1
|
Pamula MC, Lehmann R. How germ granules promote germ cell fate. Nat Rev Genet 2024; 25:803-821. [PMID: 38890558 DOI: 10.1038/s41576-024-00744-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 06/20/2024]
Abstract
Germ cells are the only cells in the body capable of giving rise to a new organism, and this totipotency hinges on their ability to assemble membraneless germ granules. These specialized RNA and protein complexes are hallmarks of germ cells throughout their life cycle: as embryonic germ granules in late oocytes and zygotes, Balbiani bodies in immature oocytes, and nuage in maturing gametes. Decades of developmental, genetic and biochemical studies have identified protein and RNA constituents unique to germ granules and have implicated these in germ cell identity, genome integrity and gamete differentiation. Now, emerging research is defining germ granules as biomolecular condensates that achieve high molecular concentrations by phase separation, and it is assigning distinct roles to germ granules during different stages of germline development. This organization of the germ cell cytoplasm into cellular subcompartments seems to be critical not only for the flawless continuity through the germline life cycle within the developing organism but also for the success of the next generation.
Collapse
Affiliation(s)
| | - Ruth Lehmann
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
2
|
Chen S, Liu M, Yi W, Li H, Yu Q. Micropeptides derived from long non-coding RNAs: Computational analysis and functional roles in breast cancer and other diseases. Gene 2024; 935:149019. [PMID: 39461573 DOI: 10.1016/j.gene.2024.149019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/08/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024]
Abstract
Long non-coding RNAs (lncRNAs), once thought to be mere transcriptional noise, are now revealing a hidden code. Recent advancements like ribosome sequencing have unveiled that many lncRNAs harbor small open reading frames and can potentially encode functional micropeptides. Emerging research suggests these micropeptides, not the lncRNAs themselves, play crucial roles in regulating homeostasis, inflammation, metabolism, and especially in breast cancer progression. This review delves into the rapidly evolving computational tools used to predict and validate lncRNA-encoded micropeptides. We then explore the diverse functions and mechanisms of action of these micropeptides in breast cancer pathogenesis, with a focus on their roles in various species. Ultimately, this review aims to illuminate the functional landscape of lncRNA-encoded micropeptides and their potential as therapeutic targets in cancer.
Collapse
Affiliation(s)
- Saisai Chen
- Department of Breast Surgery, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei 230031, China
| | - Mengru Liu
- Department of Infection, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230000, China
| | - Weizhen Yi
- Department of Breast Surgery, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei 230031, China
| | - Huagang Li
- Department of Breast Surgery, The First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei 230031, China
| | - Qingsheng Yu
- Institute of Chinese Medicine Surgery, Anhui Academy of Chinese Medicine, Hefei 230031, China.
| |
Collapse
|
3
|
Li YR, Ling LB, Chao A, Fugmann SD, Yang SY. Transient chromatin decompaction at the start of D. melanogaster male embryonic germline development. Life Sci Alliance 2024; 7:e202302401. [PMID: 38991729 PMCID: PMC11239976 DOI: 10.26508/lsa.202302401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024] Open
Abstract
Embryonic germ cells develop rapidly to establish the foundation for future developmental trajectories, and in this process, they make critical lineage choices including the configuration of their unique identity and a decision on sex. Here, we use single-cell genomics patterns for the entire embryonic germline in Drosophila melanogaster along with the somatic gonadal precursors after embryonic gonad coalescence to investigate molecular mechanisms involved in the setting up and regulation of the germline program. Profiling of the early germline chromatin landscape revealed sex- and stage-specific features. In the male germline immediately after zygotic activation, the chromatin structure underwent a brief remodeling phase during which nucleosome density was lower and deconcentrated from promoter regions. These findings echoed enrichment analysis results of our genomics data in which top candidates were factors with the ability to mediate large-scale chromatin reorganization. Together, they point to the importance of chromatin regulation in the early germline and raise the possibility of a conserved epigenetic reprogramming-like process required for proper initiation of germline development.
Collapse
Affiliation(s)
- Yi-Ru Li
- https://ror.org/00d80zx46 Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Li Bin Ling
- https://ror.org/00d80zx46 Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Angel Chao
- https://ror.org/02dnn6q67 Department of Obstetrics and Gynecology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Sebastian D Fugmann
- https://ror.org/00d80zx46 Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- https://ror.org/00d80zx46 Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- https://ror.org/02dnn6q67 Department of Nephrology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shu Yuan Yang
- https://ror.org/00d80zx46 Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- https://ror.org/00d80zx46 Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- https://ror.org/02dnn6q67 Department of Obstetrics and Gynecology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
4
|
Chen R, Stainier W, Dufourt J, Lagha M, Lehmann R. Direct observation of translational activation by a ribonucleoprotein granule. Nat Cell Biol 2024; 26:1322-1335. [PMID: 38965420 PMCID: PMC11321996 DOI: 10.1038/s41556-024-01452-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 05/30/2024] [Indexed: 07/06/2024]
Abstract
Biomolecular condensates organize biochemical processes at the subcellular level and can provide spatiotemporal regulation within a cell. Among these, ribonucleoprotein (RNP) granules are storage hubs for translationally repressed mRNA. Whether RNP granules can also activate translation and how this could be achieved remains unclear. Here, using single-molecule imaging, we demonstrate that the germ cell-determining RNP granules in Drosophila embryos are sites for active translation of nanos mRNA. Nanos translation occurs preferentially at the germ granule surface with the 3' UTR buried within the granule. Smaug, a cytosolic RNA-binding protein, represses nanos translation, which is relieved when Smaug is sequestered to the germ granule by the scaffold protein Oskar. Together, our findings uncover a molecular process by which RNP granules achieve localized protein synthesis through the compartmentalized loss of translational repression.
Collapse
Affiliation(s)
- Ruoyu Chen
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Vilcek Institute of Graduate Studies, NYU School of Medicine, New York, NY, USA
| | - William Stainier
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Immunobiology Laboratory, The Francis Crick Institute, London, UK
| | - Jeremy Dufourt
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, Montpellier, France
- Institut de Recherche en Infectiologie de Montpellier, University of Montpellier, Montpellier, France
| | - Mounia Lagha
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, Montpellier, France
| | - Ruth Lehmann
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
5
|
Kotb NM, Ulukaya G, Chavan A, Nguyen SC, Proskauer L, Joyce EF, Hasson D, Jagannathan M, Rangan P. Genome organization regulates nuclear pore complex formation and promotes differentiation during Drosophila oogenesis. Genes Dev 2024; 38:436-454. [PMID: 38866556 PMCID: PMC11216175 DOI: 10.1101/gad.351402.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 05/21/2024] [Indexed: 06/14/2024]
Abstract
Genome organization can regulate gene expression and promote cell fate transitions. The differentiation of germline stem cells (GSCs) to oocytes in Drosophila involves changes in genome organization mediated by heterochromatin and the nuclear pore complex (NPC). Heterochromatin represses germ cell genes during differentiation, and NPCs anchor these silenced genes to the nuclear periphery, maintaining silencing to allow for oocyte development. Surprisingly, we found that genome organization also contributes to NPC formation, mediated by the transcription factor Stonewall (Stwl). As GSCs differentiate, Stwl accumulates at boundaries between silenced and active gene compartments. Stwl at these boundaries plays a pivotal role in transitioning germ cell genes into a silenced state and activating a group of oocyte genes and nucleoporins (Nups). The upregulation of these Nups during differentiation is crucial for NPC formation and further genome organization. Thus, cross-talk between genome architecture and NPCs is essential for successful cell fate transitions.
Collapse
Affiliation(s)
- Noor M Kotb
- Department of Biomedical Sciences/Wadsworth Center, University at Albany State University of New York (SUNY), Albany, New York 12202, USA
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, New York 12202, USA
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NewYork 10029, USA
| | - Gulay Ulukaya
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NewYork 10029, USA
- Bioinformatics for Next-Generation Sequencing (BiNGS) Core, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Ankita Chavan
- Institute of Biochemistry, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, 8092 Zürich, Switzerland
| | - Son C Nguyen
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Lydia Proskauer
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, New York 12202, USA
| | - Eric F Joyce
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Dan Hasson
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NewYork 10029, USA
- Bioinformatics for Next-Generation Sequencing (BiNGS) Core, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Madhav Jagannathan
- Institute of Biochemistry, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, 8092 Zürich, Switzerland
| | - Prashanth Rangan
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NewYork 10029, USA;
| |
Collapse
|
6
|
Ohta N, Christiaen L. Cellular remodeling and JAK inhibition promote zygotic gene expression in the Ciona germline. EMBO Rep 2024; 25:2188-2201. [PMID: 38649664 PMCID: PMC11094015 DOI: 10.1038/s44319-024-00139-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/22/2024] [Accepted: 03/28/2024] [Indexed: 04/25/2024] Open
Abstract
Transcription control is a major determinant of cell fate decisions in somatic tissues. By contrast, early germline fate specification in numerous vertebrate and invertebrate species relies extensively on RNA-level regulation, exerted on asymmetrically inherited maternal supplies, with little-to-no zygotic transcription. However delayed, a maternal-to-zygotic transition is nevertheless poised to complete the deployment of pre-gametic programs in the germline. Here, we focus on early germline specification in the tunicate Ciona to study zygotic genome activation. We first demonstrate that a peculiar cellular remodeling event excludes localized postplasmic Pem-1 mRNA, which encodes the general inhibitor of transcription. Subsequently, zygotic transcription begins in Pem-1-negative primordial germ cells (PGCs), as revealed by histochemical detection of elongating RNA Polymerase II, and nascent Mef2 transcripts. In addition, we uncover a provisional antagonism between JAK and MEK/BMPRI/GSK3 signaling, which controls the onset of zygotic gene expression, following cellular remodeling of PGCs. We propose a 2-step model for the onset of zygotic transcription in the Ciona germline and discuss the significance of germ plasm dislocation and remodeling in the context of developmental fate specification.
Collapse
Affiliation(s)
- Naoyuki Ohta
- Michael Sars Centre, University of Bergen, Bergen, Norway.
| | - Lionel Christiaen
- Michael Sars Centre, University of Bergen, Bergen, Norway.
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY, USA.
| |
Collapse
|
7
|
Siddiqui NU, Karaiskakis A, Goldman AL, Eagle WVI, Low TCH, Luo H, Smibert CA, Gavis ER, Lipshitz HD. Smaug regulates germ plasm assembly and primordial germ cell number in Drosophila embryos. SCIENCE ADVANCES 2024; 10:eadg7894. [PMID: 38608012 PMCID: PMC11014450 DOI: 10.1126/sciadv.adg7894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/12/2024] [Indexed: 04/14/2024]
Abstract
During Drosophila oogenesis, the Oskar (OSK) RNA binding protein (RBP) determines the amount of germ plasm that assembles at the posterior pole of the oocyte. Here, we identify mechanisms that subsequently regulate germ plasm assembly in the early embryo. We show that the Smaug (SMG) RBP is transported into the germ plasm of the early embryo where it accumulates in the germ granules. SMG binds to and represses translation of the osk messenger RNA (mRNA) as well as the bruno 1 (bru1) mRNA, which encodes an RBP that we show promotes germ plasm production. Loss of SMG or mutation of SMG's binding sites in the osk or bru1 mRNA results in excess translation of these transcripts in the germ plasm, accumulation of excess germ plasm, and budding of excess primordial germ cells (PGCs). Therefore, SMG triggers a posttranscriptional regulatory pathway that attenuates the amount of germ plasm in embryos to modulate the number of PGCs.
Collapse
Affiliation(s)
- Najeeb U. Siddiqui
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
- Program in Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Angelo Karaiskakis
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Aaron L. Goldman
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
- Program in Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Whitby V. I. Eagle
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Timothy C. H. Low
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Hua Luo
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Craig A. Smibert
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
- Department of Biochemistry, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Elizabeth R. Gavis
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Howard D. Lipshitz
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| |
Collapse
|
8
|
Lu F, Park BJ, Fujiwara R, Wilusz JE, Gilmour DS, Lehmann R, Lionnet T. Integrator-mediated clustering of poised RNA polymerase II synchronizes histone transcription. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.07.561364. [PMID: 37873455 PMCID: PMC10592978 DOI: 10.1101/2023.10.07.561364] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Numerous components of the transcription machinery, including RNA polymerase II (Pol II), accumulate in regions of high local concentration known as clusters, which are thought to facilitate transcription. Using the histone locus of Drosophila nurse cells as a model, we find that Pol II forms long-lived, transcriptionally poised clusters distinct from liquid droplets, which contain unbound and paused Pol II. Depletion of the Integrator complex endonuclease module, but not its phosphatase module or Pol II pausing factors disperses these Pol II clusters. Consequently, histone transcription fails to reach peak levels during S-phase and aberrantly continues throughout the cell cycle. We propose that Pol II clustering is a regulatory step occurring near promoters that limits rapid gene activation to defined times. One Sentence Summary Using the Drosophila histone locus as a model, we show that clustered RNA polymerase II is poised for synchronous activation.
Collapse
|
9
|
Hunt G, Vaid R, Pirogov S, Pfab A, Ziegenhain C, Sandberg R, Reimegård J, Mannervik M. Tissue-specific RNA Polymerase II promoter-proximal pause release and burst kinetics in a Drosophila embryonic patterning network. Genome Biol 2024; 25:2. [PMID: 38166964 PMCID: PMC10763363 DOI: 10.1186/s13059-023-03135-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Formation of tissue-specific transcriptional programs underlies multicellular development, including dorsoventral (DV) patterning of the Drosophila embryo. This involves interactions between transcriptional enhancers and promoters in a chromatin context, but how the chromatin landscape influences transcription is not fully understood. RESULTS Here we comprehensively resolve differential transcriptional and chromatin states during Drosophila DV patterning. We find that RNA Polymerase II pausing is established at DV promoters prior to zygotic genome activation (ZGA), that pausing persists irrespective of cell fate, but that release into productive elongation is tightly regulated and accompanied by tissue-specific P-TEFb recruitment. DV enhancers acquire distinct tissue-specific chromatin states through CBP-mediated histone acetylation that predict the transcriptional output of target genes, whereas promoter states are more tissue-invariant. Transcriptome-wide inference of burst kinetics in different cell types revealed that while DV genes are generally characterized by a high burst size, either burst size or frequency can differ between tissues. CONCLUSIONS The data suggest that pausing is established by pioneer transcription factors prior to ZGA and that release from pausing is imparted by enhancer chromatin state to regulate bursting in a tissue-specific manner in the early embryo. Our results uncover how developmental patterning is orchestrated by tissue-specific bursts of transcription from Pol II primed promoters in response to enhancer regulatory cues.
Collapse
Affiliation(s)
- George Hunt
- Department Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Roshan Vaid
- Department Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Sergei Pirogov
- Department Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Alexander Pfab
- Department Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | | | - Rickard Sandberg
- Department Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Johan Reimegård
- Department Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Mattias Mannervik
- Department Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
10
|
Wang J, Wang W, Ma F, Qian H. A hidden translatome in tumors-the coding lncRNAs. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2755-2772. [PMID: 37154857 DOI: 10.1007/s11427-022-2289-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/29/2022] [Indexed: 05/10/2023]
Abstract
Long noncoding RNAs (lncRNAs) have been extensively identified in eukaryotic genomes and have been shown to play critical roles in the development of multiple cancers. Through the application and development of ribosome analysis and sequencing technologies, advanced studies have discovered the translation of lncRNAs. Although lncRNAs were originally defined as noncoding RNAs, many lncRNAs actually contain small open reading frames that are translated into peptides. This opens a broad area for the functional investigation of lncRNAs. Here, we introduce prospective methods and databases for screening lncRNAs with functional polypeptides. We also summarize the specific lncRNA-encoded proteins and their molecular mechanisms that promote or inhibit cancerous. Importantly, the role of lncRNA-encoded peptides/proteins holds promise in cancer research, but some potential challenges remain unresolved. This review includes reports on lncRNA-encoded peptides or proteins in cancer, aiming to provide theoretical basis and related references to facilitate the discovery of more functional peptides encoded by lncRNA, and to further develop new anti-cancer therapeutic targets as well as clinical biomarkers of diagnosis and prognosis.
Collapse
Affiliation(s)
- Jinsong Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wenna Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Fei Ma
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Haili Qian
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
11
|
Bosch JA, Keith N, Escobedo F, Fisher WW, LaGraff JT, Rabasco J, Wan KH, Weiszmann R, Hu Y, Kondo S, Brown JB, Perrimon N, Celniker SE. Molecular and functional characterization of the Drosophila melanogaster conserved smORFome. Cell Rep 2023; 42:113311. [PMID: 37889754 PMCID: PMC10843857 DOI: 10.1016/j.celrep.2023.113311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/24/2023] [Accepted: 10/04/2023] [Indexed: 10/29/2023] Open
Abstract
Short polypeptides encoded by small open reading frames (smORFs) are ubiquitously found in eukaryotic genomes and are important regulators of physiology, development, and mitochondrial processes. Here, we focus on a subset of 298 smORFs that are evolutionarily conserved between Drosophila melanogaster and humans. Many of these smORFs are conserved broadly in the bilaterian lineage, and ∼182 are conserved in plants. We observe remarkably heterogeneous spatial and temporal expression patterns of smORF transcripts-indicating wide-spread tissue-specific and stage-specific mitochondrial architectures. In addition, an analysis of annotated functional domains reveals a predicted enrichment of smORF polypeptides localizing to mitochondria. We conduct an embryonic ribosome profiling experiment and find support for translation of 137 of these smORFs during embryogenesis. We further embark on functional characterization using CRISPR knockout/activation, RNAi knockdown, and cDNA overexpression, revealing diverse phenotypes. This study underscores the importance of identifying smORF function in disease and phenotypic diversity.
Collapse
Affiliation(s)
- Justin A Bosch
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Nathan Keith
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Felipe Escobedo
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - William W Fisher
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - James Thai LaGraff
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jorden Rabasco
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Kenneth H Wan
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Richard Weiszmann
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Shu Kondo
- Laboratory of Invertebrate Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - James B Brown
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Norbert Perrimon
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA.
| | - Susan E Celniker
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| |
Collapse
|
12
|
Kotb NM, Ulukaya G, Chavan A, Nguyen SC, Proskauer L, Joyce E, Hasson D, Jagannathan M, Rangan P. Genome organization regulates nuclear pore complex formation and promotes differentiation during Drosophila oogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.15.567233. [PMID: 38014330 PMCID: PMC10680722 DOI: 10.1101/2023.11.15.567233] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Genome organization can regulate gene expression and promote cell fate transitions. The differentiation of germline stem cells (GSCs) to oocytes in Drosophila involves changes in genome organization mediated by heterochromatin and the nuclear pore complex (NPC). Heterochromatin represses germ-cell genes during differentiation and NPCs anchor these silenced genes to the nuclear periphery, maintaining silencing to allow for oocyte development. Surprisingly, we find that genome organization also contributes to NPC formation, mediated by the transcription factor Stonewall (Stwl). As GSCs differentiate, Stwl accumulates at boundaries between silenced and active gene compartments. Stwl at these boundaries plays a pivotal role in transitioning germ-cell genes into a silenced state and activating a group of oocyte genes and Nucleoporins (Nups). The upregulation of these Nups during differentiation is crucial for NPC formation and further genome organization. Thus, crosstalk between genome architecture and NPCs is essential for successful cell fate transitions.
Collapse
Affiliation(s)
- Noor M. Kotb
- Department of Biomedical Sciences/Wadsworth Center, University at Albany SUNY, Albany, NY 12202
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY 12202
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Gulay Ulukaya
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Tisch Cancer Institute Bioinformatics for Next Generation Sequencing (BiNGS) core
| | - Ankita Chavan
- Department of Biology, Institute of Biochemistry, ETH Zurich, 8092 Zurich
| | - Son C. Nguyen
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104
| | - Lydia Proskauer
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY 12202
- Current address: Biochemistry and Molecular Biology Department, University of Massachusetts Amherst, Amherst, MA 01003
| | - Eric Joyce
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104
| | - Dan Hasson
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Tisch Cancer Institute Bioinformatics for Next Generation Sequencing (BiNGS) core
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Madhav Jagannathan
- Department of Biology, Institute of Biochemistry, ETH Zurich, 8092 Zurich
| | - Prashanth Rangan
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
13
|
Harrison MM, Marsh AJ, Rushlow CA. Setting the stage for development: the maternal-to-zygotic transition in Drosophila. Genetics 2023; 225:iyad142. [PMID: 37616526 PMCID: PMC10550319 DOI: 10.1093/genetics/iyad142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/18/2023] [Indexed: 08/26/2023] Open
Abstract
The zygote has a daunting task ahead of itself; it must develop from a single cell (fertilized egg) into a fully functioning adult with a multitude of different cell types. In the beginning, the zygote has help from its mother, in the form of gene products deposited into the egg, but eventually, it must rely on its own resources to proceed through development. The transfer of developmental control from the mother to the embryo is called the maternal-to-zygotic transition (MZT). All animals undergo this transition, which is defined by two main processes-the degradation of maternal RNAs and the synthesis of new RNAs from the zygote's own genome. Here, we review the regulation of the MZT in Drosophila, but given the broad conservation of this essential process, much of the regulation is shared among metazoans.
Collapse
Affiliation(s)
- Melissa M Harrison
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| | - Audrey J Marsh
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706 USA
| | | |
Collapse
|
14
|
Doyle DA, Burian FN, Aharoni B, Klinder AJ, Menzel MM, Nifras GCC, Shabazz-Henry AL, Palma BU, Hidalgo GA, Sottolano CJ, Ortega BM, Niepielko MG. Germ Granule Evolution Provides Mechanistic Insight into Drosophila Germline Development. Mol Biol Evol 2023; 40:msad174. [PMID: 37527522 PMCID: PMC10414811 DOI: 10.1093/molbev/msad174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/22/2023] [Accepted: 07/26/2023] [Indexed: 08/03/2023] Open
Abstract
The copackaging of mRNAs into biomolecular condensates called germ granules is a conserved strategy to posttranscriptionally regulate germline mRNAs. In Drosophila melanogaster, mRNAs accumulate in germ granules by forming homotypic clusters, aggregates containing multiple transcripts from the same gene. Nucleated by Oskar (Osk), homotypic clusters are generated through a stochastic seeding and self-recruitment process that requires the 3' untranslated region (UTR) of germ granule mRNAs. Interestingly, the 3' UTR belonging to germ granule mRNAs, such as nanos (nos), have considerable sequence variations among Drosophila species and we hypothesized that this diversity influences homotypic clustering. To test our hypothesis, we investigated the homotypic clustering of nos and polar granule component (pgc) in four Drosophila species and concluded that clustering is a conserved process used to enrich germ granule mRNAs. However, we discovered germ granule phenotypes that included significant changes in the abundance of transcripts present in species' homotypic clusters, which also reflected diversity in the number of coalesced primordial germ cells within their embryonic gonads. By integrating biological data with computational modeling, we found that multiple mechanisms underlie naturally occurring germ granule diversity, including changes in nos, pgc, osk levels and/or homotypic clustering efficacy. Furthermore, we demonstrated how the nos 3' UTR from different species influences nos clustering, causing granules to have ∼70% less nos and increasing the presence of defective primordial germ cells. Our results highlight the impact that evolution has on germ granules, which should provide broader insight into processes that modify compositions and activities of other classes of biomolecular condensate.
Collapse
Affiliation(s)
- Dominique A Doyle
- School of Integrative Science and Technology, Kean University, Union, NJ, USA
| | - Florencia N Burian
- School of Integrative Science and Technology, Kean University, Union, NJ, USA
| | - Benjamin Aharoni
- School of Integrative Science and Technology, Kean University, Union, NJ, USA
| | - Annabelle J Klinder
- School of Integrative Science and Technology, Kean University, Union, NJ, USA
| | - Melissa M Menzel
- School of Integrative Science and Technology, Kean University, Union, NJ, USA
| | | | | | - Bianca Ulrich Palma
- School of Integrative Science and Technology, Kean University, Union, NJ, USA
| | - Gisselle A Hidalgo
- School of Integrative Science and Technology, Kean University, Union, NJ, USA
| | - Christopher J Sottolano
- Center for Computational and Integrative Biology, Rutgers, The State University of New Jersey, Camden, NJ, USA
| | - Bianca M Ortega
- School of Integrative Science and Technology, Kean University, Union, NJ, USA
| | - Matthew G Niepielko
- School of Integrative Science and Technology, Kean University, Union, NJ, USA
- Department of Biological Sciences, Kean University, Union, NJ, USA
| |
Collapse
|
15
|
Curnutte HA, Lan X, Sargen M, Ao Ieong SM, Campbell D, Kim H, Liao Y, Lazar SB, Trcek T. Proteins rather than mRNAs regulate nucleation and persistence of Oskar germ granules in Drosophila. Cell Rep 2023; 42:112723. [PMID: 37384531 PMCID: PMC10439980 DOI: 10.1016/j.celrep.2023.112723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/24/2023] [Accepted: 06/13/2023] [Indexed: 07/01/2023] Open
Abstract
RNA granules are membraneless condensates that provide functional compartmentalization within cells. The mechanisms by which RNA granules form are under intense investigation. Here, we characterize the role of mRNAs and proteins in the formation of germ granules in Drosophila. Super-resolution microscopy reveals that the number, size, and distribution of germ granules is precisely controlled. Surprisingly, germ granule mRNAs are not required for the nucleation or the persistence of germ granules but instead control their size and composition. Using an RNAi screen, we determine that RNA regulators, helicases, and mitochondrial proteins regulate germ granule number and size, while the proteins of the endoplasmic reticulum, nuclear pore complex, and cytoskeleton control their distribution. Therefore, the protein-driven formation of Drosophila germ granules is mechanistically distinct from the RNA-dependent condensation observed for other RNA granules such as stress granules and P-bodies.
Collapse
Affiliation(s)
- Harrison A Curnutte
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Xinyue Lan
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Manuel Sargen
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Si Man Ao Ieong
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Dylan Campbell
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Hyosik Kim
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Yijun Liao
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Sarah Bailah Lazar
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Tatjana Trcek
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA.
| |
Collapse
|
16
|
Hakes AC, Gavis ER. Plasticity of Drosophila germ granules during germ cell development. PLoS Biol 2023; 21:e3002069. [PMID: 37053289 PMCID: PMC10128949 DOI: 10.1371/journal.pbio.3002069] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/25/2023] [Accepted: 03/07/2023] [Indexed: 04/15/2023] Open
Abstract
Compartmentalization of RNAs and proteins into membraneless structures called granules is a ubiquitous mechanism for organizing and regulating cohorts of RNAs. Germ granules are ribonucleoprotein (RNP) assemblies required for germline development across the animal kingdom, but their regulatory roles in germ cells are not fully understood. We show that after germ cell specification, Drosophila germ granules enlarge through fusion and this growth is accompanied by a shift in function. Whereas germ granules initially protect their constituent mRNAs from degradation, they subsequently target a subset of these mRNAs for degradation while maintaining protection of others. This functional shift occurs through the recruitment of decapping and degradation factors to the germ granules, which is promoted by decapping activators and renders these structures P body-like. Disrupting either the mRNA protection or degradation function results in germ cell migration defects. Our findings reveal plasticity in germ granule function that allows them to be repurposed at different stages of development to ensure population of the gonad by germ cells. Additionally, these results reveal an unexpected level of functional complexity whereby constituent RNAs within the same granule type can be differentially regulated.
Collapse
Affiliation(s)
- Anna C Hakes
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Elizabeth R Gavis
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| |
Collapse
|
17
|
Siddiqui NU, Karaiskakis A, Goldman AL, Eagle WV, Smibert CA, Gavis ER, Lipshitz HD. Smaug regulates germ plasm synthesis and primordial germ cell number in Drosophila embryos by repressing the oskar and bruno 1 mRNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.27.530189. [PMID: 36909513 PMCID: PMC10002672 DOI: 10.1101/2023.02.27.530189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
During Drosophila oogenesis, the Oskar (OSK) RNA-binding protein (RBP) determines the amount of germ plasm that assembles at the posterior pole of the oocyte. Here we identify the mechanisms that regulate the osk mRNA in the early embryo. We show that the Smaug (SMG) RBP is transported into the germ plasm of the early embryo where it accumulates in the germ granules. SMG binds to and represses translation of the osk mRNA itself as well as the bruno 1 (bru1) mRNA, which encodes an RBP that we show promotes germ plasm production. Loss of SMG or mutation of SMG's binding sites in the osk or bru1 mRNAs results in ectopic translation of these transcripts in the germ plasm and excess PGCs. SMG therefore triggers a post-transcriptional regulatory pathway that attenuates germ plasm synthesis in embryos, thus modulating the number of PGCs.
Collapse
Affiliation(s)
- Najeeb U. Siddiqui
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario, Canada M5G 1M1
- Program in Developmental & Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada M5G 0A4
| | - Angelo Karaiskakis
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario, Canada M5G 1M1
| | - Aaron L. Goldman
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario, Canada M5G 1M1
- Program in Developmental & Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada M5G 0A4
| | - Whitby V.I. Eagle
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Craig A. Smibert
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario, Canada M5G 1M1
- Department of Biochemistry, University of Toronto, 661 University Avenue, Toronto, Ontario, Canada M5G 1M1
| | - Elizabeth R. Gavis
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Howard D. Lipshitz
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, Ontario, Canada M5G 1M1
| |
Collapse
|
18
|
Doyle DA, Burian FN, Aharoni B, Klinder AJ, Menzel MM, Nifras GCC, Shabazz-Henry AL, Palma BU, Hidalgo GA, Sottolano CJ, Ortega BM, Niepielko MG. Evolutionary changes in germ granule mRNA content are driven by multiple mechanisms in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.21.529147. [PMID: 36865184 PMCID: PMC9980053 DOI: 10.1101/2023.02.21.529147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
The co-packaging of mRNAs into biomolecular condensates called germ granules is a conserved strategy to post-transcriptionally regulate mRNAs that function in germline development and maintenance. In D. melanogaster, mRNAs accumulate in germ granules by forming homotypic clusters, aggregates that contain multiple transcripts from a specific gene. Nucleated by Oskar (Osk), homotypic clusters in D. melanogaster are generated through a stochastic seeding and self-recruitment process that requires the 3' UTR of germ granule mRNAs. Interestingly, the 3' UTR belonging to germ granule mRNAs, such as nanos (nos), have considerable sequence variations among Drosophila species. Thus, we hypothesized that evolutionary changes in the 3' UTR influences germ granule development. To test our hypothesis, we investigated the homotypic clustering of nos and polar granule component (pgc) in four Drosophila species and concluded that homotypic clustering is a conserved developmental process used to enrich germ granule mRNAs. Additionally, we discovered that the number of transcripts found in nos and/or pgc clusters could vary significantly among species. By integrating biological data with computational modeling, we determined that multiple mechanisms underlie naturally occurring germ granule diversity, including changes in nos, pgc, osk levels, and/or homotypic clustering efficacy. Finally, we found that the nos 3' UTR from different species can alter the efficacy of nos homotypic clustering, resulting in germ granules with reduced nos accumulation. Our findings highlight the impact that evolution has on the development of germ granules and may provide insight into processes that modify the content of other classes of biomolecular condensates.
Collapse
Affiliation(s)
- Dominique A. Doyle
- School of Integrative Science and Technology, Kean University, 1000 Morris Ave., Union, NJ 07083, USA
| | - Florencia N. Burian
- School of Integrative Science and Technology, Kean University, 1000 Morris Ave., Union, NJ 07083, USA
| | - Benjamin Aharoni
- School of Integrative Science and Technology, Kean University, 1000 Morris Ave., Union, NJ 07083, USA
| | - Annabelle J. Klinder
- School of Integrative Science and Technology, Kean University, 1000 Morris Ave., Union, NJ 07083, USA
| | - Melissa M. Menzel
- School of Integrative Science and Technology, Kean University, 1000 Morris Ave., Union, NJ 07083, USA
| | - Gerard Carlo C. Nifras
- School of Integrative Science and Technology, Kean University, 1000 Morris Ave., Union, NJ 07083, USA
| | - Ahad L. Shabazz-Henry
- School of Integrative Science and Technology, Kean University, 1000 Morris Ave., Union, NJ 07083, USA
| | - Bianca Ulrich Palma
- School of Integrative Science and Technology, Kean University, 1000 Morris Ave., Union, NJ 07083, USA
| | - Gisselle A. Hidalgo
- School of Integrative Science and Technology, Kean University, 1000 Morris Ave., Union, NJ 07083, USA
| | - Christopher J. Sottolano
- Center for Computational and Integrative Biology, Rutgers, The State University of New Jersey, Camden, NJ 08103, USA
| | - Bianca M. Ortega
- School of Integrative Science and Technology, Kean University, 1000 Morris Ave., Union, NJ 07083, USA
| | - Matthew G. Niepielko
- School of Integrative Science and Technology, Kean University, 1000 Morris Ave., Union, NJ 07083, USA
- Department of Biological Sciences, Kean University, 1000 Morris Ave., Union, NJ 07083, USA
| |
Collapse
|
19
|
Colonnetta MM, Schedl P, Deshpande G. Germline/soma distinction in Drosophila embryos requires regulators of zygotic genome activation. eLife 2023; 12:78188. [PMID: 36598809 PMCID: PMC9812407 DOI: 10.7554/elife.78188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 12/23/2022] [Indexed: 01/05/2023] Open
Abstract
In Drosophila melanogaster embryos, somatic versus germline identity is the first cell fate decision. Zygotic genome activation (ZGA) orchestrates regionalized gene expression, imparting specific identity on somatic cells. ZGA begins with a minor wave that commences at nuclear cycle (NC)8 under the guidance of chromatin accessibility factors (Zelda, CLAMP, GAF), followed by the major wave during NC14. By contrast, primordial germ cell (PGC) specification requires maternally deposited and posteriorly anchored germline determinants. This is accomplished by a centrosome coordinated release and sequestration of germ plasm during the precocious cellularization of PGCs in NC10. Here, we report a novel requirement for Zelda and CLAMP during the establishment of the germline/soma distinction. When their activity is compromised, PGC determinants are not properly sequestered, and specification is disrupted. Conversely, the spreading of PGC determinants from the posterior pole adversely influences transcription in the neighboring somatic nuclei. These reciprocal aberrations can be correlated with defects in centrosome duplication/separation that are known to induce inappropriate transmission of the germ plasm. Interestingly, consistent with the ability of bone morphogenetic protein (BMP) signaling to influence specification of embryonic PGCs, reduction in the transcript levels of a BMP family ligand, decapentaplegic (dpp), is exacerbated at the posterior pole.
Collapse
Affiliation(s)
- Megan M Colonnetta
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
| | - Paul Schedl
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
| | - Girish Deshpande
- Department of Molecular Biology, Princeton UniversityPrincetonUnited States
| |
Collapse
|
20
|
Translation and natural selection of micropeptides from long non-canonical RNAs. Nat Commun 2022; 13:6515. [PMID: 36316320 PMCID: PMC9622821 DOI: 10.1038/s41467-022-34094-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 10/13/2022] [Indexed: 12/25/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are transcripts longer than 200 nucleotides but lacking canonical coding sequences. Apparently unable to produce peptides, lncRNA function seems to rely only on RNA expression, sequence and structure. Here, we exhaustively detect in-vivo translation of small open reading frames (small ORFs) within lncRNAs using Ribosomal profiling during Drosophila melanogaster embryogenesis. We show that around 30% of lncRNAs contain small ORFs engaged by ribosomes, leading to regulated translation of 100 to 300 micropeptides. We identify lncRNA features that favour translation, such as cistronicity, Kozak sequences, and conservation. For the latter, we develop a bioinformatics pipeline to detect small ORF homologues, and reveal evidence of natural selection favouring the conservation of micropeptide sequence and function across evolution. Our results expand the repertoire of lncRNA biochemical functions, and suggest that lncRNAs give rise to novel coding genes throughout evolution. Since most lncRNAs contain small ORFs with as yet unknown translation potential, we propose to rename them "long non-canonical RNAs".
Collapse
|
21
|
Cheng H, Shang D, Zhou R. Germline stem cells in human. Signal Transduct Target Ther 2022; 7:345. [PMID: 36184610 PMCID: PMC9527259 DOI: 10.1038/s41392-022-01197-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/06/2022] [Accepted: 09/14/2022] [Indexed: 12/02/2022] Open
Abstract
The germline cells are essential for the propagation of human beings, thus essential for the survival of mankind. The germline stem cells, as a unique cell type, generate various states of germ stem cells and then differentiate into specialized cells, spermatozoa and ova, for producing offspring, while self-renew to generate more stem cells. Abnormal development of germline stem cells often causes severe diseases in humans, including infertility and cancer. Primordial germ cells (PGCs) first emerge during early embryonic development, migrate into the gentile ridge, and then join in the formation of gonads. In males, they differentiate into spermatogonial stem cells, which give rise to spermatozoa via meiosis from the onset of puberty, while in females, the female germline stem cells (FGSCs) retain stemness in the ovary and initiate meiosis to generate oocytes. Primordial germ cell-like cells (PGCLCs) can be induced in vitro from embryonic stem cells or induced pluripotent stem cells. In this review, we focus on current advances in these embryonic and adult germline stem cells, and the induced PGCLCs in humans, provide an overview of molecular mechanisms underlying the development and differentiation of the germline stem cells and outline their physiological functions, pathological implications, and clinical applications.
Collapse
Affiliation(s)
- Hanhua Cheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, 430072, Wuhan, China.
| | - Dantong Shang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, 430072, Wuhan, China
| | - Rongjia Zhou
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, 430072, Wuhan, China.
| |
Collapse
|
22
|
Liu Y, Zeng S, Wu M. Novel insights into noncanonical open reading frames in cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188755. [PMID: 35777601 DOI: 10.1016/j.bbcan.2022.188755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/11/2022] [Accepted: 06/23/2022] [Indexed: 12/12/2022]
Abstract
With technological advances, previously neglected noncanonical open reading frames (nORFs) are drawing ever-increasing attention. However, the translation potential of numerous putative nORFs remains elusive, and the functions of noncanonical peptides have not been systemically summarized. Moreover, the relationship between noncanonical peptides and their counterpart protein or RNA products remains elusive and the clinical implementation of noncanonical peptides has not been explored. In this review, we highlight how recent technological advances such as ribosome profiling, bioinformatics approaches and CRISPR/Cas9 facilitate the research of noncanonical peptides. We delineate the features of each nORF category and the evolutionary process underneath the nORFs. Most importantly, we summarize the diversified functions of noncanonical peptides in cancer based on their subcellular location, which reflect their extensive participation in key pathways and essential cellular activities in cancer cells. Meanwhile, the equilibrium between noncanonical peptides and their corresponding transcripts or counterpart products may be dysregulated under pathological states, which is essential for their roles in cancer. Lastly, we explore their underestimated potential in clinical application as diagnostic biomarkers and treatment targets against cancer.
Collapse
Affiliation(s)
- Yihan Liu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China; Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Shan Zeng
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; Key Laboratory for Molecular Radiation Oncology of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Minghua Wu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410013, Hunan, China; The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan 410008, China.
| |
Collapse
|
23
|
Zhou H, Lou F, Bai J, Sun Y, Cai W, Sun L, Xu Z, Liu Z, Zhang L, Yin Q, Zhang J, Gao Y, Wang Z, Niu L, Cai X, Deng S, Wang H, Xia L, Ginhoux F, Li Q, Wang H. A peptide encoded by pri-miRNA-31 represses autoimmunity by promoting T reg differentiation. EMBO Rep 2022; 23:e53475. [PMID: 35343645 PMCID: PMC9066071 DOI: 10.15252/embr.202153475] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 12/29/2022] Open
Abstract
Recent evidence has revealed that small polypeptides (containing fewer than 100 amino acids) can be translated from noncoding RNAs (ncRNAs), which are usually defined as RNA molecules that do not encode proteins. However, studies on functional products translated from primary transcripts of microRNA (pri-miRNA) are quite limited. Here, we describe a peptide termed miPEP31 that is encoded by pri-miRNA-31. miPEP31 is highly expressed in Foxp3+ regulatory T cells (Tregs ) and significantly promotes the differentiation of Tregs without affecting their inhibitory ability. Our results show that miPEP31 is a cell-penetrating peptide both in vitro and in vivo. miPEP31 downregulates miR-31 expression, enhances peripheral Treg induction, and dramatically suppresses experimental autoimmune encephalomyelitis. Mechanistically, we show that miPEP31 acts as a transcriptional repressor inhibiting the expression of miRNA-31, a negative regulator of Tregs . Our results reveal an indispensable role of miPEP31 in maintaining immune homeostasis by promoting Treg differentiation and also present a potential therapeutic peptide for modulating miRNA expression and treating autoimmune diseases.
Collapse
Affiliation(s)
- Hong Zhou
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangzhou Lou
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Bai
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Sun
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Cai
- Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Libo Sun
- Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenyao Xu
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhaoyuan Liu
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lingyun Zhang
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianqian Yin
- Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junxun Zhang
- Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanyuan Gao
- Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhikai Wang
- Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liman Niu
- Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaojie Cai
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Siyu Deng
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Wang
- Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Xia
- Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Florent Ginhoux
- Shanghai Institute of Immunology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore
| | - Qun Li
- The Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Honglin Wang
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
24
|
Valentino M, Ortega BM, Ulrich B, Doyle DA, Farnum ED, Joiner DA, Gavis ER, Niepielko MG. Computational modeling offers new insight into Drosophila germ granule development. Biophys J 2022; 121:1465-1482. [PMID: 35288123 PMCID: PMC9072583 DOI: 10.1016/j.bpj.2022.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/04/2022] [Accepted: 03/09/2022] [Indexed: 11/02/2022] Open
Abstract
The packaging of specific mRNAs into ribonucleoprotein granules called germ granules is required for germline proliferation and maintenance. During Drosophila germ granule development, mRNAs such as nanos (nos) and polar granule component (pgc) localize to germ granules through a stochastic seeding and self-recruitment process that generates homotypic clusters: aggregates containing multiple copies of a specific transcript. Germ granules vary in mRNA composition with respect to the different transcripts that they contain and their quantity. However, what influences germ granule mRNA composition during development is unclear. To gain insight into how germ granule mRNA heterogeneity arises, we created a computational model that simulates granule development. Although the model includes known mechanisms that were converted into mathematical representations, additional unreported mechanisms proved to be essential for modeling germ granule formation. The model was validated by predicting defects caused by changes in mRNA and protein abundance. Broader application of the model was demonstrated by quantifying nos and pgc localization efficacies and the contribution that an element within the nos 3' untranslated region has on clustering. For the first time, a mathematical representation of Drosophila germ granule formation is described, offering quantitative insight into how mRNA compositions arise while providing a new tool for guiding future studies.
Collapse
|
25
|
Arkov AL. Looking at the Pretty "Phase" of Membraneless Organelles: A View From Drosophila Glia. Front Cell Dev Biol 2022; 10:801953. [PMID: 35198559 PMCID: PMC8859445 DOI: 10.3389/fcell.2022.801953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
Membraneless granules assemble in different cell types and cellular loci and are the focus of intense research due to their fundamental importance for cellular organization. These dynamic organelles are commonly assembled from RNA and protein components and exhibit soft matter characteristics of molecular condensates currently characterized with biophysical approaches and super-resolution microscopy imaging. In addition, research on the molecular mechanisms of the RNA-protein granules assembly provided insights into the formation of abnormal granules and molecular aggregates, which takes place during many neurodegenerative disorders including Parkinson's diseases (PD), Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and frontotemporal dementia (FTD). While these disorders are associated with formation of abnormal granules, membraneless organelles are normally assembled in neurons and contribute to translational control and affect stability of neuronal RNAs. More recently, a new subtype of membraneless granules was identified in Drosophila glia (glial granules). Interestingly, glial granules were found to contain proteins which are the principal components of the membraneless granules in germ cells (germ granules), indicating some similarity in the functional assembly of these structures in glia and germline. This mini review highlights recent research on glial granules in the context of other membraneless organelles, including their assembly mechanisms and potential functions in the nervous system.
Collapse
Affiliation(s)
- Alexey L. Arkov
- Department of Biological Sciences, Murray State University, Murray, KY, United States
| |
Collapse
|
26
|
Cao WX, Karaiskakis A, Lin S, Angers S, Lipshitz HD. The F-box protein Bard (CG14317) targets the Smaug RNA-binding protein for destruction during the Drosophila maternal-to-zygotic transition. Genetics 2022; 220:iyab177. [PMID: 34757425 PMCID: PMC8733446 DOI: 10.1093/genetics/iyab177] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/11/2021] [Indexed: 01/12/2023] Open
Abstract
During the maternal-to-zygotic transition (MZT), which encompasses the earliest stages of animal embryogenesis, a subset of maternally supplied gene products is cleared, thus permitting activation of zygotic gene expression. In the Drosophila melanogaster embryo, the RNA-binding protein Smaug (SMG) plays an essential role in progression through the MZT by translationally repressing and destabilizing a large number of maternal mRNAs. The SMG protein itself is rapidly cleared at the end of the MZT by a Skp/Cullin/F-box (SCF) E3-ligase complex. Clearance of SMG requires zygotic transcription and is required for an orderly MZT. Here, we show that an F-box protein, which we name Bard (encoded by CG14317), is required for degradation of SMG. Bard is expressed zygotically and physically interacts with SMG at the end of the MZT, coincident with binding of the maternal SCF proteins, SkpA and Cullin1, and with degradation of SMG. shRNA-mediated knock-down of Bard or deletion of the bard gene in the early embryo results in stabilization of SMG protein, a phenotype that is rescued by transgenes expressing Bard. Bard thus times the clearance of SMG at the end of the MZT.
Collapse
Affiliation(s)
- Wen Xi Cao
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Angelo Karaiskakis
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| | - Sichun Lin
- Department of Pharmaceutical Sciences & Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Stephane Angers
- Department of Pharmaceutical Sciences & Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Howard D Lipshitz
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada
| |
Collapse
|
27
|
Colonnetta MM, Goyal Y, Johnson HE, Syal S, Schedl P, Deshpande G. Preformation and epigenesis converge to specify primordial germ cell fate in the early Drosophila embryo. PLoS Genet 2022; 18:e1010002. [PMID: 34986144 PMCID: PMC8765614 DOI: 10.1371/journal.pgen.1010002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 01/18/2022] [Accepted: 12/17/2021] [Indexed: 11/24/2022] Open
Abstract
A critical step in animal development is the specification of primordial germ cells (PGCs), the precursors of the germline. Two seemingly mutually exclusive mechanisms are implemented across the animal kingdom: epigenesis and preformation. In epigenesis, PGC specification is non-autonomous and depends on extrinsic signaling pathways. The BMP pathway provides the key PGC specification signals in mammals. Preformation is autonomous and mediated by determinants localized within PGCs. In Drosophila, a classic example of preformation, constituents of the germ plasm localized at the embryonic posterior are thought to be both necessary and sufficient for proper determination of PGCs. Contrary to this longstanding model, here we show that these localized determinants are insufficient by themselves to direct PGC specification in blastoderm stage embryos. Instead, we find that the BMP signaling pathway is required at multiple steps during the specification process and functions in conjunction with components of the germ plasm to orchestrate PGC fate. Proper specification of primordial germ cells (PGCs) is crucial as PGCs serve as the precursors of germline stem cells. To specify PGC fate, invertebrates rely upon cell autonomous preformation involving maternally deposited germ plasm. In Drosophila melanogaster, to insulate newly formed PGCs from the adverse effects of the cell-cell signaling pathways, germ plasm determinants silence transcription and attenuate the cell cycle. However, our data on the BMP signaling pathway challenge this long-held view of PGC specification and suggest that appropriate specification of embryonic PGCs is sensitive to the BMP ligand, decapentaplegic (dpp), and its cognate receptor, thickveins. We find that PGCs are not only capable of responding to BMP signals from the soma, but also that these signals impact the proper determination of the germ cells. Based on these unanticipated similarities between mammals and flies, we propose a model integrating contribution of both the cell-autonomous (preformation) and non-autonomous (epigenesis) pathways during PGC determination. Consistent with the model, we have observed dominant genetic interactions between, oskar, the maternal determinant of PGC fate, and the BMP pathway ligand dpp.
Collapse
Affiliation(s)
- Megan M. Colonnetta
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Yogesh Goyal
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Heath E. Johnson
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Sapna Syal
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Paul Schedl
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Girish Deshpande
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
28
|
Takahashi O, Tanahashi M, Yokoi S, Kaneko M, Yanaka K, Nakagawa S, Maita H. The cell type-specific ER membrane protein UGS148 is not essential in mice. Genes Cells 2021; 27:43-60. [PMID: 34897904 DOI: 10.1111/gtc.12910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/30/2021] [Accepted: 12/09/2021] [Indexed: 12/01/2022]
Abstract
Genomes of higher eukaryotes encode many uncharacterized proteins, and the functions of these proteins cannot be predicted from the primary sequences due to a lack of conserved functional domains. In this study, we focused on a poorly characterized protein UGS148 that is highly expressed in a specialized cell type called tanycytes that line the ventral wall of the third ventricle in the hypothalamus. Immunostaining of UGS148 revealed the fine morphology of tanycytes with highly branched apical ER membranes. Immunoprecipitation revealed that UGS148 associated with mitochondrial ATPase at least in vitro, and ER and mitochondrial signals occasionally overlapped in tanycytes. Mutant mice lacking UGS148 did not exhibit overt phenotypes, suggesting that UGS148 was not essential in mice reared under normal laboratory conditions. We also found that RNA probes that were predicted to uniquely detect UGS148 mRNA cross-reacted with uncharacterized RNAs, highlighting the importance of experimental validation of the specificity of probes during the hybridization-based study of RNA localization.
Collapse
Affiliation(s)
- Osamu Takahashi
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Mayuko Tanahashi
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Saori Yokoi
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Mari Kaneko
- Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Kaori Yanaka
- Liver Cancer Prevention Research Unit, RIKEN, Wako, Japan
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Hiroshi Maita
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
29
|
Nazer E, Gómez Acuña L, Kornblihtt AR. Seeking the truth behind the myth: Argonaute tales from "nuclearland". Mol Cell 2021; 82:503-513. [PMID: 34856122 DOI: 10.1016/j.molcel.2021.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 12/19/2022]
Abstract
Argonaute proteins have been traditionally characterized as a highly evolutionary conserved family engaged in post-transcriptional gene silencing pathways. The Argonaute family is mainly grouped into the AGO and PIWI clades. The canonical role of Argonaute proteins relies on their ability to bind small-RNAs that recognize complementary sequences on target mRNAs to induce either mRNA degradation or translational repression. However, there is an increasing amount of evidence supporting that Argonaute proteins also exert multiple nuclear functions that subsequently regulate gene expression. In this line, genome-wide studies showed that members from the AGO clade regulate transcription, 3D chromatin organization, and splicing of active loci located within euchromatin. Here, we discuss recent work based on high-throughput technologies that have significantly contributed to shed light on the multivariate nuclear functions of AGO proteins in different model organisms. We also analyze data supporting that AGO proteins are able to execute these nuclear functions independently from small RNA pathways. Finally, we integrate these mechanistic insights with recent reports highlighting the clinical importance of AGO in breast and prostate cancer development.
Collapse
Affiliation(s)
- Ezequiel Nazer
- Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular and CONICET-UBA, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina.
| | - Luciana Gómez Acuña
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Alberto R Kornblihtt
- Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular and CONICET-UBA, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| |
Collapse
|
30
|
In-Depth Annotation of the Drosophila Bithorax-Complex Reveals the Presence of Several Alternative ORFs That Could Encode for Motif-Rich Peptides. Cells 2021; 10:cells10112983. [PMID: 34831206 PMCID: PMC8616405 DOI: 10.3390/cells10112983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/17/2021] [Accepted: 10/26/2021] [Indexed: 11/19/2022] Open
Abstract
It is recognized that a large proportion of eukaryotic RNAs and proteins is not produced from conventional genes but from short and alternative (alt) open reading frames (ORFs) that are not captured by gene prediction programs. Here we present an in silico prediction of altORFs by applying several selecting filters based on evolutionary conservation and annotations of previously characterized altORF peptides. Our work was performed in the Bithorax-complex (BX-C), which was one of the first genomic regions described to contain long non-coding RNAs in Drosophila. We showed that several altORFs could be predicted from coding and non-coding sequences of BX-C. In addition, the selected altORFs encode for proteins that contain several interesting molecular features, such as the presence of transmembrane helices or a general propensity to be rich in short interaction motifs. Of particular interest, one altORF encodes for a protein that contains a peptide sequence found in specific isoforms of two Drosophila Hox proteins. Our work thus suggests that several altORF proteins could be produced from a particular genomic region known for its critical role during Drosophila embryonic development. The molecular signatures of these altORF proteins further suggests that several of them could make numerous protein–protein interactions and be of functional importance in vivo.
Collapse
|
31
|
Sergiev PV, Rubtsova MP. Little but Loud. The Diversity of Functions of Small Proteins and Peptides - Translational Products of Short Reading Frames. BIOCHEMISTRY (MOSCOW) 2021; 86:1139-1150. [PMID: 34565317 DOI: 10.1134/s0006297921090091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cell functioning is tightly regulated process. For many years, research in the fields of proteomics and functional genomics has been focused on the role of proteins in cell functioning. The advances in science have led to the uncovering that short open reading frames, previously considered non-functional, serve a variety of functions. Short reading frames in polycistronic mRNAs often regulate their stability and translational efficiency of the main reading frame. The improvement of proteomic analysis methods has made it possible to identify the products of translation of short open reading frames in quantities that suggest the existence of functional role of those peptides and short proteins. Studies demonstrating their role unravel a new level of the regulation of cell functioning and its adaptation to changing conditions. This review is devoted to the analysis of functions of recently discovered peptides and short proteins.
Collapse
Affiliation(s)
- Petr V Sergiev
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia. .,Skoltech Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, 143025, Russia.,Institute of Functional Genomics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Maria P Rubtsova
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
32
|
Magny EG, Platero AI, Bishop SA, Pueyo JI, Aguilar-Hidalgo D, Couso JP. Pegasus, a small extracellular peptide enhancing short-range diffusion of Wingless. Nat Commun 2021; 12:5660. [PMID: 34580289 PMCID: PMC8476528 DOI: 10.1038/s41467-021-25785-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/08/2021] [Indexed: 11/09/2022] Open
Abstract
Small Open Reading Frames (smORFs) coding for peptides of less than 100 amino-acids are an enigmatic and pervasive gene class, found in the tens of thousands in metazoan genomes. Here we reveal a short 80 amino-acid peptide (Pegasus) which enhances Wingless/Wnt1 protein short-range diffusion and signalling. During Drosophila wing development, Wingless has sequential functions, including late induction of proneural gene expression and wing margin development. Pegasus mutants produce wing margin defects and proneural expression loss similar to those of Wingless. Pegasus is secreted, and co-localizes and co-immunoprecipitates with Wingless, suggesting their physical interaction. Finally, measurements of fixed and in-vivo Wingless gradients support that Pegasus increases Wingless diffusion in order to enhance its signalling. Our results unveil a new element in Wingless signalling and clarify the patterning role of Wingless diffusion, while corroborating the link between small open reading frame peptides, and regulation of known proteins with membrane-related functions.
Collapse
Affiliation(s)
- Emile G Magny
- Centro Andaluz de Biologia del Desarrollo, CSIC-Universidad Pablo de Olavide, Sevilla, Spain
| | - Ana Isabel Platero
- Centro Andaluz de Biologia del Desarrollo, CSIC-Universidad Pablo de Olavide, Sevilla, Spain
| | - Sarah A Bishop
- Centro Andaluz de Biologia del Desarrollo, CSIC-Universidad Pablo de Olavide, Sevilla, Spain.,Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | - Jose I Pueyo
- Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | - Daniel Aguilar-Hidalgo
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.,Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Juan Pablo Couso
- Centro Andaluz de Biologia del Desarrollo, CSIC-Universidad Pablo de Olavide, Sevilla, Spain.
| |
Collapse
|
33
|
Zheng H, Talukder A, Li X, Hu H. A systematic evaluation of the computational tools for lncRNA identification. Brief Bioinform 2021; 22:6343529. [PMID: 34368833 DOI: 10.1093/bib/bbab285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/21/2021] [Accepted: 07/03/2021] [Indexed: 12/28/2022] Open
Abstract
The computational identification of long non-coding RNAs (lncRNAs) is important to study lncRNAs and their functions. Despite the existence of many computation tools for lncRNA identification, to our knowledge, there is no systematic evaluation of these tools on common datasets and no consensus regarding their performance and the importance of the features used. To fill this gap, in this study, we assessed the performance of 17 tools on several common datasets. We also investigated the importance of the features used by the tools. We found that the deep learning-based tools have the best performance in terms of identifying lncRNAs, and the peptide features do not contribute much to the tool accuracy. Moreover, when the transcripts in a cell type were considered, the performance of all tools significantly dropped, and the deep learning-based tools were no longer as good as other tools. Our study will serve as an excellent starting point for selecting tools and features for lncRNA identification.
Collapse
Affiliation(s)
- Hansi Zheng
- Department of Computer Science, University of Central Florida, Orlando, FL, USA
| | - Amlan Talukder
- Department of Computer Science, University of Central Florida, Orlando, FL, USA
| | - Xiaoman Li
- Burnett School of Biomedical Science, University of Central Florida, Orlando, FL, USA
| | - Haiyan Hu
- Department of Computer Science, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
34
|
Guerra-Almeida D, Tschoeke DA, da-Fonseca RN. Understanding small ORF diversity through a comprehensive transcription feature classification. DNA Res 2021; 28:6317669. [PMID: 34240112 PMCID: PMC8435553 DOI: 10.1093/dnares/dsab007] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Indexed: 11/13/2022] Open
Abstract
Small open reading frames (small ORFs/sORFs/smORFs) are potentially coding sequences smaller than 100 codons that have historically been considered junk DNA by gene prediction software and in annotation screening; however, the advent of next-generation sequencing has contributed to the deeper investigation of junk DNA regions and their transcription products, resulting in the emergence of smORFs as a new focus of interest in systems biology. Several smORF peptides were recently reported in noncanonical mRNAs as new players in numerous biological contexts; however, their relevance is still overlooked in coding potential analysis. Hence, this review proposes a smORF classification based on transcriptional features, discussing the most promising approaches to investigate smORFs based on their different characteristics. First, smORFs were divided into nonexpressed (intergenic) and expressed (genic) smORFs. Second, genic smORFs were classified as smORFs located in noncoding RNAs (ncRNAs) or canonical mRNAs. Finally, smORFs in ncRNAs were further subdivided into sequences located in small or long RNAs, whereas smORFs located in canonical mRNAs were subdivided into several specific classes depending on their localization along the gene. We hope that this review provides new insights into large-scale annotations and reinforces the role of smORFs as essential components of a hidden coding DNA world.
Collapse
Affiliation(s)
- Diego Guerra-Almeida
- Institute of Biodiversity and Sustainability, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diogo Antonio Tschoeke
- Alberto Luiz Coimbra Institute of Graduate Studies and Engineering Research (COPPE), Biomedical Engineering Program, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo Nunes- da-Fonseca
- Institute of Biodiversity and Sustainability, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology in Molecular Entomology, Rio de Janeiro, Brazil
| |
Collapse
|
35
|
Cai T, Zhang Q, Wu B, Wang J, Li N, Zhang T, Wang Z, Luo J, Guo X, Ding X, Xie Z, Niu L, Ning W, Fan Z, Chen X, Guo X, Chen R, Zhang H, Yang F. LncRNA-encoded microproteins: A new form of cargo in cell culture-derived and circulating extracellular vesicles. J Extracell Vesicles 2021; 10:e12123. [PMID: 34276900 PMCID: PMC8275822 DOI: 10.1002/jev2.12123] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 06/09/2021] [Accepted: 07/02/2021] [Indexed: 12/25/2022] Open
Abstract
Advancements in omics-based technologies over the past few years have led to the discovery of numerous biologically relevant peptides encoded by small open reading frames (smORFs) embedded in long noncoding RNA (lncRNA) transcripts (referred to as microproteins here) in a variety of species. However, the mechanisms and modes of action that underlie the roles of microproteins have yet to be fully characterized. Herein, we provide the first experimental evidence of abundant microproteins in extracellular vesicles (EVs) derived from glioma cancer cells, indicating that the EV-mediated transfer of microproteins may represent a novel mechanism for intercellular communication. Intriguingly, when examining human plasma, 48, 11 and 3 microproteins were identified from purified EVs, whole plasma and EV-free plasma, respectively, suggesting that circulating microproteins are primarily enriched in EVs. Most importantly, the preliminary data showed that the expression profile of EV microproteins in glioma patient diverged from the health donors, suggesting that the circulating microproteins in EVs might have potential diagnostic application in identifying patients with glioma.
Collapse
Affiliation(s)
- Tanxi Cai
- Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of ProteomicsInstitute of BiophysicsChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Qing Zhang
- Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of ProteomicsInstitute of BiophysicsChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Bowen Wu
- Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of ProteomicsInstitute of BiophysicsChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jifeng Wang
- Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of ProteomicsInstitute of BiophysicsChinese Academy of SciencesBeijingChina
| | - Na Li
- Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of ProteomicsInstitute of BiophysicsChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Tingting Zhang
- Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of ProteomicsInstitute of BiophysicsChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhipeng Wang
- Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of ProteomicsInstitute of BiophysicsChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jianjun Luo
- Key Laboratory of RNA BiologyInstitute of BiophysicsChinese Academy of SciencesBeijingChina
| | - Xiaojing Guo
- Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of ProteomicsInstitute of BiophysicsChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xiang Ding
- Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of ProteomicsInstitute of BiophysicsChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhensheng Xie
- Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of ProteomicsInstitute of BiophysicsChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Lili Niu
- Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of ProteomicsInstitute of BiophysicsChinese Academy of SciencesBeijingChina
| | - Weihai Ning
- Department of NeurosurgerySanbo Brain HospitalCapital Medical UniversityBeijingChina
| | - Zhen Fan
- Center for High Throughput SequencingCore Facility for Protein ResearchInstitute of BiophysicsChinese Academy of SciencesBeijingChina
| | - Xiaowei Chen
- Center for High Throughput SequencingCore Facility for Protein ResearchInstitute of BiophysicsChinese Academy of SciencesBeijingChina
| | - Xiangqian Guo
- Henan Provincial Engineering Centre for Tumour Molecular MedicineSchool of Basic Medical SciencesHenan UniversityKaifengChina
| | - Runsheng Chen
- University of Chinese Academy of SciencesBeijingChina
- Key Laboratory of RNA BiologyInstitute of BiophysicsChinese Academy of SciencesBeijingChina
| | - Hongwei Zhang
- Department of NeurosurgerySanbo Brain HospitalCapital Medical UniversityBeijingChina
| | - Fuquan Yang
- Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of ProteomicsInstitute of BiophysicsChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
36
|
Zhang Q, Wu E, Tang Y, Cai T, Zhang L, Wang J, Hao Y, Zhang B, Zhou Y, Guo X, Luo J, Chen R, Yang F. Deeply Mining a Universe of Peptides Encoded by Long Noncoding RNAs. Mol Cell Proteomics 2021; 20:100109. [PMID: 34129944 PMCID: PMC8335655 DOI: 10.1016/j.mcpro.2021.100109] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/16/2021] [Accepted: 06/02/2021] [Indexed: 11/22/2022] Open
Abstract
Many small ORFs embedded in long noncoding RNA (lncRNA) transcripts have been shown to encode biologically functional polypeptides (small ORF-encoded polypeptides [SEPs]) in different organisms. Despite some novel SEPs have been found, the identification is still hampered by their poor predictability, diminutive size, and low relative abundance. Here, we take advantage of NONCODE, a repository containing the most complete collection and annotation of lncRNA transcripts from different species, to build a novel database that attempts to maximize a collection of SEPs from human and mouse lncRNA transcripts. In order to further improve SEP discovery, we implemented two effective and complementary polypeptide enrichment strategies using 30-kDa molecular weight cutoff filter and C8 solid-phase extraction column. These combined strategies enabled us to discover 353 SEPs from eight human cell lines and 409 SEPs from three mouse cell lines and eight mouse tissues. Importantly, 19 of them were then verified through in vitro expression, immunoblotting, parallel reaction monitoring, and synthetic peptides. Subsequent bioinformatics analysis revealed that some of the physical and chemical properties of these novel SEPs, including amino acid composition and codon usage, are different from those commonly found in canonical proteins. Intriguingly, nearly 65% of the identified SEPs were found to be initiated with non-AUG start codons. The 762 novel SEPs probably represent the largest number of SEPs detected by MS reported to date. These novel SEPs might not only provide new clues for the annotation of noncoding elements in the genome but also serve as a valuable resource for functional study.
Collapse
Affiliation(s)
- Qing Zhang
- Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Erzhong Wu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China; Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yiheng Tang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China; Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Tanxi Cai
- Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lili Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China; Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jifeng Wang
- Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yajing Hao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China; Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Bao Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China; Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yue Zhou
- Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China; Thermofisher Scientific, Shanghai, China
| | - Xiaojing Guo
- Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jianjun Luo
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China; Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| | - Runsheng Chen
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China; Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; Guangdong Geneway Decoding Bio-Tech Co Ltd, Foshan, China.
| | - Fuquan Yang
- Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
37
|
Tharakan R, Sawa A. Minireview: Novel Micropeptide Discovery by Proteomics and Deep Sequencing Methods. Front Genet 2021; 12:651485. [PMID: 34025718 PMCID: PMC8136307 DOI: 10.3389/fgene.2021.651485] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
A novel class of small proteins, called micropeptides, has recently been discovered in the genome. These proteins, which have been found to play important roles in many physiological and cellular systems, are shorter than 100 amino acids and were overlooked during previous genome annotations. Discovery and characterization of more micropeptides has been ongoing, often using -omics methods such as proteomics, RNA sequencing, and ribosome profiling. In this review, we survey the recent advances in the micropeptides field and describe the methodological and conceptual challenges facing future micropeptide endeavors.
Collapse
Affiliation(s)
- Ravi Tharakan
- National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Akira Sawa
- Departments of Psychiatry, Neuroscience, Biomedical Engineering, and Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| |
Collapse
|
38
|
Li YR, Lai HW, Huang HH, Chen HC, Fugmann SD, Yang SY. Trajectory mapping of the early Drosophila germline reveals controls of zygotic activation and sex differentiation. Genome Res 2021; 31:1011-1023. [PMID: 33858841 PMCID: PMC8168578 DOI: 10.1101/gr.271148.120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 04/07/2021] [Indexed: 01/29/2023]
Abstract
Germ cells in Drosophila melanogaster are specified maternally shortly after fertilization and are transcriptionally quiescent until their zygotic genome is activated to sustain further development. To understand the molecular basis of this process, we analyzed the progressing transcriptomes of early male and female germ cells at the single-cell level between germline specification and coalescence with somatic gonadal cells. Our data comprehensively cover zygotic activation in the germline genome, and analyses on genes that exhibit germline-restricted expression reveal that polymerase pausing and differential RNA stability are important mechanisms that establish gene expression differences between the germline and soma. In addition, we observe an immediate bifurcation between the male and female germ cells as zygotic transcription begins. The main difference between the two sexes is an elevation in X Chromosome expression in females relative to males, signifying incomplete dosage compensation, with a few select genes exhibiting even higher expression increases. These indicate that the male program is the default mode in the germline that is driven to female development with a second X Chromosome.
Collapse
Affiliation(s)
- Yi-Ru Li
- Department and College of Medicine, Chang Gung University, Kweishan, Taoyuan 333 Taiwan
| | - Hsiao Wen Lai
- Department and College of Medicine, Chang Gung University, Kweishan, Taoyuan 333 Taiwan
| | - Hsiao Han Huang
- Department and College of Medicine, Chang Gung University, Kweishan, Taoyuan 333 Taiwan
| | - Hsing-Chun Chen
- Department and College of Medicine, Chang Gung University, Kweishan, Taoyuan 333 Taiwan
| | - Sebastian D Fugmann
- Department and College of Medicine, Chang Gung University, Kweishan, Taoyuan 333 Taiwan.,Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kweishan, Taoyuan 333 Taiwan.,Department of Nephrology, Linkou Chang Gung Memorial Hospital, Kweishan, Taoyuan 333 Taiwan
| | - Shu Yuan Yang
- Department and College of Medicine, Chang Gung University, Kweishan, Taoyuan 333 Taiwan.,Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kweishan, Taoyuan 333 Taiwan.,Department of Gynecology, Linkou Chang Gung Memorial Hospital, Kweishan, Taoyuan 333 Taiwan
| |
Collapse
|
39
|
Immarigeon C, Frei Y, Delbare SYN, Gligorov D, Machado Almeida P, Grey J, Fabbro L, Nagoshi E, Billeter JC, Wolfner MF, Karch F, Maeda RK. Identification of a micropeptide and multiple secondary cell genes that modulate Drosophila male reproductive success. Proc Natl Acad Sci U S A 2021; 118:e2001897118. [PMID: 33876742 PMCID: PMC8053986 DOI: 10.1073/pnas.2001897118] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Even in well-characterized genomes, many transcripts are considered noncoding RNAs (ncRNAs) simply due to the absence of large open reading frames (ORFs). However, it is now becoming clear that many small ORFs (smORFs) produce peptides with important biological functions. In the process of characterizing the ribosome-bound transcriptome of an important cell type of the seminal fluid-producing accessory gland of Drosophila melanogaster, we detected an RNA, previously thought to be noncoding, called male-specific abdominal (msa). Notably, msa is nested in the HOX gene cluster of the Bithorax complex and is known to contain a micro-RNA within one of its introns. We find that this RNA encodes a "micropeptide" (9 or 20 amino acids, MSAmiP) that is expressed exclusively in the secondary cells of the male accessory gland, where it seems to accumulate in nuclei. Importantly, loss of function of this micropeptide causes defects in sperm competition. In addition to bringing insights into the biology of a rare cell type, this work underlines the importance of small peptides, a class of molecules that is now emerging as important actors in complex biological processes.
Collapse
Affiliation(s)
- Clément Immarigeon
- Department of Genetics and Evolution, Sciences III, University of Geneva, 1211 Geneva 4, Switzerland;
| | - Yohan Frei
- Department of Genetics and Evolution, Sciences III, University of Geneva, 1211 Geneva 4, Switzerland
| | - Sofie Y N Delbare
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703
| | - Dragan Gligorov
- Department of Genetics and Evolution, Sciences III, University of Geneva, 1211 Geneva 4, Switzerland
| | - Pedro Machado Almeida
- Department of Genetics and Evolution, Sciences III, University of Geneva, 1211 Geneva 4, Switzerland
| | - Jasmine Grey
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703
| | - Léa Fabbro
- Department of Genetics and Evolution, Sciences III, University of Geneva, 1211 Geneva 4, Switzerland
| | - Emi Nagoshi
- Department of Genetics and Evolution, Sciences III, University of Geneva, 1211 Geneva 4, Switzerland
| | - Jean-Christophe Billeter
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9700 CC, The Netherlands
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703
| | - François Karch
- Department of Genetics and Evolution, Sciences III, University of Geneva, 1211 Geneva 4, Switzerland
| | - Robert K Maeda
- Department of Genetics and Evolution, Sciences III, University of Geneva, 1211 Geneva 4, Switzerland;
| |
Collapse
|
40
|
Absence of X-chromosome dosage compensation in the primordial germ cells of Drosophila embryos. Sci Rep 2021; 11:4890. [PMID: 33649478 PMCID: PMC7921590 DOI: 10.1038/s41598-021-84402-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/16/2021] [Indexed: 01/31/2023] Open
Abstract
Dosage compensation is a mechanism that equalizes sex chromosome gene expression between the sexes. In Drosophila, individuals with two X chromosomes (XX) become female, whereas males have one X chromosome (XY). In males, dosage compensation of the X chromosome in the soma is achieved by five proteins and two non-coding RNAs, which assemble into the male-specific lethal (MSL) complex to upregulate X-linked genes twofold. By contrast, it remains unclear whether dosage compensation occurs in the germline. To address this issue, we performed transcriptome analysis of male and female primordial germ cells (PGCs). We found that the expression levels of X-linked genes were approximately twofold higher in female PGCs than in male PGCs. Acetylation of lysine residue 16 on histone H4 (H4K16ac), which is catalyzed by the MSL complex, was undetectable in these cells. In male PGCs, hyperactivation of X-linked genes and H4K16ac were induced by overexpression of the essential components of the MSL complex, which were expressed at very low levels in PGCs. Together, these findings indicate that failure of MSL complex formation results in the absence of X-chromosome dosage compensation in male PGCs.
Collapse
|
41
|
D'Orazio FM, Balwierz PJ, González AJ, Guo Y, Hernández-Rodríguez B, Wheatley L, Jasiulewicz A, Hadzhiev Y, Vaquerizas JM, Cairns B, Lenhard B, Müller F. Germ cell differentiation requires Tdrd7-dependent chromatin and transcriptome reprogramming marked by germ plasm relocalization. Dev Cell 2021; 56:641-656.e5. [PMID: 33651978 PMCID: PMC7957325 DOI: 10.1016/j.devcel.2021.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 10/25/2020] [Accepted: 02/03/2021] [Indexed: 02/09/2023]
Abstract
In many animal models, primordial germ cell (PGC) development depends on maternally deposited germ plasm, which prevents somatic cell fate. Here, we show that PGCs respond to regulatory information from the germ plasm in two distinct phases using two distinct mechanisms in zebrafish. We demonstrate that PGCs commence zygotic genome activation together with the somatic blastocysts with no demonstrable differences in transcriptional and chromatin opening. Unexpectedly, both PGC and somatic blastocysts activate germ-cell-specific genes, which are only stabilized in PGCs by cytoplasmic germ plasm determinants. Disaggregated perinuclear relocalization of germ plasm during PGC migration is regulated by the germ plasm determinant Tdrd7 and is coupled to dramatic divergence between PGC and somatic transcriptomes. This transcriptional divergence relies on PGC-specific cis-regulatory elements characterized by promoter-proximal distribution. We show that Tdrd7-dependent reconfiguration of chromatin accessibility is required for elaboration of PGC fate but not for PGC migration. No evidence for transcriptional activation delay in zebrafish PGCs Germ-plasm-associated post-transcriptional divergence during ZGA Epigenetic reprogramming marks onset of PGC migration Epigenetic reprogramming in PGCs relies on Tdrd7, coupled to germ plasm relocalization
Collapse
Affiliation(s)
- Fabio M D'Orazio
- Institute of Cancer and Genomics Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK; MRC London Institute of Medical Sciences and Faculty of Medicine, Imperial College, London, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College, London, UK
| | - Piotr J Balwierz
- Institute of Cancer and Genomics Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK; MRC London Institute of Medical Sciences and Faculty of Medicine, Imperial College, London, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College, London, UK
| | - Ada Jimenez González
- Institute of Cancer and Genomics Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Yixuan Guo
- Department of Oncological Sciences and Huntsman Cancer Institute, Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | | | - Lucy Wheatley
- Institute of Cancer and Genomics Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Aleksandra Jasiulewicz
- Institute of Cancer and Genomics Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Yavor Hadzhiev
- Institute of Cancer and Genomics Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Juan M Vaquerizas
- MRC London Institute of Medical Sciences and Faculty of Medicine, Imperial College, London, UK; Max Planck Institute for Molecular Biomedicine, Roentgenstrasse 20, Muenster, Germany
| | - Bradley Cairns
- Department of Oncological Sciences and Huntsman Cancer Institute, Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Boris Lenhard
- MRC London Institute of Medical Sciences and Faculty of Medicine, Imperial College, London, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College, London, UK.
| | - Ferenc Müller
- Institute of Cancer and Genomics Sciences, Birmingham Centre for Genome Biology, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
| |
Collapse
|
42
|
Mukherjee N, Mukherjee C. Germ cell ribonucleoprotein granules in different clades of life: From insects to mammals. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 12:e1642. [PMID: 33555143 DOI: 10.1002/wrna.1642] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/12/2022]
Abstract
Ribonucleoprotein (RNP) granules are no newcomers in biology. Found in all life forms, ranging across taxa, these membrane-less "organelles" have been classified into different categories based on their composition, structure, behavior, function, and localization. Broadly, they can be listed as stress granules (SGs), processing bodies (PBs), neuronal granules (NGs), and germ cell granules (GCGs). Keeping in line with the topic of this review, RNP granules present in the germ cells have been implicated in a wide range of cellular functions including cellular specification, differentiation, proliferation, and so forth. The mechanisms used by them can be diverse and many of them remain partly obscure and active areas of research. GCGs can be of different types in different organisms and at different stages of development, with multiple types coexisting in the same cell. In this review, the different known subcategories of GCGs have been studied with respect to five distinct model organisms, namely, Drosophila, Caenorhabditis elegans, Xenopus, Zebrafish, and mammals. Of them, the cytoplasmic polar granules in Drosophila, P granules in C. elegans, balbiani body in Xenopus and Zebrafish, and chromatoid bodies in mammals have been specifically emphasized upon. A descriptive account of the same has been provided along with insights into our current understanding of their functional significance with respect to cellular events relating to different developmental and reproductive processes. This article is categorized under: RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Export and Localization > RNA Localization RNA in Disease and Development > RNA in Disease.
Collapse
|
43
|
Colonnetta MM, Lym LR, Wilkins L, Kappes G, Castro EA, Ryder PV, Schedl P, Lerit DA, Deshpande G. Antagonism between germ cell-less and Torso receptor regulates transcriptional quiescence underlying germline/soma distinction. eLife 2021; 10:54346. [PMID: 33459591 PMCID: PMC7843132 DOI: 10.7554/elife.54346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/15/2021] [Indexed: 11/13/2022] Open
Abstract
Transcriptional quiescence, an evolutionarily conserved trait, distinguishes the embryonic primordial germ cells (PGCs) from their somatic neighbors. In Drosophila melanogaster, PGCs from embryos maternally compromised for germ cell-less (gcl) misexpress somatic genes, possibly resulting in PGC loss. Recent studies documented a requirement for Gcl during proteolytic degradation of the terminal patterning determinant, Torso receptor. Here we demonstrate that the somatic determinant of female fate, Sex-lethal (Sxl), is a biologically relevant transcriptional target of Gcl. Underscoring the significance of transcriptional silencing mediated by Gcl, ectopic expression of a degradation-resistant form of Torso (torsoDeg) can activate Sxl transcription in PGCs, whereas simultaneous loss of torso-like (tsl) reinstates the quiescent status of gcl PGCs. Intriguingly, like gcl mutants, embryos derived from mothers expressing torsoDeg in the germline display aberrant spreading of pole plasm RNAs, suggesting that mutual antagonism between Gcl and Torso ensures the controlled release of germ-plasm underlying the germline/soma distinction.
Collapse
Affiliation(s)
- Megan M Colonnetta
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Lauren R Lym
- Department of Cell Biology, Emory University School of Medicine, Atlanta, United States
| | - Lillian Wilkins
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Gretchen Kappes
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Elias A Castro
- Department of Cell Biology, Emory University School of Medicine, Atlanta, United States
| | - Pearl V Ryder
- Department of Cell Biology, Emory University School of Medicine, Atlanta, United States
| | - Paul Schedl
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Dorothy A Lerit
- Department of Cell Biology, Emory University School of Medicine, Atlanta, United States
| | - Girish Deshpande
- Department of Molecular Biology, Princeton University, Princeton, United States
| |
Collapse
|
44
|
Tindell SJ, Rouchka EC, Arkov AL. Glial granules contain germline proteins in the Drosophila brain, which regulate brain transcriptome. Commun Biol 2020; 3:699. [PMID: 33219296 PMCID: PMC7679405 DOI: 10.1038/s42003-020-01432-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/23/2020] [Indexed: 01/23/2023] Open
Abstract
Membraneless RNA-protein granules play important roles in many different cell types and organisms. In particular, granules found in germ cells have been used as a paradigm to study large and dynamic granules. These germ granules contain RNA and proteins required for germline development. Here, we unexpectedly identify large granules in specific subtypes of glial cells ("glial granules") of the adult Drosophila brain which contain polypeptides with previously characterized roles in germ cells including scaffold Tudor, Vasa, Polar granule component and Piwi family proteins. Interestingly, our super-resolution microscopy analysis shows that in the glial granules, these proteins form distinct partially overlapping clusters. Furthermore, we show that glial granule scaffold protein Tudor functions in silencing of transposable elements and in small regulatory piRNA biogenesis. Remarkably, our data indicate that the adult brain contains a small population of cells, which express both neuroblast and germ cell proteins. These distinct cells are evolutionarily conserved and expand during aging suggesting the existence of age-dependent signaling. Our work uncovers previously unknown glial granules and indicates the involvement of their components in the regulation of brain transcriptome.
Collapse
Affiliation(s)
- Samuel J Tindell
- Department of Biological Sciences, Murray State University, Murray, KY, 42071, USA
| | - Eric C Rouchka
- Computer Science and Engineering Department, University of Louisville, Louisville, KY, 40292, USA
| | - Alexey L Arkov
- Department of Biological Sciences, Murray State University, Murray, KY, 42071, USA.
| |
Collapse
|
45
|
Li J, Zhang X, Liu C. The computational approaches of lncRNA identification based on coding potential: Status quo and challenges. Comput Struct Biotechnol J 2020; 18:3666-3677. [PMID: 33304463 PMCID: PMC7710504 DOI: 10.1016/j.csbj.2020.11.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 12/13/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) make up a large proportion of transcriptome in eukaryotes, and have been revealed with many regulatory functions in various biological processes. When studying lncRNAs, the first step is to accurately and specifically distinguish them from the colossal transcriptome data with complicated composition, which contains mRNAs, lncRNAs, small RNAs and their primary transcripts. In the face of such a huge and progressively expanding transcriptome data, the in-silico approaches provide a practicable scheme for effectively and rapidly filtering out lncRNA targets, using machine learning and probability statistics. In this review, we mainly discussed the characteristics of algorithms and features on currently developed approaches. We also outlined the traits of some state-of-the-art tools for ease of operation. Finally, we pointed out the underlying challenges in lncRNA identification with the advent of new experimental data.
Collapse
Affiliation(s)
- Jing Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Xuan Zhang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Changning Liu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| |
Collapse
|
46
|
Chen Y, Ho L, Tergaonkar V. sORF-Encoded MicroPeptides: New players in inflammation, metabolism, and precision medicine. Cancer Lett 2020; 500:263-270. [PMID: 33157158 DOI: 10.1016/j.canlet.2020.10.038] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/16/2020] [Accepted: 10/21/2020] [Indexed: 12/30/2022]
Abstract
Significant technological advances have enabled the discovery and identification of a new class of molecules, micropeptides or small ORF encoded peptides (SEPs) within non-coding RNAs (ncRNAs). As ncRNAs are well known to be transcriptionally silent, the discovery of SEPs implies that many ncRNAs are misannotated or play both coding and non-coding functions. SEPs have reportedly diverse regulatory roles in embryogenesis, myogenesis, inflammation, diseases, and cancer. SEPs appearing in different subcellular compartments show distinct functions. In this review, we summarized the functions of SEPs that have been characterized thus far. As SEPs are amenable to therapeutic development as biologics, understanding their underlying functions will provide novel targets for the treatment of inflammatory or metabolic disorders.
Collapse
Affiliation(s)
- Ying Chen
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, 138673, Singapore.
| | - Lena Ho
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, 138673, Singapore; Cardiovascular Metabolic Disorders Program, Duke-NUS Graduate School, Singapore; Institute of Medical Biology, A*STAR, Singapore
| | - Vinay Tergaonkar
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, 138673, Singapore; Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, 117597, Singapore.
| |
Collapse
|
47
|
Kubíková J, Reinig R, Salgania HK, Jeske M. LOTUS-domain proteins - developmental effectors from a molecular perspective. Biol Chem 2020; 402:7-23. [DOI: 10.1515/hsz-2020-0270] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 10/19/2020] [Indexed: 12/15/2022]
Abstract
Abstract
The LOTUS domain (also known as OST-HTH) is a highly conserved protein domain found in a variety of bacteria and eukaryotes. In animals, the LOTUS domain is present in the proteins Oskar, TDRD5/Tejas, TDRD7/TRAP/Tapas, and MARF1/Limkain B1, all of which play essential roles in animal development, in particular during oogenesis and/or spermatogenesis. This review summarizes the diverse biological as well as molecular functions of LOTUS-domain proteins and discusses their roles as helicase effectors, post-transcriptional regulators, and critical cofactors of piRNA-mediated transcript silencing.
Collapse
Affiliation(s)
- Jana Kubíková
- Heidelberg University Biochemistry Center , Im Neuenheimer Feld 328 , D-69120 Heidelberg , Germany
| | - Rebecca Reinig
- Heidelberg University Biochemistry Center , Im Neuenheimer Feld 328 , D-69120 Heidelberg , Germany
| | - Harpreet Kaur Salgania
- Heidelberg University Biochemistry Center , Im Neuenheimer Feld 328 , D-69120 Heidelberg , Germany
| | - Mandy Jeske
- Heidelberg University Biochemistry Center , Im Neuenheimer Feld 328 , D-69120 Heidelberg , Germany
| |
Collapse
|
48
|
Choi SW, Kim HW, Nam JW. The small peptide world in long noncoding RNAs. Brief Bioinform 2020; 20:1853-1864. [PMID: 30010717 PMCID: PMC6917221 DOI: 10.1093/bib/bby055] [Citation(s) in RCA: 180] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/08/2018] [Indexed: 02/07/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are a group of transcripts that are longer than 200 nucleotides (nt) without coding potential. Over the past decade, tens of thousands of novel lncRNAs have been annotated in animal and plant genomes because of advanced high-throughput RNA sequencing technologies and with the aid of coding transcript classifiers. Further, a considerable number of reports have revealed the existence of stable, functional small peptides (also known as micropeptides), translated from lncRNAs. In this review, we discuss the methods of lncRNA classification, the investigations regarding their coding potential and the functional significance of the peptides they encode.
Collapse
Affiliation(s)
- Seo-Won Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Hyun-Woo Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Jin-Wu Nam
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
49
|
Patraquim P, Mumtaz MAS, Pueyo JI, Aspden JL, Couso JP. Developmental regulation of canonical and small ORF translation from mRNAs. Genome Biol 2020; 21:128. [PMID: 32471506 PMCID: PMC7260771 DOI: 10.1186/s13059-020-02011-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 04/08/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Ribosomal profiling has revealed the translation of thousands of sequences outside annotated protein-coding genes, including small open reading frames of less than 100 codons, and the translational regulation of many genes. Here we present an improved version of Poly-Ribo-Seq and apply it to Drosophila melanogaster embryos to extend the catalog of in vivo translated small ORFs, and to reveal the translational regulation of both small and canonical ORFs from mRNAs across embryogenesis. RESULTS We obtain highly correlated samples across five embryonic stages, with nearly 500 million putative ribosomal footprints mapped to mRNAs, and compare them to existing Ribo-Seq and proteomic data. Our analysis reveals, for the first time in Drosophila, footprints mapping to codons in a phased pattern, the hallmark of productive translation. We propose a simple binomial probability metric to ascertain translation probability. Our results also reveal reproducible ribosomal binding apparently not resulting in productive translation. This non-productive ribosomal binding seems to be especially prevalent amongst upstream short ORFs located in the 5' mRNA leaders, and amongst canonical ORFs during the activation of the zygotic translatome at the maternal-to zygotic transition. CONCLUSIONS We suggest that this non-productive ribosomal binding might be due to cis-regulatory ribosomal binding and to defective ribosomal scanning of ORFs outside periods of productive translation. Our results are compatible with the main function of upstream short ORFs being to buffer the translation of canonical canonical ORFs; and show that, in general, small ORFs in mRNAs display markers compatible with an evolutionary transitory state towards full coding function.
Collapse
Affiliation(s)
- Pedro Patraquim
- Centro Andaluz de Biologia del Desarrollo, CSIC-UPO, Seville, Spain
| | | | | | - Julie Louise Aspden
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Juan-Pablo Couso
- Centro Andaluz de Biologia del Desarrollo, CSIC-UPO, Seville, Spain. .,Previous address: Brighton and Sussex Medical School, Brighton, East Sussex, UK.
| |
Collapse
|
50
|
Zheng T, Nakamoto A, Kumano G. H3K27me3 suppresses sister-lineage somatic gene expression in late embryonic germline cells of the ascidian, Halocynthia roretzi. Dev Biol 2020; 460:200-214. [PMID: 31904374 DOI: 10.1016/j.ydbio.2019.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/21/2019] [Accepted: 12/29/2019] [Indexed: 10/25/2022]
Abstract
Protection of the germline from somatic differentiation programs is crucial for germ cell development. In many animals, whose germline development relies on the maternally inherited germ plasm, such protection in particular at early stages of embryogenesis is achieved by maternally localized global transcriptional repressors, such as PIE-1 of Caenorhabditis elegans, Pgc of Drosophila melanogaster and Pem of ascidians. However, zygotic gene expression starts in later germline cells eventually and mechanisms by which somatic gene expression is selectively kept under repression in the transcriptionally active cells are poorly understood. By using the ascidian species Halocynthia roretzi, we found that H3K27me3, a repressive transcription-related chromatin mark, became enriched in germline cells starting at the 64-cell stage when Pem protein level and its contribution to transcriptional repression decrease. Interestingly, inhibition of H3K27me3 together with Pem knockdown resulted in ectopic expression in germline cells of muscle developmental genes Muscle actin (MA4) and Snail, and of Clone 22 (which is expressed in all somatic but not germline cells), but not of other tissue-specific genes such as the notochord gene Brachyury, the nerve cord marker ETR-1 and a heart precursor gene Mesp, at the 110-cell stage. Importantly, these ectopically expressed genes are normally expressed in the germline sister cells (B7.5), the last somatic lineage separated from the germline. Also, the ectopic expression of MA4 was dependent on a maternally localized muscle determinant Macho-1. Taken together, we propose that H3K27me3 may be responsible for selective transcriptional repression for somatic genes in later germline cells in Halocynthia embryos and that the preferential repression of germline sister-lineage genes may be related to the mechanism of germline segregation in ascidian embryos, where the germline is segregated progressively by successive asymmetric cell divisions during cell cleavage stages. Together with findings from C. elegans and D. melanogaster, our data for this urochordate animal support the proposal for a mechanism, conserved widely throughout the animal kingdom, where germline transcriptional repression is mediated initially by maternally localized factors and subsequently by a chromatin-based mechanism.
Collapse
Affiliation(s)
- Tao Zheng
- Asamushi Research Center for Marine Biology, Graduate School of Life Sciences, Tohoku University, Japan.
| | - Ayaki Nakamoto
- Asamushi Research Center for Marine Biology, Graduate School of Life Sciences, Tohoku University, Japan
| | - Gaku Kumano
- Asamushi Research Center for Marine Biology, Graduate School of Life Sciences, Tohoku University, Japan
| |
Collapse
|