1
|
Li J, Liu H, Meng X, Duan D, Lu H, Zhang J, Zhang F, Elsworth D, Cardenas BT, Manga M, Zhou B, Fang G. Ancient ocean coastal deposits imaged on Mars. Proc Natl Acad Sci U S A 2025; 122:e2422213122. [PMID: 39993194 DOI: 10.1073/pnas.2422213122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 01/14/2025] [Indexed: 02/26/2025] Open
Abstract
The northern lowlands of early Mars could have contained a significant quantity of liquid water. However, the ocean hypothesis remains controversial due to the lack of conclusive evidence from the Martian subsurface. We use data from the Zhurong Rover Penetrating Radar on the southern Utopia Planitia to identify subsurface dipping reflectors indicative of an ancient prograding shoreline. The reflectors dip unidirectionally with inclinations in the range 6° to 20° and are imaged to a thickness of 10 to 35 m along an uninterrupted 1.3 km northward shoreline-perpendicular traverse. The consistent dip inclinations, absence of dissection by fluvial channels along the extended traverse, and low permittivity of the sediments are consistent with terrestrial coastal deposits-and discount fluvial, aeolian, or magmatic origins favored elsewhere on Mars. The structure, thickness, and length of the section support voluminous supply of onshore sediments into a large body of water, rather than a merely localized and short-lived melt event. Our findings not only provide support for the existence of an ancient Martian ocean in the northern plains but also offer crucial insights into the evolution of the ancient Martian environment.
Collapse
Affiliation(s)
- Jianhui Li
- School of Civil Engineering and Transportation, Guangzhou University, Guangzhou 510006, China
| | - Hai Liu
- School of Civil Engineering and Transportation, Guangzhou University, Guangzhou 510006, China
| | - Xu Meng
- School of Civil Engineering and Transportation, Guangzhou University, Guangzhou 510006, China
| | - Diwen Duan
- School of Civil Engineering and Transportation, Guangzhou University, Guangzhou 510006, China
| | - Haijing Lu
- School of Civil Engineering and Transportation, Guangzhou University, Guangzhou 510006, China
| | - Jinhai Zhang
- Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
| | - Fengshou Zhang
- Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China
| | - Derek Elsworth
- Department of Energy and Mineral Engineering, The Pennsylvania State University, University Park, PA 16802
- Department of Geosciences, The Pennsylvania State University, University Park, PA 16802
| | - Benjamin T Cardenas
- Department of Geosciences, The Pennsylvania State University, University Park, PA 16802
| | - Michael Manga
- Department of Earth and Planetary Science, University of California, Berkeley, CA 94720
| | - Bin Zhou
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Guangyou Fang
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| |
Collapse
|
2
|
Weiss BP, Mansbach EN, Maurel C, Sprain CJ, Swanson-Hysell NL, Williams W. What we can learn about Mars from the magnetism of returned samples. Proc Natl Acad Sci U S A 2025; 122:e2404259121. [PMID: 39761391 PMCID: PMC11745385 DOI: 10.1073/pnas.2404259121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/21/2024] [Indexed: 01/23/2025] Open
Abstract
The Red Planet is a magnetic planet. The Martian crust contains strong magnetization from a core dynamo that likely was active during the Noachian period when the surface may have been habitable. The evolution of the dynamo may have played a central role in the evolution of the early atmosphere and the planet's transition to the current cold and dry state. However, the nature and history of the dynamo and crustal magnetization are poorly understood given the lack of well-preserved, oriented, ancient samples with geologic context available for laboratory study. Here, we describe how magnetic measurements of returned samples could transform our understanding of six key unknowns about Mars' planetary evolution and habitability. Such measurements could i) determine the history of the Martian dynamo field's intensity; ii) determine the history of the Martian dynamo field's direction; iii) test the hypothesis that Mars experienced plate tectonics or true polar wander; iv) constrain the thermal and aqueous alteration history of the samples; v) identify sources of Martian crustal magnetization and vi) characterize sedimentary and magmatic processes on Mars. We discuss how these goals can be achieved using future laboratory analyses of samples acquired by the Perseverance rover.
Collapse
Affiliation(s)
- Benjamin P. Weiss
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Elias N. Mansbach
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Clara Maurel
- CNRS, Aix Marseille Université, Institut de Recherche Pour le Développement (IRD), Institut National de Recherche Pour L’Agriculture, L’Alimentation et L’Environnement (INRAE), Centre Européen de Recherche et D’Enseignement des Géosciences de L’Environnement (CEREGE), Aix-en-Provence 13545, France
| | - Courtney J. Sprain
- Department of Geological Sciences, University of Florida, Gainesville, FL32611
| | | | - Wyn Williams
- School of GeoSciences, University of Edinburgh, EdinburghEH9 3FE, United Kingdom
| |
Collapse
|
3
|
Black BA, Manga M, Ojha L, Longpré M, Karunatillake S, Hlinka L. The History of Water in Martian Magmas From Thorium Maps. GEOPHYSICAL RESEARCH LETTERS 2022; 49:e2022GL098061. [PMID: 35859852 PMCID: PMC9285613 DOI: 10.1029/2022gl098061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/17/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Water inventories in Martian magmas are poorly constrained. Meteorite-based estimates range widely, from 102 to >104 ppm H2O, and are likely variably influenced by degassing. Orbital measurements of H primarily reflect water cycled and stored in the regolith. Like water, Th behaves incompatibly during mantle melting, but unlike water Th is not prone to degassing and is relatively immobile during aqueous alteration at low temperature. We employ Th as a proxy for original, mantle-derived H2O in Martian magmas. We use regional maps of Th from Mars Odyssey to assess variations in magmatic water across major volcanic provinces and through time. We infer that Hesperian and Amazonian magmas had ∼100-3,000 ppm H2O, in the lower range of previous estimates. The implied cumulative outgassing since the Hesperian, equivalent to a global H2O layer ∼1-40 m deep, agrees with Mars' present-day surface and near-surface water inventory and estimates of sequestration and loss rates.
Collapse
Affiliation(s)
- Benjamin A. Black
- Department of Earth and Planetary SciencesRutgers UniversityPiscatawayNJUSA
| | - Michael Manga
- Department of Earth and Planetary SciencesUniversity of California, BerkeleyBerkeleyCAUSA
| | - Lujendra Ojha
- Department of Earth and Planetary SciencesRutgers UniversityPiscatawayNJUSA
| | - Marc‐Antoine Longpré
- School of Earth and Environmental SciencesQueens College, City University of New YorkQueensNYUSA
- Earth and Environmental SciencesThe Graduate Center, City University of New YorkNew YorkNYUSA
| | | | - Lisa Hlinka
- School of Earth and Environmental SciencesQueens College, City University of New YorkQueensNYUSA
- Earth and Environmental SciencesThe Graduate Center, City University of New YorkNew YorkNYUSA
| |
Collapse
|
4
|
Abstract
The current Martian climate is not habitable and far from Earth’s climate. At the same time that life spread on Earth (3 Gy ago), the Red Planet was possibly more similar to our Blue Planet. Our model includes a coupled model with dynamic ocean and atmosphere including a hydrological cycle and a simplified glacier mass flux scheme. We show that an ocean is stable in agreement with interpretations of the surface geological records. What was the nature of the Late Hesperian climate, warm and wet or cold and dry? Formulated this way the question leads to an apparent paradox since both options seem implausible. A warm and wet climate would have produced extensive fluvial erosion but few valley networks have been observed at the age of the Late Hesperian. A too cold climate would have kept any northern ocean frozen most of the time. A moderate cold climate would have transferred the water from the ocean to the land in the form of snow and ice. But this would prevent tsunami formation, for which there is some evidence. Here, we provide insights from numerical climate simulations in agreement with surface geological features to demonstrate that the Martian climate could have been both cold and wet. Using an advanced general circulation model (GCM), we demonstrate that an ocean can be stable, even if the Martian mean surface temperature is lower than 0 °C. Rainfall is moderate near the shorelines and in the ocean. The southern plateau is mostly covered by ice with a mean temperature below 0 °C and a glacier return flow back to the ocean. This climate is achieved with a 1-bar CO2-dominated atmosphere with 10% H2. Under this scenario of 3 Ga, the geologic evidence of a shoreline and tsunami deposits along the ocean/land dichotomy are compatible with ice sheets and glacial valleys in the southern highlands.
Collapse
|
5
|
Abstract
True polar wander (TPW), or planetary reorientation, is well documented for other planets and moons and for Earth at present day with satellites, but testing its prevalence in Earth's past is complicated by simultaneous motions due to plate tectonics. Debate has surrounded the existence of Late Cretaceous TPW ca. 84 million years ago (Ma). Classic palaeomagnetic data from the Scaglia Rossa limestone of Italy are the primary argument against the existence of ca. 84 Ma TPW. Here we present a new high-resolution palaeomagnetic record from two overlapping stratigraphic sections in Italy that provides evidence for a ~12° TPW oscillation from 86 to 78 Ma. This observation represents the most recent large-scale TPW documented and challenges the notion that the spin axis has been largely stable over the past 100 million years.
Collapse
|
6
|
Early Mars may have boasted a large ocean and cool climate. Proc Natl Acad Sci U S A 2020; 117:31558-31560. [DOI: 10.1073/pnas.2022986117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
7
|
Abstract
To assess Mars’ potential for both harboring life and providing useable resources for future human exploration, it is of paramount importance to comprehend the water situation on the planet. Therefore, studies have been conducted to determine any evidence of past or present water existence on Mars. While the presence of abundant water on Mars very early in its history is widely accepted, on its modern form, only a fraction of this water can be found, as either ice or locked into the structure of Mars’ plentiful water-rich materials. Water on the planet is evaluated through various evidence such as rocks and minerals, Martian achondrites, low volume transient briny outflows (e.g., dune flows, reactivated gullies, slope streaks, etc.), diurnal shallow soil moisture (e.g., measurements by Curiosity and Phoenix Lander), geomorphic representation (possibly from lakes and river valleys), and groundwater, along with further evidence obtained by probe and rover discoveries. One of the most significant lines of evidence is for an ancient streambed in Gale Crater, implying ancient amounts of “vigorous” water on Mars. Long ago, hospitable conditions for microbial life existed on the surface of Mars, as it was likely periodically wet. However, its current dry surface makes it almost impossible as an appropriate environment for living organisms; therefore, scientists have recognized the planet’s subsurface environments as the best potential locations for exploring life on Mars. As a result, modern research has aimed towards discovering underground water, leading to the discovery of a large amount of underground ice in 2016 by NASA, and a subglacial lake in 2018 by Italian scientists. Nevertheless, the presence of life in Mars’ history is still an open question. In this unifying context, the current review summarizes results from a wide variety of studies and reports related to the history of water on Mars, as well as any related discussions on the possibility of living organism existence on the planet.
Collapse
|
8
|
Automated Discontinuity Detection and Reconstruction in Subsurface Environment of Mars Using Deep Learning: A Case Study of SHARAD Observation. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10072279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Machine learning (ML) algorithmic developments and improvements in Earth and planetary science are expected to bring enormous benefits for areas such as geospatial database construction, automated geological feature reconstruction, and surface dating. In this study, we aim to develop a deep learning (DL) approach to reconstruct the subsurface discontinuities in the subsurface environment of Mars employing the echoes of the Shallow Subsurface Radar (SHARAD), a sounding radar equipped on the Mars Reconnaissance Orbiter (MRO). Although SHARAD has produced highly valuable information about the Martian subsurface, the interpretation of the radar echo of SHARAD is a challenging task considering the vast stocks of datasets and the noisy signal. Therefore, we introduced a 3D subsurface mapping strategy consisting of radar echo pre-processors and a DL algorithm to automatically detect subsurface discontinuities. The developed components the of DL algorithm were synthesized into a subsurface mapping scheme and applied over a few target areas such as mid-latitude lobate debris aprons (LDAs), polar deposits and shallow icy bodies around the Phoenix landing site. The outcomes of the subsurface discontinuity detection scheme were rigorously validated by computing several quality metrics such as accuracy, recall, Jaccard index, etc. In the context of undergoing development and its output, we expect to automatically trace the shapes of Martian subsurface icy structures with further improvements in the DL algorithm.
Collapse
|
9
|
Duran S, Coulthard TJ, Baynes ERC. Knickpoints in Martian channels indicate past ocean levels. Sci Rep 2019; 9:15153. [PMID: 31641171 PMCID: PMC6805925 DOI: 10.1038/s41598-019-51574-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/23/2019] [Indexed: 12/05/2022] Open
Abstract
On Mars, the presence of extensive networks of sinuous valleys and large channels provides evidence for a wetter and warmer environment where liquid water was more abundant than it is at present. We undertook an analysis of all major channel systems on Mars and detected sharp changes in elevation along the river long profiles associated with steep headwall theatre-like valleys and terraces left downstream by channel incision. These breaks in channel longitudinal slope, headwalls and terraces exhibit a striking resemblance with terrestrial fluvial features, commonly termed ‘knickpoints’. On Earth, such knickpoints can be formed by more resistant bedrock or where changes in channel base-level have initiated erosion that migrates upstream (such as tectonic uplift or sea level change). We observed common elevations of Martian knickpoints in eleven separate channel systems draining into the Martian Northern lowlands. Numerical modeling showed that the common elevations of some of these knickpoints were not random. As the knickpoints are spread across the planet, we suggest that these Martian knickpoints were formed in response to a common base level or ocean level rather than local lithology. Thus, they potentially represent a record of past ocean levels and channel activity on Mars.
Collapse
Affiliation(s)
- Sergio Duran
- Department of Geography, Geology and Environment, University of Hull, Hull, UK.
| | - Tom J Coulthard
- Department of Geography, Geology and Environment, University of Hull, Hull, UK
| | - Edwin R C Baynes
- Department of Civil and Environmental Engineering, University of Auckland, Auckland, New Zealand
| |
Collapse
|
10
|
Turbet M, Forget F. The paradoxes of the Late Hesperian Mars ocean. Sci Rep 2019; 9:5717. [PMID: 30952959 PMCID: PMC6450935 DOI: 10.1038/s41598-019-42030-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 03/07/2019] [Indexed: 12/03/2022] Open
Abstract
The long-standing debate on the existence of ancient oceans on Mars has been recently revived by evidence for tsunami resurfacing events that date from the Late Hesperian geological era. It has been argued that these tsunami events originated from the impact of large meteorites on a deglaciated or nearly deglaciated ocean present in the northern hemisphere of Mars. Here we show that the presence of such a late ocean faces a paradox. If cold, the ocean should have been entirely frozen shortly after its formation, thus preventing the formation of tsunami events. If warm, the ice-free ocean should have produced fluvial erosion of Hesperian Mars terrains much more extensively than previously reported. To solve this apparent paradox, we suggest a list of possible tests and scenarios that could help to reconcile constraints from climate models with tsunami hypothesis. These scenarios could be tested in future dedicated studies.
Collapse
Affiliation(s)
- M Turbet
- Laboratoire de Météorologie Dynamique, IPSL, Sorbonne Universités, UPMC Univ Paris 06, CNRS, 4 place Jussieu, 75005, Paris, France.
| | - F Forget
- Laboratoire de Météorologie Dynamique, IPSL, Sorbonne Universités, UPMC Univ Paris 06, CNRS, 4 place Jussieu, 75005, Paris, France
| |
Collapse
|
11
|
Seybold HJ, Kite E, Kirchner JW. Branching geometry of valley networks on Mars and Earth and its implications for early Martian climate. SCIENCE ADVANCES 2018; 4:eaar6692. [PMID: 29963627 PMCID: PMC6021146 DOI: 10.1126/sciadv.aar6692] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 05/18/2018] [Indexed: 05/29/2023]
Abstract
Mars' surface bears the imprint of valley networks formed billions of years ago. Whether these networks were formed by groundwater sapping, ice melt, or fluvial runoff has been debated for decades. These different scenarios have profoundly different implications for Mars' climatic history and thus for its habitability in the distant past. Recent studies on Earth revealed that valley networks in arid landscapes with more surface runoff branch at narrower angles, while in humid environments with more groundwater flow, branching angles are much wider. We find that valley networks on Mars generally tend to branch at narrow angles similar to those found in arid landscapes on Earth. This result supports the inference that Mars once had an active hydrologic cycle and that Mars' valley networks were formed primarily by overland flow erosion, with groundwater seepage playing only a minor role.
Collapse
Affiliation(s)
| | - Edwin Kite
- University of Chicago, Chicago, IL 60637, USA
| | - James W. Kirchner
- ETH Zurich, 8092 Zurich, Switzerland
- Swiss Federal Research Institute for Forest, Snow and Landscape Research, 8903 Birmensdorf, Switzerland
- Department of Earth and Planetary Science, University of California, 307 McCone Hall, Berkeley, CA 94720–4767, USA
| |
Collapse
|
12
|
|
13
|
Timing of oceans on Mars from shoreline deformation. Nature 2018; 555:643-646. [PMID: 29555993 DOI: 10.1038/nature26144] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 01/25/2018] [Indexed: 11/08/2022]
Abstract
Widespread evidence points to the existence of an ancient Martian ocean. Most compelling are the putative ancient shorelines in the northern plains. However, these shorelines fail to follow an equipotential surface, and this has been used to challenge the notion that they formed via an early ocean and hence to question the existence of such an ocean. The shorelines' deviation from a constant elevation can be explained by true polar wander occurring after the formation of Tharsis, a volcanic province that dominates the gravity and topography of Mars. However, surface loading from the oceans can drive polar wander only if Tharsis formed far from the equator, and most evidence indicates that Tharsis formed near the equator, meaning that there is no current explanation for the shorelines' deviation from an equipotential that is consistent with our geophysical understanding of Mars. Here we show that variations in shoreline topography can be explained by deformation caused by the emplacement of Tharsis. We find that the shorelines must have formed before and during the emplacement of Tharsis, instead of afterwards, as previously assumed. Our results imply that oceans on Mars formed early, concurrent with the valley networks, and point to a close relationship between the evolution of oceans on Mars and the initiation and decline of Tharsis volcanism, with broad implications for the geology, hydrological cycle and climate of early Mars.
Collapse
|
14
|
Cabrol NA. The Coevolution of Life and Environment on Mars: An Ecosystem Perspective on the Robotic Exploration of Biosignatures. ASTROBIOLOGY 2018; 18:1-27. [PMID: 29252008 PMCID: PMC5779243 DOI: 10.1089/ast.2017.1756] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/27/2017] [Indexed: 05/09/2023]
Abstract
Earth's biological and environmental evolution are intertwined and inseparable. This coevolution has become a fundamental concept in astrobiology and is key to the search for life beyond our planet. In the case of Mars, whether a coevolution took place is unknown, but analyzing the factors at play shows the uniqueness of each planetary experiment regardless of similarities. Early Earth and early Mars shared traits. However, biological processes on Mars, if any, would have had to proceed within the distinctive context of an irreversible atmospheric collapse, greater climate variability, and specific planetary characteristics. In that, Mars is an important test bed for comparing the effects of a unique set of spatiotemporal changes on an Earth-like, yet different, planet. Many questions remain unanswered about Mars' early environment. Nevertheless, existing data sets provide a foundation for an intellectual framework where notional coevolution models can be explored. In this framework, the focus is shifted from planetary-scale habitability to the prospect of habitats, microbial ecotones, pathways to biological dispersal, biomass repositories, and their meaning for exploration. Critically, as we search for biosignatures, this focus demonstrates the importance of starting to think of early Mars as a biosphere and vigorously integrating an ecosystem approach to landing site selection and exploration. Key Words: Astrobiology-Biosignatures-Coevolution of Earth and life-Mars. Astrobiology 18, 1-27.
Collapse
|
15
|
New Martian valley network volume estimate consistent with ancient ocean and warm and wet climate. Nat Commun 2017; 8:15766. [PMID: 28580943 PMCID: PMC5465386 DOI: 10.1038/ncomms15766] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 04/27/2017] [Indexed: 11/08/2022] Open
Abstract
The volume of Martian valley network (VN) cavity and the amount of water needed to create the cavity by erosion are of significant importance for understanding the early Martian climate, the style and rate of hydrologic cycling, and the possibility of an ancient ocean. However, previous attempts at estimating these two quantities were based on selected valleys or at local sites using crude estimates of VN length, width and depth. Here we employed an innovative progressive black top hat transformation method to estimate them on a global scale based on the depth of each valley pixel. The conservative estimate of the minimum global VN volume is 1.74 × 1014 m3 and minimum cumulative volume of water required is 6.86 × 1017 m3 (or ∼5 km of global equivalent layer, GEL). Both are much larger than previous estimates and are consistent with an early warm and wet climate with active hydrologic cycling involving an ocean. To understand the early Martian climate, the volume of the global Martian valley network is required. Here, the authors use a black top hat transformation method and find that the minimum global valley network volume is 1.74 × 1,014 m3 with a minimum cumulative volume of water required of 6.86 × 1,017 m3.
Collapse
|
16
|
Black BA, Perron JT, Hemingway D, Bailey E, Nimmo F, Zebker H. Global drainage patterns and the origins of topographic relief on Earth, Mars, and Titan. Science 2017; 356:727-731. [PMID: 28522528 DOI: 10.1126/science.aag0171] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 04/06/2017] [Indexed: 11/02/2022]
Abstract
Rivers have eroded the topography of Mars, Titan, and Earth, creating diverse landscapes. However, the dominant processes that generated topography on Titan (and to some extent on early Mars) are not well known. We analyzed drainage patterns on all three bodies and found that large drainages, which record interactions between deformation and erosional modification, conform much better to long-wavelength topography on Titan and Mars than on Earth. We use a numerical landscape evolution model to demonstrate that short-wavelength deformation causes drainage directions to diverge from long-wavelength topography, as observed on Earth. We attribute the observed differences to ancient long-wavelength topography on Mars, recent or ongoing generation of long-wavelength relief on Titan, and the creation of short-wavelength relief by plate tectonics on Earth.
Collapse
Affiliation(s)
- Benjamin A Black
- Department of Earth and Atmospheric Science, City College of New York, City University of New York, New York, NY, USA. .,Earth and Environmental Science, The Graduate Center, City University of New York, New York, NY, USA
| | - J Taylor Perron
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Douglas Hemingway
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, USA.
| | - Elizabeth Bailey
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Francis Nimmo
- Department of Earth and Planetary Sciences, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Howard Zebker
- Department of Geophysics, School of Earth Sciences, Stanford University, Stanford, CA, USA
| |
Collapse
|
17
|
Keane JT, Matsuyama I, Kamata S, Steckloff JK. Reorientation and faulting of Pluto due to volatile loading within Sputnik Planitia. Nature 2016; 540:90-93. [PMID: 27851731 DOI: 10.1038/nature20120] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 09/26/2016] [Indexed: 11/09/2022]
Abstract
Pluto is an astoundingly diverse, geologically dynamic world. The dominant feature is Sputnik Planitia-a tear-drop-shaped topographic depression approximately 1,000 kilometres in diameter possibly representing an ancient impact basin. The interior of Sputnik Planitia is characterized by a smooth, craterless plain three to four kilometres beneath the surrounding rugged uplands, and represents the surface of a massive unit of actively convecting volatile ices (N2, CH4 and CO) several kilometres thick. This large feature is very near the Pluto-Charon tidal axis. Here we report that the location of Sputnik Planitia is the natural consequence of the sequestration of volatile ices within the basin and the resulting reorientation (true polar wander) of Pluto. Loading of volatile ices within a basin the size of Sputnik Planitia can substantially alter Pluto's inertia tensor, resulting in a reorientation of the dwarf planet of around 60 degrees with respect to the rotational and tidal axes. The combination of this reorientation, loading and global expansion due to the freezing of a possible subsurface ocean generates stresses within the planet's lithosphere, resulting in a global network of extensional faults that closely replicate the observed fault networks on Pluto. Sputnik Planitia probably formed northwest of its present location, and was loaded with volatiles over million-year timescales as a result of volatile transport cycles on Pluto. Pluto's past, present and future orientation is controlled by feedbacks between volatile sublimation and condensation, changing insolation conditions and Pluto's interior structure.
Collapse
Affiliation(s)
- James T Keane
- Lunar and Planetary Laboratory, Department of Planetary Science, University of Arizona, Tucson, Arizona 85721, USA
| | - Isamu Matsuyama
- Lunar and Planetary Laboratory, Department of Planetary Science, University of Arizona, Tucson, Arizona 85721, USA
| | - Shunichi Kamata
- Creative Research Institution, Hokkaido University, Sapporo, Japan
| | - Jordan K Steckloff
- Purdue University, Department of Earth, Atmospheric, and Planetary Sciences, West Lafayette, Indiana 47907, USA.,Planetary Science Institute, Tucson, Arizona 85719, USA
| |
Collapse
|
18
|
Barr AC. Pluto's telltale heart. Nature 2016; 540:42-43. [DOI: 10.1038/540042a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Lunar true polar wander inferred from polar hydrogen. Nature 2016; 531:480-4. [DOI: 10.1038/nature17166] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 01/21/2016] [Indexed: 11/08/2022]
|
20
|
Baker VR, Hamilton CW, Burr DM, Gulick VC, Komatsu G, Luo W, Rice JW, Rodriguez J. Fluvial geomorphology on Earth-like planetary surfaces: A review. GEOMORPHOLOGY (AMSTERDAM, NETHERLANDS) 2015; 245:149-182. [PMID: 29176917 PMCID: PMC5701759 DOI: 10.1016/j.geomorph.2015.05.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Morphological evidence for ancient channelized flows (fluvial and fluvial-like landforms) exists on the surfaces of all of the inner planets and on some of the satellites of the Solar System. In some cases, the relevant fluid flows are related to a planetary evolution that involves the global cycling of a volatile component (water for Earth and Mars; methane for Saturn's moon Titan). In other cases, as on Mercury, Venus, Earth's moon, and Jupiter's moon Io, the flows were of highly fluid lava. The discovery, in 1972, of what are now known to be fluvial channels and valleys on Mars sparked a major controversy over the role of water in shaping the surface of that planet. The recognition of the fluvial character of these features has opened unresolved fundamental questions about the geological history of water on Mars, including the presence of an ancient ocean and the operation of a hydrological cycle during the earliest phases of planetary history. Other fundamental questions posed by fluvial and fluvial-like features on planetary bodies include the possible erosive action of large-scale outpourings of very fluid lavas, such as those that may have produced the remarkable canali forms on Venus; the ability of exotic fluids, such as methane, to create fluvial-like landforms, as observed on Saturn's moon, Titan; and the nature of sedimentation and erosion under different conditions of planetary surface gravity. Planetary fluvial geomorphology also illustrates fundamental epistemological and methodological issues, including the role of analogy in geomorphological/geological inquiry.
Collapse
Affiliation(s)
- Victor R. Baker
- Department of Hydrology and Water Resources, University of Arizona, Tucson, AZ 85721, USA
- Lunar and Planetary Laboratory, Department of Planetary Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Christopher W. Hamilton
- Lunar and Planetary Laboratory, Department of Planetary Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Devon M. Burr
- Earth and Planetary Sciences Department, University of Tennessee-Knoxville, Knoxville, TN 37996-1410, USA
| | - Virginia C. Gulick
- SETI Institute, Mountain View, CA 94043, USA
- NASA Ames Research Center, MS 239-20, Moffett Field, CA 94035, USA
| | - Goro Komatsu
- International Research School of Planetary Sciences, Università d’Annunzio, Viale Pindaro 42, 65127 Pescara, Italy
| | - Wei Luo
- Department of Geography, Northern Illinois University, DeKalb, IL 60115, USA
| | | | - J.A.P. Rodriguez
- NASA Ames Research Center, MS 239-20, Moffett Field, CA 94035, USA
- Planetary Science Institute, Tucson, AZ 85719, USA
| |
Collapse
|
21
|
Furukawa Y, Kim HJ, Hutter D, Benner SA. Abiotic regioselective phosphorylation of adenosine with borate in formamide. ASTROBIOLOGY 2015; 15:259-67. [PMID: 25826074 DOI: 10.1089/ast.2014.1209] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Nearly 40 years ago, Schoffstall and his coworkers used formamide as a solvent to permit the phosphorylation of nucleosides by inorganic phosphate to give nucleoside phosphates, which (due to their thermodynamic instability with respect to hydrolysis) cannot be easily created in water by an analogous phosphorylation (the "water problem" in prebiotic chemistry). More recently, we showed that borate could stabilize certain carbohydrates against degradation (the "asphalt problem"). Here, we combine the two concepts to show that borate can work in formamide to guide the reactivity of nucleosides under conditions where they are phosphorylated. Specifically, reaction of adenosine in formamide with inorganic phosphate and pyrophosphate in the presence of borate gives adenosine-5'-phosphate as the only detectable phosphorylated product, with formylation (as opposed to hydrolysis) being the competing reaction.
Collapse
Affiliation(s)
- Yoshihiro Furukawa
- 1 Department of Earth Science, Graduate School of Science, Tohoku University , Sendai, Japan
| | | | | | | |
Collapse
|
22
|
Chatzitheodoridis E, Haigh S, Lyon I. A conspicuous clay ovoid in Nakhla: evidence for subsurface hydrothermal alteration on Mars with implications for astrobiology. ASTROBIOLOGY 2014; 14:651-693. [PMID: 25046549 PMCID: PMC4126275 DOI: 10.1089/ast.2013.1069] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 05/19/2014] [Indexed: 06/03/2023]
Abstract
Abstract A conspicuous biomorphic ovoid structure has been discovered in the Nakhla martian meteorite, made of nanocrystalline iron-rich saponitic clay and amorphous material. The ovoid is indigenous to Nakhla and occurs within a late-formed amorphous mesostasis region of rhyolitic composition that is interstitial to two clinopyroxene grains with Al-rich rims, and contains acicular apatite crystals, olivine, sulfides, Ti-rich magnetite, and a new mineral of the rhoenite group. To infer the origin of the ovoid, a large set of analytical tools was employed, including scanning electron microscopy and backscattered electron imaging, wavelength-dispersive X-ray analysis, X-ray mapping, Raman spectroscopy, time-of-flight secondary ion mass spectrometry analysis, high-resolution transmission electron microscope imaging, and atomic force microscope topographic mapping. The concentric wall of the ovoid surrounds an originally hollow volume and exhibits internal layering of contrasting nanotextures but uniform chemical composition, and likely inherited its overall shape from a preexisting vesicle in the mesostasis glass. A final fibrous layer of Fe-rich phases blankets the interior surfaces of the ovoid wall structure. There is evidence that the parent rock of Nakhla has undergone a shock event from a nearby bolide impact that melted the rims of pyroxene and the interstitial matter and initiated an igneous hydrothermal system of rapidly cooling fluids, which were progressively mixed with fluids from the melted permafrost. Sharp temperature gradients were responsible for the crystallization of Al-rich clinopyroxene rims, rhoenite, acicular apatites, and the quenching of the mesostasis glass and the vesicle. During the formation of the ovoid structure, episodic fluid infiltration events resulted in the precipitation of saponite rinds around the vesicle walls, altered pyrrhotite to marcasite, and then isolated the ovoid wall structure from the rest of the system by depositing a layer of iron oxides/hydroxides. Carbonates, halite, and sulfates were deposited last within interstitial spaces and along fractures. Among three plausible competing hypotheses here, this particular abiotic scenario is considered to be the most reasonable explanation for the formation of the ovoid structure in Nakhla, and although compelling evidence for a biotic origin is lacking, it is evident that the martian subsurface contains niche environments where life could develop.
Collapse
Affiliation(s)
- Elias Chatzitheodoridis
- Department of Geological Sciences, School of Mining and Metallurgical Engineering, National Technical University of Athens, Athens, Greece
| | - Sarah Haigh
- School of Materials, The University of Manchester, Manchester, UK
| | - Ian Lyon
- School of Earth, Atmospheric and Environmental Sciences, The University of Manchester, Manchester, UK
| |
Collapse
|
23
|
Schulze-Makuch D, Fairén AG, Davila A. Locally targeted ecosynthesis: a proactive in situ search for extant life on other worlds. ASTROBIOLOGY 2013; 13:674-678. [PMID: 23848472 DOI: 10.1089/ast.2013.0995] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The Viking landers conducted the only life-detection mission outside Earth nearly 40 years ago. We believe it is time to resume this proactive search for life and propose a new approach based on Locally Targeted Ecosynthesis (LoTE) missions: the engineering of local habitable hotspots on planetary surfaces to reveal any subdued biosphere and enhance the expression of its biological activity. LoTE missions are based on a minimum set of assumptions about life, namely, the need for liquid solvents, energy sources, and nutrients, and the limits imposed by UV and ionizing radiation. The most promising destinations for LoTE missions are Mars and Saturn's moon Titan. We describe two LoTE mission concepts that would enhance the unique environmental conditions on Mars and Titan to reveal a subdued biosphere easily detectable with conventional instruments by supplying biologically essential yet critically limited compounds and by engineering local habitable conditions.
Collapse
|
24
|
Milbury C, Schubert G, Raymond CA, Smrekar SE, Langlais B. The history of Mars' dynamo as revealed by modeling magnetic anomalies near Tyrrhenus Mons and Syrtis Major. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2012je004099] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
25
|
Grasby SE, Beauchamp B, Bense V. Sulfuric acid Speleogenesis associated with a glacially driven groundwater system-paleo-spring "pipes" at Borup Fiord Pass, Nunavut. ASTROBIOLOGY 2012; 12:19-28. [PMID: 22204399 DOI: 10.1089/ast.2011.0700] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Gypsum filled "pipe" features were discovered in the proglacial area of the Borup Fiord Pass supraglacial sulfur spring. Stable isotope data suggest that gypsum is formed through oxidation of sulfides and are consistent with models of sulfuric acid speleogenesis. These results suggest that gypsum pipes are paleo-spring discharge channels analogous to those that feed the modern sulfur spring at Borup Fiord. A conceptual model is proposed whereby retreat of the glacial front and associated growth of permafrost in ground exposed now to low arctic temperatures leads to "freezing-in" of the spring system and abandonment of old channels in favor of more open flow systems in the subglacial region. Results provide a model for glacially driven groundwater systems that may form in association with Mars' polar icecaps and potential geological signatures for paleo-groundwater discharge.
Collapse
|
26
|
|
27
|
Fairén AG, Davila AF, Lim D, Bramall N, Bonaccorsi R, Zavaleta J, Uceda ER, Stoker C, Wierzchos J, Dohm JM, Amils R, Andersen D, McKay CP. Astrobiology through the ages of Mars: the study of terrestrial analogues to understand the habitability of Mars. ASTROBIOLOGY 2010; 10:821-843. [PMID: 21087162 DOI: 10.1089/ast.2009.0440] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Mars has undergone three main climatic stages throughout its geological history, beginning with a water-rich epoch, followed by a cold and semi-arid era, and transitioning into present-day arid and very cold desert conditions. These global climatic eras also represent three different stages of planetary habitability: an early, potentially habitable stage when the basic requisites for life as we know it were present (liquid water and energy); an intermediate extreme stage, when liquid solutions became scarce or very challenging for life; and the most recent stage during which conditions on the surface have been largely uninhabitable, except perhaps in some isolated niches. Our understanding of the evolution of Mars is now sufficient to assign specific terrestrial environments to each of these periods. Through the study of Mars terrestrial analogues, we have assessed and constrained the habitability conditions for each of these stages, the geochemistry of the surface, and the likelihood for the preservation of organic and inorganic biosignatures. The study of these analog environments provides important information to better understand past and current mission results as well as to support the design and selection of instruments and the planning for future exploratory missions to Mars.
Collapse
|
28
|
Benhabib M, Chiesl TN, Stockton AM, Scherer JR, Mathies RA. Multichannel capillary electrophoresis microdevice and instrumentation for in situ planetary analysis of organic molecules and biomarkers. Anal Chem 2010; 82:2372-9. [PMID: 20151682 DOI: 10.1021/ac9025994] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Multichannel Mars Organic Analyzer (McMOA), a portable instrument for the sensitive microchip capillary electrophoresis (CE) analysis of organic compounds such as amino acid biomarkers and polycyclic aromatic hydrocarbons (PAHs), is developed. The instrument uses a four-layer microchip, containing eight CE analysis systems integrated with a microfluidic network for autonomous fluidic processing. The McMOA has improved optical components that integrate 405 nm laser excitation with a linear-scanning optical system capable of multichannel real-time fluorescence spectroscopic analysis. The instrumental limit of detection is 6 pM (glycine). Microfluidic programs are executed to perform the automated sequential analysis of an amine-containing sample in each channel as well as eight consecutive analyses of alternating samples on the same channel, demonstrating less than 1% cross-contamination. The McMOA is used to identify the unique fluorescence spectra of nine components in a PAH standard and then applied to the analysis of a sediment sample from Lake Erie. The presence of benzo[a]pyrene and perylene in this sample is confirmed, and a peak coeluting with anthanthrene is disqualified based on spectral analysis. The McMOA exploits lab-on-a-chip technologies to fully integrate complex autonomous operations demonstrating the facile engineering of microchip-CE platforms for the analysis of a wide variety of organic compounds in planetary exploration.
Collapse
Affiliation(s)
- Merwan Benhabib
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720, USA
| | | | | | | | | |
Collapse
|
29
|
Leblanc F, Langlais B, Fouchet T, Barabash S, Breuer D, Chassefière E, Coates A, Dehant V, Forget F, Lammer H, Lewis S, Lopez-Valverde M, Mandea M, Menvielle M, Pais A, Paetzold M, Read P, Sotin C, Tarits P, Vennerstrom S. Mars environment and magnetic orbiter scientific and measurement objectives. ASTROBIOLOGY 2009; 9:71-89. [PMID: 19317625 DOI: 10.1089/ast.2007.0222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In this paper, we summarize our present understanding of Mars' atmosphere, magnetic field, and surface and address past evolution of these features. Key scientific questions concerning Mars' surface, atmosphere, and magnetic field, along with the planet's interaction with solar wind, are discussed. We also define what key parameters and measurements should be performed and the main characteristics of a martian mission that would help to provide answers to these questions. Such a mission--Mars Environment and Magnetic Orbiter (MEMO)--was proposed as an answer to the Cosmic Vision Call of Opportunity as an M-class mission (corresponding to a total European Space Agency cost of less than 300 Meuro). MEMO was designed to study the strong interconnection between the planetary interior, atmosphere, and solar conditions, which is essential to our understanding of planetary evolution, the appearance of life, and its sustainability. The MEMO main platform combined remote sensing and in situ measurements of the atmosphere and the magnetic field during regular incursions into the martian upper atmosphere. The micro-satellite was designed to perform simultaneous in situ solar wind measurements. MEMO was defined to conduct: * Four-dimensional mapping of the martian atmosphere from the surface up to 120 km by measuring wind, temperature, water, and composition, all of which would provide a complete view of the martian climate and photochemical system; Mapping of the low-altitude magnetic field with unprecedented geographical, altitude, local time, and seasonal resolutions; A characterization of the simultaneous responses of the atmosphere, magnetic field, and near-Mars space to solar variability by means of in situ atmospheric and solar wind measurements.
Collapse
Affiliation(s)
- F Leblanc
- Service d'Aéronomie du CNRS/IPSL, Université Pierre et Marie Curie, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Stanley S, Elkins-Tanton L, Zuber MT, Parmentier EM. Mars' Paleomagnetic Field as the Result of a Single-Hemisphere Dynamo. Science 2008; 321:1822-5. [PMID: 18818355 DOI: 10.1126/science.1161119] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Sabine Stanley
- Department of Physics, University of Toronto, Toronto, ON M5S1A7, Canada
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Geological Sciences, Brown University, Providence, RI 02912, USA
| | - Linda Elkins-Tanton
- Department of Physics, University of Toronto, Toronto, ON M5S1A7, Canada
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Geological Sciences, Brown University, Providence, RI 02912, USA
| | - Maria T. Zuber
- Department of Physics, University of Toronto, Toronto, ON M5S1A7, Canada
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Geological Sciences, Brown University, Providence, RI 02912, USA
| | - E. Marc Parmentier
- Department of Physics, University of Toronto, Toronto, ON M5S1A7, Canada
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Geological Sciences, Brown University, Providence, RI 02912, USA
| |
Collapse
|
31
|
Jellinek AM, Johnson CL, Schubert G. Constraints on the elastic thickness, heat flow, and melt production at early Tharsis from topography and magnetic field observations. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007je003005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
32
|
Johnson SS, Mischna MA, Grove TL, Zuber MT. Sulfur-induced greenhouse warming on early Mars. ACTA ACUST UNITED AC 2008. [DOI: 10.1029/2007je002962] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
33
|
|