1
|
Bonnet Gibet V, Michaut C, Wieczorek M, Lognonné P. A Positive Feedback Between Crustal Thickness and Melt Extraction for the Origin of the Martian Dichotomy. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2022; 127:e2022JE007472. [PMID: 37033153 PMCID: PMC10078261 DOI: 10.1029/2022je007472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/20/2022] [Accepted: 11/17/2022] [Indexed: 06/19/2023]
Abstract
A North/South difference in crustal thickness is likely at the origin of the Martian dichotomy in topography. Recent crustal thickness maps were obtained by inversion of topography and gravity data seismically anchored at the InSight station. On average, the Martian crust is 51-71 km thick with a southern crust thicker by 18-28 km than the northern one. The origin of this crustal dichotomy is still debated although the hypothesis of a large impact is at present very popular. Here, we propose a new mechanism for the formation of this dichotomy that involves a positive feedback between crustal growth and mantle melting. As the crust is enriched in heat-producing elements, the lid of a one-plate planet is hotter and thinner where the crust is thicker, inducing a larger amount of partial melt below the lid and hence a larger rate of melt extraction and crustal growth. We first demonstrate analytically that larger wavelength perturbations, that is, hemispherical perturbations, grow faster because smaller wavelengths are more attenuated by thermal diffusion. We then use a parameterized thermal evolution model with a well-mixed mantle topped by two different lids characterized by their thermal structures and thicknesses to study the growth of the crust in the two hemispheres. Our results demonstrate that this positive feedback can generate a significant crustal dichotomy.
Collapse
Affiliation(s)
- Valentin Bonnet Gibet
- Laboratoire de Géologie de LyonTerre, Planètes, EnvironnementEcole Normale Supérieure de LyonCNRSUniversité de LyonUniversité Claude Bernard Lyon 1Université Jean MonetLyonFrance
| | - Chloé Michaut
- Laboratoire de Géologie de LyonTerre, Planètes, EnvironnementEcole Normale Supérieure de LyonCNRSUniversité de LyonUniversité Claude Bernard Lyon 1Université Jean MonetLyonFrance
- Institut Universitaire de FranceParisFrance
| | - Mark Wieczorek
- Laboratoire LagrangeObservatoire de la Côte d’AzurCNRSUniversité Côte d’AzurNiceFrance
| | - Philippe Lognonné
- CNRSInstitut de physique du globe de ParisUniversité de ParisParisFrance
| |
Collapse
|
2
|
Kim D, Banerdt WB, Ceylan S, Giardini D, Lekić V, Lognonné P, Beghein C, Beucler É, Carrasco S, Charalambous C, Clinton J, Drilleau M, Durán C, Golombek M, Joshi R, Khan A, Knapmeyer-Endrun B, Li J, Maguire R, Pike WT, Samuel H, Schimmel M, Schmerr NC, Stähler SC, Stutzmann E, Wieczorek M, Xu Z, Batov A, Bozdag E, Dahmen N, Davis P, Gudkova T, Horleston A, Huang Q, Kawamura T, King SD, McLennan SM, Nimmo F, Plasman M, Plesa AC, Stepanova IE, Weidner E, Zenhäusern G, Daubar IJ, Fernando B, Garcia RF, Posiolova LV, Panning MP. Surface waves and crustal structure on Mars. Science 2022; 378:417-421. [DOI: 10.1126/science.abq7157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
We detected surface waves from two meteorite impacts on Mars. By measuring group velocity dispersion along the impact-lander path, we obtained a direct constraint on crustal structure away from the InSight lander. The crust north of the equatorial dichotomy had a shear wave velocity of approximately 3.2 kilometers per second in the 5- to 30-kilometer depth range, with little depth variation. This implies a higher crustal density than inferred beneath the lander, suggesting either compositional differences or reduced porosity in the volcanic areas traversed by the surface waves. The lower velocities and the crustal layering observed beneath the landing site down to a 10-kilometer depth are not a global feature. Structural variations revealed by surface waves hold implications for models of the formation and thickness of the martian crust.
Collapse
Affiliation(s)
- D. Kim
- Institute of Geophysics, ETH Zürich, Zürich, Switzerland
- Department of Geology, University of Maryland, College Park, MD, USA
| | - W. B. Banerdt
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - S. Ceylan
- Institute of Geophysics, ETH Zürich, Zürich, Switzerland
| | - D. Giardini
- Institute of Geophysics, ETH Zürich, Zürich, Switzerland
| | - V. Lekić
- Department of Geology, University of Maryland, College Park, MD, USA
| | - P. Lognonné
- Université Paris Cité, Institut de physique du globe de Paris, CNRS, Paris, France
| | - C. Beghein
- Department of Earth, Planetary and Space Sciences, University of California, Los Angeles, CA, USA
| | - É. Beucler
- Nantes Université, Université Angers, Le Mans Université, CNRS, UMR 6112, Laboratoire de Planétologie et Géosciences, Nantes, France
| | - S. Carrasco
- Bensberg Observatory, University of Cologne, Bergisch Gladbach, Germany
| | - C. Charalambous
- Department of Electrical and Electronic Engineering, Imperial College London, London, UK
| | - J. Clinton
- Swiss Seismological Service, ETH Zürich, Zürich, Switzerland
| | - M. Drilleau
- Institut Supérieur de l’Aéronautique et de l’Espace ISAE-SUPAERO, Toulouse, France
| | - C. Durán
- Institute of Geophysics, ETH Zürich, Zürich, Switzerland
| | - M. Golombek
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - R. Joshi
- Max Planck Institute for Solar System Research, Göttingen, Germany
| | - A. Khan
- Institute of Geophysics, ETH Zürich, Zürich, Switzerland
- Physik-Institut, University of Zürich, Zürich, Switzerland
| | | | - J. Li
- Department of Earth, Planetary and Space Sciences, University of California, Los Angeles, CA, USA
| | - R. Maguire
- Department of Geology, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - W. T. Pike
- Bensberg Observatory, University of Cologne, Bergisch Gladbach, Germany
| | - H. Samuel
- Université Paris Cité, Institut de physique du globe de Paris, CNRS, Paris, France
| | - M. Schimmel
- Geosciences Barcelona, CSIC, Barcelona, Spain
| | - N. C. Schmerr
- Department of Geology, University of Maryland, College Park, MD, USA
| | - S. C. Stähler
- Institute of Geophysics, ETH Zürich, Zürich, Switzerland
| | - E. Stutzmann
- Université Paris Cité, Institut de physique du globe de Paris, CNRS, Paris, France
| | - M. Wieczorek
- Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange, Nice, France
| | - Z. Xu
- Université Paris Cité, Institut de physique du globe de Paris, CNRS, Paris, France
| | - A. Batov
- Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, Moscow, Russia
| | - E. Bozdag
- Department of Geophysics, Colorado School of Mines, Golden, CO, USA
| | - N. Dahmen
- Institute of Geophysics, ETH Zürich, Zürich, Switzerland
| | - P. Davis
- Department of Earth, Planetary and Space Sciences, University of California, Los Angeles, CA, USA
| | - T. Gudkova
- Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, Moscow, Russia
| | - A. Horleston
- School of Earth Sciences, University of Bristol, Bristol, UK
| | - Q. Huang
- Department of Geophysics, Colorado School of Mines, Golden, CO, USA
| | - T. Kawamura
- Université Paris Cité, Institut de physique du globe de Paris, CNRS, Paris, France
| | - S. D. King
- Department of Geosciences, Virginia Tech, Blacksburg, VA, USA
| | - S. M. McLennan
- Department of Geosciences, Stony Brook University, Stony Brook, NY, USA
| | - F. Nimmo
- Department of Earth and Planetary Sciences, University of California Santa Cruz, Santa Cruz, CA, USA
| | - M. Plasman
- Université Paris Cité, Institut de physique du globe de Paris, CNRS, Paris, France
| | - A. C. Plesa
- Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany
| | - I. E. Stepanova
- Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, Moscow, Russia
| | - E. Weidner
- Department of Earth, Planetary and Space Sciences, University of California, Los Angeles, CA, USA
| | - G. Zenhäusern
- Institute of Geophysics, ETH Zürich, Zürich, Switzerland
| | - I. J. Daubar
- Department of Earth, Environmental, and Planetary Sciences, Brown University, Providence, RI, USA
| | - B. Fernando
- Department of Earth Sciences, University of Oxford, Oxford, UK
| | - R. F. Garcia
- Institut Supérieur de l’Aéronautique et de l’Espace ISAE-SUPAERO, Toulouse, France
| | | | - M. P. Panning
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
3
|
Zhang L, Zhang J, Mitchell RN. Dichotomy in crustal melting on early Mars inferred from antipodal effect. Innovation (N Y) 2022; 3:100280. [PMID: 35880234 PMCID: PMC9307670 DOI: 10.1016/j.xinn.2022.100280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/29/2022] [Indexed: 11/20/2022] Open
Abstract
The Martian crustal dichotomy (MCD) between the southern highlands and the northern lowlands is the planet’s most ancient crustal structure, but its origins and evolution remain enigmatic. Understanding of the MCD comes largely from present-day and shallow crustal constraints. Lacking ancient and deeper constraints, hypotheses for the origin of the MCD range from an early giant impact, partial melting from sustained mantle convection, or some combination. We investigate with seismological modeling the best-preserved case of the “antipodal effect”—energy from an impact that concentrates and induces uplift and fracturing promoting volcanism at its antipode—the Hellas crater and the Alba Patera volcano on Mars. The volcano is latitudinally offset ∼2° (∼119 km) from the expected antipode, and we explore whether the MCD can explain this deflection. Variations across the MCD in topography, thickness, and composition have only minor effects. Simulations capable of sufficiently decelerating southern surface waves require the presence of 2%–5% more partial melt in the southern highlands. As the age of impact ca. 4 billion years ago post-dates the formation of the MCD, our partial melting results thus imply that, with or without an early giant impact, the MCD was modified by mantle convection in order to supply enough heat for crustal melts for several hundreds of millions of years after Mars formation. We model the effect of impact-induced seismic waves causing volcanism at its antipode A lower southern hemisphere crustal velocity explains the observed Martian antipodes The simulation reveals a hemispheric dichotomy in crustal melting on early Mars
Collapse
Affiliation(s)
- Lei Zhang
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
- Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
| | - Jinhai Zhang
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
- Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China
- Corresponding author
| | - Ross N. Mitchell
- State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
- Corresponding author
| |
Collapse
|
4
|
Carr CE. Resolving the History of Life on Earth by Seeking Life As We Know It on Mars. ASTROBIOLOGY 2022; 22:880-888. [PMID: 35467949 PMCID: PMC9298492 DOI: 10.1089/ast.2021.0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
An origin of Earth life on Mars would resolve significant inconsistencies between the inferred history of life and Earth's geologic history. Life as we know it utilizes amino acids, nucleic acids, and lipids for the metabolic, informational, and compartment-forming subsystems of a cell. Such building blocks may have formed simultaneously from cyanosulfidic chemical precursors in a planetary surface scenario involving ultraviolet light, wet-dry cycling, and volcanism. On the inferred water world of early Earth, such an origin would have been limited to volcanic island hotspots. A cyanosulfidic origin of life could have taken place on Mars via photoredox chemistry, facilitated by orders-of-magnitude more sub-aerial crust than early Earth, and an earlier transition to oxidative conditions that could have been involved in final fixation of the genetic code. Meteoritic bombardment may have generated transient habitable environments and ejected and transferred life to Earth. Ongoing and future missions to Mars offer an unprecedented opportunity to confirm or refute evidence consistent with a cyanosulfidic origin of life on Mars, search for evidence of ancient life, and constrain the evolution of Mars' oxidation state over time. We should seek to prove or refute a martian origin for life on Earth alongside other possibilities.
Collapse
Affiliation(s)
- Christopher E. Carr
- Daniel Guggenheim School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Address correspondence to: Christopher E. Carr, ESM Building, Room G10, 620 Cherry St NW, Atlanta, GA 30332, USA
| |
Collapse
|
5
|
Jones MJ, Evans AJ, Johnson BC, Weller MB, Andrews-Hanna JC, Tikoo SM, Keane JT. A South Pole-Aitken impact origin of the lunar compositional asymmetry. SCIENCE ADVANCES 2022; 8:eabm8475. [PMID: 35394845 PMCID: PMC8993107 DOI: 10.1126/sciadv.abm8475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
The formation of the largest and most ancient lunar impact basin, South Pole-Aitken (SPA), was a defining event in the Moon's evolution. Using numerical simulations, we show that widespread mantle heating from the SPA impact can catalyze the formation of the long-lived nearside-farside lunar asymmetry in incompatible elements and surface volcanic deposits, which has remained unexplained since its discovery in the Apollo era. The impact-induced heat drives hemisphere-scale mantle convection, which would sequester Th- and Ti-rich lunar magma ocean cumulates in the nearside hemisphere within a few hundred million years if they remain immediately beneath the lunar crust at the time of the SPA impact. A warm initial upper mantle facilitates generation of a pronounced compositional asymmetry consistent with the observed lunar asymmetry.
Collapse
Affiliation(s)
- Matt J. Jones
- Department of Earth, Environmental and Planetary Sciences, Brown University, Box 1846, 324 Brook Street, Providence, RI 02912, USA
| | - Alexander J. Evans
- Department of Earth, Environmental and Planetary Sciences, Brown University, Box 1846, 324 Brook Street, Providence, RI 02912, USA
| | - Brandon C. Johnson
- Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN 47907, USA
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Matthew B. Weller
- Department of Earth, Environmental and Planetary Sciences, Brown University, Box 1846, 324 Brook Street, Providence, RI 02912, USA
- Lunar and Planetary Institute, Houston, TX 77058, USA
| | | | - Sonia M. Tikoo
- Department of Geophysics, Stanford University, Stanford, CA 94305, USA
| | - James T. Keane
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| |
Collapse
|
6
|
Abstract
Martian meteorites provide the only direct constraints on the timing of Martian accretion, core formation, magmatic differentiation, and ongoing volcanism. While many radiogenic isotope chronometers have been applied to a wide variety of Martian samples, few, if any, techniques are immune to secondary effects from alteration and terrestrial weathering. This short review focuses on the most robust geochronometers that have been used to date Martian meteorites and geochemically model the differentiation of the planet, including 147Sm/143Nd, 146Sm/142Nd, 176Lu/176Hf, 182Hf/182W, and U-Th-Pb systematics.
Collapse
|
7
|
Mittelholz A, Johnson CL, Feinberg JM, Langlais B, Phillips RJ. Timing of the martian dynamo: New constraints for a core field 4.5 and 3.7 Ga ago. SCIENCE ADVANCES 2020; 6:eaba0513. [PMID: 32494687 PMCID: PMC7195189 DOI: 10.1126/sciadv.aba0513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/12/2020] [Indexed: 05/24/2023]
Abstract
The absence of crustal magnetic fields above the martian basins Hellas, Argyre, and Isidis is often interpreted as proof of an early, before 4.1 billion years (Ga) ago, or late, after 3.9 Ga ago, dynamo. We revisit these interpretations using new MAVEN magnetic field data. Weak fields are present over the 4.5-Ga old Borealis basin, with the transition to strong fields correlated with the basin edge. Magnetic fields, confined to a near-surface layer, are also detected above the 3.7-Ga old Lucus Planum. We conclude that a dynamo was present both before and after the formation of the basins Hellas, Utopia, Argyre, and Isidis. A long-lived, Earth-like dynamo is consistent with the absence of magnetization within large basins if the impacts excavated large portions of strongly magnetic crust and exposed deeper material with lower concentrations of magnetic minerals.
Collapse
Affiliation(s)
- A. Mittelholz
- Department of Earth, Ocean and Atmospheric Sciences, The University of British Columbia, Vancouver, Canada
| | - C. L. Johnson
- Department of Earth, Ocean and Atmospheric Sciences, The University of British Columbia, Vancouver, Canada
- Planetary Science Institute, Tucson, AZ 85719, USA
| | - J. M. Feinberg
- Institute for Rock Magnetism, Department of Earth and Environmental Sciences, University of Minnesota, Minneapolis, MN 55455, USA
| | - B. Langlais
- Laboratoire de Planétologie et Géodynamique, UMR 6112, Université de Nantes, Université d’Angers, CNRS, 44000 Nantes, France
| | - R. J. Phillips
- Department of Earth and Planetary Sciences, and McDonnell Center for the Space Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
8
|
Marusiak AG, Schmerr NC, Banks ME, Daubar IJ. Terrestrial Single-Station Analog for Constraining the Martian Core and Deep Interior: Implications for InSight. ICARUS 2020; 335:113396. [PMID: 31534268 PMCID: PMC6750223 DOI: 10.1016/j.icarus.2019.113396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We used a terrestrial single-station seismometer to quantify the uncertainty of InSight (INterior explorations using Seismic Investigations, Geodesy and Heat Transport) data for determining Martian core size. To mimic Martian seismicity, we formed a catalog using 917 terrestrial earthquakes, from which we randomly selected events. We stacked ScS amplitudes on modeled arrival times and searched for where ScS produced coherent seismic amplitudes. A core detection was defined by a coherent peak with small offset between predicted and user-selected arrival times. Iterating the detection algorithm with varying signal-to-noise (SNR) ranges and quantity of events determined the selection frequency of each model and quantified core depth uncertainty. Increasing the quantity of events reduced core depth uncertainty while increasing the recovery rate, while increasing event SNR had little effect. Including ScS2 multiples increased the recovery rate and reduced core depth uncertainty when we used low quantities of events. The most-frequent core depths varied by back azimuth, suggesting our method is sensitive to the presence of mantle heterogeneities. When we added 1° in source distance errors, core depth uncertainty increased by up to 11 km and recovery rates decreased by <5%. Altering epicentral distances by 25% added ~35 km of uncertainty and reduced recovery rates to <50% in some cases. From these experiments, we estimate that if InSight can detect five events with high location precision (<10 % epicentral distance errors), that there is at least an 88% chance of core depth recovery using ScS alone with uncertainty in core depth approaching 18 km and decreasing as more events are located.
Collapse
Affiliation(s)
- Angela G. Marusiak
- University of Maryland, College Park, 8000 Regents Drive, College Park, MD 20742 USA
| | - Nicholas C. Schmerr
- University of Maryland, College Park, 8000 Regents Drive, College Park, MD 20742 USA
| | - Maria E. Banks
- NASA Goddard Space Flight Center, Greenbelt, MD, 20771 USA
- Planetary Science Institute, Tucson AZ, 85719 USA
| | - Ingrid J. Daubar
- Jet Propulsion Laboratory, California Institute of Technology, M/S 183-301, 4800 Oak Grove Drive Pasadena, CA 91109 USA
| |
Collapse
|
9
|
The impact origin and evolution of Chryse Planitia on Mars revealed by buried craters. Nat Commun 2019; 10:4257. [PMID: 31534129 PMCID: PMC6751168 DOI: 10.1038/s41467-019-12162-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 07/31/2019] [Indexed: 11/08/2022] Open
Abstract
Large impacts are one of the most important processes shaping a planet's surface. On Mars, the early formation of the Martian crust and the lack of large impact basins (only four unambiguously identified: Hellas, Argyre, Utopia, and Isidis) indicates that a large part of early records of Mars' impact history is missing. Here we show, in Chryse Planitia, the scarcity of buried impact craters in a near-circular area could be explained by a pre-existing topographic depression with more intense resurfacing. Spatially correlated with positive Bouguer anomaly, this near-circular region with a diameter of ~1090 km likely originated from an impact. This proposed large impact basin must have been quickly relaxed or buried after its formation more than 4.0 billion years ago and heavily modified by subsequent resurfacing events. We anticipate our study to open a new window to unravelling the buried records of early Martian bombardment record.
Collapse
|
10
|
Sleep NH. Geological and Geochemical Constraints on the Origin and Evolution of Life. ASTROBIOLOGY 2018; 18:1199-1219. [PMID: 30124324 DOI: 10.1089/ast.2017.1778] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The traditional tree of life from molecular biology with last universal common ancestor (LUCA) branching into bacteria and archaea (though fuzzy) is likely formally valid enough to be a basis for discussion of geological processes on the early Earth. Biologists infer likely properties of nodal organisms within the tree and, hence, the environment they inhabited. Geologists both vet tenuous trees and putative origin of life scenarios for geological and ecological reasonability and conversely infer geological information from trees. The latter approach is valuable as geologists have only weakly constrained the time when the Earth became habitable and the later time when life actually existed to the long interval between ∼4.5 and ∼3.85 Ga where no intact surface rocks are known. With regard to vetting, origin and early evolution hypotheses from molecular biology have recently centered on serpentinite settings in marine and alternatively land settings that are exposed to ultraviolet sunlight. The existence of these niches on the Hadean Earth is virtually certain. With regard to inferring geological environment from genomics, nodes on the tree of life can arise from true bottlenecks implied by the marine serpentinite origin scenario and by asteroid impact. Innovation of a very useful trait through a threshold allows the successful organism to quickly become very abundant and later root a large clade. The origin of life itself, that is, the initial Darwinian ancestor, the bacterial and archaeal roots as free-living cellular organisms that independently escaped hydrothermal chimneys above marine serpentinite or alternatively from shallow pore-water environments on land, the Selabacteria root with anoxygenic photosynthesis, and the Terrabacteria root colonizing land are attractive examples that predate the geological record. Conversely, geological reasoning presents likely events for appraisal by biologists. Asteroid impacts may have produced bottlenecks by decimating life. Thermophile roots of bacteria and archaea as well as a thermophile LUCA are attractive.
Collapse
Affiliation(s)
- Norman H Sleep
- Department of Geophysics, Stanford University , Stanford, California
| |
Collapse
|
11
|
Foss FJ, Putzig NE, Campbell BA, Phillips RJ. 3-D Imaging of Mars' Polar Ice Caps Using Orbital Radar Data. ACTA ACUST UNITED AC 2018; 36:43-57. [PMID: 29400351 DOI: 10.1190/tle36010043.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Since its arrival in early 2006, various instruments aboard NASA's Mars Reconnaissance Orbiter (MRO) have been collecting a variety of scientific and engineering data from orbit around Mars. Among these is the SHAllow RADar (SHARAD) instrument, supplied by Agenzia Spaziale Italiana (ASI) and designed for subsurface sounding in the 15-25 MHz frequency band. As of this writing, MRO has completed over 46,000 nearly polar orbits of Mars, 30% of which have included active SHARAD data collection. By 2009, a sufficient density of SHARAD coverage had been obtained over the polar regions to support 3-D processing and analysis of the data. Using tools and techniques commonly employed in terrestrial seismic data processing, we have processed subsets of the resulting collection of SHARAD observations covering the north and south polar regions as SHARAD 3-D volumes, imaging the interiors of the north and south polar ice caps known, respectively, as Planum Boreum and Planum Australe. After overcoming a series of challenges revealed during the 3-D processing and analysis, a completed Planum Boreum 3-D volume is currently being used for scientific research. Lessons learned in the northern work fed forward into our 3-D processing and analysis of the Planum Australe 3-D volume, currently under way. We discuss our experiences with these projects and present results and scientific insights stemming from these efforts.
Collapse
Affiliation(s)
- Frederick J Foss
- Freestyle Analytical & Quantitative Services, LLC, 2210 Parkview Drive, Longmont, CO 80504
| | - Nathaniel E Putzig
- Planetary Science Institute, 1546 Cole Blvd, Suite 120, Lakewood, CO 80401
| | - Bruce A Campbell
- Smithsonian Institution, MRC 315, PO Box 37012, Washington, DC 20013-7012
| | - Roger J Phillips
- Department of Earth and Planetary Sciences and McDonnell Center for the Space Sciences, Washington University in St. Louis, Campus Box 1169, One Brookings Drive, St. Louis, MO 63130-4899
| |
Collapse
|
12
|
Cabrol NA. The Coevolution of Life and Environment on Mars: An Ecosystem Perspective on the Robotic Exploration of Biosignatures. ASTROBIOLOGY 2018; 18:1-27. [PMID: 29252008 PMCID: PMC5779243 DOI: 10.1089/ast.2017.1756] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/27/2017] [Indexed: 05/09/2023]
Abstract
Earth's biological and environmental evolution are intertwined and inseparable. This coevolution has become a fundamental concept in astrobiology and is key to the search for life beyond our planet. In the case of Mars, whether a coevolution took place is unknown, but analyzing the factors at play shows the uniqueness of each planetary experiment regardless of similarities. Early Earth and early Mars shared traits. However, biological processes on Mars, if any, would have had to proceed within the distinctive context of an irreversible atmospheric collapse, greater climate variability, and specific planetary characteristics. In that, Mars is an important test bed for comparing the effects of a unique set of spatiotemporal changes on an Earth-like, yet different, planet. Many questions remain unanswered about Mars' early environment. Nevertheless, existing data sets provide a foundation for an intellectual framework where notional coevolution models can be explored. In this framework, the focus is shifted from planetary-scale habitability to the prospect of habitats, microbial ecotones, pathways to biological dispersal, biomass repositories, and their meaning for exploration. Critically, as we search for biosignatures, this focus demonstrates the importance of starting to think of early Mars as a biosphere and vigorously integrating an ecosystem approach to landing site selection and exploration. Key Words: Astrobiology-Biosignatures-Coevolution of Earth and life-Mars. Astrobiology 18, 1-27.
Collapse
|
13
|
Oehler DZ, Etiope G. Methane Seepage on Mars: Where to Look and Why. ASTROBIOLOGY 2017; 17:1233-1264. [PMID: 28771029 PMCID: PMC5730060 DOI: 10.1089/ast.2017.1657] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/14/2017] [Indexed: 05/09/2023]
Abstract
Methane on Mars is a topic of special interest because of its potential association with microbial life. The variable detections of methane by the Curiosity rover, orbiters, and terrestrial telescopes, coupled with methane's short lifetime in the martian atmosphere, may imply an active gas source in the planet's subsurface, with migration and surface emission processes similar to those known on Earth as "gas seepage." Here, we review the variety of subsurface processes that could result in methane seepage on Mars. Such methane could originate from abiotic chemical reactions, thermogenic alteration of abiotic or biotic organic matter, and ancient or extant microbial metabolism. These processes can occur over a wide range of temperatures, in both sedimentary and igneous rocks, and together they enhance the possibility that significant amounts of methane could have formed on early Mars. Methane seepage to the surface would occur preferentially along faults and fractures, through focused macro-seeps and/or diffuse microseepage exhalations. Our work highlights the types of features on Mars that could be associated with methane release, including mud-volcano-like mounds in Acidalia or Utopia; proposed ancient springs in Gusev Crater, Arabia Terra, and Valles Marineris; and rims of large impact craters. These could have been locations of past macro-seeps and may still emit methane today. Microseepage could occur through faults along the dichotomy or fractures such as those at Nili Fossae, Cerberus Fossae, the Argyre impact, and those produced in serpentinized rocks. Martian microseepage would be extremely difficult to detect remotely yet could constitute a significant gas source. We emphasize that the most definitive detection of methane seepage from different release candidates would be best provided by measurements performed in the ground or at the ground-atmosphere interface by landers or rovers and that the technology for such detection is currently available. Key Words: Mars-Methane-Seepage-Clathrate-Fischer-Tropsch-Serpentinization. Astrobiology 17, 1233-1264.
Collapse
Affiliation(s)
| | - Giuseppe Etiope
- Istituto Nazionale di Geofisica e Vulcanologia, Sezione Roma 2, Roma, Italy, and Faculty of Environmental Science and Engineering, Babes-Bolyai University, Cluj-Napoca, Romania
| |
Collapse
|
14
|
Black BA, Perron JT, Hemingway D, Bailey E, Nimmo F, Zebker H. Global drainage patterns and the origins of topographic relief on Earth, Mars, and Titan. Science 2017; 356:727-731. [PMID: 28522528 DOI: 10.1126/science.aag0171] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 04/06/2017] [Indexed: 11/02/2022]
Abstract
Rivers have eroded the topography of Mars, Titan, and Earth, creating diverse landscapes. However, the dominant processes that generated topography on Titan (and to some extent on early Mars) are not well known. We analyzed drainage patterns on all three bodies and found that large drainages, which record interactions between deformation and erosional modification, conform much better to long-wavelength topography on Titan and Mars than on Earth. We use a numerical landscape evolution model to demonstrate that short-wavelength deformation causes drainage directions to diverge from long-wavelength topography, as observed on Earth. We attribute the observed differences to ancient long-wavelength topography on Mars, recent or ongoing generation of long-wavelength relief on Titan, and the creation of short-wavelength relief by plate tectonics on Earth.
Collapse
Affiliation(s)
- Benjamin A Black
- Department of Earth and Atmospheric Science, City College of New York, City University of New York, New York, NY, USA. .,Earth and Environmental Science, The Graduate Center, City University of New York, New York, NY, USA
| | - J Taylor Perron
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Douglas Hemingway
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, USA.
| | - Elizabeth Bailey
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Francis Nimmo
- Department of Earth and Planetary Sciences, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Howard Zebker
- Department of Geophysics, School of Earth Sciences, Stanford University, Stanford, CA, USA
| |
Collapse
|
15
|
Williams RME, Chuang FC, Berman DC. Multiple surface wetting events in the greater Meridiani Planum region, Mars: Evidence from valley networks within ancient cratered highlands. GEOPHYSICAL RESEARCH LETTERS 2017; 44:1669-1678. [PMID: 34646054 PMCID: PMC8507182 DOI: 10.1002/2016gl072259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Morphological characterization of valley networks in three exposures of ancient cratered highlands (Nhc1) in the greater Meridiani Planum region yields insight into the Martian aqueous history. From our mapping, key regional differences are apparent in fine-scale valley network attributes including morphologic type, planimetric form, density, and links to candidate paleolakes. This information, combined with crater retention age (inferred exposure age), provides new details on the relative timing and nature of aqueous processes in the region. Newly identified pitted-type valley networks have morphological similarity to terrestrial pitted landforms in an evaporite setting. We interpret the pitted valley networks to reflect late-stage groundwater processes concentrated along the former fluvial conduits. Evidence from this study indicates that localized reactivation of valley networks occurred during or after exhumation of eastern Nhc1 unit.
Collapse
Affiliation(s)
| | - F. C. Chuang
- Planetary Science Institute, Tucson, Arizona, USA
| | - D. C. Berman
- Planetary Science Institute, Tucson, Arizona, USA
| |
Collapse
|
16
|
|
17
|
Andrews-Hanna JC, Besserer J, Head JW, Howett CJA, Kiefer WS, Lucey PJ, McGovern PJ, Melosh HJ, Neumann GA, Phillips RJ, Schenk PM, Smith DE, Solomon SC, Zuber MT. Structure and evolution of the lunar Procellarum region as revealed by GRAIL gravity data. Nature 2014; 514:68-71. [PMID: 25279919 DOI: 10.1038/nature13697] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 07/16/2014] [Indexed: 11/09/2022]
Abstract
The Procellarum region is a broad area on the nearside of the Moon that is characterized by low elevations, thin crust, and high surface concentrations of the heat-producing elements uranium, thorium, and potassium. The region has been interpreted as an ancient impact basin approximately 3,200 kilometres in diameter, although supporting evidence at the surface would have been largely obscured as a result of the great antiquity and poor preservation of any diagnostic features. Here we use data from the Gravity Recovery and Interior Laboratory (GRAIL) mission to examine the subsurface structure of Procellarum. The Bouguer gravity anomalies and gravity gradients reveal a pattern of narrow linear anomalies that border Procellarum and are interpreted to be the frozen remnants of lava-filled rifts and the underlying feeder dykes that served as the magma plumbing system for much of the nearside mare volcanism. The discontinuous surface structures that were earlier interpreted as remnants of an impact basin rim are shown in GRAIL data to be a part of this continuous set of border structures in a quasi-rectangular pattern with angular intersections, contrary to the expected circular or elliptical shape of an impact basin. The spatial pattern of magmatic-tectonic structures bounding Procellarum is consistent with their formation in response to thermal stresses produced by the differential cooling of the province relative to its surroundings, coupled with magmatic activity driven by the greater-than-average heat flux in the region.
Collapse
Affiliation(s)
- Jeffrey C Andrews-Hanna
- Department of Geophysics and Center for Space Resources, Colorado School of Mines, Golden, Colorado 80401, USA
| | - Jonathan Besserer
- Department of Earth and Planetary Sciences, University of California, Santa Cruz, California 95064, USA
| | - James W Head
- Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, Rhode Island 02912, USA
| | - Carly J A Howett
- Planetary Science Directorate, Southwest Research Institute, Boulder, Colorado 80302, USA
| | | | - Paul J Lucey
- Hawaii Institute of Geophysics and Planetology, University of Hawaii, Honolulu, Hawaii 96822, USA
| | | | - H Jay Melosh
- Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | - Gregory A Neumann
- Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771, USA
| | - Roger J Phillips
- Planetary Science Directorate, Southwest Research Institute, Boulder, Colorado 80302, USA
| | - Paul M Schenk
- Lunar and Planetary Institute, Houston, Texas 77058, USA
| | - David E Smith
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA
| | - Sean C Solomon
- 1] Department of Terrestrial Magnetism, Carnegie Institution of Washington, Washington DC 20015, USA [2] Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York 10964, USA
| | - Maria T Zuber
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA
| |
Collapse
|
18
|
Platz T, Byrne PK, Massironi M, Hiesinger H. Volcanism and tectonism across the inner solar system: an overview. ACTA ACUST UNITED AC 2014. [DOI: 10.1144/sp401.22] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractVolcanism and tectonism are the dominant endogenic means by which planetary surfaces change. This book, in general, and this overview, in particular, aim to encompass the broad range in character of volcanism, tectonism, faulting and associated interactions observed on planetary bodies across the inner solar system – a region that includes Mercury, Venus, Earth, the Moon, Mars and asteroids. The diversity and breadth of landforms produced by volcanic and tectonic processes are enormous, and vary across the inventory of inner solar system bodies. As a result, the selection of prevailing landforms and their underlying formational processes that are described and highlighted in this review are but a primer to the expansive field of planetary volcanism and tectonism. In addition to this extended introductory contribution, this Special Publication features 21 dedicated research articles about volcanic and tectonic processes manifest across the inner solar system. Those articles are summarized at the end of this review.
Collapse
Affiliation(s)
- T. Platz
- Planetary Science Institute, 1700 East Fort Lowell Road, Tucson, AZ 85719-2395, USA
- Freie Universität Berlin, Institute of Geological Sciences, Planetary Sciences & Remote Sensing, Malteserstrasse 74-100, 12249 Berlin, Germany
| | - P. K. Byrne
- Lunar and Planetary Institute, Universities Space Research Association, 3600 Bay Area Boulevard, Houston, TX 77058, USA
- Department of Terrestrial Magnetism, Carnegie Institution of Washington, 5241 Broad Branch Road NW, Washington, DC 20015-1305, USA
| | - M. Massironi
- Dipartimento di Geoscienze, Universita' degli Studi di Padova, via G. Gradenigo 6, 35131 Padova, Italy
| | - H. Hiesinger
- Institut für Planetologie, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 10, 48149 Münster, Germany
| |
Collapse
|
19
|
Wieczorek MA, Weiss BP, Stewart ST. An Impactor Origin for Lunar Magnetic Anomalies. Science 2012; 335:1212-5. [DOI: 10.1126/science.1214773] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
20
|
Osterloo MM, Anderson FS, Hamilton VE, Hynek BM. Geologic context of proposed chloride-bearing materials on Mars. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2010je003613] [Citation(s) in RCA: 174] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
21
|
Šrámek O, Zhong S. Long-wavelength stagnant lid convection with hemispheric variation in lithospheric thickness: Link between Martian crustal dichotomy and Tharsis? ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2010je003597] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
22
|
Wiseman SM, Arvidson RE, Morris RV, Poulet F, Andrews-Hanna JC, Bishop JL, Murchie SL, Seelos FP, Des Marais D, Griffes JL. Spectral and stratigraphic mapping of hydrated sulfate and phyllosilicate-bearing deposits in northern Sinus Meridiani, Mars. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009je003354] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Andrews-Hanna JC, Zuber MT, Arvidson RE, Wiseman SM. Early Mars hydrology: Meridiani playa deposits and the sedimentary record of Arabia Terra. ACTA ACUST UNITED AC 2010. [DOI: 10.1029/2009je003485] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
24
|
Roberts JH, Lillis RJ, Manga M. Giant impacts on early Mars and the cessation of the Martian dynamo. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2008je003287] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
25
|
Watters WA, Zuber MT, Hager BH. Thermal perturbations caused by large impacts and consequences for mantle convection. ACTA ACUST UNITED AC 2009. [DOI: 10.1029/2007je002964] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
Stanley S, Elkins-Tanton L, Zuber MT, Parmentier EM. Mars' Paleomagnetic Field as the Result of a Single-Hemisphere Dynamo. Science 2008; 321:1822-5. [PMID: 18818355 DOI: 10.1126/science.1161119] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Sabine Stanley
- Department of Physics, University of Toronto, Toronto, ON M5S1A7, Canada
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Geological Sciences, Brown University, Providence, RI 02912, USA
| | - Linda Elkins-Tanton
- Department of Physics, University of Toronto, Toronto, ON M5S1A7, Canada
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Geological Sciences, Brown University, Providence, RI 02912, USA
| | - Maria T. Zuber
- Department of Physics, University of Toronto, Toronto, ON M5S1A7, Canada
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Geological Sciences, Brown University, Providence, RI 02912, USA
| | - E. Marc Parmentier
- Department of Physics, University of Toronto, Toronto, ON M5S1A7, Canada
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Geological Sciences, Brown University, Providence, RI 02912, USA
| |
Collapse
|
27
|
|
28
|
Asteroid smash turned Mars into 'takeaway pizza' planet. Nature 2008. [DOI: 10.1038/news.2008.916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|