1
|
Swanepoel CM, Mueller JL. Out with the old, in with the new: Meiotic driving of sex chromosome evolution. Semin Cell Dev Biol 2024; 163:14-21. [PMID: 38664120 PMCID: PMC11351068 DOI: 10.1016/j.semcdb.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 05/26/2024]
Abstract
Chromosomal regions with meiotic drivers exhibit biased transmission (> 50 %) over their competing homologous chromosomal region. These regions often have two prominent genetic features: suppressed meiotic crossing over and rapidly evolving multicopy gene families. Heteromorphic sex chromosomes (e.g., XY) often share these two genetic features with chromosomal regions exhibiting meiotic drive. Here, we discuss parallels between meiotic drive and sex chromosome evolution, how the divergence of heteromorphic sex chromosomes can be influenced by meiotic drive, experimental approaches to study meiotic drive on sex chromosomes, and meiotic drive in traditional and non-traditional model organisms with high-quality genome assemblies. The newly available diversity of high-quality sex chromosome sequences allows us to revisit conventional models of sex chromosome evolution through the lens of meiotic drive.
Collapse
Affiliation(s)
- Callie M Swanepoel
- Department of Human Genetics, University of Michigan Medical School, 1241 E. Catherine St, Ann Arbor, MI, USA
| | - Jacob L Mueller
- Department of Human Genetics, University of Michigan Medical School, 1241 E. Catherine St, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Griffin DK, Kretschmer R, Srikulnath K, Singchat W, O'Connor RE, Romanov MN. Insights into avian molecular cytogenetics-with reptilian comparisons. Mol Cytogenet 2024; 17:24. [PMID: 39482771 PMCID: PMC11526677 DOI: 10.1186/s13039-024-00696-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/24/2024] [Indexed: 11/03/2024] Open
Abstract
In last 100 years or so, much information has been accumulated on avian karyology, genetics, physiology, biochemistry and evolution. The chicken genome project generated genomic resources used in comparative studies, elucidating fundamental evolutionary processes, much of it funded by the economic importance of domestic fowl (which are also excellent model species in many areas). Studying karyotypes and whole genome sequences revealed population processes, evolutionary biology, and genome function, uncovering the role of repetitive sequences, transposable elements and gene family expansion. Knowledge of the function of many genes and non-expressed or identified regulatory components is however still lacking. Birds (Aves) are diverse, have striking adaptations for flight, migration and survival and inhabit all continents most islands. They also have a unique karyotype with ~ 10 macrochromosomes and ~ 30 microchromosomes that are smaller than other reptiles. Classified into Palaeognathae and Neognathae they are evolutionarily close, and a subset of reptiles. Here we overview avian molecular cytogenetics with reptilian comparisons, shedding light on their karyotypes and genome structure features. We consider avian evolution, then avian (followed by reptilian) karyotypes and genomic features. We consider synteny disruptions, centromere repositioning, and repetitive elements before turning to comparative avian and reptilian genomics. In this context, we review comparative cytogenetics and genome mapping in birds as well as Z- and W-chromosomes and sex determination. Finally, we give examples of pivotal research areas in avian and reptilian cytogenomics, particularly physical mapping and map integration of sex chromosomal genes, comparative genomics of chicken, turkey and zebra finch, California condor cytogenomics as well as some peculiar cytogenetic and evolutionary examples. We conclude that comparative molecular studies and improving resources continually contribute to new approaches in population biology, developmental biology, physiology, disease ecology, systematics, evolution and phylogenetic systematics orientation. This also produces genetic mapping information for chromosomes active in rearrangements during the course of evolution. Further insights into mutation, selection and adaptation of vertebrate genomes will benefit from these studies including physical and online resources for the further elaboration of comparative genomics approaches for many fundamental biological questions.
Collapse
Affiliation(s)
- Darren K Griffin
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK.
- Faculty of Science, Animal Genomics and Bioresource Research Unit (AGB Research Unit), Kasetsart University, Chatuchak, Bangkok, 10900, Thailand.
| | - Rafael Kretschmer
- Departamento de Ecologia, Zoologia e Genética, Instituto de Biologia, Universidade Federal de Pelotas, Campus Universitário Capão do Leão, Pelotas, 96010-900, RS, Brazil
| | - Kornsorn Srikulnath
- Faculty of Science, Animal Genomics and Bioresource Research Unit (AGB Research Unit), Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Worapong Singchat
- Faculty of Science, Animal Genomics and Bioresource Research Unit (AGB Research Unit), Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | | | - Michael N Romanov
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, UK.
- Faculty of Science, Animal Genomics and Bioresource Research Unit (AGB Research Unit), Kasetsart University, Chatuchak, Bangkok, 10900, Thailand.
- L. K. Ernst Federal Research Centre for Animal Husbandry, Dubrovitsy, Podolsk, 142132, Moscow Oblast, Russia.
| |
Collapse
|
3
|
Chen JH, Landback P, Arsala D, Guzzetta A, Xia S, Atlas J, Sosa D, Zhang YE, Cheng J, Shen B, Long M. Evolutionarily new genes in humans with disease phenotypes reveal functional enrichment patterns shaped by adaptive innovation and sexual selection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.14.567139. [PMID: 38045239 PMCID: PMC10690195 DOI: 10.1101/2023.11.14.567139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
New genes (or young genes) are genetic novelties pivotal in mammalian evolution. However, their phenotypic impacts and evolutionary patterns over time remain elusive in humans due to the technical and ethical complexities of functional studies. Integrating gene age dating with Mendelian disease phenotyping, our research shows a gradual rise in disease gene proportion as gene age increases. Logistic regression modeling indicates that this increase in older genes may be related to their longer sequence lengths and higher burdens of deleterious de novo germline variants (DNVs). We also find a steady integration of new genes with biomedical phenotypes into the human genome over macroevolutionary timescales (~0.07% per million years). Despite this stable pace, we observe distinct patterns in phenotypic enrichment, pleiotropy, and selective pressures across gene ages. Notably, young genes show significant enrichment in diseases related to the male reproductive system, indicating strong sexual selection. Young genes also exhibit disease-related functions in tissues and systems potentially linked to human phenotypic innovations, such as increased brain size, musculoskeletal phenotypes, and color vision. We further reveal a logistic growth pattern of pleiotropy over evolutionary time, indicating a diminishing marginal growth of new functions for older genes due to intensifying selective constraints over time. We propose a "pleiotropy-barrier" model that delineates higher potentials for phenotypic innovation in young genes compared to older genes, a process that is subject to natural selection. Our study demonstrates that evolutionarily new genes are critical in influencing human reproductive evolution and adaptive phenotypic innovations driven by sexual and natural selection, with low pleiotropy as a selective advantage.
Collapse
Affiliation(s)
- Jian-Hai Chen
- Department of Ecology and Evolution, The University of Chicago, 1101 E 57th Street, Chicago, IL 60637
- Institutes for Systems Genetics, West China University Hospital, Chengdu 610041, China
| | - Patrick Landback
- Department of Ecology and Evolution, The University of Chicago, 1101 E 57th Street, Chicago, IL 60637
| | - Deanna Arsala
- Department of Ecology and Evolution, The University of Chicago, 1101 E 57th Street, Chicago, IL 60637
| | - Alexander Guzzetta
- Department of Pathology, The University of Chicago, 1101 E 57th Street, Chicago, IL 60637
| | - Shengqian Xia
- Department of Ecology and Evolution, The University of Chicago, 1101 E 57th Street, Chicago, IL 60637
| | - Jared Atlas
- Department of Ecology and Evolution, The University of Chicago, 1101 E 57th Street, Chicago, IL 60637
| | - Dylan Sosa
- Department of Ecology and Evolution, The University of Chicago, 1101 E 57th Street, Chicago, IL 60637
| | - Yong E. Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jingqiu Cheng
- Institutes for Systems Genetics, West China University Hospital, Chengdu 610041, China
| | - Bairong Shen
- Institutes for Systems Genetics, West China University Hospital, Chengdu 610041, China
| | - Manyuan Long
- Department of Ecology and Evolution, The University of Chicago, 1101 E 57th Street, Chicago, IL 60637
| |
Collapse
|
4
|
Owens MC, Yanas A, Liu KF. Sex chromosome-encoded protein homologs: current progress and open questions. Nat Struct Mol Biol 2024; 31:1156-1166. [PMID: 39123067 DOI: 10.1038/s41594-024-01362-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/28/2024] [Indexed: 08/12/2024]
Abstract
The complexity of biological sex differences is markedly evident in human physiology and pathology. Although many of these differences can be ascribed to the expression of sex hormones, another contributor to sex differences lies in the sex chromosomes beyond their role in sex determination. Although largely nonhomologous, the human sex chromosomes express seventeen pairs of homologous genes, referred to as the 'X-Y pairs.' The X chromosome-encoded homologs of these Y-encoded proteins are crucial players in several cellular processes, and their dysregulation frequently results in disease development. Many diseases related to these X-encoded homologs present with sex-biased incidence or severity. By contrast, comparatively little is known about the differential functions of the Y-linked homologs. Here, we summarize and discuss the current understanding of five of these X-Y paired proteins, with recent evidence of differential functions and of having a potential link to sex biases in disease, highlighting how amino acid-level sequence differences may differentiate their functions and contribute to sex biases in human disease.
Collapse
Affiliation(s)
- Michael C Owens
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Amber Yanas
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Kathy Fange Liu
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA.
- Graduate Group in Biochemistry and Molecular Biophysics, University of Pennsylvania, Philadelphia, PA, USA.
- Penn Institute for RNA Innovation, University of Pennsylvania, Philadelphia, PA, USA.
- Penn Center for Genome Integrity, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Rengarajan S, Derks J, Bellott DW, Slavov N, Page DC. Post-transcriptional cross- and auto-regulation buffer expression of the human RNA helicases DDX3X and DDX3Y. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.08.602613. [PMID: 39026797 PMCID: PMC11257633 DOI: 10.1101/2024.07.08.602613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The Y-linked gene DDX3Y and its X-linked homolog DDX3X survived the evolution of the human sex chromosomes from ordinary autosomes. DDX3X encodes a multi-functional RNA helicase, with mutations causing developmental disorders and cancers. We find that, among X-linked genes with surviving Y homologs, DDX3X is extraordinarily dosage-sensitive. Studying cells of individuals with sex chromosome aneuploidy, we observe that when the number of Y chromosomes increases, DDX3X transcript levels fall; conversely, when the number of X chromosomes increases, DDX3Y transcript levels fall. In 46,XY cells, CRISPRi knockdown of either DDX3X or DDX3Y causes transcript levels of the homologous gene to rise. In 46,XX cells, chemical inhibition of DDX3X protein activity elicits an increase in DDX3X transcript levels. Thus, perturbation of either DDX3X or DDX3Y expression is buffered - by negative cross-regulation of DDX3X and DDX3Y in 46,XY cells, and by negative auto-regulation of DDX3X in 46,XX cells. DDX3X-DDX3Y cross-regulation is mediated through mRNA destabilization - as shown by metabolic labeling of newly transcribed RNA - and buffers total levels of DDX3X and DDX3Y protein in human cells. We infer that post-transcriptional auto-regulation of the ancestral (autosomal) DDX3 gene transmuted into auto- and cross-regulation of DDX3X and DDX3Y as these sex-linked genes evolved from ordinary alleles of their autosomal precursor.
Collapse
Affiliation(s)
- Shruthi Rengarajan
- Whitehead Institute, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jason Derks
- Departments of Bioengineering, Biology, Chemistry and Chemical Biology, Single Cell Proteomics Center, and Barnett Institute, Northeastern University, Boston, MA, USA
| | | | - Nikolai Slavov
- Departments of Bioengineering, Biology, Chemistry and Chemical Biology, Single Cell Proteomics Center, and Barnett Institute, Northeastern University, Boston, MA, USA
| | - David C Page
- Whitehead Institute, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA 02142, USA
| |
Collapse
|
6
|
Wang Y, Gong GN, Wang Y, Zhang RG, Hörandl E, Zhang ZX, Charlesworth D, He L. Gap-free X and Y chromosome assemblies of Salix arbutifolia reveal an evolutionary change from male to female heterogamety in willows, without a change in the position of the sex-determining locus. THE NEW PHYTOLOGIST 2024; 242:2872-2887. [PMID: 38581199 DOI: 10.1111/nph.19744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/21/2024] [Indexed: 04/08/2024]
Abstract
In the Vetrix clade of Salix, a genus of woody flowering plants, sex determination involves chromosome 15, but an XY system has changed to a ZW system. We studied the detailed genetic changes involved. We used genome sequencing, with chromosome conformation capture (Hi-C) and PacBio HiFi reads to assemble chromosome level gap-free X and Y of Salix arbutifolia, and distinguished the haplotypes in the 15X- and 15Y-linked regions, to study the evolutionary history of the sex-linked regions (SLRs). Our sequencing revealed heteromorphism of the X and Y haplotypes of the SLR, with the X-linked region being considerably larger than the corresponding Y region, mainly due to accumulated repetitive sequences and gene duplications. The phylogenies of single-copy orthogroups within the SLRs indicate that S. arbutifolia and Salix purpurea share an ancestral SLR within a repeat-rich region near the chromosome 15 centromere. During the change in heterogamety, the X-linked region changed to a W-linked one, while the Z was derived from the Y.
Collapse
Affiliation(s)
- Yi Wang
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100091, China
| | - Guang-Nan Gong
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Yuan Wang
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Ren-Gang Zhang
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Elvira Hörandl
- Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), University of Goettingen, 37073, Göttingen, Germany
| | - Zhi-Xiang Zhang
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, 100091, China
| | - Deborah Charlesworth
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Li He
- Eastern China Conservation Centre for Wild Endangered Plant Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| |
Collapse
|
7
|
Dakal TC, Dhabhai B, Pant A, Moar K, Chaudhary K, Yadav V, Ranga V, Sharma NK, Kumar A, Maurya PK, Maciaczyk J, Schmidt‐Wolf IGH, Sharma A. Oncogenes and tumor suppressor genes: functions and roles in cancers. MedComm (Beijing) 2024; 5:e582. [PMID: 38827026 PMCID: PMC11141506 DOI: 10.1002/mco2.582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 04/21/2024] [Accepted: 04/26/2024] [Indexed: 06/04/2024] Open
Abstract
Cancer, being the most formidable ailment, has had a profound impact on the human health. The disease is primarily associated with genetic mutations that impact oncogenes and tumor suppressor genes (TSGs). Recently, growing evidence have shown that X-linked TSGs have specific role in cancer progression and metastasis as well. Interestingly, our genome harbors around substantial portion of genes that function as tumor suppressors, and the X chromosome alone harbors a considerable number of TSGs. The scenario becomes even more compelling as X-linked TSGs are adaptive to key epigenetic processes such as X chromosome inactivation. Therefore, delineating the new paradigm related to X-linked TSGs, for instance, their crosstalk with autosome and involvement in cancer initiation, progression, and metastasis becomes utmost importance. Considering this, herein, we present a comprehensive discussion of X-linked TSG dysregulation in various cancers as a consequence of genetic variations and epigenetic alterations. In addition, the dynamic role of X-linked TSGs in sex chromosome-autosome crosstalk in cancer genome remodeling is being explored thoroughly. Besides, the functional roles of ncRNAs, role of X-linked TSG in immunomodulation and in gender-based cancer disparities has also been highlighted. Overall, the focal idea of the present article is to recapitulate the findings on X-linked TSG regulation in the cancer landscape and to redefine their role toward improving cancer treatment strategies.
Collapse
Affiliation(s)
- Tikam Chand Dakal
- Department of BiotechnologyGenome and Computational Biology LabMohanlal Sukhadia UniversityUdaipurRajasthanIndia
| | - Bhanupriya Dhabhai
- Department of BiotechnologyGenome and Computational Biology LabMohanlal Sukhadia UniversityUdaipurRajasthanIndia
| | - Anuja Pant
- Department of BiochemistryCentral University of HaryanaMahendergarhHaryanaIndia
| | - Kareena Moar
- Department of BiochemistryCentral University of HaryanaMahendergarhHaryanaIndia
| | - Kanika Chaudhary
- School of Life Sciences. Jawaharlal Nehru UniversityNew DelhiIndia
| | - Vikas Yadav
- School of Life Sciences. Jawaharlal Nehru UniversityNew DelhiIndia
| | - Vipin Ranga
- Dearptment of Agricultural BiotechnologyDBT‐NECAB, Assam Agricultural UniversityJorhatAssamIndia
| | | | - Abhishek Kumar
- Manipal Academy of Higher EducationManipalKarnatakaIndia
- Institute of Bioinformatics, International Technology ParkBangaloreIndia
| | - Pawan Kumar Maurya
- Department of BiochemistryCentral University of HaryanaMahendergarhHaryanaIndia
| | - Jarek Maciaczyk
- Department of Stereotactic and Functional NeurosurgeryUniversity Hospital of BonnBonnGermany
| | - Ingo G. H. Schmidt‐Wolf
- Department of Integrated OncologyCenter for Integrated Oncology (CIO)University Hospital BonnBonnGermany
| | - Amit Sharma
- Department of Stereotactic and Functional NeurosurgeryUniversity Hospital of BonnBonnGermany
- Department of Integrated OncologyCenter for Integrated Oncology (CIO)University Hospital BonnBonnGermany
| |
Collapse
|
8
|
de Oliveira AM, Souza GM, Toma GA, Dos Santos N, Dos Santos RZ, Goes CAG, Deon GA, Setti PG, Porto-Foresti F, Utsunomia R, Gunski RJ, Del Valle Garnero A, Herculano Correa de Oliveira E, Kretschmer R, Cioffi MDB. Satellite DNAs, heterochromatin, and sex chromosomes of the wattled jacana (Charadriiformes; Jacanidae): a species with highly rearranged karyotype. Genome 2024; 67:109-118. [PMID: 38316150 DOI: 10.1139/gen-2023-0082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Charadriiformes, which comprises shorebirds and their relatives, is one of the most diverse avian orders, with over 390 species showing a wide range of karyotypes. Here, we isolated and characterized the whole collection of satellite DNAs (satDNAs) at both molecular and cytogenetic levels of one of its representative species, named the wattled jacana (Jacana jacana), a species that contains a typical ZZ/ZW sex chromosome system and a highly rearranged karyotype. In addition, we also investigate the in situ location of telomeric and microsatellite repeats. A small catalog of 11 satDNAs was identified that typically accumulated on microchromosomes and on the W chromosome. The latter also showed a significant accumulation of telomeric signals, being (GA)10 the only microsatellite with positive hybridization signals among all the 16 tested ones. These current findings contribute to our understanding of the genomic organization of repetitive DNAs in a bird species with high degree of chromosomal reorganization contrary to the majority of bird species that have stable karyotypes.
Collapse
Affiliation(s)
- Alan Moura de Oliveira
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Guilherme Mota Souza
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Gustavo Akira Toma
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | | | | | | | - Geize Aparecida Deon
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Princia Grejo Setti
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | | | | | | | | | | | - Rafael Kretschmer
- Departamento de Ecologia, Zoologia e Genética, Instituto de Biologia, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Marcelo de Bello Cioffi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| |
Collapse
|
9
|
O’Connor RE, Kretschmer R, Romanov MN, Griffin DK. A Bird's-Eye View of Chromosomic Evolution in the Class Aves. Cells 2024; 13:310. [PMID: 38391923 PMCID: PMC10886771 DOI: 10.3390/cells13040310] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/27/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
Birds (Aves) are the most speciose of terrestrial vertebrates, displaying Class-specific characteristics yet incredible external phenotypic diversity. Critical to agriculture and as model organisms, birds have adapted to many habitats. The only extant examples of dinosaurs, birds emerged ~150 mya and >10% are currently threatened with extinction. This review is a comprehensive overview of avian genome ("chromosomic") organization research based mostly on chromosome painting and BAC-based studies. We discuss traditional and contemporary tools for reliably generating chromosome-level assemblies and analyzing multiple species at a higher resolution and wider phylogenetic distance than previously possible. These results permit more detailed investigations into inter- and intrachromosomal rearrangements, providing unique insights into evolution and speciation mechanisms. The 'signature' avian karyotype likely arose ~250 mya and remained largely unchanged in most groups including extinct dinosaurs. Exceptions include Psittaciformes, Falconiformes, Caprimulgiformes, Cuculiformes, Suliformes, occasional Passeriformes, Ciconiiformes, and Pelecaniformes. The reasons for this remarkable conservation may be the greater diploid chromosome number generating variation (the driver of natural selection) through a greater possible combination of gametes and/or an increase in recombination rate. A deeper understanding of avian genomic structure permits the exploration of fundamental biological questions pertaining to the role of evolutionary breakpoint regions and homologous synteny blocks.
Collapse
Affiliation(s)
- Rebecca E. O’Connor
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; (R.E.O.); (M.N.R.)
| | - Rafael Kretschmer
- Departamento de Ecologia, Zoologia e Genética, Instituto de Biologia, Campus Universitário Capão do Leão, Universidade Federal de Pelotas, Pelotas 96010-900, RS, Brazil;
| | - Michael N. Romanov
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; (R.E.O.); (M.N.R.)
- L. K. Ernst Federal Research Centre for Animal Husbandry, Dubrovitsy, 142132 Podolsk, Moscow Oblast, Russia
| | - Darren K. Griffin
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; (R.E.O.); (M.N.R.)
| |
Collapse
|
10
|
Chen J. Evolutionarily new genes in humans with disease phenotypes reveal functional enrichment patterns shaped by adaptive innovation and sexual selection. RESEARCH SQUARE 2023:rs.3.rs-3632644. [PMID: 38045389 PMCID: PMC10690325 DOI: 10.21203/rs.3.rs-3632644/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
New genes (or young genes) are structural novelties pivotal in mammalian evolution. Their phenotypic impact on humans, however, remains elusive due to the technical and ethical complexities in functional studies. Through combining gene age dating with Mendelian disease phenotyping, our research reveals that new genes associated with disease phenotypes steadily integrate into the human genome at a rate of ~ 0.07% every million years over macroevolutionary timescales. Despite this stable pace, we observe distinct patterns in phenotypic enrichment, pleiotropy, and selective pressures between young and old genes. Notably, young genes show significant enrichment in the male reproductive system, indicating strong sexual selection. Young genes also exhibit functions in tissues and systems potentially linked to human phenotypic innovations, such as increased brain size, bipedal locomotion, and color vision. Our findings further reveal increasing levels of pleiotropy over evolutionary time, which accompanies stronger selective constraints. We propose a "pleiotropy-barrier" model that delineates different potentials for phenotypic innovation between young and older genes subject to natural selection. Our study demonstrates that evolutionary new genes are critical in influencing human reproductive evolution and adaptive phenotypic innovations driven by sexual and natural selection, with low pleiotropy as a selective advantage.
Collapse
|
11
|
Tallaksen HBL, Johannsen EB, Just J, Viuff MH, Gravholt CH, Skakkebæk A. The multi-omic landscape of sex chromosome abnormalities: current status and future directions. Endocr Connect 2023; 12:e230011. [PMID: 37399516 PMCID: PMC10448593 DOI: 10.1530/ec-23-0011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Sex chromosome abnormalities (SCAs) are chromosomal disorders with either a complete or partial loss or gain of sex chromosomes. The most frequent SCAs include Turner syndrome (45,X), Klinefelter syndrome (47,XXY), Trisomy X syndrome (47,XXX), and Double Y syndrome (47,XYY). The phenotype seen in SCAs is highly variable and may not merely be due to the direct genomic imbalance from altered sex chromosome gene dosage but also due to additive alterations in gene networks and regulatory pathways across the genome as well as individual genetic modifiers. This review summarizes the current insight into the genomics of SCAs. In addition, future directions of research that can contribute to decipher the genomics of SCA are discussed such as single-cell omics, spatial transcriptomics, system biology thinking, human-induced pluripotent stem cells, and animal models, and how these data may be combined to bridge the gap between genomics and the clinical phenotype.
Collapse
Affiliation(s)
- Helene Bandsholm Leere Tallaksen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Emma B Johannsen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Jesper Just
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Mette Hansen Viuff
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Gynaecology and Obstetrics, Aarhus University Hospital, Aarhus, Denmark
| | - Claus H Gravholt
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Endocrinology, Aarhus University Hospital, Aarhus, Denmark
| | - Anne Skakkebæk
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
12
|
Rücklé C, Körtel N, Basilicata MF, Busch A, Zhou Y, Hoch-Kraft P, Tretow K, Kielisch F, Bertin M, Pradhan M, Musheev M, Schweiger S, Niehrs C, Rausch O, Zarnack K, Keller Valsecchi CI, König J. RNA stability controlled by m 6A methylation contributes to X-to-autosome dosage compensation in mammals. Nat Struct Mol Biol 2023; 30:1207-1215. [PMID: 37202476 PMCID: PMC10442230 DOI: 10.1038/s41594-023-00997-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 04/06/2023] [Indexed: 05/20/2023]
Abstract
In mammals, X-chromosomal genes are expressed from a single copy since males (XY) possess a single X chromosome, while females (XX) undergo X inactivation. To compensate for this reduction in dosage compared with two active copies of autosomes, it has been proposed that genes from the active X chromosome exhibit dosage compensation. However, the existence and mechanisms of X-to-autosome dosage compensation are still under debate. Here we show that X-chromosomal transcripts have fewer m6A modifications and are more stable than their autosomal counterparts. Acute depletion of m6A selectively stabilizes autosomal transcripts, resulting in perturbed dosage compensation in mouse embryonic stem cells. We propose that higher stability of X-chromosomal transcripts is directed by lower levels of m6A, indicating that mammalian dosage compensation is partly regulated by epitranscriptomic RNA modifications.
Collapse
Affiliation(s)
| | - Nadine Körtel
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - M Felicia Basilicata
- Institute of Molecular Biology (IMB), Mainz, Germany
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Anke Busch
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - You Zhou
- Buchmann Institute for Molecular Life Sciences (BMLS) & Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt, Germany
| | | | | | | | - Marco Bertin
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | | | | | - Susann Schweiger
- Institute of Molecular Biology (IMB), Mainz, Germany
- Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Christof Niehrs
- Institute of Molecular Biology (IMB), Mainz, Germany
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | | | - Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences (BMLS) & Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt, Germany
| | | | - Julian König
- Institute of Molecular Biology (IMB), Mainz, Germany.
| |
Collapse
|
13
|
Huang Z, Xu Z, Bai H, Huang Y, Kang N, Ding X, Liu J, Luo H, Yang C, Chen W, Guo Q, Xue L, Zhang X, Xu L, Chen M, Fu H, Chen Y, Yue Z, Fukagawa T, Liu S, Chang G, Xu L. Evolutionary analysis of a complete chicken genome. Proc Natl Acad Sci U S A 2023; 120:e2216641120. [PMID: 36780517 PMCID: PMC9974502 DOI: 10.1073/pnas.2216641120] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/18/2023] [Indexed: 02/15/2023] Open
Abstract
Microchromosomes are prevalent in nonmammalian vertebrates [P. D. Waters et al., Proc. Natl. Acad. Sci. U.S.A. 118 (2021)], but a few of them are missing in bird genome assemblies. Here, we present a new chicken reference genome containing all autosomes, a Z and a W chromosome, with all gaps closed except for the W. We identified ten small microchromosomes (termed dot chromosomes) with distinct sequence and epigenetic features, among which six were newly assembled. Those dot chromosomes exhibit extremely high GC content and a high level of DNA methylation and are enriched for housekeeping genes. The pericentromeric heterochromatin of dot chromosomes is disproportionately large and continues to expand with the proliferation of satellite DNA and testis-expressed genes. Our analyses revealed that the 41-bp CNM repeat frequently forms higher-order repeats (HORs) at the centromeres of acrocentric chromosomes. The centromere core regions where the kinetochore attaches often encompass telomeric sequence (TTAGGG)n, and in a one of the dot chromosomes, the centromere core recruits an endogenous retrovirus (ERV). We further demonstrate that the W chromosome shares some common features with dot chromosomes, having large arrays of hypermethylated tandem repeats. Finally, using the complete chicken chromosome models, we reconstructed a fine picture of chordate karyotype evolution, revealing frequent chromosomal fusions before and after vertebrate whole-genome duplications. Our sequence and epigenetic characterization of chicken chromosomes shed insights into the understanding of vertebrate genome evolution and chromosome biology.
Collapse
Affiliation(s)
- Zhen Huang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing400715, China
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou350117, China
- Fujian-Macao Science and Technology Cooperation Base of Traditional Chinese Medicine-Oriented Chronic Disease Prevention and Treatment, Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou350108, China
| | - Zaoxu Xu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing400715, China
- Gansu Key Laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, College of Life Sciences and Technology, Longdong University, Qingyang, Gansu Province745000, China
| | - Hao Bai
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou225009, China
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou225009, China
| | - Yongji Huang
- Institute of Oceanography, Minjiang University, Fuzhou350108, China
| | - Na Kang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing400715, China
| | - Xiaoting Ding
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing400715, China
| | - Jing Liu
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna1090, Austria
| | - Haoran Luo
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing400715, China
- Key Laboratory of Ministry of Education for Coast and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen361102, China
| | | | | | - Qixin Guo
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou225009, China
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou225009, China
| | - Lingzhan Xue
- Aquaculture and Genetic breeding laboratory, Freshwater Fisheries Research Institute of Fujian, Fuzhou350002, China
| | - Xueping Zhang
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou350117, China
| | - Li Xu
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou350117, China
| | - Meiling Chen
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou350117, China
| | - Honggao Fu
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou350117, China
| | - Youling Chen
- Fujian Key Laboratory of Developmental and Neural Biology, College of Life Sciences, Fujian Normal University, Fuzhou350117, China
| | - Zhicao Yue
- Department of Cell Biology and Medical Genetics, International Cancer Center, and Guangdong Key Laboratory for Genome Stability and Disease Prevention, Shenzhen University School of Medicine, Guangdong, 518054, China
| | - Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka565-0871, Japan
| | - Shanlin Liu
- Department of Entomology, China Agricultural University, Beijing100193, China
| | - Guobin Chang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou225009, China
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou225009, China
| | - Luohao Xu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing400715, China
| |
Collapse
|
14
|
Mrnjavac A, Khudiakova KA, Barton NH, Vicoso B. Slower-X: reduced efficiency of selection in the early stages of X chromosome evolution. Evol Lett 2023; 7:4-12. [PMID: 37065438 PMCID: PMC10091493 DOI: 10.1093/evlett/qrac004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/08/2022] [Accepted: 12/17/2022] [Indexed: 02/04/2023] Open
Abstract
Abstract
Differentiated X chromosomes are expected to have higher rates of adaptive divergence than autosomes, if new beneficial mutations are recessive (the “faster-X effect”), largely because these mutations are immediately exposed to selection in males. The evolution of X chromosomes after they stop recombining in males, but before they become hemizygous, has not been well explored theoretically. We use the diffusion approximation to infer substitution rates of beneficial and deleterious mutations under such a scenario. Our results show that selection is less efficient on diploid X loci than on autosomal and hemizygous X loci under a wide range of parameters. This “slower-X” effect is stronger for genes affecting primarily (or only) male fitness, and for sexually antagonistic genes. These unusual dynamics suggest that some of the peculiar features of X chromosomes, such as the differential accumulation of genes with sex-specific functions, may start arising earlier than previously appreciated.
Collapse
Affiliation(s)
- Andrea Mrnjavac
- Institute of Science and Technology Austria , Am Campus 1, 3400 Klosterneuburg , Austria
| | - Ksenia A Khudiakova
- Institute of Science and Technology Austria , Am Campus 1, 3400 Klosterneuburg , Austria
| | - Nicholas H Barton
- Institute of Science and Technology Austria , Am Campus 1, 3400 Klosterneuburg , Austria
| | - Beatriz Vicoso
- Institute of Science and Technology Austria , Am Campus 1, 3400 Klosterneuburg , Austria
| |
Collapse
|
15
|
Lipkin E, Smith J, Soller M, Burt DW, Fulton JE. Sex Differences in Response to Marek's Disease: Mapping Quantitative Trait Loci Regions (QTLRs) to the Z Chromosome. Genes (Basel) 2022; 14:genes14010020. [PMID: 36672761 PMCID: PMC9859034 DOI: 10.3390/genes14010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Marek's Disease (MD) has a significant impact on both the global poultry economy and animal welfare. The disease pathology can include neurological damage and tumour formation. Sexual dimorphism in immunity and known higher susceptibility of females to MD makes the chicken Z chromosome (GGZ) a particularly attractive target to study the chicken MD response. Previously, we used a Hy-Line F6 population from a full-sib advanced intercross line to map MD QTL regions (QTLRs) on all chicken autosomes. Here, we mapped MD QTLRs on GGZ in the previously utilized F6 population with individual genotypes and phenotypes, and in eight elite commercial egg production lines with daughter-tested sires and selective DNA pooling (SDP). Four MD QTLRs were found from each analysis. Some of these QTLRs overlap regions from previous reports. All QTLRs were tested by individuals from the same eight lines used in the SDP and genotyped with markers located within and around the QTLRs. All QTLRs were confirmed. The results exemplify the complexity of MD resistance in chickens and the complex distribution of p-values and Linkage Disequilibrium (LD) pattern and their effect on localization of the causative elements. Considering the fragments and interdigitated LD blocks while using LD to aid localization of causative elements, one must look beyond the non-significant markers, for possible distant markers and blocks in high LD with the significant block. The QTLRs found here may explain at least part of the gender differences in MD tolerance, and provide targets for mitigating the effects of MD.
Collapse
Affiliation(s)
- Ehud Lipkin
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
- Correspondence: (E.L.); (J.S.)
| | - Jacqueline Smith
- The Roslin Institute and Royal (Dick) School of Veterinary Studies R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
- Correspondence: (E.L.); (J.S.)
| | - Morris Soller
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - David W. Burt
- The Roslin Institute and Royal (Dick) School of Veterinary Studies R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Janet E. Fulton
- Hy-Line International, P.O. Box 310, 2583 240th St., Dallas Center, IA 50063, USA
| |
Collapse
|
16
|
Cabrera Zapata LE, Garcia-Segura LM, Cambiasso MJ, Arevalo MA. Genetics and Epigenetics of the X and Y Chromosomes in the Sexual Differentiation of the Brain. Int J Mol Sci 2022; 23:ijms232012288. [PMID: 36293143 PMCID: PMC9603441 DOI: 10.3390/ijms232012288] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/27/2022] Open
Abstract
For many decades to date, neuroendocrinologists have delved into the key contribution of gonadal hormones to the generation of sex differences in the developing brain and the expression of sex-specific physiological and behavioral phenotypes in adulthood. However, it was not until recent years that the role of sex chromosomes in the matter started to be seriously explored and unveiled beyond gonadal determination. Now we know that the divergent evolutionary process suffered by X and Y chromosomes has determined that they now encode mostly dissimilar genetic information and are subject to different epigenetic regulations, characteristics that together contribute to generate sex differences between XX and XY cells/individuals from the zygote throughout life. Here we will review and discuss relevant data showing how particular X- and Y-linked genes and epigenetic mechanisms controlling their expression and inheritance are involved, along with or independently of gonadal hormones, in the generation of sex differences in the brain.
Collapse
Affiliation(s)
- Lucas E. Cabrera Zapata
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba 5016, Argentina
- Instituto Cajal (IC), Consejo Superior de Investigaciones Científicas (CSIC), 28002 Madrid, Spain
| | | | - María Julia Cambiasso
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba 5016, Argentina
- Cátedra de Biología Celular, Facultad de Odontología, Universidad Nacional de Córdoba, Córdoba 5000, Argentina
- Correspondence: (M.J.C.); (M.A.A.)
| | - Maria Angeles Arevalo
- Instituto Cajal (IC), Consejo Superior de Investigaciones Científicas (CSIC), 28002 Madrid, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (M.J.C.); (M.A.A.)
| |
Collapse
|
17
|
Holmlund H, Yamauchi Y, Durango G, Fujii W, Ward MA. Two acquired mouse Y chromosome-linked genes, Prssly and Teyorf1, are dispensable for male fertility‡. Biol Reprod 2022; 107:752-764. [PMID: 35485405 PMCID: PMC9476217 DOI: 10.1093/biolre/ioac084] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/04/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
Prssly (Protease, serine-like, Chr Y) and Teyorf1 (Testis expressed, chromosome Y open reading frame 1) are two acquired single-copy genes located on the distal tip of the non-pairing short arm of the mouse Y chromosome adjacent to telomeric sequence. Both genes lack X chromosome-linked homologues and are expressed in testicular germ cells. We first performed analysis of Prssly and Teyorf1 genomic sequences and demonstrated that previously reported Prssly sequence is erroneous and the true Prssly sequence is longer and encodes a larger protein than previously estimated. We also confirmed that both genes encode pseudogenes that are not expressed in testes. Next, using CRISPR/Cas9 genome targeting, we generated Prssly and Teyorf1 knockout (KO) mice and characterized their phenotype. To create Prssly KO mice, we targeted the conserved exon 5 encoding a trypsin domain typical for serine proteases. The targeting was successful and resulted in a frame shift mutation that introduced a premature stop codon, with the Prssly KO males retaining only residual transcript expression in testes. The Teyorf1 targeting removed the entire open reading frame of the gene, which resulted in no transcript expression in KO males. Both Prssly KO and Teyorf1 KO males were fertile and had normal testis size and normal sperm number, motility, and morphology. Our findings show that Prssly and Teyorf1 transcripts with potential to encode proteins are dispensable for male fertility.
Collapse
Affiliation(s)
- Hayden Holmlund
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Yasuhiro Yamauchi
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Gerald Durango
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Wataru Fujii
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Monika A Ward
- Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| |
Collapse
|
18
|
Bellott DW, Cho TJ, Jackson EK, Skaletsky H, Hughes JF, Page DC. SHIMS 3.0: Highly efficient single-haplotype iterative mapping and sequencing using ultra-long nanopore reads. PLoS One 2022; 17:e0269692. [PMID: 35700171 PMCID: PMC9197060 DOI: 10.1371/journal.pone.0269692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/25/2022] [Indexed: 11/18/2022] Open
Abstract
The reference sequence of structurally complex regions can only be obtained through a highly accurate clone-based approach that we call Single-Haplotype Iterative Mapping and Sequencing (SHIMS). In recent years, improvements to SHIMS have reduced the cost and time required by two orders of magnitude, but internally repetitive clones still require extensive manual effort to transform draft assemblies into reference-quality finished sequences. Here we describe SHIMS 3.0, using ultra-long nanopore reads to augment the Illumina data from SHIMS 2.0 assemblies and resolve internally repetitive structures. This greatly minimizes the need for manual finishing of Illumina-based draft assemblies, allowing a small team with no prior finishing experience to sequence challenging targets with high accuracy. This protocol proceeds from clone-picking to finished assemblies in 2 weeks for about $80 (USD) per clone. We recently used this protocol to produce reference sequence of structurally complex palindromes on chimpanzee and rhesus macaque X chromosomes. Our protocol provides access to structurally complex regions that would otherwise be inaccessible from whole-genome shotgun data or require an impractical amount of manual effort to generate an accurate assembly.
Collapse
Affiliation(s)
- Daniel W. Bellott
- Whitehead Institute, Cambridge, Massachusetts, United States of America
- * E-mail:
| | - Ting-Jan Cho
- Whitehead Institute, Cambridge, Massachusetts, United States of America
| | - Emily K. Jackson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Helen Skaletsky
- Whitehead Institute, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute, Whitehead Institute, Cambridge, Massachusetts, United States of America
| | | | - David C. Page
- Whitehead Institute, Cambridge, Massachusetts, United States of America
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute, Whitehead Institute, Cambridge, Massachusetts, United States of America
| |
Collapse
|
19
|
The evolution of gene regulation on sex chromosomes. Trends Genet 2022; 38:844-855. [DOI: 10.1016/j.tig.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 11/20/2022]
|
20
|
The Length Polymorphism of the 9th Intron in the Avian CHD1 Gene Allows Sex Determination in Some Species of Palaeognathae. Genes (Basel) 2022; 13:genes13030507. [PMID: 35328061 PMCID: PMC8954394 DOI: 10.3390/genes13030507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/06/2022] [Accepted: 03/09/2022] [Indexed: 11/30/2022] Open
Abstract
In palaeognathous birds, several PCR-based methods and a range of genes and unknown genomic regions have been studied for the determination of sex. Many of these methods have proven to be unreliable, complex, expensive, and time-consuming. Even the most widely used PCR markers for sex typing in birds, the selected introns of the highly conserved CHD1 gene (primers P2/P8, 1237L/1272H, and 2550F/2718R), have rarely been effective in palaeognathous birds. In this study we used eight species of Palaeognathae to test three PCR markers: CHD1i9 (CHD1 gene intron 9) and NIPBLi16 (NIPBL gene intron 16) that performed properly as Psittaciformes sex differentiation markers, but have not yet been tested in Palaeognathae, as well as the CHD1iA intron (CHD1 gene intron 16), which so far has not been used effectively to sex palaeognathous birds. The results of our research indicate that the CHD1i9 marker effectively differentiates sex in four of the eight species we studied. In Rhea americana, Eudromia elegans, and Tinamus solitarius, the electrophoretic patterns of the amplicons obtained clearly indicate the sex of tested individuals, whereas in Crypturellus tataupa, sexing is possible based on poorly visible female specific bands. Additionally, we present and discuss the results of our in silico investigation on the applicability of CHD1i9 to sex other Palaeognathae that were not tested in this study.
Collapse
|
21
|
Bhanja SK, Goel A, Mehra M, Bag S, Kharchec SD, Malakar D, Dash B. Microarray analysis and PCR validation of genes associated with facultative parthenogenesis in Meleagris gallopavo (Turkey). Theriogenology 2022; 186:86-94. [DOI: 10.1016/j.theriogenology.2022.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/10/2022] [Accepted: 03/27/2022] [Indexed: 10/18/2022]
|
22
|
Hansen CCR, Westfall KM, Pálsson S. Evaluation of four methods to identify the homozygotic sex chromosome in small populations. BMC Genomics 2022; 23:160. [PMID: 35209843 PMCID: PMC8867824 DOI: 10.1186/s12864-022-08393-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 02/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Whole genomes are commonly assembled into a collection of scaffolds and often lack annotations of autosomes, sex chromosomes, and organelle genomes (i.e., mitochondrial and chloroplast). As these chromosome types differ in effective population size and can have highly disparate evolutionary histories, it is imperative to take this information into account when analysing genomic variation. Here we assessed the accuracy of four methods for identifying the homogametic sex chromosome in a small population using two whole genome sequences (WGS) and 133 RAD sequences of white-tailed eagles (Haliaeetus albicilla): i) difference in read depth per scaffold in a male and a female, ii) heterozygosity per scaffold in a male and a female, iii) mapping to the reference genome of a related species (chicken) with annotated sex chromosomes, and iv) analysis of SNP-loadings from a principal components analysis (PCA), based on the low-depth RADseq data. RESULTS The best performing approach was the reference mapping (method iii), which identified 98.12% of the expected homogametic sex chromosome (Z). Read depth per scaffold (method i) identified 86.41% of the homogametic sex chromosome with few false positives. SNP-loading scores (method iv) identified 78.6% of the Z-chromosome and had a false positive discovery rate of more than 10%. Heterozygosity per scaffold (method ii) did not provide clear results due to a lack of diversity in both the Z and autosomal chromosomes, and potential interference from the heterogametic sex chromosome (W). The evaluation of these methods also revealed 10 Mb of putative PAR and gametologous regions. CONCLUSION Identification of the homogametic sex chromosome in a small population is best accomplished by reference mapping or examining differences in read depth between sexes.
Collapse
Affiliation(s)
| | - Kristen M Westfall
- Department of Life and Environmental Sciences, University of Iceland, Reykjavik, Iceland.,Current: Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, BC, Canada
| | - Snæbjörn Pálsson
- Department of Life and Environmental Sciences, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
23
|
Kadri NK, Zhang J, Oget-Ebrad C, Wang Y, Couldrey C, Spelman R, Charlier C, Georges M, Druet T. High male specific contribution of the X-chromosome to individual global recombination rate in dairy cattle. BMC Genomics 2022; 23:114. [PMID: 35144552 PMCID: PMC8832838 DOI: 10.1186/s12864-022-08328-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/21/2022] [Indexed: 11/28/2022] Open
Abstract
Background Meiotic recombination plays an important role in reproduction and evolution. The individual global recombination rate (GRR), measured as the number of crossovers (CO) per gametes, is a complex trait that has been shown to be heritable. The sex chromosomes play an important role in reproduction and fertility related traits. Therefore, variants present on the X-chromosome might have a high contribution to the genetic variation of GRR that is related to meiosis and to reproduction. Results We herein used genotyping data from 58,474 New Zealand dairy cattle to estimate the contribution of the X-chromosome to male and female GRR levels. Based on the pedigree-based relationships, we first estimated that the X-chromosome accounted for 30% of the total additive genetic variance for male GRR. This percentage was equal to 19.9% when the estimation relied on a SNP-BLUP approach assuming each SNP has a small contribution. We then carried out a haplotype-based association study to map X-linked QTL, and subsequently fine-mapped the identified QTL with imputed sequence variants. With this approach we identified three QTL with large effect accounting for 7.7% of the additive genetic variance of male GRR. The associated effects were equal to + 0.79, − 1.16 and + 1.18 CO for the alternate alleles. In females, the estimated contribution of the X-chromosome to GRR was null and no significant association with X-linked loci was found. Interestingly, two of the male GRR QTL were associated with candidate genes preferentially expressed in testis, in agreement with a male-specific effect. Finally, the most significant QTL was associated with PPP4R3C, further supporting the important role of protein phosphatase in double-strand break repair by homologous recombination. Conclusions Our study illustrates the important role the X-chromosome can have on traits such as individual recombination rate, associated with testis in males. We also show that contribution of the X-chromosome to such a trait might be sex dependent. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08328-8.
Collapse
Affiliation(s)
- N K Kadri
- Unit of Animal Genomics, GIGA-R, 11 Avenue de l'Hôpital (B34), University of Liège, 4000, Liège, Belgium.,Animal Genomics, ETH Zürich, Universitätstrasse 2, 8092, Zürich, Switzerland
| | - J Zhang
- Unit of Animal Genomics, GIGA-R, 11 Avenue de l'Hôpital (B34), University of Liège, 4000, Liège, Belgium
| | - C Oget-Ebrad
- Unit of Animal Genomics, GIGA-R, 11 Avenue de l'Hôpital (B34), University of Liège, 4000, Liège, Belgium
| | - Y Wang
- Livestock Improvement Corporation Ltd, Private Bag 3016, 3240, Hamilton, New Zealand
| | - C Couldrey
- Livestock Improvement Corporation Ltd, Private Bag 3016, 3240, Hamilton, New Zealand
| | - R Spelman
- Livestock Improvement Corporation Ltd, Private Bag 3016, 3240, Hamilton, New Zealand
| | - C Charlier
- Unit of Animal Genomics, GIGA-R, 11 Avenue de l'Hôpital (B34), University of Liège, 4000, Liège, Belgium
| | - M Georges
- Unit of Animal Genomics, GIGA-R, 11 Avenue de l'Hôpital (B34), University of Liège, 4000, Liège, Belgium
| | - T Druet
- Unit of Animal Genomics, GIGA-R, 11 Avenue de l'Hôpital (B34), University of Liège, 4000, Liège, Belgium.
| |
Collapse
|
24
|
Dynamic Patterns of Sex Chromosome Evolution in Neognath Birds: Many Independent Barriers to Recombination at the ATP5F1A Locus. BIRDS 2022. [DOI: 10.3390/birds3010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Avian sex chromosomes evolved after the divergence of birds and crocodilians from their common ancestor, so they are younger than the better-studied chromosomes of mammals. It has long been recognized that there may have been several stages to the evolution of avian sex chromosomes. For example, the CHD1 undergoes recombination in paleognaths but not neognaths. Genome assemblies have suggested that there may be variation in the timing of barriers to recombination among Neognathae, but there remains little understanding of the extent of this variability. Here, we look at partial sequences of ATP5F1A, which is on the avian Z and W chromosomes. It is known that recombination of this gene has independently ceased in Galliformes, Anseriformes, and at least five neoavian orders, but whether there are other independent cessations of recombination among Neoaves is not understood. We analyzed a combination of data extracted from published chromosomal-level genomes with data collected using PCR and cloning to identify Z and W copies in 22 orders. Our results suggest that there may be at least 19 independent cessations of recombination within Neognathae, and 3 clades that may still be undergoing recombination (or have only recently ceased recombination). Analyses of ATP5F1A protein sequences revealed an increased amino acid substitution rate for W chromosome gametologs, suggesting relaxed purifying selection on the W chromosome. Supporting this hypothesis, we found that the increased substitution rate was particularly pronounced for buried residues, which are expected to be more strongly constrained by purifying selection. This highlights the dynamic nature of avian sex chromosomes, and that this level of variation among clades means they should be a good system to understand sex chromosome evolution.
Collapse
|
25
|
Ramos L, Antunes A. Decoding sex: Elucidating sex determination and how high-quality genome assemblies are untangling the evolutionary dynamics of sex chromosomes. Genomics 2022; 114:110277. [PMID: 35104609 DOI: 10.1016/j.ygeno.2022.110277] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 12/22/2021] [Accepted: 01/26/2022] [Indexed: 11/28/2022]
Abstract
Sexual reproduction is a diverse and widespread process. In gonochoristic species, the differentiation of sexes occurs through diverse mechanisms, influenced by environmental and genetic factors. In most vertebrates, a master-switch gene is responsible for triggering a sex determination network. However, only a few genes have acquired master-switch functions, and this process is associated with the evolution of sex-chromosomes, which have a significant influence in evolution. Additionally, their highly repetitive regions impose challenges for high-quality sequencing, even using high-throughput, state-of-the-art techniques. Here, we review the mechanisms involved in sex determination and their role in the evolution of species, particularly vertebrates, focusing on sex chromosomes and the challenges involved in sequencing these genomic elements. We also address the improvements provided by the growth of sequencing projects, by generating a massive number of near-gapless, telomere-to-telomere, chromosome-level, phased assemblies, increasing the number and quality of sex-chromosome sequences available for further studies.
Collapse
Affiliation(s)
- Luana Ramos
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal.
| |
Collapse
|
26
|
Liu X, Zhou L, Luo B, Qian H, Ye B, Ma K, Qiu G. Identification of novel Z/W chromosome-specific markers from the giant freshwater prawn Macrobrachium rosenbergii. AQUACULTURE AND FISHERIES 2022. [DOI: 10.1016/j.aaf.2022.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
27
|
Shi W, Sheng X, Dorr KM, Hutton JE, Emerson JI, Davies HA, Andrade TD, Wasson LK, Greco TM, Hashimoto Y, Federspiel JD, Robbe ZL, Chen X, Arnold AP, Cristea IM, Conlon FL. Cardiac proteomics reveals sex chromosome-dependent differences between males and females that arise prior to gonad formation. Dev Cell 2021; 56:3019-3034.e7. [PMID: 34655525 PMCID: PMC9290207 DOI: 10.1016/j.devcel.2021.09.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/22/2021] [Accepted: 09/23/2021] [Indexed: 01/03/2023]
Abstract
Sex disparities in cardiac homeostasis and heart disease are well documented, with differences attributed to actions of sex hormones. However, studies have indicated sex chromosomes act outside of the gonads to function without mediation by gonadal hormones. Here, we performed transcriptional and proteomics profiling to define differences between male and female mouse hearts. We demonstrate, contrary to current dogma, cardiac sex disparities are controlled not only by sex hormones but also through a sex-chromosome mechanism. Using Turner syndrome (XO) and Klinefelter (XXY) models, we find the sex-chromosome pathway is established by X-linked gene dosage. We demonstrate cardiac sex disparities occur at the earliest stages of heart formation, a period before gonad formation. Using these datasets, we identify and define a role for alpha-1B-glycoprotein (A1BG), showing loss of A1BG leads to cardiac defects in females, but not males. These studies provide resources for studying sex-biased cardiac disease states.
Collapse
Affiliation(s)
- Wei Shi
- Department of Biology and Genetics, McAllister Heart Institute, UNC-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xinlei Sheng
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Kerry M Dorr
- Department of Biology and Genetics, McAllister Heart Institute, UNC-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Josiah E Hutton
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - James I Emerson
- Department of Biology and Genetics, McAllister Heart Institute, UNC-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Haley A Davies
- Department of Biology and Genetics, McAllister Heart Institute, UNC-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tia D Andrade
- Department of Biology and Genetics, McAllister Heart Institute, UNC-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lauren K Wasson
- Department of Biology and Genetics, McAllister Heart Institute, UNC-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Todd M Greco
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Yutaka Hashimoto
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Joel D Federspiel
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Zachary L Robbe
- Department of Biology and Genetics, McAllister Heart Institute, UNC-Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xuqi Chen
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Arthur P Arnold
- Department of Integrative Biology & Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Lewis Thomas Laboratory, Washington Road, Princeton, NJ 08544, USA.
| | - Frank L Conlon
- Department of Biology and Genetics, McAllister Heart Institute, UNC-Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
28
|
Mielke MM, Miller VM. Improving clinical outcomes through attention to sex and hormones in research. Nat Rev Endocrinol 2021; 17:625-635. [PMID: 34316045 PMCID: PMC8435014 DOI: 10.1038/s41574-021-00531-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/24/2021] [Indexed: 02/07/2023]
Abstract
Biological sex, fluctuations in sex steroid hormones throughout life and gender as a social construct all influence every aspect of health and disease. Yet, for decades, most basic and clinical studies have included only male individuals. As modern health care moves towards personalized medicine, it is clear that considering sex and hormonal status in basic and clinical studies will bring precision to the development of novel therapeutics and treatment paradigms. To this end, funding, regulatory and policy agencies now require inclusion of female animals and women in basic and clinical studies. However, inclusion of female animals and women often does not mean that information regarding potential hormonal interactions with pharmacological treatments or clinical outcomes is available. All sex steroid hormones can interact with receptors for drug targets, metabolism and transport. Genetic variation in receptors or in enzymatic function might contribute to sex differences in therapeutic efficacy and adverse drug reactions. Outcomes from clinical trials are often not reported by sex, and, if the data are available, they are not translated into clinical practice guidelines. This Review will provide a historical perspective for the current state of research related to hormone trials and provide concrete strategies that, if implemented, will improve the health of all people.
Collapse
Affiliation(s)
- Michelle M Mielke
- Division of Epidemiology, Department of Health Science Research, Mayo Clinic, Rochester, MN, USA.
- Mayo Clinic Specialized Center of Research Excellence, Mayo Clinic, Rochester, MN, USA.
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.
| | - Virginia M Miller
- Mayo Clinic Specialized Center of Research Excellence, Mayo Clinic, Rochester, MN, USA
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Women's Health Research Center, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
29
|
Estermann MA, Major AT, Smith CA. Genetic Regulation of Avian Testis Development. Genes (Basel) 2021; 12:1459. [PMID: 34573441 PMCID: PMC8470383 DOI: 10.3390/genes12091459] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/16/2021] [Accepted: 09/16/2021] [Indexed: 11/30/2022] Open
Abstract
As in other vertebrates, avian testes are the site of spermatogenesis and androgen production. The paired testes of birds differentiate during embryogenesis, first marked by the development of pre-Sertoli cells in the gonadal primordium and their condensation into seminiferous cords. Germ cells become enclosed in these cords and enter mitotic arrest, while steroidogenic Leydig cells subsequently differentiate around the cords. This review describes our current understanding of avian testis development at the cell biology and genetic levels. Most of this knowledge has come from studies on the chicken embryo, though other species are increasingly being examined. In chicken, testis development is governed by the Z-chromosome-linked DMRT1 gene, which directly or indirectly activates the male factors, HEMGN, SOX9 and AMH. Recent single cell RNA-seq has defined cell lineage specification during chicken testis development, while comparative studies point to deep conservation of avian testis formation. Lastly, we identify areas of future research on the genetics of avian testis development.
Collapse
Affiliation(s)
| | | | - Craig Allen Smith
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (M.A.E.); (A.T.M.)
| |
Collapse
|
30
|
Kratochvíl L, Gamble T, Rovatsos M. Sex chromosome evolution among amniotes: is the origin of sex chromosomes non-random? Philos Trans R Soc Lond B Biol Sci 2021; 376:20200108. [PMID: 34304592 PMCID: PMC8310715 DOI: 10.1098/rstb.2020.0108] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2021] [Indexed: 12/29/2022] Open
Abstract
Sex chromosomes are a great example of a convergent evolution at the genomic level, having evolved dozens of times just within amniotes. An intriguing question is whether this repeated evolution was random, or whether some ancestral syntenic blocks have significantly higher chance to be co-opted for the role of sex chromosomes owing to their gene content related to gonad development. Here, we summarize current knowledge on the evolutionary history of sex determination and sex chromosomes in amniotes and evaluate the hypothesis of non-random emergence of sex chromosomes. The current data on the origin of sex chromosomes in amniotes suggest that their evolution is indeed non-random. However, this non-random pattern is not very strong, and many syntenic blocks representing putatively independently evolved sex chromosomes are unique. Still, repeatedly co-opted chromosomes are an excellent model system, as independent co-option of the same genomic region for the role of sex chromosome offers a great opportunity for testing evolutionary scenarios on the sex chromosome evolution under the explicit control for the genomic background and gene identity. Future studies should use these systems more to explore the convergent/divergent evolution of sex chromosomes. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part II)'.
Collapse
Affiliation(s)
- Lukáš Kratochvíl
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, Prague, Czech Republic
| | - Tony Gamble
- Department of Biological Sciences, Marquette University, Milwaukee, WI, USA
- Bell Museum of Natural History, University of Minnesota, Saint Paul, MN, USA
- Milwaukee Public Museum, Milwaukee, WI, USA
| | - Michail Rovatsos
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, Prague, Czech Republic
| |
Collapse
|
31
|
Fang H, Deng X, Disteche CM. X-factors in human disease: Impact of gene content and dosage regulation. Hum Mol Genet 2021; 30:R285-R295. [PMID: 34387327 DOI: 10.1093/hmg/ddab221] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 11/13/2022] Open
Abstract
The gene content of the X and Y chromosomes has dramatically diverged during evolution. The ensuing dosage imbalance within the genome of males and females has led to unique chromosome-wide regulatory mechanisms with significant and sex-specific impacts on X-linked gene expression. X inactivation or silencing of most genes on one X chromosome chosen at random in females profoundly affects the manifestation of X-linked diseases, as males inherit a single maternal allele, while females express maternal and paternal alleles in a mosaic manner. An additional complication is the existence of genes that escape X inactivation and thus are ubiquitously expressed from both alleles in females. The mosaic nature of X-linked gene expression and the potential for escape can vary between individuals, tissues, cell types, and stages of life. Our understanding of the specialized nature of X-linked genes and of the multilayer epigenetic regulation that influence their expression throughout the organism has been helped by molecular studies conducted by tissue-specific and single-cell-specific approaches. In turn, the definition of molecular events that control X silencing has helped develop new approaches for the treatment of some X-linked disorders. This review focuses on the peculiarities of the X chromosome genetic content and epigenetic regulation in shaping the manifestation of congenital and acquired X-linked disorders in a sex-specific manner.
Collapse
Affiliation(s)
- He Fang
- Department of Laboratory Medicine and Pathology
| | | | - Christine M Disteche
- Department of Laboratory Medicine and Pathology.,Department of Medicine, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
32
|
Couger MB, Roy SW, Anderson N, Gozashti L, Pirro S, Millward LS, Kim M, Kilburn D, Liu KJ, Wilson TM, Epps CW, Dizney L, Ruedas LA, Campbell P. Sex chromosome transformation and the origin of a male-specific X chromosome in the creeping vole. Science 2021; 372:592-600. [PMID: 33958470 DOI: 10.1126/science.abg7019] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/07/2021] [Indexed: 12/17/2022]
Abstract
The mammalian sex chromosome system (XX female/XY male) is ancient and highly conserved. The sex chromosome karyotype of the creeping vole (Microtus oregoni) represents a long-standing anomaly, with an X chromosome that is unpaired in females (X0) and exclusively maternally transmitted. We produced a highly contiguous male genome assembly, together with short-read genomes and transcriptomes for both sexes. We show that M. oregoni has lost an independently segregating Y chromosome and that the male-specific sex chromosome is a second X chromosome that is largely homologous to the maternally transmitted X. Both maternally inherited and male-specific sex chromosomes carry fragments of the ancestral Y chromosome. Consequences of this recently transformed sex chromosome system include Y-like degeneration and gene amplification on the male-specific X, expression of ancestral Y-linked genes in females, and X inactivation of the male-specific chromosome in male somatic cells. The genome of M. oregoni elucidates the processes that shape the gene content and dosage of mammalian sex chromosomes and exemplifies a rare case of plasticity in an ancient sex chromosome system.
Collapse
Affiliation(s)
- Matthew B Couger
- Department of Thoracic Surgery, Brigham and Women's Hospital, Boston MA, 02115, USA
| | - Scott W Roy
- Department of Biology, San Francisco State University, San Francisco, CA 94117, USA.,Department of Molecular and Cell Biology, University of California, Merced, Merced, CA 95343, USA
| | - Noelle Anderson
- Department of Molecular and Cell Biology, University of California, Merced, Merced, CA 95343, USA
| | - Landen Gozashti
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Stacy Pirro
- Iridian Genomes, Inc., Bethesda, MD 20817, USA
| | - Lindsay S Millward
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR 97330, USA
| | | | | | | | - Todd M Wilson
- US Forest Service, PNW Research Station, Corvallis, OR 97331, USA
| | - Clinton W Epps
- Department of Fisheries and Wildlife, Oregon State University, Corvallis, OR 97330, USA
| | - Laurie Dizney
- Department of Biology, University of Portland, Portland, OR 97203, USA
| | - Luis A Ruedas
- Department of Biology and Museum of Natural History, Portland State University, Portland, OR 97207, USA
| | - Polly Campbell
- Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
33
|
Abstract
Chromosome size and morphology vary within and among species, but little is known about the proximate or ultimate causes of these differences. Cichlid fish species in the tribe Oreochromini share an unusual giant chromosome that is ∼3 times longer than the other chromosomes. This giant chromosome functions as a sex chromosome in some of these species. We test two hypotheses of how this giant sex chromosome may have evolved. The first hypothesis proposes that it evolved by accumulating repetitive elements as recombination was reduced around a dominant sex determination locus, as suggested by canonical models of sex chromosome evolution. An alternative hypothesis is that the giant sex chromosome originated via the fusion of an autosome with a highly repetitive B chromosome, one of which carried a sex determination locus. We test these hypotheses using comparative analysis of chromosome-scale cichlid and teleost genomes. We find that the giant sex chromosome consists of three distinct regions based on patterns of recombination, gene and transposable element content, and synteny to the ancestral autosome. The WZ sex determination locus encompasses the last ∼105 Mb of the 134-Mb giant chromosome. The last 47 Mb of the giant chromosome shares no obvious homology to any ancestral chromosome. Comparisons across 69 teleost genomes reveal that the giant sex chromosome contains unparalleled amounts of endogenous retroviral elements, immunoglobulin genes, and long noncoding RNAs. The results favor the B chromosome fusion hypothesis for the origin of the giant chromosome.
Collapse
Affiliation(s)
- Matthew A Conte
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Frances E Clark
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Reade B Roberts
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Luohao Xu
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
| | - Wenjing Tao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, China
| | - Qi Zhou
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
- MOE Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Deshou Wang
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, China
| | - Thomas D Kocher
- Department of Biology, University of Maryland, College Park, MD, USA
| |
Collapse
|
34
|
Rogers TF, Pizzari T, Wright AE. Multi-Copy Gene Family Evolution on the Avian W Chromosome. J Hered 2021; 112:250-259. [PMID: 33758922 DOI: 10.1093/jhered/esab016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/20/2020] [Accepted: 03/19/2021] [Indexed: 12/13/2022] Open
Abstract
The sex chromosomes often follow unusual evolutionary trajectories. In particular, the sex-limited chromosomes frequently exhibit a small but unusual gene content in numerous species, where many genes have undergone massive gene amplification. The reasons for this remain elusive with a number of recent studies implicating meiotic drive, sperm competition, genetic drift, and gene conversion in the expansion of gene families. However, our understanding is primarily based on Y chromosome studies as few studies have systematically tested for copy number variation on W chromosomes. Here, we conduct a comprehensive investigation into the abundance, variability, and evolution of ampliconic genes on the avian W. First, we quantified gene copy number and variability across the duck W chromosome. We find a limited number of gene families as well as conservation in W-linked gene copy number across duck breeds, indicating that gene amplification may not be such a general feature of sex chromosome evolution as Y studies would initially suggest. Next, we investigated the evolution of HINTW, a prominent ampliconic gene family hypothesized to play a role in female reproduction and oogenesis. In particular, we investigated the factors driving the expansion of HINTW using contrasts between modern chicken and duck breeds selected for different female-specific selection regimes and their wild ancestors. Although we find the potential for selection related to fecundity in explaining small-scale gene amplification of HINTW in the chicken, purifying selection seems to be the dominant mode of evolution in the duck. Together, this challenges the assumption that HINTW is key for female fecundity across the avian phylogeny.
Collapse
Affiliation(s)
- Thea F Rogers
- Department of Animal and Plant Sciences, University of Sheffield, UK
| | - Tommaso Pizzari
- Department of Animal and Plant Sciences, University of Sheffield, UK
| | - Alison E Wright
- Edward Grey Institute, Department of Zoology, University of Oxford, UK
| |
Collapse
|
35
|
Charlesworth D. When and how do sex-linked regions become sex chromosomes? Evolution 2021; 75:569-581. [PMID: 33592115 DOI: 10.1111/evo.14196] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 12/22/2022]
Abstract
The attention given to heteromorphism and genetic degeneration of "classical sex chromosomes" (Y chromosomes in XY systems, and the W in ZW systems that were studied first and are best described) has perhaps created the impression that the absence of recombination between sex chromosomes is inevitable. I here argue that continued recombination is often to be expected, that absence of recombination is surprising and demands further study, and that the involvement of selection in reduced recombination is not yet well understood. Despite a long history of investigations of sex chromosome pairs, there is a need for more quantitative approaches to studying sex-linked regions. I describe a scheme to help understand the relationships between different properties of sex-linked regions. Specifically, I focus on their sizes (differentiating between small regions and extensive fully sex-linked ones), the times when they evolved, and their differentiation, and review studies using DNA sequencing in nonmodel organisms that are providing information about the processes causing these properties.
Collapse
Affiliation(s)
- Deborah Charlesworth
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom
| |
Collapse
|
36
|
Bellott DW, Page DC. Dosage-sensitive functions in embryonic development drove the survival of genes on sex-specific chromosomes in snakes, birds, and mammals. Genome Res 2021; 31:198-210. [PMID: 33479023 PMCID: PMC7849413 DOI: 10.1101/gr.268516.120] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 12/04/2020] [Indexed: 12/18/2022]
Abstract
Different ancestral autosomes independently evolved into sex chromosomes in snakes, birds, and mammals. In snakes and birds, females are ZW and males are ZZ; in mammals, females are XX and males are XY. Although X and Z Chromosomes retain nearly all ancestral genes, sex-specific W and Y Chromosomes suffered extensive genetic decay. In both birds and mammals, the genes that survived on sex-specific chromosomes are enriched for broadly expressed, dosage-sensitive regulators of gene expression, subject to strong purifying selection. To gain deeper insight into the processes that govern survival on sex-specific chromosomes, we carried out a meta-analysis of survival across 41 species-three snakes, 24 birds, and 14 mammals-doubling the number of ancestral genes under investigation and increasing our power to detect enrichments among survivors relative to nonsurvivors. Of 2564 ancestral genes, representing an eighth of the ancestral amniote genome, only 324 survive on present-day sex-specific chromosomes. Survivors are enriched for dosage-sensitive developmental processes, particularly development of neural crest-derived structures, such as the face. However, there was no enrichment for expression in sex-specific tissues, involvement in sex determination or gonadogenesis pathways, or conserved sex-biased expression. Broad expression and dosage sensitivity contributed independently to gene survival, suggesting that pleiotropy imposes additional constraints on the evolution of dosage compensation. We propose that maintaining the viability of the heterogametic sex drove gene survival on amniote sex-specific chromosomes, and that subtle modulation of the expression of survivor genes and their autosomal orthologs has disproportionately large effects on development and disease.
Collapse
Affiliation(s)
| | - David C Page
- Whitehead Institute, Cambridge, Massachusetts 02142, USA
- Howard Hughes Medical Institute, Whitehead Institute, Cambridge, Massachusetts 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
37
|
Chen XI, Mei Y, Chen M, Jing D, He Y, Liu F, He K, Li F. InSexBase: an annotated genomic resource of sex chromosomes and sex-biased genes in insects. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2021; 2021:6122465. [PMID: 33507270 PMCID: PMC7904046 DOI: 10.1093/database/baab001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/09/2020] [Accepted: 01/06/2021] [Indexed: 11/13/2022]
Abstract
Sex determination and the regulation of sexual dimorphism are among the most fascinating topics in modern biology. As the most species-rich group of sexually reproducing organisms on Earth, insects have multiple sex determination systems. Though sex chromosomes and sex-biased genes are well-studied in dozens of insects, their gene sequences are scattered in various databases. Moreover, a shortage of annotation hinders the deep mining of these data. Here, we collected the chromosome-level sex chromosome data of 49 insect species, including 34 X chromosomes, 15 Z chromosomes, 5 W chromosomes and 2 Y chromosomes. We also obtained Y-linked contigs of four insects species—Anopheles gambiae, Drosophila innubila, Drosophila yakuba and Tribolium castaneum. The unannotated chromosome-level sex chromosomes were annotated using a standard pipeline, yielding a total of 123 030 protein-coding genes, 2 159 427 repeat sequences, 894 miRNAs, 1574 rRNAs, 5105 tRNAs, 395 snoRNAs (small nucleolar RNA), 54 snRNAs (small nuclear RNA) and 5959 other ncRNAs (non-coding RNA). In addition, 36 781 sex-biased genes were identified by analyzing 62 RNA-seq (RNA sequencing) datasets. Together with 5707 sex-biased genes from the Drosophila genus collected from the Sex-Associated Gene Database, we obtained a total of 42 488 sex-biased genes from 13 insect species. All these data were deposited into InSexBase, a new user-friendly database of insect sex chromosomes and sex-biased genes. Database URL:http://www.insect-genome.com/Sexdb/.
Collapse
Affiliation(s)
- X I Chen
- Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects & Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Yuhangtang Rd 866, Xihu District, Hanzghou, 310058, China
| | - Yang Mei
- Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects & Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Yuhangtang Rd 866, Xihu District, Hanzghou, 310058, China
| | - Mengyao Chen
- Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects & Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Yuhangtang Rd 866, Xihu District, Hanzghou, 310058, China
| | - Dong Jing
- Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects & Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Yuhangtang Rd 866, Xihu District, Hanzghou, 310058, China
| | - Yumin He
- Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects & Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Yuhangtang Rd 866, Xihu District, Hanzghou, 310058, China
| | - Feiling Liu
- Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects & Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Yuhangtang Rd 866, Xihu District, Hanzghou, 310058, China
| | - Kang He
- Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects & Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Yuhangtang Rd 866, Xihu District, Hanzghou, 310058, China
| | - Fei Li
- Ministry of Agriculture and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects & Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, Zhejiang University, Yuhangtang Rd 866, Xihu District, Hanzghou, 310058, China
| |
Collapse
|
38
|
Li J, Zhang J, Liu J, Zhou Y, Cai C, Xu L, Dai X, Feng S, Guo C, Rao J, Wei K, Jarvis ED, Jiang Y, Zhou Z, Zhang G, Zhou Q. A new duck genome reveals conserved and convergently evolved chromosome architectures of birds and mammals. Gigascience 2021; 10:giaa142. [PMID: 33406261 PMCID: PMC7787181 DOI: 10.1093/gigascience/giaa142] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/31/2020] [Accepted: 11/16/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Ducks have a typical avian karyotype that consists of macro- and microchromosomes, but a pair of much less differentiated ZW sex chromosomes compared to chickens. To elucidate the evolution of chromosome architectures between ducks and chickens, and between birds and mammals, we produced a nearly complete chromosomal assembly of a female Pekin duck by combining long-read sequencing and multiplatform scaffolding techniques. RESULTS A major improvement of genome assembly and annotation quality resulted from the successful resolution of lineage-specific propagated repeats that fragmented the previous Illumina-based assembly. We found that the duck topologically associated domains (TAD) are demarcated by putative binding sites of the insulator protein CTCF, housekeeping genes, or transitions of active/inactive chromatin compartments, indicating conserved mechanisms of spatial chromosome folding with mammals. There are extensive overlaps of TAD boundaries between duck and chicken, and also between the TAD boundaries and chromosome inversion breakpoints. This suggests strong natural selection pressure on maintaining regulatory domain integrity, or vulnerability of TAD boundaries to DNA double-strand breaks. The duck W chromosome retains 2.5-fold more genes relative to chicken. Similar to the independently evolved human Y chromosome, the duck W evolved massive dispersed palindromic structures, and a pattern of sequence divergence with the Z chromosome that reflects stepwise suppression of homologous recombination. CONCLUSIONS Our results provide novel insights into the conserved and convergently evolved chromosome features of birds and mammals, and also importantly add to the genomic resources for poultry studies.
Collapse
Affiliation(s)
- Jing Li
- MOE Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Jilin Zhang
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 5 Nobels väg, Stockholm 17177, Sweden
| | - Jing Liu
- MOE Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Department of Neuroscience and Developmental Biology, University of Vienna, 1 Universitätsring, Vienna 1090, Austria
| | - Yang Zhou
- BGI-Shenzhen, 146 Beishan Industrial Zone, Shenzhen 518083, China
| | - Cheng Cai
- MOE Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Luohao Xu
- MOE Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Department of Neuroscience and Developmental Biology, University of Vienna, 1 Universitätsring, Vienna 1090, Austria
| | - Xuelei Dai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, 3 Taicheng Road, Yangling 712100, China
| | - Shaohong Feng
- BGI-Shenzhen, 146 Beishan Industrial Zone, Shenzhen 518083, China
| | - Chunxue Guo
- BGI-Shenzhen, 146 Beishan Industrial Zone, Shenzhen 518083, China
| | - Jinpeng Rao
- Center for Reproductive Medicine, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310052, China
| | - Kai Wei
- Center for Reproductive Medicine, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310052, China
| | - Erich D Jarvis
- Laboratory of Neurogenetics of Language, The Rockefeller University, 1230 York Ave, NY 10065, USA
- Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815, USA
| | - Yu Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, 3 Taicheng Road, Yangling 712100, China
| | - Zhengkui Zhou
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, 12 Zhong Guan Cun Da Jie, Beijing, China
| | - Guojie Zhang
- China National GeneBank, BGI-Shenzhen, Jinsha Road, Shenzhen 518120, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 East Jiaochang Road, Kunming 650223, China
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, 10 Nørregade, DK-2100 Copenhagen, Denmark
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 32 East Jiaochang Road, Kunming 650223, China
| | - Qi Zhou
- MOE Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Department of Neuroscience and Developmental Biology, University of Vienna, 1 Universitätsring, Vienna 1090, Austria
- Center for Reproductive Medicine, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310052, China
| |
Collapse
|
39
|
Raznahan A, Disteche CM. X-chromosome regulation and sex differences in brain anatomy. Neurosci Biobehav Rev 2021; 120:28-47. [PMID: 33171144 PMCID: PMC7855816 DOI: 10.1016/j.neubiorev.2020.10.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 10/13/2020] [Accepted: 10/20/2020] [Indexed: 01/08/2023]
Abstract
Humans show reproducible sex-differences in cognition and psychopathology that may be contributed to by influences of gonadal sex-steroids and/or sex-chromosomes on regional brain development. Gonadal sex-steroids are well known to play a major role in sexual differentiation of the vertebrate brain, but far less is known regarding the role of sex-chromosomes. Our review focuses on this latter issue by bridging together two literatures that have to date been largely disconnected. We first consider "bottom-up" genetic and molecular studies focused on sex-chromosome gene content and regulation. This literature nominates specific sex-chromosome genes that could drive developmental sex-differences by virtue of their sex-biased expression and their functions within the brain. We then consider the complementary "top down" view, from magnetic resonance imaging studies that map sex- and sex chromosome effects on regional brain anatomy, and link these maps to regional gene-expression within the brain. By connecting these top-down and bottom-up approaches, we emphasize the potential role of X-linked genes in driving sex-biased brain development and outline key goals for future work in this field.
Collapse
Affiliation(s)
- Armin Raznahan
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD, 20892, USA.
| | - Christine M Disteche
- Department of Pathology and Medicine, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
40
|
Murphy WJ, Foley NM, Bredemeyer KR, Gatesy J, Springer MS. Phylogenomics and the Genetic Architecture of the Placental Mammal Radiation. Annu Rev Anim Biosci 2020; 9:29-53. [PMID: 33228377 DOI: 10.1146/annurev-animal-061220-023149] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The genomes of placental mammals are being sequenced at an unprecedented rate. Alignments of hundreds, and one day thousands, of genomes spanning the rich living and extinct diversity of species offer unparalleled power to resolve phylogenetic controversies, identify genomic innovations of adaptation, and dissect the genetic architecture of reproductive isolation. We highlight outstanding questions about the earliest phases of placental mammal diversification and the promise of newer methods, as well as remaining challenges, toward using whole genome data to resolve placental mammal phylogeny. The next phase of mammalian comparative genomics will see the completion and application of finished-quality, gapless genome assemblies from many ordinal lineages and closely related species. Interspecific comparisons between the most hypervariable genomic loci will likely reveal large, but heretofore mostly underappreciated, effects on population divergence, morphological innovation, and the origin of new species.
Collapse
Affiliation(s)
- William J Murphy
- Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843, USA;
| | - Nicole M Foley
- Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843, USA;
| | - Kevin R Bredemeyer
- Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843, USA;
| | - John Gatesy
- Division of Vertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA
| | - Mark S Springer
- Department of Evolution, Ecology and Organismal Biology, University of California, Riverside, California 92521, USA
| |
Collapse
|
41
|
Hughes JF, Skaletsky H, Pyntikova T, Koutseva N, Raudsepp T, Brown LG, Bellott DW, Cho TJ, Dugan-Rocha S, Khan Z, Kremitzki C, Fronick C, Graves-Lindsay TA, Fulton L, Warren WC, Wilson RK, Owens E, Womack JE, Murphy WJ, Muzny DM, Worley KC, Chowdhary BP, Gibbs RA, Page DC. Sequence analysis in Bos taurus reveals pervasiveness of X-Y arms races in mammalian lineages. Genome Res 2020; 30:1716-1726. [PMID: 33208454 PMCID: PMC7706723 DOI: 10.1101/gr.269902.120] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/28/2020] [Indexed: 12/28/2022]
Abstract
Studies of Y Chromosome evolution have focused primarily on gene decay, a consequence of suppression of crossing-over with the X Chromosome. Here, we provide evidence that suppression of X-Y crossing-over unleashed a second dynamic: selfish X-Y arms races that reshaped the sex chromosomes in mammals as different as cattle, mice, and men. Using super-resolution sequencing, we explore the Y Chromosome of Bos taurus (bull) and find it to be dominated by massive, lineage-specific amplification of testis-expressed gene families, making it the most gene-dense Y Chromosome sequenced to date. As in mice, an X-linked homolog of a bull Y-amplified gene has become testis-specific and amplified. This evolutionary convergence implies that lineage-specific X-Y coevolution through gene amplification, and the selfish forces underlying this phenomenon, were dominatingly powerful among diverse mammalian lineages. Together with Y gene decay, X-Y arms races molded mammalian sex chromosomes and influenced the course of mammalian evolution.
Collapse
Affiliation(s)
| | - Helen Skaletsky
- Whitehead Institute, Cambridge, Massachusetts 02142, USA.,Howard Hughes Medical Institute, Whitehead Institute, Cambridge, Massachusetts 02142, USA
| | | | | | - Terje Raudsepp
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843, USA
| | - Laura G Brown
- Whitehead Institute, Cambridge, Massachusetts 02142, USA.,Howard Hughes Medical Institute, Whitehead Institute, Cambridge, Massachusetts 02142, USA
| | | | - Ting-Jan Cho
- Whitehead Institute, Cambridge, Massachusetts 02142, USA
| | - Shannon Dugan-Rocha
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Ziad Khan
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Colin Kremitzki
- The McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | - Catrina Fronick
- The McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | - Tina A Graves-Lindsay
- The McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | - Lucinda Fulton
- The McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | - Wesley C Warren
- The McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | - Richard K Wilson
- The McDonnell Genome Institute, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | - Elaine Owens
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843, USA
| | - James E Womack
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843, USA
| | - William J Murphy
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Kim C Worley
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Bhanu P Chowdhary
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843, USA
| | - Richard A Gibbs
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - David C Page
- Whitehead Institute, Cambridge, Massachusetts 02142, USA.,Howard Hughes Medical Institute, Whitehead Institute, Cambridge, Massachusetts 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| |
Collapse
|
42
|
Singchat W, Ahmad SF, Laopichienpong N, Suntronpong A, Panthum T, Griffin DK, Srikulnath K. Snake W Sex Chromosome: The Shadow of Ancestral Amniote Super-Sex Chromosome. Cells 2020; 9:cells9112386. [PMID: 33142713 PMCID: PMC7692289 DOI: 10.3390/cells9112386] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/20/2022] Open
Abstract
: Heteromorphic sex chromosomes, particularly the ZZ/ZW sex chromosome system of birds and some reptiles, undergo evolutionary dynamics distinct from those of autosomes. The W sex chromosome is a unique karyological member of this heteromorphic pair, which has been extensively studied in snakes to explore the origin, evolution, and genetic diversity of amniote sex chromosomes. The snake W sex chromosome offers a fascinating model system to elucidate ancestral trajectories that have resulted in genetic divergence of amniote sex chromosomes. Although the principal mechanism driving evolution of the amniote sex chromosome remains obscure, an emerging hypothesis, supported by studies of W sex chromosomes of squamate reptiles and snakes, suggests that sex chromosomes share varied genomic blocks across several amniote lineages. This implies the possible split of an ancestral super-sex chromosome via chromosomal rearrangements. We review the major findings pertaining to sex chromosomal profiles in amniotes and discuss the evolution of an ancestral super-sex chromosome by collating recent evidence sourced mainly from the snake W sex chromosome analysis. We highlight the role of repeat-mediated sex chromosome conformation and present a genomic landscape of snake Z and W chromosomes, which reveals the relative abundance of major repeats, and identifies the expansion of certain transposable elements. The latest revolution in chromosomics, i.e., complete telomere-to-telomere assembly, offers mechanistic insights into the evolutionary origin of sex chromosomes.
Collapse
Affiliation(s)
- Worapong Singchat
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (W.S.); (S.F.A.); (N.L.); (A.S.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Syed Farhan Ahmad
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (W.S.); (S.F.A.); (N.L.); (A.S.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Nararat Laopichienpong
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (W.S.); (S.F.A.); (N.L.); (A.S.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Aorarat Suntronpong
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (W.S.); (S.F.A.); (N.L.); (A.S.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | - Thitipong Panthum
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (W.S.); (S.F.A.); (N.L.); (A.S.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
| | | | - Kornsorn Srikulnath
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand; (W.S.); (S.F.A.); (N.L.); (A.S.); (T.P.)
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, 50 Ngamwongwan, Chatuchak, Bangkok 10900, Thailand
- Center for Advanced Studies in Tropical Natural Resources, National Research University-Kasetsart University, Kasetsart University, (CASTNAR, NRU-KU, Thailand), Bangkok 10900, Thailand
- Center of Excellence on Agricultural Biotechnology (AG-BIO/PERDO-CHE), Bangkok 10900, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
- Amphibian Research Center, Hiroshima University, 1-3-1, Kagamiyama, Higashihiroshima 739-8526, Japan
- Correspondence: ; Tel.: +66-2562-5644
| |
Collapse
|
43
|
The Female-Specific W Chromosomes of Birds Have Conserved Gene Contents but Are Not Feminized. Genes (Basel) 2020; 11:genes11101126. [PMID: 32992746 PMCID: PMC7599627 DOI: 10.3390/genes11101126] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/19/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022] Open
Abstract
Sex chromosomes are unique genomic regions with sex-specific or sex-biased inherent patterns and are expected to be more frequently subject to sex-specific selection. Substantial knowledge on the evolutionary patterns of sex-linked genes have been gained from the studies on the male heterogametic systems (XY male, XX female), but the understanding of the role of sex-specific selection in the evolution of female-heterogametic sex chromosomes (ZW female, ZZ male) is limited. Here we collect the W-linked genes of 27 birds, covering the three major avian clades: Neoaves (songbirds), Galloanserae (chicken), and Palaeognathae (ratites and tinamous). We find that the avian W chromosomes exhibit very conserved gene content despite their independent evolution of recombination suppression. The retained W-linked genes have higher dosage-sensitive and higher expression level than the lost genes, suggesting the role of purifying selection in their retention. Moreover, they are not enriched in ancestrally female-biased genes, and have not acquired new ovary-biased expression patterns after becoming W-linked. They are broadly expressed across female tissues, and the expression profile of the W-linked genes in females is not deviated from that of the homologous Z-linked genes. Together, our new analyses suggest that female-specific positive selection on the avian W chromosomes is limited, and the gene content of the W chromosomes is mainly shaped by purifying selection.
Collapse
|
44
|
Hosnedlova B, Vernerova K, Kizek R, Bozzi R, Kadlec J, Curn V, Kouba F, Fernandez C, Machander V, Horna H. Associations between IGF1, IGFBP2 and TGFß3 Genes Polymorphisms and Growth Performance of Broiler Chicken Lines. Animals (Basel) 2020; 10:E800. [PMID: 32380764 PMCID: PMC7277336 DOI: 10.3390/ani10050800] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 01/18/2023] Open
Abstract
Marker-assisted selection based on fast and accurate molecular analysis of individual genes is considered an acceptable tool in the speed-up of the genetic improvement of production performance in chickens. The objective of this study was to detect the single nucleotide polymorphisms (SNPs) in the IGF1, IGFBP2 and TGFß3 genes, and to investigate their associations with growth performance (body weight (BW) and average daily gain (ADG) at 14, 21, 28, 35 and 42 days of age) and carcass traits in broilers. Performance (carcass) data (weight before slaughter; weights of the trunk, giblets, abdominal fat, breast muscle and thigh muscle; slaughter value and slaughter percentage), as well as blood samples for DNA extraction and SNP analysis, were obtained from 97 chickens belonging to two different lines (Hubbard F15 and Cobb E) equally divided between the two sexes. The genotypes were detected using polymerase chain reaction- restriction fragment length polymorphism (PCR-RFLP) methods with specific primers and restrictase for each gene. The statistical analysis discovered significant associations (p < 0.05) between the TGFβ3 SNP and the following parameters: BW at 21, 28 and 35 days, trunk weight and slaughter value. Association analysis of BWs (at 21, 28 and 35 days) and SNPs was always significant for codominant, dominant and overdominant genetic models, showing a possible path for genomic selection in these chicken lines. Slaughter value was significant for codominant, recessive and overdominant patterns, whereas other carcass traits were not influenced by SNPs. Based on the results of this study, we suggested that the TGFβ3 gene could be used as a candidate gene marker for chicken growth traits in the Hubbard F15 and Cobb E population selection programs, whereas for carcass traits further investigation is needed.
Collapse
Affiliation(s)
- Bozena Hosnedlova
- Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic;
| | - Katerina Vernerova
- Biotechnological Centre, Faculty of Agriculture, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic; (K.V.); (V.C.)
| | - Rene Kizek
- Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic;
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackého 1946/1, 612 42 Brno, Czech Republic
- Department of Biomedical and Environmental Analyses, Faculty of Pharmacy with Division of Laboratory Medicine, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland
| | - Riccardo Bozzi
- Food, Environment and Forestry, Animal Science Section, Department of Agriculture, University of Florence, Via delle Cascine, 5, 50144 Firenze, Italy;
| | - Jaromir Kadlec
- Department of Agricultural Products’ Quality, Faculty of Agriculture, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic;
| | - Vladislav Curn
- Biotechnological Centre, Faculty of Agriculture, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic; (K.V.); (V.C.)
| | - Frantisek Kouba
- State Veterinary Administration, Regional Veterinary Administration of the South Bohemian Region, Severní 9, 370 10 České Budějovice, Czech Republic;
| | - Carlos Fernandez
- School of Pharmacy and Life Sciences, Robert Gordon University, Garthdee Road, Aberdeen AB10 7QB, UK;
| | - Vlastislav Machander
- International Testing of Poultry, Ústrašice 63, 390 02 Tábor, Czech Republic; (V.M.); (H.H.)
| | - Hana Horna
- International Testing of Poultry, Ústrašice 63, 390 02 Tábor, Czech Republic; (V.M.); (H.H.)
| |
Collapse
|
45
|
Ortega-Vega EL, Guzmán-Castañeda SJ, Campo O, Velásquez-Mejía EP, de la Cuesta-Zuluaga J, Bedoya G, Escobar JS. Variants in genes of innate immunity, appetite control and energy metabolism are associated with host cardiometabolic health and gut microbiota composition. Gut Microbes 2020; 11:556-568. [PMID: 31154934 PMCID: PMC7524339 DOI: 10.1080/19490976.2019.1619440] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/04/2019] [Accepted: 05/08/2019] [Indexed: 02/03/2023] Open
Abstract
Identifying the genetic and non-genetic determinants of obesity and related cardiometabolic dysfunctions is cornerstone for their prevention, treatment, and control. While genetic variants contribute to the cardiometabolic syndrome (CMS), non-genetic factors, such as the gut microbiota, also play key roles. Gut microbiota is intimately associated with CMS and its composition is heritable. However, associations between this microbial community and host genetics are understudied. We contribute filling this gap by genotyping 60 variants in 39 genes of three modules involved in CMS risk, measuring cardiometabolic risk factors, and characterizing gut microbiota in a cohort of 441 Colombians. We hypothesized that CMS risk variants were correlated with detrimental levels of clinical parameters and with the abundance of disease-associated microbes. We found several polymorphisms in genes of innate immunity, appetite control, and energy metabolism that were associated with metabolic dysregulation and microbiota composition; the associations between host genetics and cardiometabolic health were independent of the participants' gut microbiota, and those between polymorphisms and gut microbes were independent of the CMS risk. Associations were also independent of the host genetic ancestry, diet and lifestyle. Most microbes explaining genetic-microbiota associations belonged to the families Lachnospiraceae and Ruminococcaceae. Multiple CMS risk alleles were correlated with increased abundance of beneficial microbiota, suggesting that the phenotypic outcome of the evaluated variants might depend upon the genetic background of the studied population and its environmental context. Our results provide additional evidence that the gut microbiota is under the host genetic control and present pathways of host-microbe interactions.
Collapse
Affiliation(s)
- Esteban L. Ortega-Vega
- Grupo de Investigación en Genética Molecular (GENMOL), Sede de Investigación Universitaria, Universidad de Antioquia, Medellin, Colombia
| | - Sandra J. Guzmán-Castañeda
- Grupo de Investigación en Genética Molecular (GENMOL), Sede de Investigación Universitaria, Universidad de Antioquia, Medellin, Colombia
| | - Omer Campo
- Grupo de Investigación en Genética Molecular (GENMOL), Sede de Investigación Universitaria, Universidad de Antioquia, Medellin, Colombia
| | - Eliana P. Velásquez-Mejía
- Vidarium–Nutrition, Health and Wellness Research Center, Grupo Empresarial Nutresa, Medellin, Colombia
| | - Jacobo de la Cuesta-Zuluaga
- Grupo de Investigación en Genética Molecular (GENMOL), Sede de Investigación Universitaria, Universidad de Antioquia, Medellin, Colombia
| | - Gabriel Bedoya
- Grupo de Investigación en Genética Molecular (GENMOL), Sede de Investigación Universitaria, Universidad de Antioquia, Medellin, Colombia
| | - Juan S. Escobar
- Vidarium–Nutrition, Health and Wellness Research Center, Grupo Empresarial Nutresa, Medellin, Colombia
| |
Collapse
|
46
|
Kosugi M, Otani M, Kikkawa Y, Itakura Y, Sakai K, Ito T, Toyoda M, Sekita Y, Kimura T. Mutations of histone demethylase genes encoded by X and Y chromosomes, Kdm5c and Kdm5d, lead to noncompaction cardiomyopathy in mice. Biochem Biophys Res Commun 2020; 525:S0006-291X(20)30311-9. [PMID: 32081420 DOI: 10.1016/j.bbrc.2020.02.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 02/07/2020] [Indexed: 12/11/2022]
Abstract
Mammalian X and Y chromosomes evolved from a pair of autosomes. Although most ancestral genes have been lost from the Y chromosome, a small number of ancestral X-Y gene pairs are still present on the sex chromosomes. The KDM5C and KDM5D genes, which encode H3K4 histone demethylases, are a surviving ancestral gene pair located on the X and Y chromosomes, respectively. Mutations in KDM5C cause X-linked intellectual disability in human males, suggesting functional divergence between KDM5C and KDM5D in the nervous system. In this study, to explore the functional conservation and divergence between these two genes in other organs, we generated female mice lacking Kdm5c (homozygous X5c- X5c- females) and male mice lacking both Kdm5c and Kdm5d (compound hemizygous X5c- Y5d- males). Both X5c- X5c- females and X5c- Y5d- males showed lower body weights and postnatal lethality. Histological examination of the hearts showed prominent trabecular extension and a thin layer of compacted myocardium in the left and right ventricles, indicating noncompaction cardiomyopathy. However, hemizygous males lacking either Kdm5c or Kdm5d showed no signs of noncompaction cardiomyopathy. These results clearly demonstrate that the function of Kdm5c and Kdm5d in heart development is conserved.
Collapse
Affiliation(s)
- Mayuko Kosugi
- Laboratory of Stem Cell Biology, Department of Biosciences, Kitasato University School of Science, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Mai Otani
- Laboratory of Stem Cell Biology, Department of Biosciences, Kitasato University School of Science, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Yurika Kikkawa
- Research Team for Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, 35-2 Sakaecho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Yoko Itakura
- Research Team for Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, 35-2 Sakaecho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Kohei Sakai
- Laboratory of Stem Cell Biology, Department of Biosciences, Kitasato University School of Science, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Toshiaki Ito
- Laboratory of Stem Cell Biology, Department of Biosciences, Kitasato University School of Science, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Masashi Toyoda
- Research Team for Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, 35-2 Sakaecho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Yoichi Sekita
- Laboratory of Stem Cell Biology, Department of Biosciences, Kitasato University School of Science, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Tohru Kimura
- Laboratory of Stem Cell Biology, Department of Biosciences, Kitasato University School of Science, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan.
| |
Collapse
|
47
|
Murillo-Pineda M, Jansen LET. Genetics, epigenetics and back again: Lessons learned from neocentromeres. Exp Cell Res 2020; 389:111909. [PMID: 32068000 DOI: 10.1016/j.yexcr.2020.111909] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/04/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022]
Abstract
The duplication and segregation of the genome during cell division is crucial to maintain cell identity, development of organisms and tissue maintenance. Centromeres are at the basis of accurate chromosome segregation as they define the site of assembly of the kinetochore, a large complex of proteins that attaches to spindle microtubules driving chromosome movement during cell division. Here we summarize nearly 40 years of research focussed on centromere specification and the role of local cis elements in creating a stable centromere. Initial discoveries in budding yeast in the 1980s opened up the field and revealed essential DNA sequence elements that define centromere position and function. Further work in humans discovered a centromeric DNA sequence-specific binding protein and centromeric α-satellite DNA was found to have the capacity to seed centromeres de novo. Despite the early indication of genetic elements as drivers of centromere specification, the discovery in the nineties of neocentromeres that form on unrelated DNA sequences, shifted the focus to epigenetic mechanisms. While specific sequence elements appeared non-essential, the histone H3 variant CENP-A was identified as a crucial component in centromere specification. Neocentromeres, occurring naturally or induced experimentally, have become an insightful tool to understand the mechanisms for centromere specification and will be the focus of this review. They have helped to define the strong epigenetic chromatin-based component underlying centromere inheritance but also provide new opportunities to understand the enigmatic, yet crucial role that DNA sequence elements play in centromere function and inheritance.
Collapse
Affiliation(s)
| | - Lars E T Jansen
- Department of Biochemistry, University of Oxford, OX1 3QU, United Kingdom.
| |
Collapse
|
48
|
Wilson J, Staley JM, Wyckoff GJ. Extinction of chromosomes due to specialization is a universal occurrence. Sci Rep 2020; 10:2170. [PMID: 32034231 PMCID: PMC7005762 DOI: 10.1038/s41598-020-58997-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 01/20/2020] [Indexed: 11/09/2022] Open
Abstract
The human X and Y chromosomes evolved from a pair of autosomes approximately 180 million years ago. Despite their shared evolutionary origin, extensive genetic decay has resulted in the human Y chromosome losing 97% of its ancestral genes while gene content and order remain highly conserved on the X chromosome. Five 'stratification' events, most likely inversions, reduced the Y chromosome's ability to recombine with the X chromosome across the majority of its length and subjected its genes to the erosive forces associated with reduced recombination. The remaining functional genes are ubiquitously expressed, functionally coherent, dosage-sensitive genes, or have evolved male-specific functionality. It is unknown, however, whether functional specialization is a degenerative phenomenon unique to sex chromosomes, or if it conveys a potential selective advantage aside from sexual antagonism. We examined the evolution of mammalian orthologs to determine if the selective forces that led to the degeneration of the Y chromosome are unique in the genome. The results of our study suggest these forces are not exclusive to the Y chromosome, and chromosomal degeneration may have occurred throughout our evolutionary history. The reduction of recombination could additionally result in rapid fixation through isolation of specialized functions resulting in a cost-benefit relationship during times of intense selective pressure.
Collapse
Affiliation(s)
- Jason Wilson
- University of Missouri-Kansas City School of Medicine, Department of Biomedical and Health Informatics, Kansas City, 64108, Missouri, USA.
| | - Joshua M Staley
- Kansas State University College of Veterinary Medicine, Department of Diagnostic Medicine/Pathobiology, Olathe, 66061, Kansas, USA
| | - Gerald J Wyckoff
- University of Missouri-Kansas City School of Medicine, Department of Biomedical and Health Informatics, Kansas City, 64108, Missouri, USA.,Kansas State University College of Veterinary Medicine, Department of Diagnostic Medicine/Pathobiology, Olathe, 66061, Kansas, USA.,University of Missouri-Kansas City School of Biological and Chemical Sciences, Department of Molecular Biology and Biochemistry, Kansas City, 64108, Missouri, USA
| |
Collapse
|
49
|
Pook T, Mayer M, Geibel J, Weigend S, Cavero D, Schoen CC, Simianer H. Improving Imputation Quality in BEAGLE for Crop and Livestock Data. G3 (BETHESDA, MD.) 2020; 10:177-188. [PMID: 31676508 PMCID: PMC6945036 DOI: 10.1534/g3.119.400798] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 10/31/2019] [Indexed: 12/14/2022]
Abstract
Imputation is one of the key steps in the preprocessing and quality control protocol of any genetic study. Most imputation algorithms were originally developed for the use in human genetics and thus are optimized for a high level of genetic diversity. Different versions of BEAGLE were evaluated on genetic datasets of doubled haploids of two European maize landraces, a commercial breeding line and a diversity panel in chicken, respectively, with different levels of genetic diversity and structure which can be taken into account in BEAGLE by parameter tuning. Especially for phasing BEAGLE 5.0 outperformed the newest version (5.1) which in turn also lead to improved imputation. Earlier versions were far more dependent on the adaption of parameters in all our tests. For all versions, the parameter ne (effective population size) had a major effect on the error rate for imputation of ungenotyped markers, reducing error rates by up to 98.5%. Further improvement was obtained by tuning of the parameters affecting the structure of the haplotype cluster that is used to initialize the underlying Hidden Markov Model of BEAGLE. The number of markers with extremely high error rates for the maize datasets were more than halved by the use of a flint reference genome (F7, PE0075 etc.) instead of the commonly used B73. On average, error rates for imputation of ungenotyped markers were reduced by 8.5% by excluding genetically distant individuals from the reference panel for the chicken diversity panel. To optimize imputation accuracy one has to find a balance between representing as much of the genetic diversity as possible while avoiding the introduction of noise by including genetically distant individuals.
Collapse
Affiliation(s)
- Torsten Pook
- Department of Animal Sciences, Animal Breeding and Genetics Group,
- Center for Integrated Breeding Research, University of Goettingen, 37075 Goettingen, Germany
| | - Manfred Mayer
- Technical University of Munich, Plant Breeding, TUM School of Life Sciences Weihenstephan, 85354 Freising, Germany
| | - Johannes Geibel
- Department of Animal Sciences, Animal Breeding and Genetics Group
- Center for Integrated Breeding Research, University of Goettingen, 37075 Goettingen, Germany
| | - Steffen Weigend
- Center for Integrated Breeding Research, University of Goettingen, 37075 Goettingen, Germany
- Friedrich-Loeffler-Institut, Institute of Farm Animal Genetics, 31353 Neustadt-Mariensee, Germany, and
| | | | - Chris C Schoen
- Technical University of Munich, Plant Breeding, TUM School of Life Sciences Weihenstephan, 85354 Freising, Germany
| | - Henner Simianer
- Department of Animal Sciences, Animal Breeding and Genetics Group
- Center for Integrated Breeding Research, University of Goettingen, 37075 Goettingen, Germany
| |
Collapse
|
50
|
Li Y, Park H, Smith TE, Moran NA. Gene Family Evolution in the Pea Aphid Based on Chromosome-Level Genome Assembly. Mol Biol Evol 2020; 36:2143-2156. [PMID: 31173104 PMCID: PMC6759078 DOI: 10.1093/molbev/msz138] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Genome structural variations, including duplications, deletions, insertions, and inversions, are central in the evolution of eukaryotic genomes. However, structural variations present challenges for high-quality genome assembly, hampering efforts to understand the evolution of gene families and genome architecture. An example is the genome of the pea aphid (Acyrthosiphon pisum) for which the current assembly is composed of thousands of short scaffolds, many of which are known to be misassembled. Here, we present an improved version of the A. pisum genome based on the use of two long-range proximity ligation methods. The new assembly contains four long scaffolds (40-170 Mb), corresponding to the three autosomes and the X chromosome of A. pisum, and encompassing 86% of the new assembly. Assembly accuracy is supported by several quality assessments. Using this assembly, we identify the chromosomal locations and relative ages of duplication events, and the locations of horizontally acquired genes. The improved assembly illuminates the mode of gene family evolution by providing proximity information between paralogs. By estimating nucleotide polymorphism and coverage depth from resequencing data, we determined that many short scaffolds not assembling to chromosomes represent hemizygous regions, which are especially frequent on the highly repetitive X chromosome. Aligning the X-linked aphicarus region, responsible for male wing dimorphism, to the new assembly revealed a 50-kb deletion that cosegregates with the winged male phenotype in some clones. These results show that long-range scaffolding methods can substantially improve assemblies of repetitive genomes and facilitate study of gene family evolution and structural variation.
Collapse
Affiliation(s)
- Yiyuan Li
- Department of Integrative Biology, University of Texas at Austin, Austin, TX
| | - Hyunjin Park
- Department of Integrative Biology, University of Texas at Austin, Austin, TX
| | - Thomas E Smith
- Department of Integrative Biology, University of Texas at Austin, Austin, TX
| | - Nancy A Moran
- Department of Integrative Biology, University of Texas at Austin, Austin, TX
| |
Collapse
|