Duchnowska
- Department of Oncology, Military Institute of Medicine, 128 Szaserów St., 04-141 Warsaw, Poland.
| |
Collapse
|
22
|
Zhou C, Xiang Y, Ren Y, Li M, Gou X, Li W. Keratin19 promotes pancreatic cancer progression and poor prognosis via activating the Hedgehog pathway. Int J Oncol 2023; 62:43. [PMID: 36825581 PMCID: PMC9946805 DOI: 10.3892/ijo.2023.5491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/19/2023] [Indexed: 02/25/2023] Open
Abstract
Pancreatic cancer is a serious threat to human health, with strong invasiveness, rapid progression and poor prognosis. Tumors expressing keratin 19 (K19) have stronger invasiveness and a worse prognosis. However, the role and mechanism of K19 in pancreatic cancer have remained largely elusive. In the present study, K19 expression was detected in pancreatic cancer tissues, its effect on proliferation, apoptosis and metastasis of pancreatic cancer at the cellular, in vivo preclinical and clinical levels was evaluated and its effect on the Hedgehog pathway was analyzed. K19 was significantly overexpressed in pancreatic cancer, promoted pancreatic cancer proliferation and metastasis, inhibited tumor cell apoptosis and was associated with poor prognosis. Mechanistically, these effects were mediated through the activation of the Hedgehog pathway. In conclusion, K19 may be a novel target molecule for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Changsheng Zhou
- School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China,Department of Hepatobiliary Surgery, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China,Department of Hepatobiliary Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China,Cancer Research Center of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China,Retroperitoneal Tumor Research Center of The Oncology Chapter of The Chinese Medical Association, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Yi Xiang
- Department of Hepatobiliary Surgery, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China
| | - Yantao Ren
- School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China,Department of Hepatobiliary Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China,Cancer Research Center of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China,Retroperitoneal Tumor Research Center of The Oncology Chapter of The Chinese Medical Association, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China
| | - Ming Li
- Xiamen Medicine Research Institute, Xiamen, Fujian 361005, P.R. China
| | - Xin Gou
- Department of Hepatobiliary Surgery, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550002, P.R. China,Correspondence to: Dr Xin Gou, Department of Hepatobiliary Surgery, Guizhou Provincial People's Hospital, 83 Zhongshandong Road, Guiyang, Guizhou 550002, P.R. China, E-mail:
| | - Wengang Li
- School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China,Department of Hepatobiliary Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China,Cancer Research Center of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China,Retroperitoneal Tumor Research Center of The Oncology Chapter of The Chinese Medical Association, School of Medicine, Xiamen University, Xiamen, Fujian 361102, P.R. China,Dr Wengang Li, School of Medicine, Xiamen University, 4221 Xiang'annan Road, Xiamen, Fujian 361102, P.R. China, E-mail:
| |
Collapse
|
23
|
Organotropism of breast cancer metastasis: A comprehensive approach to the shared gene network. GENE REPORTS 2023. [DOI: 10.1016/j.genrep.2023.101749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
24
|
Fan JH, Zhang S, Yang H, Yi ZB, Ouyang QC, Yan M, Wang XJ, Hu XC, Jiang ZF, Huang T, Tong ZS, Wang SS, Yin YM, Li H, Yang RX, Yang HW, Teng YE, Sun T, Cai L, Li HY, Ouyang XN, He JJ, Liu XL, Yang SE, Wang JY, Xu BH, Qiao YL. Molecular subtypes predict the preferential site of distant metastasis in advanced breast cancer: a nationwide retrospective study. Front Oncol 2023; 13:978985. [PMID: 36761968 PMCID: PMC9905808 DOI: 10.3389/fonc.2023.978985] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Objective This study aimed to explore possible associations between molecular subtypes and site of distant metastasis in advanced breast cancer (ABC). Methods 3577 ABC patients were selected from 21 hospitals of seven geographic regions in China from 2012-2014. A questionnaire was designed to collect medical information regarding demographic characteristics, risk factors, molecular subtype, recurrence/metastasis information, and disease-free survival (DFS). The cancers were classified into Luminal A, Luminal B, HER2-enriched and Triple Negative subtypes. Chi-square test and multivariate Cox proportional hazard models were performed to explore the associations between molecular subtypes and distant metastasis sites. Results A total of 2393 cases with molecular subtypes information were finally examined. Patients with Luminal A (51.1%) and Luminal B (44.7%) were most prone to bone metastasis, whereas liver metastasis was more frequently observed in HER2-enriched ABC patients (29.1%).The cumulative recurrence and metastasis rates of ABC patients at 36 months of DFS were the most significant within molecular types, of which Triple Negative was the highest (82.7%), while that of Luminal A was the lowest (58.4%). In the adjusted Cox regression analysis, Luminal B, HER2-enriched and Triple Negative subtypes increased the risk of visceral metastasis by 23%, 46% and 87% respectively. In addition, Triple Negative patients had a higher probability of brain metastasis (HR 3.07, 95% CI: 1.04-9.07). Conclusion Molecular subtypes can predict the preferential sites of distant metastasis, emphasizing that these associations were of great help in choices for surveillance, developing appropriate screening and cancer management strategies for follow-up and personalized therapy in ABC patients.
Collapse
Affiliation(s)
- Jin-Hu Fan
- Department of Cancer Epidemiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Su Zhang
- Department of Operations Management, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Huan Yang
- Department of Cancer Epidemiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zong-Bi Yi
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qu-Chang Ouyang
- Department of Breast Cancer Medical Oncology, Hunan Cancer Hospital, Changsha, China
| | - Min Yan
- Department of Breast Disease, Henan Breast Cancer Center, The affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Xiao-Jia Wang
- Department of Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Xi-Chun Hu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Ze-Fei Jiang
- Department of Breast Cancer, The Fifth Medical Centre of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Tao Huang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhong-Sheng Tong
- Department of Breast Oncology, Key Laboratory of Breast Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Shu-Sen Wang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yong-Mei Yin
- Department of Medical Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hui Li
- Department of Breast Surgery, Sichuan Province Tumor Hospital, Chengdu, Sichuan, China
| | - Run-Xiang Yang
- Department of Medical Oncology, Yunnan Cancer Hospital, Kunming Medical University, Kunming, China
| | - Hua-Wei Yang
- Department of Breast Surgery, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Yue-E. Teng
- Departments of Medical Oncology and Thoracic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Tao Sun
- Department of Medical Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Key Laboratory of Liaoning Breast Cancer Research, Shenyang, China
| | - Li Cai
- The 4th Department of Internal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hong-Yuan Li
- Department of the Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, China
| | - Xue-Nong Ouyang
- Department of Medicine Oncology, 900Hospital of the Joint Logistics Team, Fuzhou, China
| | - Jian-Jun He
- Department of Breast Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xin-Lan Liu
- Department of oncology, General Hospital of Ningxia Medical University, Ningxia, China
| | - Shun-E. Yang
- Department of Breast Cancer and Lymphoma, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, China
| | - Jia-Yu Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,*Correspondence: You-Lin Qiao, ; Jia-Yu Wang, ; Bing-He Xu,
| | - Bing-He Xu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,*Correspondence: You-Lin Qiao, ; Jia-Yu Wang, ; Bing-He Xu,
| | - You-Lin Qiao
- Department of Cancer Epidemiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China,*Correspondence: You-Lin Qiao, ; Jia-Yu Wang, ; Bing-He Xu,
| |
Collapse
|
25
|
Immune Checkpoint and Other Receptor-Ligand Pairs Modulating Macrophages in Cancer: Present and Prospects. Cancers (Basel) 2022; 14:cancers14235963. [PMID: 36497444 PMCID: PMC9736575 DOI: 10.3390/cancers14235963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Immunotherapy, especially immune checkpoint blocking, has become the primary anti-tumor treatment in recent years. However, the current immune checkpoint inhibitor (ICI) therapy is far from satisfactory. Macrophages are a key component of anti-tumor immunity as they are a common immune cell subset in tumor tissues and act as a link between innate and adaptive immunity. Hence, understanding the regulation of macrophage activation in tumor tissues by receptor-ligand interaction will provide promising macrophage-targeting strategies to complement current adaptive immunity-based immunotherapy and traditional anti-tumor treatment. This review aims to offer a systematic summary of the current advances in number, structure, expression, biological function, and interplay of immune checkpoint and other receptor-ligand between macrophages and tumor cells.
Collapse
|
26
|
Wada M. Role of ABC Transporters in Cancer Development and Malignant Alteration. YAKUGAKU ZASSHI 2022; 142:1201-1225. [DOI: 10.1248/yakushi.22-00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
Judasz E, Lisiak N, Kopczyński P, Taube M, Rubiś B. The Role of Telomerase in Breast Cancer's Response to Therapy. Int J Mol Sci 2022; 23:12844. [PMID: 36361634 PMCID: PMC9654063 DOI: 10.3390/ijms232112844] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/13/2022] [Accepted: 10/24/2022] [Indexed: 11/26/2023] Open
Abstract
Currently, breast cancer appears to be the most widespread cancer in the world and the most common cause of cancer deaths. This specific type of cancer affects women in both developed and developing countries. Prevention and early diagnosis are very important factors for good prognosis. A characteristic feature of cancer cells is the ability of unlimited cell division, which makes them immortal. Telomeres, which are shortened with each cell division in normal cells, are rebuilt in cancer cells by the enzyme telomerase, which is expressed in more than 85% of cancers (up to 100% of adenocarcinomas, including breast cancer). Telomerase may have different functions that are related to telomeres or unrelated. It has been shown that high activity of the enzyme in cancer cells is associated with poor cell sensitivity to therapies. Therefore, telomerase has become a potential target for cancer therapies. The low efficacy of therapies has resulted in the search for new combined and more effective therapeutic methods, including the involvement of telomerase inhibitors and telomerase-targeted immunotherapy.
Collapse
Affiliation(s)
- Eliza Judasz
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Natalia Lisiak
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Przemysław Kopczyński
- Centre for Orthodontic Mini-Implants at the Department and Clinic of Maxillofacial Orthopedics and Orthodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Magdalena Taube
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Błażej Rubiś
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| |
Collapse
|
28
|
Ya G, Ren W, Qin R, He J, Zhao S. Role of myeloid-derived suppressor cells in the formation of pre-metastatic niche. Front Oncol 2022; 12:975261. [PMID: 36237333 PMCID: PMC9552826 DOI: 10.3389/fonc.2022.975261] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Metastasis is a complex process, which depends on the interaction between tumor cells and host organs. Driven by the primary tumor, the host organ will establish an environment suitable for the growth of tumor cells before their arrival, which is called the pre-metastasis niche. The formation of pre-metastasis niche requires the participation of a variety of cells, in which myeloid-derived suppressor cells play a very important role. They reach the host organ before the tumor cells, and promote the establishment of the pre-metastasis niche by influencing immunosuppression, vascular leakage, extracellular matrix remodeling, angiogenesis and so on. In this article, we introduced the formation of the pre-metastasis niche and discussed the important role of myeloid-derived suppressor cells. In addition, this paper also emphasized the targeting of myeloid-derived suppressor cells as a therapeutic strategy to inhibit the formation of pre-metastasis niche, which provided a research idea for curbing tumor metastasis.
Collapse
Affiliation(s)
- Guoqi Ya
- The First Clinical Medical Institute, Henan University of Chinese Medicine, Zhengzhou, China
| | - Weihong Ren
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
- *Correspondence: Weihong Ren,
| | - Rui Qin
- The First Clinical Medical Institute, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jiao He
- The First Clinical Medical Institute, Henan University of Chinese Medicine, Zhengzhou, China
| | - Shuo Zhao
- Department of Laboratory Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| |
Collapse
|
29
|
Chen X, Feng J, Chen W, Shao S, Chen L, Wan H. Small extracellular vesicles: from promoting pre-metastatic niche formation to therapeutic strategies in breast cancer. Cell Commun Signal 2022; 20:141. [PMID: 36096820 PMCID: PMC9465880 DOI: 10.1186/s12964-022-00945-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/23/2022] [Indexed: 12/04/2022] Open
Abstract
Breast cancer is the most common cancer in females, and to date, the mortality rate of breast cancer metastasis cannot be ignored. The metastasis of breast cancer is a complex, staged process, and the pattern of metastatic spread is not random. The pre-metastatic niche, as an organ-specific home for metastasis, is a favourable environment for tumour cell colonization. As detection techniques improve, the role of the pre-metastatic niche in breast cancer metastasis is being uncovered. sEVs (small extracellular vesicles) can deliver cargo, which is vital for the formation of pre-metastatic niches. sEVs participate in multiple aspects of creating a distant microenvironment to promote tumour invasion, including the secretion of inflammatory molecules, immunosuppression, angiogenesis and enhancement of vascular permeability, as well as regulation of the stromal environment. Here, we discuss the multifaceted mechanisms through which breast cancer-derived sEVs contribute to pre-metastatic niches. In addition, sEVs as biomarkers and antimetastatic therapies are also discussed, particularly their use in transporting exosomal microRNAs. The study of sEVs may provide insight into immunotherapy and targeted therapies for breast cancer, and we also provide an overview of their potential role in antitumour metastasis. Video Abstract
Collapse
Affiliation(s)
- Xiaoxiao Chen
- Department of Breast, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200001, China
| | - Jiamei Feng
- Department of Breast, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200001, China
| | - Weili Chen
- Department of Breast, Yueyang Hospital Integated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200080, China
| | - Shijun Shao
- Department of Breast, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200001, China
| | - Li Chen
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hua Wan
- Department of Breast, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200001, China.
| |
Collapse
|
30
|
Mukherjee A, Ha P, Wai KC, Naara S. The Role of ECM Remodeling, EMT, and Adhesion Molecules in Cancerous Neural Invasion: Changing Perspectives. Adv Biol (Weinh) 2022; 6:e2200039. [PMID: 35798312 DOI: 10.1002/adbi.202200039] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/05/2022] [Indexed: 01/28/2023]
Abstract
Perineural invasion (PNI) refers to the cancerous invasion of nerves. It provides an alternative route for metastatic invasion and can exist independently in the absence of lymphatic or vascular invasion. It is a prominent characteristic of specific aggressive malignancies where it correlates with poor prognosis. The clinical significance of PNI is widely recognized despite a lack of understanding of the molecular mechanisms underlying its pathogenesis. The interaction between the nerve and the cancer cells is the most pivotal PNI step which is mediated by the activation or inhibition of multiple signaling pathways that include chemokines, interleukins, nerve growth factors, and matrix metalloproteinases, to name a few. The nerve-cancer cell interaction brings about specific changes in the perineural niche, which not only affects the regular nerve functions, but also enhances the migratory, invasive, and adherent properties of the tumor cells. This review aims to elucidate the vital role of adhesion molecules, extracellular matrix, and epithelial-mesenchymal proteins that promote PNI, which may serve as therapeutic targets in the future.
Collapse
Affiliation(s)
- Abhishek Mukherjee
- Department of Genetics and Developmental BiologyRappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 3525422, Israel
| | - Patrick Ha
- Department of Otolaryngology-Head and Neck Surgery, University of California-San Francisco, Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, 94158, USA
| | - Katherine C Wai
- Department of Otolaryngology-Head and Neck Surgery, University of California-San Francisco, Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, 94158, USA
| | - Shorook Naara
- Department of Genetics and Developmental BiologyRappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 3525422, Israel.,Department of Otolaryngology-Head and Neck Surgery, University of California-San Francisco, Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, 94158, USA
| |
Collapse
|
31
|
DNA Polymerase Theta Plays a Critical Role in Pancreatic Cancer Development and Metastasis. Cancers (Basel) 2022; 14:cancers14174077. [PMID: 36077614 PMCID: PMC9454495 DOI: 10.3390/cancers14174077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), due to its genomic heterogeneity and lack of effective treatment, despite decades of intensive research, will become the second leading cause of cancer-related deaths by 2030. Step-wise acquisition of mutations, due to genomic instability, is considered to drive the development of PDAC; the KRAS mutation occurs in 95 to 100% of human PDAC, and is already detectable in early premalignant lesions designated as pancreatic intraepithelial neoplasia (PanIN). This mutation is possibly the key event leading to genomic instability and PDAC development. Our study aimed to investigate the role of the error-prone DNA double-strand breaks (DSBs) repair pathway, alt-EJ, in the presence of the KRAS G12D mutation in pancreatic cancer development. Our findings show that oncogenic KRAS contributes to increasing the expression of Polθ, Lig3, and Mre11, key components of alt-EJ in both mouse and human PDAC models. We further confirm increased catalytic activity of alt-EJ in a mouse and human model of PDAC bearing the KRAS G12D mutation. Subsequently, we focused on estimating the impact of alt-EJ inactivation by polymerase theta (Polθ) deletion on pancreatic cancer development, and survival in genetically engineered mouse models (GEMMs) and cancer patients. Here, we show that even though Polθ deficiency does not fully prevent the development of pancreatic cancer, it significantly delays the onset of PanIN formation, prolongs the overall survival of experimental mice, and correlates with the overall survival of pancreatic cancer patients in the TCGA database. Our study clearly demonstrates the role of alt-EJ in the development of PDAC, and alt-EJ may be an attractive therapeutic target for pancreatic cancer patients.
Collapse
|
32
|
Selenium and tellurium in the development of novel small molecules and nanoparticles as cancer multidrug resistance reversal agents. Drug Resist Updat 2022; 63:100844. [DOI: 10.1016/j.drup.2022.100844] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
33
|
Cai SL, Wang ZH, Chen XG, Han L, Gong GX, Chen YP, Lin XQ, Ma T, Chen HD. Risk Factors of Brain Metastasis and Prognosis in HER2-Positive Breast Cancer: A Single-Institution Retrospective Analysis from China. Front Oncol 2022; 12:905065. [PMID: 35832552 PMCID: PMC9271963 DOI: 10.3389/fonc.2022.905065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundBrain metastasis (BM) frequently occurs in HER2-positive breast cancer (BC) patients, but the risk factors of BM in this type of patients are still unknown. Our study aims to assess the risk factors of BM and prognostic analysis in HER2-positive BC patients.MethodsUnivariate analysis used t-test, chi-square test, and Fisher’s exact test to find out the risk factors for BM, and multivariable analysis was done with stepwise logistic regression analysis. Prognostic data analysis was estimated by the Kaplan–Meier method.ResultsA total of 228 HER2-positive BC patients were included, of whom 214 patients were postoperative metastatic patients and 14 patients were de novo stage IV patients. Through comparing the stratified variables between 51 postoperative metastatic patients with BM and 163 postoperative metastatic patients without BM, the multivariate analysis showed that age ≤40 years (OR 2.321, 95% CI: 1.089 to 4.948) and first metastatic site with lung metastasis (OR 2.168, 95% CI: 1.099 to 4.274) were independent risk factors for BM in HER2-positive BC patients. Prognostic data of all 65 HER2-positive BC patients with BM showed that the time from the diagnosis of BC to the development of breast cancer brain metastasis (BCBM) was 36.3 months (95% CI: 30.0 to 42.1 months). The time from the diagnosis of first recurrence and metastasis stage to the diagnosis of BCBM was 11.35 months (95% CI: 7.1 to 18.4 months). The time from the diagnosis of BCBM to the time of follow-up was 24.1 months (95% CI: 13.9 to 37.5 months). Up until the time of follow-up data, a total of 38 patients had died, and the time from the diagnosis of BM of these 38 patients to death was 11.0 months (95% CI: 9.0 to 20.4 months).ConclusionThe prognosis of HER2-positive BC patients with BM was poor due to the lack of effective treatments for BM. Age ≤40 years and first metastatic site with lung metastasis were the independent risk factors for BM in HER2-positive BC patients. Future research about pre-emptive medical interventions may help to improve the prognosis of HER2-positive BC patients with high risk to develop BM.
Collapse
Affiliation(s)
- Shuang-Long Cai
- Department of Oncological Surgery, Provincial Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Zhi-Hong Wang
- Department of Hematology, Provincial Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Xiao-Geng Chen
- Department of Oncological Surgery, Provincial Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Lei Han
- Department of Oncological Surgery, Provincial Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Guo-Xian Gong
- Department of UItrasonic Diagnosis, Fujian Provincial Hospital, Fuzhou, China
| | - Yan-Ping Chen
- Department of Obstetrics and Gynecology, Provincial Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Xiu-Quan Lin
- Department for Chronic and Noncommunicable Disease Control and Prevention, Fujian Provincial Center for Disease Control and Prevention, Fuzhou, China
| | - Tao Ma
- Third Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Hong-Dan Chen
- First Department of Cadre Clinic, Provincial Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
- *Correspondence: Hong-Dan Chen,
| |
Collapse
|
34
|
The Role of Extracellular Vesicles in Melanoma Progression. Cancers (Basel) 2022; 14:cancers14133086. [PMID: 35804857 PMCID: PMC9264817 DOI: 10.3390/cancers14133086] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 02/07/2023] Open
Abstract
Cutaneous melanoma arises from a malignant transformation of the melanocytes in the skin. It is the deadliest form of skin cancer owing to its potential to metastasize. While recent advances in immuno-oncology have been successful in melanoma treatment, not all the patients respond to the treatment equally, thus individual pre-screening and personalized combination therapies are essential to stratify and monitor patients. Extracellular vesicles (EVs) have emerged as promising biomarker candidates to tackle these challenges. EVs are ~50-1000-nm-sized, lipid bilayer-enclosed spheres, which are secreted by almost all cell types, including cancer cells. Their cargo, such as nucleic acids, proteins, lipids, amino acids, and metabolites, can be transferred to target cells. Thanks to these properties, EVs can both provide a multiplexed molecular fingerprint of the cell of origin and thus serve as potential biomarkers, or reveal pathways important for cancer progression that can be targeted pharmaceutically. In this review we give a general overview of EVs and focus on their impact on melanoma progression. In particular, we shed light on the role of EVs in shaping the tumor-stroma interactions that facilitate metastasis and summarize the latest findings on molecular profiling of EV-derived miRNAs and proteins that can serve as potential biomarkers for melanoma progression.
Collapse
|
35
|
Beyond Genetics: Metastasis as an Adaptive Response in Breast Cancer. Int J Mol Sci 2022; 23:ijms23116271. [PMID: 35682953 PMCID: PMC9181003 DOI: 10.3390/ijms23116271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/26/2022] [Accepted: 06/01/2022] [Indexed: 01/27/2023] Open
Abstract
Metastatic disease represents the primary cause of breast cancer (BC) mortality, yet it is still one of the most enigmatic processes in the biology of this tumor. Metastatic progression includes distinct phases: invasion, intravasation, hematogenous dissemination, extravasation and seeding at distant sites, micro-metastasis formation and metastatic outgrowth. Whole-genome sequencing analyses of primary BC and metastases revealed that BC metastatization is a non-genetically selected trait, rather the result of transcriptional and metabolic adaptation to the unfavorable microenvironmental conditions which cancer cells are exposed to (e.g., hypoxia, low nutrients, endoplasmic reticulum stress and chemotherapy administration). In this regard, the latest multi-omics analyses unveiled intra-tumor phenotypic heterogeneity, which determines the polyclonal nature of breast tumors and constitutes a challenge for clinicians, correlating with patient poor prognosis. The present work reviews BC classification and epidemiology, focusing on the impact of metastatic disease on patient prognosis and survival, while describing general principles and current in vitro/in vivo models of the BC metastatic cascade. The authors address here both genetic and phenotypic intrinsic heterogeneity of breast tumors, reporting the latest studies that support the role of the latter in metastatic spreading. Finally, the review illustrates the mechanisms underlying adaptive stress responses during BC metastatic progression.
Collapse
|
36
|
Das J, Maiti TK. Fluid shear stress influences invasiveness of HeLa cells through the induction of autophagy. Clin Exp Metastasis 2022; 39:495-504. [PMID: 35211829 DOI: 10.1007/s10585-022-10156-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/09/2022] [Indexed: 11/25/2022]
Abstract
Extravasation of metastatic cells from the blood or lymphatic circulation and formation of secondary tumor at a distant site is a key step of cancer metastasis. In this study, we report the role of hemodynamic shear stresses in fostering the release of pro-extravasation factors through the mediation of autophagy in cervical cancer HeLa cells. HeLa cells were exposed to physiological shear stress through the microfluidic approach adapted in our previous study on the role of hemodynamic shear stresses in survival of HeLa cells. Herein, an optimum number of passes through a cylindrical microchannel was chosen such that the viability of cells was unaffected by shear. Shear-exposed cells were then probed for their invasive and migratory potential through in vitro migration and invasion assays. The dependence of cancer cells on mechanically-induced autophagy for extravasation was further assessed through protein expression studies. Our results suggest that shear stress upregulates autophagy, which fosters paxillin turnover thereby leading to enhanced focal adhesion disassembly and in turn enhanced cell migration. Concurrently, shear stress-induced secretion of pro-invasive factors like MMP-2 and IL-6 were found to be autophagy-dependent thereby hinting at autophagy as a potential therapeutic target in metastatic cancer. Proposed model for mechano-autophagic modulation of extravasation.
Collapse
Affiliation(s)
- Joyjyoti Das
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, 700126, India.
| | - Tapas K Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| |
Collapse
|
37
|
Chen X, Song E. The theory of tumor ecosystem. Cancer Commun (Lond) 2022; 42:587-608. [PMID: 35642770 PMCID: PMC9257988 DOI: 10.1002/cac2.12316] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/08/2022] [Accepted: 05/25/2022] [Indexed: 02/07/2023] Open
Abstract
Cancer cells can be conceived as “living organisms” interacting with cellular or non‐cellular components in the host internal environment, not only the local tumor microenvironment but also the distant organ niches, as well as the immune, nervous and endocrine systems, to construct a self‐sustainable tumor ecosystem. With increasing evidence for the systemic tumor‐host interplay, we predict that a new era of cancer therapy targeting the ecosystemic vulnerability of human malignancies has come. Revolving around the tumor ecosystem scoped as different hierarchies of primary, regional, distal and systemic onco‐spheres, we comprehensively review the tumor‐host interaction among cancer cells and their local microenvironment, distant organ niches, immune, nervous and endocrine systems, highlighting material and energy flow with tumor ecological homeostasis as an internal driving force. We also substantiate the knowledge of visualizing, modelling and subtyping this dynamically intertwined network with recent technological advances, and discuss ecologically rational strategies for more effective cancer therapies.
Collapse
Affiliation(s)
- Xueman Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, P. R. China.,Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, P. R. China
| | - Erwei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, P. R. China.,Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510120, P. R. China
| |
Collapse
|
38
|
Abdel Sater AH, Bouferraa Y, Amhaz G, Haibe Y, Lakkiss AE, Shamseddine A. From Tumor Cells to Endothelium and Gut Microbiome: A Complex Interaction Favoring the Metastasis Cascade. Front Oncol 2022; 12:804983. [PMID: 35600385 PMCID: PMC9117727 DOI: 10.3389/fonc.2022.804983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 04/12/2022] [Indexed: 11/30/2022] Open
Abstract
Metastasis is a complicated process through which tumor cells disseminate to distant organs and adapt to novel tumor microenvironments. This multi-step cascade relies on the accumulation of genetic and epigenetic alterations within the tumor cells as well as the surrounding non-tumor stromal cells. Endothelial cells constitute a major player in promoting metastasis formation either by inducing the growth of tumor cells or by directing them towards dissemination in the blood or lymph. In fact, the direct and indirect interactions between tumor and endothelial cells were shown to activate several mechanisms allowing cancer cells’ invasion and extravasation. On the other side, gastrointestinal cancer development was shown to be associated with the disruption of the gut microbiome. While several proposed mechanisms have been investigated in this regard, gut and tumor-associated microbiota were shown to impact the gut endothelial barrier, increasing the dissemination of bacteria through the systemic circulation. This bacterial dislocation allows the formation of an inflammatory premetastatic niche in the distant organs promoting the metastatic cascade of primary tumors. In this review, we discuss the role of the endothelial cells in the metastatic cascade of tumors. We will focus on the role of the gut vascular barrier in the regulation metastasis. We will also discuss the interaction between this vascular barrier and the gut microbiota enhancing the process of metastasis. In addition, we will try to elucidate the different mechanisms through which this bacterial dislocation prepares the favorable metastatic niche at distant organs allowing the dissemination and successful deposition of tumor cells in the new microenvironments. Finally, and given the promising results of the studies combining immune checkpoint inhibitors with either microbiota alterations or anti-angiogenic therapy in many types of cancer, we will elaborate in this review the complex interaction between these 3 factors and their possible therapeutic combination to optimize response to treatment.
Collapse
Affiliation(s)
- Ali H Abdel Sater
- Department of Internal Medicine, Division of Hematology/Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Youssef Bouferraa
- Department of Internal Medicine, Division of Hematology/Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ghid Amhaz
- Department of Internal Medicine, Division of Hematology/Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Yolla Haibe
- Department of Internal Medicine, Division of Hematology/Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ahmed El Lakkiss
- Department of Internal Medicine, Division of Hematology/Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Ali Shamseddine
- Department of Internal Medicine, Division of Hematology/Oncology, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
39
|
Crist SB, Nemkov T, Dumpit RF, Dai J, Tapscott SJ, True LD, Swarbrick A, Sullivan LB, Nelson PS, Hansen KC, Ghajar CM. Unchecked oxidative stress in skeletal muscle prevents outgrowth of disseminated tumour cells. Nat Cell Biol 2022; 24:538-553. [PMID: 35411081 PMCID: PMC11312424 DOI: 10.1038/s41556-022-00881-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 03/02/2022] [Indexed: 12/13/2022]
Abstract
Skeletal muscle has long been recognized as an inhospitable site for disseminated tumour cells (DTCs). Yet its antimetastatic nature has eluded a thorough mechanistic examination. Here, we show that DTCs traffic to and persist within skeletal muscle in mice and in humans, which raises the question of how this tissue suppresses colonization. Results from mouse and organotypic culture models along with metabolomic profiling suggested that skeletal muscle imposes a sustained oxidative stress on DTCs that impairs their proliferation. Functional studies demonstrated that disrupting reduction-oxidation homeostasis via chemogenetic induction of reactive oxygen species slowed proliferation in a more fertile organ: the lung. Conversely, enhancement of the antioxidant potential of tumour cells through ectopic expression of catalase in the tumour or host mitochondria allowed robust colonization of skeletal muscle. These findings reveal a profound metabolic bottleneck imposed on DTCs and sustained by skeletal muscle. A thorough understanding of this biology could reveal previously undocumented DTC vulnerabilities that can be exploited to prevent metastasis in other more susceptible tissues.
Collapse
Affiliation(s)
- Sarah B Crist
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA, USA
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ruth F Dumpit
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jinxiang Dai
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Stephen J Tapscott
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Neurology, University of Washington, Seattle, WA, USA
| | - Lawrence D True
- Department of Urology, University of Washington, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - Alexander Swarbrick
- The Kinghorn Cancer Centre and Cancer Research Theme, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
| | - Lucas B Sullivan
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Peter S Nelson
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Urology, University of Washington, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Cyrus M Ghajar
- Public Health Sciences Division/Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
- Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| |
Collapse
|
40
|
Rezaie J, Ahmadi M, Ravanbakhsh R, Mojarad B, Mahbubfam S, Shaban SA, Shadi K, Berenjabad NJ, Etemadi T. Tumor-derived extracellular vesicles: The metastatic organotropism drivers. Life Sci 2022; 289:120216. [PMID: 34890589 DOI: 10.1016/j.lfs.2021.120216] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 02/07/2023]
Abstract
The continuous growing, spreading, and metastasis of tumor cells depend on intercellular communication within cells resident in a tissue environment. Such communication is mediated through the secretion of particles from tumor cells and resident cells known as extracellular vesicles (EVs) within a microenvironment. EVs are a heterogeneous population of membranous vesicles released from tumor cells that transfer many types of active biomolecules to recipient cells and induce physiologic and phenotypic alterations in the tissue environment. Spreading the 'seeds' of metastasis needs the EVs that qualify the 'soil' at distant sites to promote the progress of arriving tumor cells. Growing evidence indicates that EVs have vital roles in tumorigenesis, including pre-metastatic niche formation and organotropic metastasis. These EVs mediate organotropic metastasis by modifying the pre-metastatic microenvironment through different pathways including induction of phenotypic alternation and differentiation of cells, enrolment of distinct supportive stromal cells, up-regulation of the expression of pro-inflammatory genes, and induction of immunosuppressive status. However, instead of pre-metastatic niche formation, evidence suggests that EVs may mediate reawakening of dormant niches. Findings regarding EVs function in tumor metastasis have led to growing interests in the interdisciplinary significance of EVs, including targeted therapy, cell-free therapy, drug-delivery system, and diagnostic biomarker. In this review, we discuss EVs-mediated pre-metastatic niche formation and organotropic metastasis in visceral such as lung, liver, brain, lymph node, and bone with a focus on associated signaling, causing visceral environment hospitable for metastatic cells. Furthermore, we present an overview of the possible therapeutic application of EVs in cancer management.
Collapse
Affiliation(s)
- Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Mahdi Ahmadi
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reyhaneh Ravanbakhsh
- Department of Aquatic Biotechnology, Artemia and Aquaculture Research Institute, Urmia University, Urmia, Iran
| | - Behnam Mojarad
- Biology Department, Faculty of Sciences, Urmia University, Urmia, Iran
| | - Shadi Mahbubfam
- Biology Department, Faculty of Sciences, Urmia University, Urmia, Iran
| | | | - Kosar Shadi
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Tahereh Etemadi
- Department of Biology, Faculty of Science, Arak University, Arak, Iran
| |
Collapse
|
41
|
Cheng WL, Feng PH, Lee KY, Chen KY, Sun WL, Van Hiep N, Luo CS, Wu SM. The Role of EREG/EGFR Pathway in Tumor Progression. Int J Mol Sci 2021; 22:ijms222312828. [PMID: 34884633 PMCID: PMC8657471 DOI: 10.3390/ijms222312828] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022] Open
Abstract
Aberrant activation of the epidermal growth factor receptor (EGFR/ERBB1) by erythroblastic leukemia viral oncogene homolog (ERBB) ligands contributes to various tumor malignancies, including lung cancer and colorectal cancer (CRC). Epiregulin (EREG) is one of the EGFR ligands and is low expressed in most normal tissues. Elevated EREG in various cancers mainly activates EGFR signaling pathways and promotes cancer progression. Notably, a higher EREG expression level in CRC with wild-type Kirsten rat sarcoma viral oncogene homolog (KRAS) is related to better efficacy of therapeutic treatment. By contrast, the resistance of anti-EGFR therapy in CRC was driven by low EREG expression, aberrant genetic mutation and signal pathway alterations. Additionally, EREG overexpression in non-small cell lung cancer (NSCLC) is anticipated to be a therapeutic target for EGFR-tyrosine kinase inhibitor (EGFR-TKI). However, recent findings indicate that EREG derived from macrophages promotes NSCLC cell resistance to EGFR-TKI treatment. The emerging events of EREG-mediated tumor promotion signals are generated by autocrine and paracrine loops that arise from tumor epithelial cells, fibroblasts, and macrophages in the tumor microenvironment (TME). The TME is a crucial element for the development of various cancer types and drug resistance. The regulation of EREG/EGFR pathways depends on distinct oncogenic driver mutations and cell contexts that allows specific pharmacological targeting alone or combinational treatment for tailored therapy. Novel strategies targeting EREG/EGFR, tumor-associated macrophages, and alternative activation oncoproteins are under development or undergoing clinical trials. In this review, we summarize the clinical outcomes of EREG expression and the interaction of this ligand in the TME. The EREG/EGFR pathway may be a potential target and may be combined with other driver mutation targets to combat specific cancers.
Collapse
Affiliation(s)
- Wan-Li Cheng
- Division of Cardiovascular Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan;
- Division of Cardiovascular Surgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Po-Hao Feng
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (P.-H.F.); (K.-Y.L.); (K.-Y.C.); (W.-L.S.); (N.V.H.); (C.-S.L.)
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Kang-Yun Lee
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (P.-H.F.); (K.-Y.L.); (K.-Y.C.); (W.-L.S.); (N.V.H.); (C.-S.L.)
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Kuan-Yuan Chen
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (P.-H.F.); (K.-Y.L.); (K.-Y.C.); (W.-L.S.); (N.V.H.); (C.-S.L.)
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Wei-Lun Sun
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (P.-H.F.); (K.-Y.L.); (K.-Y.C.); (W.-L.S.); (N.V.H.); (C.-S.L.)
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Nguyen Van Hiep
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (P.-H.F.); (K.-Y.L.); (K.-Y.C.); (W.-L.S.); (N.V.H.); (C.-S.L.)
- International PhD Program in Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Ching-Shan Luo
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (P.-H.F.); (K.-Y.L.); (K.-Y.C.); (W.-L.S.); (N.V.H.); (C.-S.L.)
| | - Sheng-Ming Wu
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan; (P.-H.F.); (K.-Y.L.); (K.-Y.C.); (W.-L.S.); (N.V.H.); (C.-S.L.)
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence:
| |
Collapse
|
42
|
Allen TA, Cullen MM, Hawkey N, Mochizuki H, Nguyen L, Schechter E, Borst L, Yoder JA, Freedman JA, Patierno SR, Cheng K, Eward WC, Somarelli JA. A Zebrafish Model of Metastatic Colonization Pinpoints Cellular Mechanisms of Circulating Tumor Cell Extravasation. Front Oncol 2021; 11:641187. [PMID: 34631514 PMCID: PMC8495265 DOI: 10.3389/fonc.2021.641187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 08/31/2021] [Indexed: 01/18/2023] Open
Abstract
Metastasis is a multistep process in which cells must detach, migrate/invade local structures, intravasate, circulate, extravasate, and colonize. A full understanding of the complexity of this process has been limited by the lack of ability to study these steps in isolation with detailed molecular analyses. Leveraging a comparative oncology approach, we injected canine osteosarcoma cells into the circulation of transgenic zebrafish with fluorescent blood vessels in a biologically dynamic metastasis extravasation model. Circulating tumor cell clusters that successfully extravasated the vasculature as multicellular units were isolated under intravital imaging (n = 6). These extravasation-positive tumor cell clusters sublines were then molecularly profiled by RNA-Seq. Using a systems-level analysis, we pinpointed the downregulation of KRAS signaling, immune pathways, and extracellular matrix (ECM) organization as enriched in extravasated cells (p < 0.05). Within the extracellular matrix remodeling pathway, we identified versican (VCAN) as consistently upregulated and central to the ECM gene regulatory network (p < 0.05). Versican expression is prognostic for a poorer metastasis-free and overall survival in patients with osteosarcoma. Together, our results provide a novel experimental framework to study discrete steps in the metastatic process. Using this system, we identify the versican/ECM network dysregulation as a potential contributor to osteosarcoma circulating tumor cell metastasis.
Collapse
Affiliation(s)
- Tyler A Allen
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
| | - Mark M Cullen
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
| | - Nathan Hawkey
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
| | - Hiroyuki Mochizuki
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
| | - Lan Nguyen
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
| | - Elyse Schechter
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States
| | - Luke Borst
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Jeffrey A Yoder
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States
| | - Jennifer A Freedman
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States.,Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, NC, United States
| | - Steven R Patierno
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States.,Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, NC, United States
| | - Ke Cheng
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC, United States.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, United States
| | - William C Eward
- Department of Orthopedics, Duke University Medical Center, Durham, NC, United States
| | - Jason A Somarelli
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, United States.,Department of Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
43
|
Dong Q, Liu X, Cheng K, Sheng J, Kong J, Liu T. Pre-metastatic Niche Formation in Different Organs Induced by Tumor Extracellular Vesicles. Front Cell Dev Biol 2021; 9:733627. [PMID: 34616739 PMCID: PMC8489591 DOI: 10.3389/fcell.2021.733627] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/01/2021] [Indexed: 12/11/2022] Open
Abstract
Primary tumors selectively modify the microenvironment of distant organs such as the lung, liver, brain, bone marrow, and lymph nodes to facilitate metastasis. This supportive metastatic microenvironment in distant organs was termed the pre-metastatic niche (PMN) that is characterized by increased vascular permeability, extracellular matrix remodeling, bone marrow-derived cells recruitment, angiogenesis, and immunosuppression. Extracellular vesicles (EVs) are a group of cell-derived membranous structures that carry various functional molecules. EVs play a critical role in PMN formation by delivering their cargos to recipient cells in target organs. We provide an overview of the characteristics of the PMN in different organs promoted by cancer EVs and the underlying mechanisms in this review.
Collapse
Affiliation(s)
- Qi Dong
- Department of Basic Science of Stomatology, Shanghai Stomatological Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China.,Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, China
| | - Xue Liu
- Department of Basic Science of Stomatology, Shanghai Stomatological Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| | - Ke Cheng
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, China
| | - Jiahao Sheng
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, China
| | - Jing Kong
- Department of Oral Pathology, School of Stomatology, Dalian Medical University, Dalian, China
| | - Tingjiao Liu
- Department of Basic Science of Stomatology, Shanghai Stomatological Hospital, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai, China
| |
Collapse
|
44
|
Terceiro LEL, Edechi CA, Ikeogu NM, Nickel BE, Hombach-Klonisch S, Sharif T, Leygue E, Myal Y. The Breast Tumor Microenvironment: A Key Player in Metastatic Spread. Cancers (Basel) 2021; 13:4798. [PMID: 34638283 PMCID: PMC8507966 DOI: 10.3390/cancers13194798] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/12/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
The tumor microenvironment plays a pivotal role in the tumorigenesis, progression, and metastatic spread of many cancers including breast. There is now increasing evidence to support the observations that a bidirectional interplay between breast cancer cells and stromal cells exists within the tumor and the tumor microenvironment both at the primary tumor site and at the metastatic site. This interaction occurs through direct cell to cell contact, or by the release of autocrine or paracrine factors which can activate pro-tumor signaling pathways and modulate tumor behavior. In this review, we will highlight recent advances in our current knowledge about the multiple interactions between breast cancer cells and neighboring cells (fibroblasts, endothelial cells, adipocytes, innate and adaptive immune cells) in the tumor microenvironment that coordinate to regulate metastasis. We also highlight the role of exosomes and circulating tumor cells in facilitating breast cancer metastasis. We discuss some key markers associated with stromal cells in the breast tumor environment and their potential to predict patient survival and guide treatment. Finally, we will provide some brief perspectives on how current technologies may lead to the development of more effective therapies for the clinical management of breast cancer patients.
Collapse
Affiliation(s)
- Lucas E. L. Terceiro
- Department of Pathology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 3P5, Canada; (L.E.L.T.); (C.A.E.); (T.S.)
| | - Chidalu A. Edechi
- Department of Pathology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 3P5, Canada; (L.E.L.T.); (C.A.E.); (T.S.)
| | - Nnamdi M. Ikeogu
- Department of Immunology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada;
| | - Barbara E. Nickel
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada;
| | - Sabine Hombach-Klonisch
- Department of Human Anatomy and Cell Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
| | - Tanveer Sharif
- Department of Pathology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 3P5, Canada; (L.E.L.T.); (C.A.E.); (T.S.)
| | - Etienne Leygue
- Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0T5, Canada;
| | - Yvonne Myal
- Department of Pathology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 3P5, Canada; (L.E.L.T.); (C.A.E.); (T.S.)
- Senior Scientist, CancerCare Manitoba Research Institute, Winnipeg, MB R3E 0V9, Canada
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|
45
|
Neinavaie F, Ibrahim-Hashim A, Kramer AM, Brown JS, Richards CL. The Genomic Processes of Biological Invasions: From Invasive Species to Cancer Metastases and Back Again. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.681100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The concept of invasion is useful across a broad range of contexts, spanning from the fine scale landscape of cancer tumors up to the broader landscape of ecosystems. Invasion biology provides extraordinary opportunities for studying the mechanistic basis of contemporary evolution at the molecular level. Although the field of invasion genetics was established in ecology and evolution more than 50 years ago, there is still a limited understanding of how genomic level processes translate into invasive phenotypes across different taxa in response to complex environmental conditions. This is largely because the study of most invasive species is limited by information about complex genome level processes. We lack good reference genomes for most species. Rigorous studies to examine genomic processes are generally too costly. On the contrary, cancer studies are fortified with extensive resources for studying genome level dynamics and the interactions among genetic and non-genetic mechanisms. Extensive analysis of primary tumors and metastatic samples have revealed the importance of several genomic mechanisms including higher mutation rates, specific types of mutations, aneuploidy or whole genome doubling and non-genetic effects. Metastatic sites can be directly compared to primary tumor cell counterparts. At the same time, clonal dynamics shape the genomics and evolution of metastatic cancers. Clonal diversity varies by cancer type, and the tumors’ donor and recipient tissues. Still, the cancer research community has been unable to identify any common events that provide a universal predictor of “metastatic potential” which parallels findings in evolutionary ecology. Instead, invasion in cancer studies depends strongly on context, including order of events and clonal composition. The detailed studies of the behavior of a variety of human cancers promises to inform our understanding of genome level dynamics in the diversity of invasive species and provide novel insights for management.
Collapse
|
46
|
Singh B, Bogatcheva G, Krystofiak E, McKinley ET, Hill S, Rose KL, Higginbotham JN, Coffey RJ. Induction of apically mistrafficked epiregulin disrupts epithelial polarity via aberrant EGFR signaling. J Cell Sci 2021; 134:271860. [PMID: 34406412 DOI: 10.1242/jcs.255927] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 08/09/2021] [Indexed: 12/27/2022] Open
Abstract
In polarized MDCK cells, disruption of the tyrosine-based YXXΦ basolateral trafficking motif (Y156A) in the epidermal growth factor receptor (EGFR) ligand epiregulin (EREG), results in its apical mistrafficking and transformation in vivo. However, the mechanisms underlying these dramatic effects are unknown. Using a doxycycline-inducible system in 3D Matrigel cultures, we now show that induction of Y156A EREG in fully formed MDCK cysts results in direct and complete delivery of mutant EREG to the apical cell surface. Within 3 days of induction, ectopic lumens were detected in mutant, but not wild-type, EREG-expressing cysts. Of note, these structures resembled histological features found in subcutaneous xenografts of mutant EREG-expressing MDCK cells. These ectopic lumens formed de novo rather than budding from the central lumen and depended on metalloprotease-mediated cleavage of EREG and subsequent EGFR activity. Moreover, the most frequent EREG mutation in human cancer (R147stop) resulted in its apical mistrafficking in engineered MDCK cells. Thus, induction of EREG apical mistrafficking is sufficient to disrupt selective aspects of polarity of a preformed polarized epithelium. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Bhuminder Singh
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Epithelial Biology Center , Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Galina Bogatcheva
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Evan Krystofiak
- Cell Imaging Shared Resource, Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Eliot T McKinley
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Epithelial Biology Center , Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Salisha Hill
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| | | | - James N Higginbotham
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Robert J Coffey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Epithelial Biology Center , Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
47
|
Abstract
The transmission of information between tumor cells and other cell types in the tumor microenvironment plays an important role in tumor metastasis and is critically modulated by exosomes and other mediators. Tumor-derived exosomes can promote epithelial-mesenchymal transition, angiogenesis, immune escape, formation of the pre-metastatic microenvironment, and transmission of drug-resistant molecules, thereby promoting tumor growth, invasion, and metastasis. Integrins are important regulatory molecules on exosomes that can locate metastatic cells at the initial stage of metastasis and show good organotropism. This fact suggests that a clear understanding of the roles of exosomal integrins will be beneficial for future clinical applications. Follow-up studies on exosomes using continuously updated purification techniques and identification methods are extremely important. In addition to their potential as cancer biomarkers, exosomes also provide new research directions for precision medicine. Currently, exosomes have potential value in disease treatment and provide clinicians with more meaningful judgment standards.
Collapse
|
48
|
Wang JQ, Wu ZX, Yang Y, Teng QX, Li YD, Lei ZN, Jani KA, Kaushal N, Chen ZS. ATP-binding cassette (ABC) transporters in cancer: A review of recent updates. J Evid Based Med 2021; 14:232-256. [PMID: 34388310 DOI: 10.1111/jebm.12434] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023]
Abstract
The ATP-binding cassette (ABC) transporter superfamily is one of the largest membrane protein families existing in wide spectrum of organisms from prokaryotes to human. ABC transporters are also known as efflux pumps because they mediate the cross-membrane transportation of various endo- and xenobiotic molecules energized by ATP hydrolysis. Therefore, ABC transporters have been considered closely to multidrug resistance (MDR) in cancer, where the efflux of structurally distinct chemotherapeutic drugs causes reduced itherapeutic efficacy. Besides, ABC transporters also play other critical biological roles in cancer such as signal transduction. During the past decades, extensive efforts have been made in understanding the structure-function relationship, transportation profile of ABC transporters, as well as the possibility to overcome MDR via targeting these transporters. In this review, we discuss the most recent knowledge regarding ABC transporters and cancer drug resistance in order to provide insights for the development of more effective therapies.
Collapse
Affiliation(s)
- Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Yuqi Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Yi-Dong Li
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Zi-Ning Lei
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
- School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Khushboo A Jani
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Neeraj Kaushal
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York
| |
Collapse
|
49
|
Seibold T, Waldenmaier M, Seufferlein T, Eiseler T. Small Extracellular Vesicles and Metastasis-Blame the Messenger. Cancers (Basel) 2021; 13:cancers13174380. [PMID: 34503190 PMCID: PMC8431296 DOI: 10.3390/cancers13174380] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 01/18/2023] Open
Abstract
Simple Summary Due to their systemic nature, metastatic lesions are a major problem for curative cancer treatment. According to a common model for metastasis, tumor cells disseminate by local invasion, survival in the blood stream and extravasation into suitable tissue environments. At secondary sites, metastatic cells adapt, proliferate and foster vascularization to satisfy nutrient and oxygen demand. In recent years, tumors were shown to extensively communicate with cells in the local microenvironment and future metastatic sites by secreting small extracellular vesicles (sEVs, exosomes). sEVs deliver bioactive cargos, e.g., proteins, and in particular, several nucleic acid classes to reprogram target cells, which in turn facilitate tumor growth, cell motility, angiogenesis, immune evasion and establishment of pre-metastatic niches. sEV-cargos also act as biomarkers for diagnosis and prognosis. This review discusses how tumor cells utilize sEVs with nucleic acid cargos to progress through metastasis, and how sEVs may be employed for prognosis and treatment. Abstract Cancer is a complex disease, driven by genetic defects and environmental cues. Systemic dissemination of cancer cells by metastasis is generally associated with poor prognosis and is responsible for more than 90% of cancer deaths. Metastasis is thought to follow a sequence of events, starting with loss of epithelial features, detachment of tumor cells, basement membrane breakdown, migration, intravasation and survival in the circulation. At suitable distant niches, tumor cells reattach, extravasate and establish themselves by proliferating and attracting vascularization to fuel metastatic growth. These processes are facilitated by extensive cross-communication of tumor cells with cells in the primary tumor microenvironment (TME) as well as at distant pre-metastatic niches. A vital part of this communication network are small extracellular vesicles (sEVs, exosomes) with a size of 30–150 nm. Tumor-derived sEVs educate recipient cells with bioactive cargos, such as proteins, and in particular, major nucleic acid classes, to drive tumor growth, cell motility, angiogenesis, immune evasion and formation of pre-metastatic niches. Circulating sEVs are also utilized as biomarker platforms for diagnosis and prognosis. This review discusses how tumor cells facilitate progression through the metastatic cascade by employing sEV-based communication and evaluates their role as biomarkers and vehicles for drug delivery.
Collapse
|
50
|
Waza AA, Tarfeen N, Majid S, Hassan Y, Mir R, Rather MY, Shah NUD. Metastatic Breast Cancer, Organotropism and Therapeutics: A Review. Curr Cancer Drug Targets 2021; 21:813-828. [PMID: 34365922 DOI: 10.2174/1568009621666210806094410] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 11/22/2022]
Abstract
The final stage of breast cancer involves spreading breast cancer cells to the vital organs like the brain, liver lungs and bones in the process called metastasis. Once the target organ is overtaken by the metastatic breast cancer cells, its usual function is compromised causing organ dysfunction and death. Despite the significant research on breast cancer metastasis, it's still the main culprit of breast cancer-related deaths. Exploring the complex molecular pathways associated with the initiation and progression of breast cancer metastasis could lead to the discovery of more effective ways of treating the devastating phenomenon. The present review article highlights the recent advances to understand the complexity associated with breast cancer metastases, organotropism and therapeutic advances.
Collapse
Affiliation(s)
- Ajaz Ahmad Waza
- Multidisciplinary Research Unit (MRU), Government Medical College (GMC) Srinagar, J & K, 190010. India
| | - Najeebul Tarfeen
- Centre of Research for Development, University of Kashmir, Srinagar 190006 . India
| | - Sabhiya Majid
- Department of Biochemistry, Government Medical College (GMC) Srinagar, J & K, 190010. India
| | - Yasmeena Hassan
- Division of Nursing, Sher-i-Kashmir Institute of Medical Sciences (SKIMS), Soura, Srinagar, J & K. India
| | - Rashid Mir
- Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Kingdom of Saudi Arabia, Tabuk. Saudi Arabia
| | - Mohd Younis Rather
- Multidisciplinary Research Unit (MRU), Government Medical College (GMC) Srinagar, J & K, 190010. India
| | - Naseer Ue Din Shah
- Centre of Research for Development, University of Kashmir, Srinagar 190006 . India
| |
Collapse
|