1
|
Swanson K, Norton ME. Best Practice & Research clinical obstetrics & gynaecology. Best Pract Res Clin Obstet Gynaecol 2025; 98:102574. [PMID: 39708592 DOI: 10.1016/j.bpobgyn.2024.102574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 11/07/2024] [Accepted: 12/01/2024] [Indexed: 12/23/2024]
Abstract
Screening for fetal genetic disorders is a focus of prenatal care. Cell free DNA (cfDNA) screening for aneuploidies became available in 2011. Initially available only to high-risk individuals, this test is now standard of care in many settings. cfDNA screening has expanded to include sex chromosomal aneuploidies, copy number variants, and rare autosomal trisomies. However, the positive predictive value for rarer conditions is significantly lower, the number of conditions tested for is small, and abnormal results may occur due to maternal genetic findings. The field is changing quickly, and national recommendations for the use of cfDNA in screening for fetal and maternal diseases varies internationally. Research on the performance of screening for many different genetic disorders using cfDNA is ongoing, and suggests that this methodology may allow for testing of a much greater number of genetic conditions. Additionally, improved understanding of the cfDNA molecules themselves may provide additional insights: both high and low fetal fractions may suggest adverse pregnancy outcomes, and characteristics of the fragments themselves may help distinguish tissue of origin.
Collapse
Affiliation(s)
- Kate Swanson
- University of California, San Francisco, Department of Obstetrics, Gynecology, and Reproductive Sciences, Division of Maternal-Fetal Medicine, 1825 Fourth St, Third Floor, San Francisco, CA, 94158, USA; University of California, San Francisco, Department of Pediatrics, Division of Medical Genetics, 1825 Fourth St, Third Floor, San Francisco, CA, 94158, USA.
| | - Mary E Norton
- University of California, San Francisco, Department of Obstetrics, Gynecology, and Reproductive Sciences, Division of Maternal-Fetal Medicine, 1825 Fourth St, Third Floor, San Francisco, CA, 94158, USA; University of California, San Francisco, Institute of Human Genetics, 1825 Fourth St, Third Floor, San Francisco, CA, 94158, USA.
| |
Collapse
|
2
|
Tsui WHA, Ding SC, Jiang P, Lo YMD. Artificial intelligence and machine learning in cell-free-DNA-based diagnostics. Genome Res 2025; 35:1-19. [PMID: 39843210 PMCID: PMC11789496 DOI: 10.1101/gr.278413.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
The discovery of circulating fetal and tumor cell-free DNA (cfDNA) molecules in plasma has opened up tremendous opportunities in noninvasive diagnostics such as the detection of fetal chromosomal aneuploidies and cancers and in posttransplantation monitoring. The advent of high-throughput sequencing technologies makes it possible to scrutinize the characteristics of cfDNA molecules, opening up the fields of cfDNA genetics, epigenetics, transcriptomics, and fragmentomics, providing a plethora of biomarkers. Machine learning (ML) and/or artificial intelligence (AI) technologies that are known for their ability to integrate high-dimensional features have recently been applied to the field of liquid biopsy. In this review, we highlight various AI and ML approaches in cfDNA-based diagnostics. We first introduce the biology of cell-free DNA and basic concepts of ML and AI technologies. We then discuss selected examples of ML- or AI-based applications in noninvasive prenatal testing and cancer liquid biopsy. These applications include the deduction of fetal DNA fraction, plasma DNA tissue mapping, and cancer detection and localization. Finally, we offer perspectives on the future direction of using ML and AI technologies to leverage cfDNA fragmentation patterns in terms of methylomic and transcriptional investigations.
Collapse
Affiliation(s)
- W H Adrian Tsui
- Center for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Spencer C Ding
- Center for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Peiyong Jiang
- Center for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Y M Dennis Lo
- Center for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China;
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
- State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| |
Collapse
|
3
|
Eaton DA, Lynn AY, Surprenant JM, Deschenes EI, Guerra ME, Rivero R, Yung NK, O’Connor M, Glazer PM, Bahtiyar MO, Saltzman WM, Stitelman DH. Biodistribution of Polymeric Nanoparticles following in utero Delivery to a Nonhuman Primate. Biomed Hub 2025; 10:23-32. [PMID: 39845408 PMCID: PMC11753793 DOI: 10.1159/000543138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/09/2024] [Indexed: 01/24/2025] Open
Abstract
Introduction Monogenic diseases can be diagnosed before birth. Systemic fetal administration of nanoparticles (NPs) grants therapeutic access to developing stem cell populations impacted by these classes of disease. Delivery of editing reagents in these NPs administered before birth has yielded encouraging results in preclinical mouse models of monogenic diseases. Methods To translate this strategy clinically, the safety and efficacy of this strategy in larger animals will be necessary. We performed a pilot biodistribution study in 3 fetal nonhuman primates (NHPs) in mid-gestation examining systemic delivery of polymeric NPs loaded with fluorescent dye. Results We found several similarities in distribution to our experience in mice, namely, extensive uptake in fetal liver and spleen. A striking finding that is not recapitulated in the mouse was the accumulation of NPs in the zones of proliferation and ossification of the fetal bone. Of great importance, there did not appear to be NP accumulation in the fetal male or female germline zones or maternal tissue. Conclusion These studies were vital to the next step of testing editing reagents in the fetal NHP with a goal of treating monogenic diseases before birth.
Collapse
Affiliation(s)
- David A. Eaton
- Departments of Surgery, Yale School of Medicine, New Haven, CT, USA
- Departments of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Anna Y. Lynn
- Departments of Surgery, Yale School of Medicine, New Haven, CT, USA
| | | | - Emily I. Deschenes
- Departments of Surgery, Yale School of Medicine, New Haven, CT, USA
- Departments of Biomedical Engineering, Yale University, New Haven, CT, USA
| | | | - Rachel Rivero
- Departments of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - Nicholas K. Yung
- Departments of Surgery, Yale School of Medicine, New Haven, CT, USA
| | | | - Peter M. Glazer
- Departments of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, USA
- Departments of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Mert Ozan Bahtiyar
- Departments of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - W. Mark Saltzman
- Departments of Biomedical Engineering, Yale University, New Haven, CT, USA
- Departments of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
- Departments of Cellular and Molecular Physiology, Yale University, New Haven, CT, USA
- Departments of Dermatology, Yale University, New Haven, CT, USA
| | - David H. Stitelman
- Departments of Surgery, Yale School of Medicine, New Haven, CT, USA
- Departments of Obstetrics, Gynecology, and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
4
|
Claesen-Bengtson Z, van der Meij KRM, Vermeesch JR, Henneman L, Borry P. Healthcare professionals' experiences with expanded noninvasive prenatal screening: challenges and solutions. J Community Genet 2024:10.1007/s12687-024-00751-6. [PMID: 39708236 DOI: 10.1007/s12687-024-00751-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/04/2024] [Indexed: 12/23/2024] Open
Abstract
Genome-wide non-invasive prenatal cell-free DNA screening (NIPT) can lead to the early detection of important health-related information for the fetus and pregnant woman. However, the expanding scope of screening heightens information complexity and creates challenges for clinical interactions. This study explored Belgian healthcare professionals' experiences to identify challenges and solutions to expanded NIPT in practice. We assessed experiences of 31 healthcare professionals including clinical geneticists, gynecologists, midwives, counselors, and laboratory specialists, in Belgium where NIPT is publicly reimbursed. The interviews were analyzed inductively and iteratively. Key challenges to expanded NIPT were identified and structured under three headings: (1) Pre-test information provision: The more is tested for, the more complex the information provision becomes; (2) Return of results: Knowing more might be worse than knowing less; and (3) Hurdles that complicate setting a (nation-wide) scope. Solutions mentioned included providing additional resources for counseling, implementing value-based counseling, and a uniform scope of NIPT. To minimize potential harms and to retain trust of NIPT-users, it is crucial that best practices for counseling and reporting results are more substantiated. Sustainable lines of communication should be developed across stakeholder groups to navigate transparent implementation of technological developments in prenatal genetic screening.
Collapse
Affiliation(s)
- Zoë Claesen-Bengtson
- Centre for Biomedical Ethics and Law, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium.
| | - Karuna R M van der Meij
- Department of Human Genetics and Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, location Vrije Universiteit, Amsterdam, The Netherlands
| | - Joris R Vermeesch
- Laboratory for Cytogenetics and Genome Research, Department of Human Genetics, UZ Leuven, Leuven, Belgium
| | - Lidewij Henneman
- Department of Human Genetics and Amsterdam Reproduction and Development Research Institute, Amsterdam UMC, location Vrije Universiteit, Amsterdam, The Netherlands
| | - Pascal Borry
- Centre for Biomedical Ethics and Law, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| |
Collapse
|
5
|
Yuen N, Lemaire M, Wilson SL. Cell-free placental DNA: What do we really know? PLoS Genet 2024; 20:e1011484. [PMID: 39652523 PMCID: PMC11627368 DOI: 10.1371/journal.pgen.1011484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
Cell-free placental DNA (cfpDNA) is present in maternal circulation during gestation. CfpDNA carries great potential as a research and clinical tool as it provides a means to investigate the placental (epi)genome across gestation, which previously required invasive placenta sampling procedures. CfpDNA has been widely implemented in the clinical setting for noninvasive prenatal testing (NIPT). Despite this, the basic biology of cfpDNA remains poorly understood, limiting the research and clinical utility of cfpDNA. This review will examine the current knowledge of cfpDNA, including origins and molecular characteristics, highlight gaps in knowledge, and discuss future research directions.
Collapse
Affiliation(s)
- Natalie Yuen
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Melanie Lemaire
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
| | - Samantha L. Wilson
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Department of Obstetrics and Gynecology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
6
|
Li K, Guo Z, Li F, Lu S, Zhang M, Gong Y, Tan J, Sheng C, Hao W, Yang X. Non-invasive determination of gene expression in placental tissue using maternal plasma cell-free DNA fragmentation characters. Gene 2024; 928:148789. [PMID: 39047956 DOI: 10.1016/j.gene.2024.148789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/04/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND The expression profiles of placental genes are crucial for understanding the pathogenesis of fetal development and placental-origin pregnancy syndromes. However, owing to ethical limitations and the risks of puncture sampling, it is difficult to obtain placental tissue samples repeatedly, continuously, multiple times, or in real time. Establishing a non-invasive method for predicting placental gene expression profiles through maternal plasma cell-free DNA (cfDNA) sequencing, which carries information about the source tissue and gene expression, can potentially solve this problem. METHODS Peripheral blood and placental samples were collected simultaneously from pregnant women who underwent cesarean section. Deep sequencing was performed on the separated plasma cfDNA and single-cell sequencing was performed on peripheral blood mononuclear cells (PBMC), chorioamniotic membranes (CAM), placental villi (PV), and decidua basalis (DB). The aggregation of corresponding information for each gene was combined with the transcriptome of PBMCs and a differential resolution transcriptome of the placenta. This combined information was then utilized for the construction of gene expression prediction models. After training, all models evaluated the correlation between the predicted and actual gene expression levels using external test set data. RESULTS From five women, more than 20 million reads were obtained using deep sequencing for plasma cfDNA; PBMCs obtained 32,401 single-cell expression profiles; and placental tissue obtained 156,546 single-cell expression profiles (59,069, 44,921, and 52,556 for CAM, PV, and DB, respectively). The cells in the PBMC and placenta were clustered and annotated into five and eight cell types, respectively. A "DEPICT" gene expression prediction model was successfully constructed using deep neural networks. The predicted correlation coefficients were 0.75 in PBMCs, 0.84 in the placenta, and 0.78, 0.80, and 0.77 in CAM, BP, and PV respectively, and greater than 0.68 in different cell lines in the placenta. CONCLUSION The DEPICT model, which can noninvasively predict placental gene expression profiles based on maternal plasma cfDNA fragmentation characteristics, was constructed to overcome the limitation of the inability to obtain real-time placental gene expression profiles and to improve research on noninvasive prediction of placental origin pregnancy syndrome.
Collapse
Affiliation(s)
- Kun Li
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Zhiwei Guo
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Fenxia Li
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Shijing Lu
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Min Zhang
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Yuyan Gong
- Beijing SeekGene BioSciences Co., Ltd, Beijing, China
| | - Jiayu Tan
- ICU of Boai Hospital of Zhongshan Affiliated to Southern Medical University, Zhongshan 528403, China
| | - Chao Sheng
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China.
| | - Wenbo Hao
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, Guangdong, China.
| | - Xuexi Yang
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, Guangdong, China.
| |
Collapse
|
7
|
Shirato N, Sekizawa A, Miyagami K, Sakamoto M, Yamada T, Hirose T, Ikebukuro S, Nakamura T, Mizutani A, Ikemoto M, Izum M, Seino H, Yamada S, Suzumori N, Yoshihashi H, Samura O, Sawai H, Sago H, Okuyama T. Impact of the new government-involved noninvasive prenatal testing certification system on the awareness of pregnant women about noninvasive prenatal testing in Japan. J Obstet Gynaecol Res 2024; 50:1542-1551. [PMID: 39143723 DOI: 10.1111/jog.16052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/29/2024] [Indexed: 08/16/2024]
Abstract
AIM In Japan, noninvasive prenatal testing (NIPT) has been performed by facilities accredited by the Japanese Society of Obstetrics and Gynecology since 2013. However, since 2016, with the implementation of NIPT, which can only be performed by blood sampling, non-obstetricians have been involved in prenatal testing. Therefore, in July 2022, a new government-involved NIPT certification system based on Health Sciences Council guidelines was introduced to ensure access to prenatal testing information for pregnant women. METHODS This survey was conducted in February 2023 and was the first survey after the certification system implementation. We conducted a web-based survey of 1227 pregnant women and nursing mothers who underwent NIPT after July 2022 to evaluate their experiences. RESULTS Respondents were categorized by certification status as certified (C: 56%), non-certified (non-C: 23%), or uncertain (Q: 20%). The C group with a higher mean age at examination (35.0 ± 4.5 years) paid lower examination fees, received longer pre- and post-examination explanations, and underwent more weekday examinations (80%) than the other groups. Most respondents, 67%, 48%, and 53% in the C, non-C, and Q groups, respectively (p < 0.0001), stated that "NIPT needs to be regulated by the government or academic societies." The non-C group was more likely to say, "Insufficient post-test explanations at the laboratory made me more anxious," than the other groups when the testing results were non-negative (p = 0.015). CONCLUSIONS Despite government regulation, some pregnant women choose convenience over certified facilities, risking inadequate care. The government should ensure that NIPT is a safe option for all pregnant women.
Collapse
Affiliation(s)
- Nahoko Shirato
- Department of Obstetrics and Gynecology, Showa University School of Medicine, Tokyo, Japan
| | - Akihiko Sekizawa
- Department of Obstetrics and Gynecology, Showa University School of Medicine, Tokyo, Japan
| | - Keiko Miyagami
- Department of Obstetrics and Gynecology, Showa University School of Medicine, Tokyo, Japan
| | - Miwa Sakamoto
- Department of Obstetrics and Gynecology, Showa University School of Medicine, Tokyo, Japan
| | - Takahiro Yamada
- Division of Clinical Genetics, Hokkaido University Hospital, Sapporo, Japan
| | - Tatsuko Hirose
- Department of Obstetrics and Gynecology, Showa University School of Medicine, Tokyo, Japan
- Showa University Graduate School of Health Sciences, Tokyo, Japan
| | - Shin Ikebukuro
- Department of Obstetrics and Gynecology, Showa University School of Medicine, Tokyo, Japan
| | - Takeshi Nakamura
- Department of Obstetrics and Gynecology, Showa University School of Medicine, Tokyo, Japan
| | - Akane Mizutani
- Department of Obstetrics and Gynecology, Showa University School of Medicine, Tokyo, Japan
| | - Mai Ikemoto
- Department of Obstetrics and Gynecology, Showa University School of Medicine, Tokyo, Japan
| | - Mikiko Izum
- Department of Obstetrics and Gynecology, Showa University School of Medicine, Tokyo, Japan
| | - Hitomi Seino
- Department of Neuropsychiatry, Hyogo Medical University, Nishinomiya, Japan
| | - Shigehito Yamada
- Human Health Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Nobuhiro Suzumori
- Department of Obstetrics and Gynecology, Nagoya City University, Nagoya, Japan
| | - Hiroshi Yoshihashi
- Department of Clinical Genetics, Tokyo Metropolitan Children's Medical Center, Fuchu, Japan
| | - Osamu Samura
- Department of Obstetrics and Gynecology, The Jikei University, Minato, Japan
| | - Hideaki Sawai
- Department of Obstetrics and Gynecology, Hyogo Medical University, Nishinomiya, Japan
| | - Haruhiko Sago
- Center for Medical Genetics, National Center for Child Health and Development, Setagaya, Japan
| | - Torayuki Okuyama
- Department of Clinical Genomics, Saitama Medical University, Saitama, Japan
| |
Collapse
|
8
|
Liscovitch-Brauer N, Mesika R, Rabinowitz T, Volkov H, Grad M, Matar RT, Basel-Salmon L, Tadmor O, Beker A, Shomron N. Machine learning-enhanced noninvasive prenatal testing of monogenic disorders. Prenat Diagn 2024; 44:1024-1032. [PMID: 38687007 DOI: 10.1002/pd.6570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 05/02/2024]
Abstract
OBJECTIVE Single-nucleotide variants (SNVs) are of great significance in prenatal diagnosis as they are the leading cause of inherited single-gene disorders (SGDs). Identifying SNVs in a non-invasive prenatal screening (NIPS) scenario is particularly challenging for maternally inherited SNVs. We present an improved method to predict inherited SNVs from maternal or paternal origin in a genome-wide manner. METHODS We performed SNV-NIPS based on the combination of fragments of cell free DNA (cfDNA) features, Bayesian inference and a machine-learning (ML) prediction refinement step using random forest (RF) classifiers trained on millions of non-pathogenic variants. We next evaluate the real-world performance of our refined method in a clinical setting by testing our models on 16 families with singleton pregnancies and varying fetal fraction (FF) levels, and validate the results over millions of inherited variants in each fetus. RESULTS The average area under the ROC curve (AUC) values are 0.996 over all families for paternally inherited variants, 0.81 for the challenging maternally inherited variants, 0.86 for homozygous biallelic variants and 0.95 for compound heterozygous variants. Discriminative AUCs were achieved even in families with a low FF. We further investigate the performance of our method in correctly predicting SNVs in coding regions of clinically relevant genes and demonstrate significantly improved AUCs in these regions. Finally, we focus on the pathogenic variants in our cohort and show that our method correctly predicts if the fetus is unaffected or affected in all (10/10, 100%) of the families containing a pathogenic SNV. CONCLUSIONS Overall, we demonstrate our ability to perform genome-wide NIPS for maternal and homozygous biallelic variants and showcase the utility of our method in a clinical setting.
Collapse
Affiliation(s)
| | | | - Tom Rabinowitz
- Identifai-Genetics Ltd., Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hadas Volkov
- Identifai-Genetics Ltd., Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Edmond J Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv, Israel
| | - Meitar Grad
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Reut Tomashov Matar
- Raphael Recanati Genetic Institute, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel
| | - Lina Basel-Salmon
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Raphael Recanati Genetic Institute, Rabin Medical Center, Beilinson Hospital, Petah Tikva, Israel
- Felsenstein Medical Research Center, Tel-Aviv University, Tel-Aviv, Israel
| | | | - Amir Beker
- Identifai-Genetics Ltd., Tel Aviv, Israel
| | - Noam Shomron
- Identifai-Genetics Ltd., Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Edmond J Safra Center for Bioinformatics, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
9
|
O'Brien M, Doyle S, McAuliffe FM, Leuven F, Mahmood T. Current status and future of genomics in fetal and maternal medicine: A scientific review commissioned by European Board and College of Obstetrics and Gynaecology (EBCOG). Eur J Obstet Gynecol Reprod Biol 2024; 299:336-341. [PMID: 38960859 DOI: 10.1016/j.ejogrb.2024.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
This EBCOG guidance reviews the current and future status of genomics within fetal and maternal medicine. This document addresses the clinical uses of genetic testing in both screening and diagnostic testing prenatally. The role of genomics within fetal and maternal medicine is described. The research and future implications of genetic testing as well as the educational, ethical and economic implications of genomics are discussed.
Collapse
Affiliation(s)
- M O'Brien
- UCD Perinatal Research Centre, University College Dublin, National Maternity Hospital, Dublin, Ireland
| | - S Doyle
- UCD Perinatal Research Centre, University College Dublin, National Maternity Hospital, Dublin, Ireland; Clinical Genetics, National Maternity Hospital, Dublin, Ireland
| | - F M McAuliffe
- UCD Perinatal Research Centre, University College Dublin, National Maternity Hospital, Dublin, Ireland.
| | - Frank Leuven
- Division of Obstetrics and Prenatal Medicine, Department of Gynaecology and Obstetrics, Universitätsklinikum Frankfurt Goethe-Universität, Germany
| | | |
Collapse
|
10
|
Lu L, Li J, Zheng Y, Luo L, Huang Y, Hu J, Chen Y. High expression of SLC27A2 predicts unfavorable prognosis and promotes inhibitory immune infiltration in acute lymphoblastic leukemia. Transl Oncol 2024; 45:101952. [PMID: 38640787 PMCID: PMC11053221 DOI: 10.1016/j.tranon.2024.101952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 03/22/2024] [Accepted: 03/30/2024] [Indexed: 04/21/2024] Open
Abstract
Solute carrier family 27 member 2 (SLC27A2) is involved in fatty acid metabolism in tumors and represents a prospective target for cancer therapy. However, the role and mechanism of action of SLC27A2 in acute lymphoblastic leukemia (ALL) remain unclear. In this study, we aimed to explore the intrinsic associations between SLC27A2 and ALL and evaluate the prognostic significance, biological functions, and correlation with immune infiltration. We used the transcriptome and clinical data from the TARGET dataset. Differentially expressed genes (DEGs) in the SLC27A2 low- and high-expression groups were analyzed for prognostic implications and functional enrichment. Furthermore, we analyzed the relationship between SLC27A2 gene expression and immune cell infiltration using the ESTIMATE method, which was evaluated using the TIGER platform. Finally, we knocked down SLC27A2 in the Jurkat ALL cell line and conducted cell proliferation, western blotting, flow cytometry, and CCK-8 assays to elucidate the biological function of SLC27A2 in ALL. Patients with ALL who have higher expression levels of SLC27A2 have poorer overall survival and event-free survival. According to gene set enrichment analysis, the DEGs were primarily enriched with immune system processes and the PI3K-Akt signaling pathway. There was an inverse relationship between SLC27A2 expression and immune cell invasion, suggesting involvement of the former in tumor immune evasion. In vitro experiments showed that knockdown of SLC27A2 inhibited cell proliferation and protein expression and altered the Akt pathway, with a reduced proportion of B cells. In conclusion, SLC27A2 plays a vital role in the development of ALL.
Collapse
Affiliation(s)
- Lihua Lu
- Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian 350001, China
| | - Jiazheng Li
- Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian 350001, China; The Second Affiliated Hospital of Fujian Medical University, 34 Zhongshan North Road, Quanzhou 362000, China
| | - Yongzhi Zheng
- Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian 350001, China
| | - Luting Luo
- Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian 350001, China; The Second Affiliated Hospital of Fujian Medical University, 34 Zhongshan North Road, Quanzhou 362000, China
| | - Yan Huang
- Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian 350001, China
| | - Jianda Hu
- Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian 350001, China; The Second Affiliated Hospital of Fujian Medical University, 34 Zhongshan North Road, Quanzhou 362000, China; Institute of Precision Medicine, Fujian Medical University, Fuzhou, Fujian 350001, China.
| | - Yanxin Chen
- Fujian Medical University Union Hospital, 29 Xinquan Road, Fuzhou, Fujian 350001, China.
| |
Collapse
|
11
|
Rolando JC, Melkonian AV, Walt DR. The Present and Future Landscapes of Molecular Diagnostics. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2024; 17:459-474. [PMID: 38360553 DOI: 10.1146/annurev-anchem-061622-015112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Nucleic acid testing is the cornerstone of modern molecular diagnostics. This review describes the current status and future directions of molecular diagnostics, focusing on four major techniques: polymerase chain reaction (PCR), next-generation sequencing (NGS), isothermal amplification methods such as recombinase polymerase amplification (RPA) and loop-mediated isothermal amplification (LAMP), and clustered regularly interspaced short palindromic repeats (CRISPR)-based detection methods. We explore the advantages and limitations of each technique, describe how each overlaps with or complements other techniques, and examine current clinical offerings. This review provides a broad perspective into the landscape of molecular diagnostics and highlights potential future directions in this rapidly evolving field.
Collapse
Affiliation(s)
- Justin C Rolando
- 1Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA;
- 2Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
- 3Harvard Medical School, Harvard University, Boston, Massachusetts, USA
| | - Arek V Melkonian
- 1Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA;
- 2Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
- 3Harvard Medical School, Harvard University, Boston, Massachusetts, USA
| | - David R Walt
- 1Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA;
- 2Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
- 3Harvard Medical School, Harvard University, Boston, Massachusetts, USA
| |
Collapse
|
12
|
Abstract
This review delves into the rapidly evolving landscape of liquid biopsy technologies based on cell-free DNA (cfDNA) and cell-free RNA (cfRNA) and their increasingly prominent role in precision medicine. With the advent of high-throughput DNA sequencing, the use of cfDNA and cfRNA has revolutionized noninvasive clinical testing. Here, we explore the physical characteristics of cfDNA and cfRNA, present an overview of the essential engineering tools used by the field, and highlight clinical applications, including noninvasive prenatal testing, cancer testing, organ transplantation surveillance, and infectious disease testing. Finally, we discuss emerging technologies and the broadening scope of liquid biopsies to new areas of diagnostic medicine.
Collapse
Affiliation(s)
- Conor Loy
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA;
| | - Lauren Ahmann
- Department of Pathology, Stanford University, Stanford, California, USA;
| | - Iwijn De Vlaminck
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA;
| | - Wei Gu
- Department of Pathology, Stanford University, Stanford, California, USA;
| |
Collapse
|
13
|
Unterman I, Avrahami D, Katsman E, Triche TJ, Glaser B, Berman BP. CelFiE-ISH: a probabilistic model for multi-cell type deconvolution from single-molecule DNA methylation haplotypes. Genome Biol 2024; 25:151. [PMID: 38858759 PMCID: PMC11163775 DOI: 10.1186/s13059-024-03275-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 05/13/2024] [Indexed: 06/12/2024] Open
Abstract
Deconvolution methods infer quantitative cell type estimates from bulk measurement of mixed samples including blood and tissue. DNA methylation sequencing measures multiple CpGs per read, but few existing deconvolution methods leverage this within-read information. We develop CelFiE-ISH, which extends an existing method (CelFiE) to use within-read haplotype information. CelFiE-ISH outperforms CelFiE and other existing methods, achieving 30% better accuracy and more sensitive detection of rare cell types. We also demonstrate the importance of marker selection and of tailoring markers for haplotype-aware methods. While here we use gold-standard short-read sequencing data, haplotype-aware methods will be well-suited for long-read sequencing.
Collapse
Affiliation(s)
- Irene Unterman
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Dana Avrahami
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Endocrinology and Metabolism, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Efrat Katsman
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Timothy J Triche
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Benjamin Glaser
- Department of Endocrinology and Metabolism, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Benjamin P Berman
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
14
|
Zhang M, Cai Y, Zhong X, Liu W, Lin Y, Qiu Z, Liang R, Wei H, Wu K, Liu Q. Effects of cell-free DNA on kidney disease and intervention strategies. Front Pharmacol 2024; 15:1377874. [PMID: 38835660 PMCID: PMC11148383 DOI: 10.3389/fphar.2024.1377874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/23/2024] [Indexed: 06/06/2024] Open
Abstract
Kidney disease has become a global public health problem. Patients with end-stage kidney disease must rely on dialysis or undergo renal transplantation, placing heavy burdens on their families and society. Therefore, it is important to develop new therapeutic targets and intervention strategies during early stages of chronic kidney disease. The widespread application of liquid biopsy has led to an increasing number of studies concerning the roles of cell-free DNA (cfDNA) in kidney disease. In this review, we summarize relevant studies concerning the roles of cfDNA in kidney disease and describe various strategies for targeted removal of cfDNA, with the goal of establishing novel therapeutic approaches for kidney disease.
Collapse
Affiliation(s)
- Mingying Zhang
- Department of Nephrology, Jieyang People's Hospital, Jieyang, China
| | - Yubin Cai
- Department of Nephrology, Jieyang People's Hospital, Jieyang, China
| | - Xiaoze Zhong
- Department of Nephrology, Jieyang People's Hospital, Jieyang, China
| | - Weijun Liu
- Department of Nephrology, Jieyang People's Hospital, Jieyang, China
| | - Yuan Lin
- Department of Nephrology, Jieyang People's Hospital, Jieyang, China
| | - Zhanyi Qiu
- Department of Nephrology, Jieyang People's Hospital, Jieyang, China
| | - Ruihuang Liang
- Department of Nephrology, Jieyang People's Hospital, Jieyang, China
| | - Huibo Wei
- Department of Nephrology, Jieyang People's Hospital, Jieyang, China
| | - Kefei Wu
- Department of Nephrology, Jieyang People's Hospital, Jieyang, China
| | - Qinghua Liu
- Department of Nephrology, Jieyang People's Hospital, Jieyang, China
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- NHC Key Laboratory of Clinical Nephrology (Sun Yat-sen University) and Guangdong Provincial Key Laboratory of Nephrology, Guangzhou, China
| |
Collapse
|
15
|
Sistermans EA. Use of Type 5 Single Nucleotide Polymorphisms Allows Noninvasive Prenatal Diagnosis for Consanguineous Families. Clin Chem 2024; 70:687-689. [PMID: 38592369 DOI: 10.1093/clinchem/hvae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 04/10/2024]
Affiliation(s)
- Erik A Sistermans
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Human Genetics, De Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Duyzend MH, Cacheiro P, Jacobsen JO, Giordano J, Brand H, Wapner RJ, Talkowski ME, Robinson PN, Smedley D. Improving prenatal diagnosis through standards and aggregation. Prenat Diagn 2024; 44:454-464. [PMID: 38242839 PMCID: PMC11006584 DOI: 10.1002/pd.6522] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/17/2023] [Accepted: 12/22/2023] [Indexed: 01/21/2024]
Abstract
Advances in sequencing and imaging technologies enable enhanced assessment in the prenatal space, with a goal to diagnose and predict the natural history of disease, to direct targeted therapies, and to implement clinical management, including transfer of care, election of supportive care, and selection of surgical interventions. The current lack of standardization and aggregation stymies variant interpretation and gene discovery, which hinders the provision of prenatal precision medicine, leaving clinicians and patients without an accurate diagnosis. With large amounts of data generated, it is imperative to establish standards for data collection, processing, and aggregation. Aggregated and homogeneously processed genetic and phenotypic data permits dissection of the genomic architecture of prenatal presentations of disease and provides a dataset on which data analysis algorithms can be tuned to the prenatal space. Here we discuss the importance of generating aggregate data sets and how the prenatal space is driving the development of interoperable standards and phenotype-driven tools.
Collapse
Affiliation(s)
- Michael H. Duyzend
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Pilar Cacheiro
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Julius O.B. Jacobsen
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Jessica Giordano
- Department of Obstetrics & Gynecology, Columbia University Medical Center, New York, NY, USA
| | - Harrison Brand
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Ronald J. Wapner
- Department of Obstetrics & Gynecology, Columbia University Medical Center, New York, NY, USA
| | - Michael E. Talkowski
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Program in Medical and Population Genetics, The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Program in Biological and Biomedical Sciences, Division of Medical Sciences, Harvard Medical School, Boston, MA, USA
- Program in Bioinformatics and Integrative Genomics, Division of Medical Sciences, Harvard Medical School, Boston, MA, USA
| | - Peter N. Robinson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
- Institute for Systems Genomics, University of Connecticut, Farmington, CT 06032, USA
| | - Damian Smedley
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| |
Collapse
|
17
|
Sun Y, Yu H, Han S, Ran R, Yang Y, Tang Y, Wang Y, Zhang W, Tang H, Fu B, Fu B, Weng X, Liu SM, Deng H, Peng S, Zhou X. Method for the extraction of circulating nucleic acids based on MOF reveals cell-free RNA signatures in liver cancer. Natl Sci Rev 2024; 11:nwae022. [PMID: 38348130 PMCID: PMC10860518 DOI: 10.1093/nsr/nwae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 09/24/2023] [Accepted: 09/24/2023] [Indexed: 02/15/2024] Open
Abstract
Cell-free RNA (cfRNA) allows assessment of health, status, and phenotype of a variety of human organs and is a potential biomarker to non-invasively diagnose numerous diseases. Nevertheless, there is a lack of highly efficient and bias-free cfRNA isolation technologies due to the low abundance and instability of cfRNA. Here, we developed a reproducible and high-efficiency isolation technology for different types of cell-free nucleic acids (containing cfRNA and viral RNA) in serum/plasma based on the inclusion of nucleic acids by metal-organic framework (MOF) materials, which greatly improved the isolation efficiency and was able to preserve RNA integrity compared with the most widely used research kit method. Importantly, the quality of cfRNA extracted by the MOF method is about 10-fold that of the kit method, and the MOF method isolates more than three times as many different RNA types as the kit method. The whole transcriptome mapping characteristics of cfRNA in serum from patients with liver cancer was described and a cfRNA signature with six cfRNAs was identified to diagnose liver cancer with high diagnostic efficiency (area under curve = 0.905 in the independent validation cohort) using this MOF method. Thus, this new MOF isolation technique will advance the field of liquid biopsy, with the potential to diagnose liver cancer.
Collapse
Affiliation(s)
- Yuqing Sun
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Haixin Yu
- Department of Digestive Surgical Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shaoqing Han
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Ruoxi Ran
- Department of Clinical Laboratory, Center for Gene Diagnosis and Program of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Ying Yang
- Department of Clinical Laboratory, Center for Gene Diagnosis and Program of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Yongling Tang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Yuhao Wang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Wenhao Zhang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Heng Tang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Boqiao Fu
- College of Chemistry and Materials Science, Hubei Engineering University, Xiaogan 432000, China
| | - Boshi Fu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Xiaocheng Weng
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Song-Mei Liu
- Department of Clinical Laboratory, Center for Gene Diagnosis and Program of Clinical Laboratory, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Hexiang Deng
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Shuang Peng
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Wuhan University, Wuhan 430072, China
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430071, China
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| |
Collapse
|
18
|
Li X, Zhang D, Zhao X, Huang S, Han M, Wang G, Li Y, Kang D, Zhang X, Dai P, Yuan Y. Exploration of a Novel Noninvasive Prenatal Testing Approach for Monogenic Disorders Based on Fetal Nucleated Red Blood Cells. Clin Chem 2023; 69:1396-1408. [PMID: 37963809 DOI: 10.1093/clinchem/hvad165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/21/2023] [Indexed: 11/16/2023]
Abstract
BACKGROUND Due to technical issues related to cell-specific capture methods, amplification, and sequencing, noninvasive prenatal testing (NIPT) based on fetal nucleated red blood cells (fNRBCs) has rarely been used for the detection of monogenic disorders. METHODS Maternal peripheral blood was collected from 11 families with hereditary hearing loss. After density gradient centrifugation and cellular immunostaining for multiple biomarkers, candidate individual fetal cells were harvested by micromanipulation and amplified by whole-genome amplification (WGA). Whole-exome sequencing/whole-genome sequencing (WGS) and Sanger sequencing were performed on the identified fNRBCs to determine the fetal genotype. The impact of single-cell and pooled WGA products on the sequencing quality and results was compared. A combined analysis strategy, encompassing whole-exome sequencing/WGS, haplotype analysis, and Sanger sequencing, was used to enhance the NIPT results. RESULTS fNRBCs were harvested and identified in 81.8% (9/11) of families. The results of cell-based-NIPT (cb-NIPT) were consistent with those of invasive prenatal diagnosis in 8 families; the coincidence rate was 88.9% (8/9). The combined analysis strategy improved the success of cb-NIPT. The overall performance of pooled WGA products was better than that of individual cells. Due to a lack of alternative fetal cells or sufficient sequencing data, cb-NIPT failed in 3 families. CONCLUSIONS We developed a novel fNRBC-based NIPT method for monogenic disorders. By combining multiple analysis strategies and multiple fetal cell WGA products, the problem of insufficient genome information in a single cell was remedied. Our method has promising prospects in the field of NIPT for the detection of monogenic disorders.
Collapse
Affiliation(s)
- Xiaoge Li
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Genetic Testing Center for Deafness, Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- Key Lab of Hearing Impairment Science of Ministry of Education, Beijing, China
- Key Lab of Hearing Impairment Prevention and Treatment of Beijing, China
| | - Dejun Zhang
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Genetic Testing Center for Deafness, Chinese PLA General Hospital, Beijing 100853, China
- Key Lab of Hearing Impairment Science of Ministry of Education, Beijing, China
- Key Lab of Hearing Impairment Prevention and Treatment of Beijing, China
- The Second Hospital of Jilin University, Changchun, China
| | - Xing Zhao
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Genetic Testing Center for Deafness, Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- Key Lab of Hearing Impairment Science of Ministry of Education, Beijing, China
- Key Lab of Hearing Impairment Prevention and Treatment of Beijing, China
| | - Shasha Huang
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Genetic Testing Center for Deafness, Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- Key Lab of Hearing Impairment Science of Ministry of Education, Beijing, China
- Key Lab of Hearing Impairment Prevention and Treatment of Beijing, China
| | - Mingyu Han
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Genetic Testing Center for Deafness, Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- Key Lab of Hearing Impairment Science of Ministry of Education, Beijing, China
- Key Lab of Hearing Impairment Prevention and Treatment of Beijing, China
| | - Guojian Wang
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Genetic Testing Center for Deafness, Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- Key Lab of Hearing Impairment Science of Ministry of Education, Beijing, China
- Key Lab of Hearing Impairment Prevention and Treatment of Beijing, China
| | - Yingzhuo Li
- Department of Information, Chinese PLA General Hospital, Beijing, China
| | - Dongyang Kang
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Genetic Testing Center for Deafness, Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- Key Lab of Hearing Impairment Science of Ministry of Education, Beijing, China
- Key Lab of Hearing Impairment Prevention and Treatment of Beijing, China
| | - Xin Zhang
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Genetic Testing Center for Deafness, Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- Key Lab of Hearing Impairment Science of Ministry of Education, Beijing, China
- Key Lab of Hearing Impairment Prevention and Treatment of Beijing, China
| | - Pu Dai
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Genetic Testing Center for Deafness, Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- Key Lab of Hearing Impairment Science of Ministry of Education, Beijing, China
- Key Lab of Hearing Impairment Prevention and Treatment of Beijing, China
| | - Yongyi Yuan
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Genetic Testing Center for Deafness, Chinese PLA General Hospital, Beijing 100853, China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, China
- Key Lab of Hearing Impairment Science of Ministry of Education, Beijing, China
- Key Lab of Hearing Impairment Prevention and Treatment of Beijing, China
| |
Collapse
|
19
|
Vorperian SK, DeFelice BC, Buonomo JA, Chinchinian HJ, Gray IJ, Yan J, Mach KE, La V, Lee TJ, Liao JC, Lafayette R, Loeb GB, Bertozzi CR, Quake SR. Multiomics characterization of cell type repertoires for urine liquid biopsies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.20.563226. [PMID: 37961398 PMCID: PMC10634682 DOI: 10.1101/2023.10.20.563226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Urine is assayed alongside blood in medicine, yet current clinical diagnostic tests utilize only a small fraction of its total biomolecular repertoire, potentially foregoing high-resolution insights into human health and disease. In this work, we characterized the joint landscapes of transcriptomic and metabolomic signals in human urine. We also compared the urine transcriptome to plasma cell-free RNA, identifying a distinct cell type repertoire and enrichment for metabolic signal. Untargeted metabolomic measurements identified a complementary set of pathways to the transcriptomic analysis. Our findings suggest that urine is a promising biofluid yielding prognostic and detailed insights for hard-to-biopsy tissues with low representation in the blood, offering promise for a new generation of liquid biopsies.
Collapse
|
20
|
Bittla P, Kaur S, Sojitra V, Zahra A, Hutchinson J, Folawemi O, Khan S. Exploring Circulating Tumor DNA (CtDNA) and Its Role in Early Detection of Cancer: A Systematic Review. Cureus 2023; 15:e45784. [PMID: 37745752 PMCID: PMC10516512 DOI: 10.7759/cureus.45784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/22/2023] [Indexed: 09/26/2023] Open
Abstract
There is a significant increase in the need for an efficient screening method that might identify cancer at an early stage and could improve patients' long-term survival due to the continued rise in cancer incidence and associated mortality. One such effort involved using circulating tumor DNA (ctDNA) as a rescue agent for a non-invasive blood test that may identify many tumors. A tumor marker called ctDNA is created by cells with the same DNA alterations. Due to its shorter half-life, it may be useful for both early cancer detection and real-time monitoring of tumor development, therapeutic response, and tumor outcomes. We obtained 156 papers from PUBMED using the MeSH approach in accordance with the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) criteria and ten articles from additional online resources. After removing articles with irrelevant titles and screening the abstract and full text of the articles that contained information unrelated to or not specific to the title query using inclusion and exclusion criteria, 18 out of 166 articles were chosen for the quality check. Fourteen medium to high-quality papers were chosen out of the 18 publications to be included in the study design. The reviewed literature showed no significant utility of ctDNA in detecting early-stage tumors of size less than 1 cm diameter. Still, the ideal screening test would require the assay to detect a size <5 mm tumor, which is nearly impossible with the current data. The sensitivity and specificity of the assay ranged from 69% to 98% and 99%, respectively. Furthermore, CancerSEEK achieves tumor origin localization in 83% of cases, while targeted error correction sequencing (TEC-Seq) assays demonstrate a cancer detection rate ranging from 59% to 71%, depending on the type of cancer. However, it could be of great value as a prognostic indicator, and the levels are associated with progression-free survival (PFS) and overall survival (OS) rates, wherein the positive detection of ctDNA is associated with worse OS compared to the tumors detected through standard procedures, with an odds ratio (OS) of 4.83. We conclude that ctDNA could be better applied in cancer patients for prognosis, disease progression monitoring, and treatment outcomes compared to its use in early cancer detection. Due to its specific feature of recognizing the tumor-related mutations, it could be implemented as a supplemental tool to assess the nature of the tumor, grade, and size of the tumor and for predicting the outcomes by pre-operative and post-operative evaluation of the tumor marker, ctDNA, and thereby estimating PFS and OS depending on the level of marker present. A vast amount of research is required in early detection to determine the sensitivity, specificity, false positive rates, and false negative rates in evaluating its true potential as a screening tool. Even if the test could detect the mutations, an extensive workup for the search of tumor is required as the assay could only detect but cannot localize the disease. Establishing the clinical validity and utility of ctDNA is imperative for its implementation in future clinical practice.
Collapse
Affiliation(s)
- Parikshit Bittla
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Simran Kaur
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Vani Sojitra
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Anam Zahra
- Surgery, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Jhenelle Hutchinson
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Oluwa Folawemi
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Safeera Khan
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| |
Collapse
|
21
|
Moufarrej MN, Quake SR. An inexpensive semi-automated sample processing pipeline for cell-free RNA extraction. Nat Protoc 2023; 18:2772-2793. [PMID: 37567931 DOI: 10.1038/s41596-023-00855-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 05/24/2023] [Indexed: 08/13/2023]
Abstract
Despite advances in automated liquid handling and microfluidics, preparing samples for RNA sequencing at scale generally requires expensive equipment, which is beyond the reach of many academic laboratories. Manual sample preparation remains a slow, expensive and error-prone process. Here, we describe a low-cost, semi-automated pipeline to extract cell-free RNA using one of two commercially available, inexpensive and open-source robotic systems: the Opentrons OT1.0 or OT2.0. Like many RNA isolation protocols, ours can be decomposed into three subparts: RNA extraction, DNA digestion and RNA cleaning and concentration. RT-qPCR data using a synthetic spike-in confirms comparable RNA quality to the gold standard, manual sample processing. The semi-automated pipeline also shows improvement in sample throughput (+12×), time spent (-11×), cost (-3×) and biohazardous waste produced (-4×) compared with its manual counterpart. This protocol enables cell-free RNA extraction from 96 samples simultaneously in 4.5 h; in practice, this dramatically improves the time to results, as we recently demonstrated. Importantly, any laboratory already has most of the parts required (manual pipette and corresponding tips and kits for RNA isolation, cleaning and concentration) to build a semi-automated sample processing pipeline of their own and would only need to purchase or three-dimensionally print a few extra parts (US$5.5 K-12 K in total). This pipeline is also generalizable for many nucleic acid extraction applications, thereby increasing the scale of studies, which can be performed in small research laboratories.
Collapse
Affiliation(s)
- Mira N Moufarrej
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- The Column Group, San Francisco, CA, USA
| | - Stephen R Quake
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Initiative, Redwood City, CA, USA.
| |
Collapse
|
22
|
Moufarrej MN, Bianchi DW, Shaw GM, Stevenson DK, Quake SR. Noninvasive Prenatal Testing Using Circulating DNA and RNA: Advances, Challenges, and Possibilities. Annu Rev Biomed Data Sci 2023; 6:397-418. [PMID: 37196360 PMCID: PMC10528197 DOI: 10.1146/annurev-biodatasci-020722-094144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Prenatal screening using sequencing of circulating cell-free DNA has transformed obstetric care over the past decade and significantly reduced the number of invasive diagnostic procedures like amniocentesis for genetic disorders. Nonetheless, emergency care remains the only option for complications like preeclampsia and preterm birth, two of the most prevalent obstetrical syndromes. Advances in noninvasive prenatal testing expand the scope of precision medicine in obstetric care. In this review, we discuss advances, challenges, and possibilities toward the goal of providing proactive, personalized prenatal care. The highlighted advances focus mainly on cell-free nucleic acids; however, we also review research that uses signals from metabolomics, proteomics, intact cells, and the microbiome. We discuss ethical challenges in providing care. Finally, we look to future possibilities, including redefining disease taxonomy and moving from biomarker correlation to biological causation.
Collapse
Affiliation(s)
| | - Diana W Bianchi
- Eunice Kennedy Shriver National Institute of Child Health and Human Development and Section on Prenatal Genomics and Fetal Therapy, Center for Precision Health Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Gary M Shaw
- Department of Pediatrics and March of Dimes Prematurity Research Center at Stanford University, Stanford University School of Medicine, Stanford, California, USA
| | - David K Stevenson
- Department of Pediatrics and March of Dimes Prematurity Research Center at Stanford University, Stanford University School of Medicine, Stanford, California, USA
| | - Stephen R Quake
- Department of Bioengineering and Department of Applied Physics, Stanford University, Stanford, California, USA
- Chan Zuckerberg Initiative, Redwood City, California, USA
| |
Collapse
|
23
|
Valantine HA. Applying Genomics to Unravel Health Disparities in Organ Transplantation: Paul I. Terasaki State-of-the-art Lecture; American Transplant Congress 2021. Transplantation 2023; 107:1258-1264. [PMID: 36584376 DOI: 10.1097/tp.0000000000004456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An extensive body of research about team science provides empirical evidence that diverse teams outperform homogenous teams in creating more innovative solutions to complex problems. At the core of diverse and inclusive teams is a rich diversity of perspectives, experiences, and backgrounds that invite new questions and broaden the scope of research. Diverse perspectives are especially relevant for biomedicine, which seeks to find solutions for challenging problems affecting the human condition. It is essential that diversity and inclusion in biomedicine is prioritized as a key driver of innovation, both through the people who conduct the research and the science itself. Key questions have been articulated as important drivers for funding research: (1) Who is doing the science and who is building the tools? (2) What science and technology is being done and how? and (3) Who has access to the knowledge and benefits of scientific innovation? I will briefly review the empirical evidence supporting diversity as a powerful enhancer of the quality and outputs of research and clinical care. I offer my own research as a case study of incorporating a framework of diversity, equity, and inclusion into research that uses new emerging genomic tools for earlier and more precise diagnosis of organ transplant rejection. I will demonstrate how these same tools hold great promise for accelerating the discovery of hitherto unexplored mechanisms that drive the poor outcomes for African ancestry organ transplant recipients, which in turn will identify new diagnostics and therapeutic targets that benefit transplant recipients across all ancestries.
Collapse
|
24
|
Gaitsch H, Franklin RJM, Reich DS. Cell-free DNA-based liquid biopsies in neurology. Brain 2023; 146:1758-1774. [PMID: 36408894 PMCID: PMC10151188 DOI: 10.1093/brain/awac438] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/26/2022] [Accepted: 11/10/2022] [Indexed: 11/22/2022] Open
Abstract
This article reviews recent developments in the application of cell-free DNA-based liquid biopsies to neurological diseases. Over the past few decades, an explosion of interest in the use of accessible biofluids to identify and track molecular disease has revolutionized the fields of oncology, prenatal medicine and others. More recently, technological advances in signal detection have allowed for informative analysis of biofluids that are typically sparse in cells and other circulating components, such as CSF. In parallel, advancements in epigenetic profiling have allowed for novel applications of liquid biopsies to diseases without characteristic mutational profiles, including many degenerative, autoimmune, inflammatory, ischaemic and infectious disorders. These events have paved the way for a wide array of neurological conditions to benefit from enhanced diagnostic, prognostic, and treatment abilities through the use of liquid biomarkers: a 'liquid biopsy' approach. This review includes an overview of types of liquid biopsy targets with a focus on circulating cell-free DNA, methods used to identify and probe potential liquid biomarkers, and recent applications of such biomarkers to a variety of complex neurological conditions including CNS tumours, stroke, traumatic brain injury, Alzheimer's disease, epilepsy, multiple sclerosis and neuroinfectious disease. Finally, the challenges of translating liquid biopsies to use in clinical neurology settings-and the opportunities for improvement in disease management that such translation may provide-are discussed.
Collapse
Affiliation(s)
- Hallie Gaitsch
- NIH-Oxford-Cambridge Scholars Program, Wellcome-MRC Cambridge Stem Cell Institute and Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 1TN, UK
| | | | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
25
|
Fisher IF, Shemer R, Dor Y. Epigenetic liquid biopsies: a novel putative biomarker in immunology and inflammation. Trends Immunol 2023; 44:356-364. [PMID: 37012121 DOI: 10.1016/j.it.2023.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 04/03/2023]
Abstract
Immune and inflammatory processes occurring within tissues are often undetectable by blood cell counts, standard circulating biomarkers, or imaging, representing an unmet biomedical need. Here, we outline recent advances indicating that liquid biopsies can broadly inform human immune system dynamics. Nucleosome-size fragments of cell-free DNA (cfDNA) released from dying cells into blood contain rich epigenetic information such as methylation, fragmentation, and histone mark patterns. This information allows to infer the cfDNA cell of origin, as well as pre-cell death gene expression patterns. We propose that the analysis of epigenetic features of immune cell-derived cfDNA can shed light on immune cell turnover dynamics in healthy people, and inform the study and diagnosis of cancer, local inflammation, infectious or autoimmune diseases, as well as responses to vaccination.
Collapse
|
26
|
Quake SR. Prenatal Testing for Non-Medical Traits. THE AMERICAN JOURNAL OF BIOETHICS : AJOB 2023; 23:1-2. [PMID: 36919539 DOI: 10.1080/15265161.2023.2179776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
|
27
|
Cheng LY, Dai P, Wu LR, Patel AA, Zhang DY. Direct capture and sequencing reveal ultra-short single-stranded DNA in biofluids. iScience 2022; 25:105046. [PMID: 36147958 PMCID: PMC9486625 DOI: 10.1016/j.isci.2022.105046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 06/20/2022] [Accepted: 08/26/2022] [Indexed: 11/29/2022] Open
Abstract
Cell-free DNA (cfDNA) has become the predominant analyte of liquid biopsy; however, recent studies suggest the presence of subnucleosomal-sized DNA fragments in circulation that are likely single-stranded. Here, we report a method called direct capture and sequencing (DCS) tailored to recover such fragments from biofluids by directly capturing them using short degenerate probes followed by single strand-based library preparation and next-generation sequencing. DCS revealed a new DNA population in biofluids, named ultrashort single-stranded DNA (ussDNA). Evaluation of the size distribution and abundance of ussDNA manifested generality of its presence in humans, animal species, and plants. In humans, red blood cells were found to contain abundant ussDNA; plasma-derived ussDNA exhibited modal size at 50 nt. This work reports the presence of an understudied DNA population in circulation, and yet more work is awaiting to study its generation mechanism, tissue of origin, disease implications, etc.
Collapse
Affiliation(s)
- Lauren Y Cheng
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Peng Dai
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Lucia R Wu
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Abhijit A Patel
- Department of Therapeutic Radiology, Yale University, New Haven, CT, USA
| | - David Yu Zhang
- Department of Bioengineering, Rice University, Houston, TX, USA.,Systems, Synthetic, and Physical Biology, Rice University, Houston, TX, USA
| |
Collapse
|
28
|
Nejabati HR, Roshangar L, Nouri M. Uterosomes: The lost ring of telegony? PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 174:55-61. [PMID: 35843387 DOI: 10.1016/j.pbiomolbio.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/14/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Telegony refers to the appearance of some characteristics of the female's previously mated male in her subsequent offspring by another male. According to evidence, telegony may occur either through the infiltration of sperm into the somatic tissues of the female genital tract or the presence of fetal genes in the mother's blood. It is highlighted that sperm penetrates into the mucosa of the uterine and possibly alters the genetic structure, affecting the embryo and enduring from one pregnancy to the next, which may be one of the potential mechanisms of telegony. Uterine fluid, uterine gland-derived histotroph, supplies key nutrients for successful embryo implantation and it is important during the first trimester, especially, because of its susceptibility to maternal states. The presence of EVs in uterine fluid (uterosomes) was reported in mice, sheep, and humans, including a wide range of biomolecules, such as proteins, and non-coding RNAs. In this review article, we presented a new idea to explain telegony. Based on our idea, after the previous male sperm entry into the female reproductive system, those sperm which do not participate in fertilization penetrate into the somatic cells of the uterus and store their genetic/epigenetic information there. The sperm of the next partner reaches a location in the female reproductive canal where it exchanges information with the uterosomes and obtains the proteins and non-coding RNAs required for fertilization, development, and implantation.
Collapse
Affiliation(s)
- Hamid Reza Nejabati
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Leila Roshangar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Nouri
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences Tabriz, Iran.
| |
Collapse
|
29
|
Wu W, Zhou X, Jiang Z, Zhang D, Yu F, Zhang L, Wang X, Chen S, Xu C. Noninvasive fetal genotyping of single nucleotide variants and linkage analysis for prenatal diagnosis of monogenic disorders. Hum Genomics 2022; 16:28. [PMID: 35897115 PMCID: PMC9327225 DOI: 10.1186/s40246-022-00400-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 07/04/2022] [Indexed: 11/26/2022] Open
Abstract
Background High-cost, time-consuming and complex processes of several current approaches limit the use of noninvasive prenatal diagnosis (NIPD) for monogenic disorders in clinical application. Thus, a more cost-effective and easily implementable approach is required. Methods We established a low-cost and convenient test to noninvasively deduce fetal genotypes of the mutation and single nucleotide polymorphisms (SNPs) loci by means of targeted amplification combined with deep sequencing of maternal genomic and plasma DNA. The sequential probability ratio test was performed to detect the allelic imbalance in maternal plasma. This method can be employed to directly examine familial pathogenic mutations in the fetal genome, as well as infer the inheritance of parental haplotypes through a group of selected SNPs linked to the pathogenic mutation. Results The fetal mutations in 17 families with different types of monogenic disorders including hemophilia A, von Willebrand disease type 3, Duchenne muscular dystrophy, hyper-IgM type 1, glutaric acidemia type I, Nagashima-type palmoplantar keratosis, and familial exudative vitreoretinopathy were identified in the study. The mutations included various forms: point mutations, gene inversion, deletions/insertions and duplication. The results of 12 families were verified by sequencing of amniotic fluid samples, the accuracy of the approach in fetal genotyping at the mutation and SNPs loci was 98.85% (172/174 loci), and the no-call rate was 28.98% (71/245 loci). The overall accuracy was 12/12 (100%). Moreover, the approach was successfully applied in plasma samples with a fetal fraction as low as 2.3%. Conclusions We have shown in this study that the approach is a cost-effective, less time consuming and accurate method for NIPD of monogenic disorders. Supplementary Information The online version contains supplementary material available at 10.1186/s40246-022-00400-4.
Collapse
Affiliation(s)
- Wenman Wu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.,Collaborative Innovation Center of Hematology, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Xuanyou Zhou
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, People's Republic of China.,International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Embryo Original Disorders, Shanghai, People's Republic of China
| | - Zhengwen Jiang
- Genesky Diagnostics (Suzhou) Inc., 218 Xinghu St, Suzhou, Jiangsu, People's Republic of China
| | - Dazhi Zhang
- Genesky Diagnostics (Suzhou) Inc., 218 Xinghu St, Suzhou, Jiangsu, People's Republic of China
| | - Feng Yu
- Genesky Diagnostics (Suzhou) Inc., 218 Xinghu St, Suzhou, Jiangsu, People's Republic of China
| | - Lanlan Zhang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Xuefeng Wang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China. .,Collaborative Innovation Center of Hematology, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China. .,Shanghai Academy of Experimental Medicine, Shanghai, People's Republic of China.
| | - Songchang Chen
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, People's Republic of China. .,International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China. .,Shanghai Key Laboratory of Embryo Original Disorders, Shanghai, People's Republic of China. .,Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China.
| | - Chenming Xu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, People's Republic of China. .,International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China. .,Shanghai Key Laboratory of Embryo Original Disorders, Shanghai, People's Republic of China. .,Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China.
| |
Collapse
|
30
|
Genovese G, Mello CJ, Loh PR, Handsaker RE, Kashin S, Whelan CW, Bayer-Zwirello LA, McCarroll SA. Chromosomal phase improves aneuploidy detection in non-invasive prenatal testing at low fetal DNA fractions. Sci Rep 2022; 12:12025. [PMID: 35835769 PMCID: PMC9283487 DOI: 10.1038/s41598-022-14049-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/31/2022] [Indexed: 11/09/2022] Open
Abstract
Non-invasive prenatal testing (NIPT) to detect fetal aneuploidy by sequencing the cell-free DNA (cfDNA) in maternal plasma is being broadly adopted. To detect fetal aneuploidies from maternal plasma, where fetal DNA is mixed with far-larger amounts of maternal DNA, NIPT requires a minimum fraction of the circulating cfDNA to be of placental origin, a level which is usually attained beginning at 10 weeks gestational age. We present an approach that leverages the arrangement of alleles along homologous chromosomes—also known as chromosomal phase—to make NIPT analyses more conclusive. We validate our approach with in silico simulations, then re-analyze data from a pregnant mother who, due to a fetal DNA fraction of 3.4%, received an inconclusive aneuploidy determination through NIPT. We find that the presence of a trisomy 18 fetus can be conclusively inferred from the patient’s same molecular data when chromosomal phase is incorporated into the analysis. Key to the effectiveness of our approach is the ability of homologous chromosomes to act as natural controls for each other and the ability of chromosomal phase to integrate subtle quantitative signals across very many sequence variants. These results show that chromosomal phase increases the sensitivity of a common laboratory test, an idea that could also advance cfDNA analyses for cancer detection.
Collapse
Affiliation(s)
- Giulio Genovese
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA. .,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA. .,Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
| | - Curtis J Mello
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.,Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Po-Ru Loh
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.,Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Robert E Handsaker
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.,Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Seva Kashin
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.,Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Christopher W Whelan
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.,Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Lucy A Bayer-Zwirello
- Steward St. Elizabeth's Medical Center, Tufts University School of Medicine, Boston, MA, 02135, USA
| | - Steven A McCarroll
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.,Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
31
|
Fox-Fisher I, Piyanzin S, Briller M, Oiknine-Djian E, Alfi O, Ben-Ami R, Peretz A, Neiman D, Ochana BL, Fridlich O, Drawshy Z, Klochendler A, Magenheim J, Share D, Avrahami R, Ribak Y, Talmon A, Rubin L, Milman N, Segev M, Feldman E, Tal Y, Shen-Orr SS, Glaser B, Shemer R, Wolf D, Dor Y. B cell-derived cfDNA after primary BNT162b2 mRNA vaccination anticipates memory B cells and SARS-CoV-2 neutralizing antibodies. MED 2022; 3:468-480.e5. [PMID: 35716665 PMCID: PMC9117261 DOI: 10.1016/j.medj.2022.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/17/2022] [Accepted: 05/12/2022] [Indexed: 10/31/2022]
Abstract
BACKGROUND Much remains unknown regarding the response of the immune system to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) vaccination. METHODS We employed circulating cell-free DNA (cfDNA) to assess the turnover of specific immune cell types following administration of the Pfizer/BioNTech vaccine. FINDINGS The levels of B cell cfDNA after the primary dose correlated with development of neutralizing antibodies and memory B cells after the booster, revealing a link between early B cell turnover-potentially reflecting affinity maturation-and later development of effective humoral response. We also observed co-elevation of B cell, T cell, and monocyte cfDNA after the booster, underscoring the involvement of innate immune cell turnover in the development of humoral and cellular adaptive immunity. Actual cell counts remained largely stable following vaccination, other than a previously demonstrated temporary reduction in neutrophil and lymphocyte counts. CONCLUSIONS Immune cfDNA dynamics reveal the crucial role of the primary SARS-CoV-2 vaccine in shaping responses of the immune system following the booster vaccine. FUNDING This work was supported by a generous gift from Shlomo Kramer. Supported by grants from Human Islet Research Network (HIRN UC4DK116274 and UC4DK104216 to R.S. and Y.D.), Ernest and Bonnie Beutler Research Program of Excellence in Genomic Medicine, The Alex U Soyka Pancreatic Cancer Fund, The Israel Science Foundation, the Waldholtz/Pakula family, the Robert M. and Marilyn Sternberg Family Charitable Foundation, the Helmsley Charitable Trust, Grail, and the DON Foundation (to Y.D.). Y.D. holds the Walter and Greta Stiel Chair and Research Grant in Heart Studies. I.F.-F. received a fellowship from the Glassman Hebrew University Diabetes Center.
Collapse
Affiliation(s)
- Ilana Fox-Fisher
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Sheina Piyanzin
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Mayan Briller
- Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Esther Oiknine-Djian
- Clinical Virology Unit, Department of Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Or Alfi
- Clinical Virology Unit, Department of Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Roni Ben-Ami
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Ayelet Peretz
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Daniel Neiman
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Bracha-Lea Ochana
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Ori Fridlich
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Zeina Drawshy
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Agnes Klochendler
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Judith Magenheim
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Danielle Share
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Ran Avrahami
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Yaarit Ribak
- Allergy and Clinical Immunology Unit, Department of Medicine, Jerusalem, Israel
| | - Aviv Talmon
- Allergy and Clinical Immunology Unit, Department of Medicine, Jerusalem, Israel
| | - Limor Rubin
- Allergy and Clinical Immunology Unit, Department of Medicine, Jerusalem, Israel
| | - Neta Milman
- Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Meital Segev
- Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Erik Feldman
- Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Yuval Tal
- Allergy and Clinical Immunology Unit, Department of Medicine, Jerusalem, Israel
| | - Shai S Shen-Orr
- Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Benjamin Glaser
- Endocrinology and Metabolism Service, Hadassah Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ruth Shemer
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Dana Wolf
- Clinical Virology Unit, Department of Clinical Microbiology and Infectious Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Yuval Dor
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| |
Collapse
|
32
|
Li J, Lu J, Su F, Yang J, Ju J, Lin Y, Xu J, Qi Y, Hou Y, Wu J, He W, Yang Z, Wu Y, Tang Z, Huang Y, Zhang G, Yang Y, Long Z, Cheng X, Liu P, Xia J, Zhang Y, Wang Y, Chen F, Zhang J, Zhao L, Jin X, Gao Y, Yin A. Non-Invasive Prenatal Diagnosis of Monogenic Disorders Through Bayesian- and Haplotype-Based Prediction of Fetal Genotype. Front Genet 2022; 13:911369. [PMID: 35846127 PMCID: PMC9283829 DOI: 10.3389/fgene.2022.911369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/13/2022] [Indexed: 12/02/2022] Open
Abstract
Background: Non-invasive prenatal diagnosis (NIPD) can identify monogenic diseases early during pregnancy with negligible risk to fetus or mother, but the haplotyping methods involved sometimes cannot infer parental inheritance at heterozygous maternal or paternal loci or at loci for which haplotype or genome phasing data are missing. This study was performed to establish a method that can effectively recover the whole fetal genome using maternal plasma cell-free DNA (cfDNA) and parental genomic DNA sequencing data, and validate the method’s effectiveness in noninvasively detecting single nucleotide variations (SNVs), insertions and deletions (indels). Methods: A Bayesian model was developed to determine fetal genotypes using the plasma cfDNA and parental genomic DNA from five couples of healthy pregnancy. The Bayesian model was further integrated with a haplotype-based method to improve the inference accuracy of fetal genome and prediction outcomes of fetal genotypes. Five pregnancies with high risks of monogenic diseases were used to validate the effectiveness of this haplotype-assisted Bayesian approach for noninvasively detecting indels and pathogenic SNVs in fetus. Results: Analysis of healthy fetuses led to the following accuracies of prediction: maternal homozygous and paternal heterozygous loci, 96.2 ± 5.8%; maternal heterozygous and paternal homozygous loci, 96.2 ± 1.4%; and maternal heterozygous and paternal heterozygous loci, 87.2 ± 4.7%. The respective accuracies of predicting insertions and deletions at these types of loci were 94.6 ± 1.9%, 80.2 ± 4.3%, and 79.3 ± 3.3%. This approach detected pathogenic single nucleotide variations and deletions with an accuracy of 87.5% in five fetuses with monogenic diseases. Conclusions: This approach was more accurate than methods based only on Bayesian inference. Our method may pave the way to accurate and reliable NIPD.
Collapse
Affiliation(s)
- Jia Li
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
- Hebei Industrial Technology Research Institute of Genomics in Maternal and Child Health, Shijiazhuang BGI Genomics, Shijiazhuang, China
| | - Jiaqi Lu
- Medical Genetics Centre, Guangdong Women and Children’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Fengxia Su
- BGI-Shenzhen, Shenzhen, China
- Shenzhen Engineering Laboratory for Birth Defects Screening, Shenzhen, China
| | - Jiexia Yang
- Prenatal Diagnosis Centre, Guangdong Women and Children’s Hospital, Guangzhou, China
- Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children’s Hospital, Guangzhou, China
| | - Jia Ju
- BGI-Shenzhen, Shenzhen, China
| | - Yu Lin
- BGI-Shenzhen, Shenzhen, China
| | | | - Yiming Qi
- Prenatal Diagnosis Centre, Guangdong Women and Children’s Hospital, Guangzhou, China
- Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children’s Hospital, Guangzhou, China
| | - Yaping Hou
- Prenatal Diagnosis Centre, Guangdong Women and Children’s Hospital, Guangzhou, China
- Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children’s Hospital, Guangzhou, China
| | - Jing Wu
- Prenatal Diagnosis Centre, Guangdong Women and Children’s Hospital, Guangzhou, China
- Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children’s Hospital, Guangzhou, China
| | - Wei He
- Prenatal Diagnosis Centre, Guangdong Women and Children’s Hospital, Guangzhou, China
- Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children’s Hospital, Guangzhou, China
| | - Zhengtao Yang
- BGI-Shenzhen, Shenzhen, China
- College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, China
| | - Yujing Wu
- BGI-Shenzhen, Shenzhen, China
- Shenzhen Engineering Laboratory for Birth Defects Screening, Shenzhen, China
| | - Zhuangyuan Tang
- BGI-Shenzhen, Shenzhen, China
- Shenzhen Engineering Laboratory for Birth Defects Screening, Shenzhen, China
| | - Yingping Huang
- BGI-Shenzhen, Shenzhen, China
- Shenzhen Engineering Laboratory for Birth Defects Screening, Shenzhen, China
| | - Guohong Zhang
- BGI-Shenzhen, Shenzhen, China
- Shenzhen Engineering Laboratory for Birth Defects Screening, Shenzhen, China
| | - Ying Yang
- BGI-Shenzhen, Shenzhen, China
- Shenzhen Engineering Laboratory for Birth Defects Screening, Shenzhen, China
| | | | | | | | - Jun Xia
- BGI-Shenzhen, Shenzhen, China
| | | | | | | | - Jianguo Zhang
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
- Hebei Industrial Technology Research Institute of Genomics in Maternal and Child Health, Shijiazhuang BGI Genomics, Shijiazhuang, China
| | - Lijian Zhao
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
- Hebei Industrial Technology Research Institute of Genomics in Maternal and Child Health, Shijiazhuang BGI Genomics, Shijiazhuang, China
- College of Medical Technology, Hebei Medical University, Shijiazhuang, China
- *Correspondence: Lijian Zhao, ; Xin Jin, ; Ya Gao, ; Aihua Yin,
| | - Xin Jin
- BGI-Shenzhen, Shenzhen, China
- *Correspondence: Lijian Zhao, ; Xin Jin, ; Ya Gao, ; Aihua Yin,
| | - Ya Gao
- BGI-Shenzhen, Shenzhen, China
- Shenzhen Engineering Laboratory for Birth Defects Screening, Shenzhen, China
- *Correspondence: Lijian Zhao, ; Xin Jin, ; Ya Gao, ; Aihua Yin,
| | - Aihua Yin
- Prenatal Diagnosis Centre, Guangdong Women and Children’s Hospital, Guangzhou, China
- Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children’s Hospital, Guangzhou, China
- *Correspondence: Lijian Zhao, ; Xin Jin, ; Ya Gao, ; Aihua Yin,
| |
Collapse
|
33
|
Sanford Kobayashi EF, Dimmock DP. Better and faster is cheaper. Hum Mutat 2022; 43:1495-1506. [PMID: 35723630 DOI: 10.1002/humu.24422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/23/2022] [Accepted: 06/08/2022] [Indexed: 11/09/2022]
Abstract
The rapid pace of advancement in genomic sequencing technology has recently reached a new milestone, with a record-setting time to molecular diagnosis of a mere 8 h. The catalyst behind this achievement is the accumulation of evidence indicating that quicker results more often make an impact on patient care and lead to healthcare cost savings. Herein, we review the diagnostic and clinical utility of rapid whole genome and rapid whole exome sequencing, the associated reduction in healthcare costs, and the relationship between these outcome measures and time-to-diagnosis.
Collapse
Affiliation(s)
- Erica F Sanford Kobayashi
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, California, USA
| | - David P Dimmock
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, California, USA
| |
Collapse
|
34
|
Abstract
Cancer cells shed naked DNA molecules into the circulation. This circulating tumor DNA (ctDNA) has become the predominant analyte for liquid biopsies to understand the mutational landscape of cancer. Coupled with next-generation sequencing, ctDNA can serve as an alternative substrate to tumor tissues for mutation detection and companion diagnostic purposes. In fact, recent advances in precision medicine have rapidly enabled the use of ctDNA to guide treatment decisions for predicting response and resistance to targeted therapies and immunotherapies. An advantage of using ctDNA over conventional tissue biopsies is the relatively noninvasive approach of obtaining peripheral blood, allowing for simple repeated and serial assessments. Most current clinical practice using ctDNA has endeavored to identify druggable and resistance mutations for guiding systemic therapy decisions, albeit mostly in metastatic disease. However, newer research is evaluating potential for ctDNA as a marker of minimal residual disease in the curative setting and as a useful screening tool to detect cancer in the general population. Here we review the history of ctDNA and liquid biopsies, technologies to detect ctDNA, and some of the current challenges and limitations in using ctDNA as a marker of minimal residual disease and as a general blood-based cancer screening tool. We also discuss the need to develop rigorous clinical studies to prove the clinical utility of ctDNA for future applications in oncology.
Collapse
|
35
|
Esfahani MS, Hamilton EG, Mehrmohamadi M, Nabet BY, Alig SK, King DA, Steen CB, Macaulay CW, Schultz A, Nesselbush MC, Soo J, Schroers-Martin JG, Chen B, Binkley MS, Stehr H, Chabon JJ, Sworder BJ, Hui ABY, Frank MJ, Moding EJ, Liu CL, Newman AM, Isbell JM, Rudin CM, Li BT, Kurtz DM, Diehn M, Alizadeh AA. Inferring gene expression from cell-free DNA fragmentation profiles. Nat Biotechnol 2022; 40:585-597. [PMID: 35361996 PMCID: PMC9337986 DOI: 10.1038/s41587-022-01222-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 01/14/2022] [Indexed: 02/07/2023]
Abstract
Profiling of circulating tumor DNA (ctDNA) in the bloodstream shows promise for noninvasive cancer detection. Chromatin fragmentation features have previously been explored to infer gene expression profiles from cell-free DNA (cfDNA), but current fragmentomic methods require high concentrations of tumor-derived DNA and provide limited resolution. Here we describe promoter fragmentation entropy as an epigenomic cfDNA feature that predicts RNA expression levels at individual genes. We developed 'epigenetic expression inference from cell-free DNA-sequencing' (EPIC-seq), a method that uses targeted sequencing of promoters of genes of interest. Profiling 329 blood samples from 201 patients with cancer and 87 healthy adults, we demonstrate classification of subtypes of lung carcinoma and diffuse large B cell lymphoma. Applying EPIC-seq to serial blood samples from patients treated with PD-(L)1 immune-checkpoint inhibitors, we show that gene expression profiles inferred by EPIC-seq are correlated with clinical response. Our results indicate that EPIC-seq could enable noninvasive, high-throughput tissue-of-origin characterization with diagnostic, prognostic and therapeutic potential.
Collapse
Affiliation(s)
- Mohammad Shahrokh Esfahani
- Divisions of Oncology and of Hematology, Department of Medicine, Stanford School of Medicine, Stanford, CA, USA.,Department of Radiation Oncology, Stanford School of Medicine, Stanford, CA, USA.,Stanford Cancer Institute, Stanford School of Medicine, Stanford, CA, USA
| | - Emily G. Hamilton
- Program in Cancer Biology, Stanford School of Medicine, Stanford, CA, USA
| | - Mahya Mehrmohamadi
- Divisions of Oncology and of Hematology, Department of Medicine, Stanford School of Medicine, Stanford, CA, USA.,Department of Radiation Oncology, Stanford School of Medicine, Stanford, CA, USA
| | - Barzin Y. Nabet
- Department of Radiation Oncology, Stanford School of Medicine, Stanford, CA, USA.,Stanford Cancer Institute, Stanford School of Medicine, Stanford, CA, USA
| | - Stefan K. Alig
- Divisions of Oncology and of Hematology, Department of Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - Daniel A. King
- Divisions of Oncology and of Hematology, Department of Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - Chloé B. Steen
- Divisions of Oncology and of Hematology, Department of Medicine, Stanford School of Medicine, Stanford, CA, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, USA.,Department of Biomedical Informatics, Stanford School of Medicine, Stanford, CA, USA
| | - Charles W. Macaulay
- Divisions of Oncology and of Hematology, Department of Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - Andre Schultz
- Stanford Cancer Institute, Stanford School of Medicine, Stanford, CA, USA
| | | | - Joanne Soo
- Divisions of Oncology and of Hematology, Department of Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - Joseph G. Schroers-Martin
- Divisions of Oncology and of Hematology, Department of Medicine, Stanford School of Medicine, Stanford, CA, USA.,Stanford Cancer Institute, Stanford School of Medicine, Stanford, CA, USA
| | - Binbin Chen
- Divisions of Oncology and of Hematology, Department of Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - Michael S. Binkley
- Department of Radiation Oncology, Stanford School of Medicine, Stanford, CA, USA
| | - Henning Stehr
- Stanford Cancer Institute, Stanford School of Medicine, Stanford, CA, USA
| | - Jacob J. Chabon
- Department of Radiation Oncology, Stanford School of Medicine, Stanford, CA, USA
| | - Brian J. Sworder
- Divisions of Oncology and of Hematology, Department of Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - Angela B-Y Hui
- Department of Radiation Oncology, Stanford School of Medicine, Stanford, CA, USA
| | - Matthew J. Frank
- Division of Blood and Marrow Transplantation and Cellular Therapy, Department of Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - Everett J. Moding
- Department of Radiation Oncology, Stanford School of Medicine, Stanford, CA, USA
| | - Chih Long Liu
- Divisions of Oncology and of Hematology, Department of Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - Aaron M. Newman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, USA.,Department of Biomedical Informatics, Stanford School of Medicine, Stanford, CA, USA
| | - James M. Isbell
- Thoracic Surgery Service, Memorial Sloan Kettering Cancer Center and Weill Cornell Medicine, New York, NY, USA
| | - Charles M. Rudin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Bob T. Li
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David M. Kurtz
- Divisions of Oncology and of Hematology, Department of Medicine, Stanford School of Medicine, Stanford, CA, USA.,Stanford Cancer Institute, Stanford School of Medicine, Stanford, CA, USA
| | - Maximilian Diehn
- Department of Radiation Oncology, Stanford School of Medicine, Stanford, CA, USA.,Stanford Cancer Institute, Stanford School of Medicine, Stanford, CA, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, USA.,Correspondence and requests for materials should be addressed to Maximilian Diehn or Ash A. Alizadeh, ;
| | - Ash A. Alizadeh
- Divisions of Oncology and of Hematology, Department of Medicine, Stanford School of Medicine, Stanford, CA, USA.,Stanford Cancer Institute, Stanford School of Medicine, Stanford, CA, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford, CA, USA.,Correspondence and requests for materials should be addressed to Maximilian Diehn or Ash A. Alizadeh, ;
| |
Collapse
|
36
|
Wang Y, Li S, Wu D, Yan H. Title: Noninvasive prenatal testing of hereditary colorectal cancer syndromes using cell-free DNA in maternal plasma. Prenat Diagn 2022; 42:557-566. [PMID: 35343616 DOI: 10.1002/pd.6137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 11/07/2022]
Abstract
OBJECTIVE This study aimed to establish a practical protocol for early noninvasive prenatal testing (NIPT) for fetuses at risk of Peutz-Jeghers syndrome (PJS) or familial adenomatous polyposis (FAP), two classical types of hereditary colorectal cancer syndromes, for risk evaluation and whole-life monitoring. METHOD Target enrichment was performed using hybridization probes coordinating the STK11 gene region and APC gene region, with 1,458 highly heterozygous SNPs included. Semitarget amplification random sequencing was used for large fragment deletion detection. For relative haplotype dosage (RHDO) analysis, haplotype construction was performed by SHAPEIT software, the CBS algorithm was used for recombination event calculation, and Bayes factor was used for the determination of whether the fetus was affected. RESULTS Haplotypes were successfully constructed in the nine recruited families with different pedigree characteristics, and the results for the RHDO analysis were consistent with the amniocentesis sampling detection results. The cell-free fetal DNA fraction can be detected as low as 2% in maternal plasma. CONCLUSION This is the first NIPT assay on hereditary colorectal cancer syndromes based upon RHDO analysis. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yao Wang
- Center for Reproductive Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Suqing Li
- Celula Medical Technology Co., Ltd. Chengdu, Chengdu, China
| | - Di Wu
- Celula Medical Technology Co., Ltd. Chengdu, Chengdu, China
| | - Hongli Yan
- Center for Reproductive Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
37
|
Martins-Ferreira R, Leal BG, Costa PP. The Potential of Circulating Cell-Free DNA Methylation as an Epilepsy Biomarker. Front Cell Neurosci 2022; 16:852151. [PMID: 35401115 PMCID: PMC8987989 DOI: 10.3389/fncel.2022.852151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/24/2022] [Indexed: 12/03/2022] Open
Abstract
Circulating cell-free DNA (cfDNA) are highly degraded DNA fragments shed into the bloodstream. Apoptosis is likely to be the main source of cfDNA due to the matching sizes of cfDNA and apoptotic DNA cleavage fragments. The study of cfDNA in liquid biopsies has served clinical research greatly. Genetic analysis of these circulating fragments has been used in non-invasive prenatal testing, detection of graft rejection in organ transplants, and cancer detection and monitoring. cfDNA sequencing is, however, of limited value in settings in which genetic association is not well-established, such as most neurodegenerative diseases.Recent studies have taken advantage of the cell-type specificity of DNA methylation to determine the tissue of origin, thus detecting ongoing cell death taking place in specific body compartments. Such an approach is yet to be developed in the context of epilepsy research. In this article, we review the different approaches that have been used to monitor cell-type specific death through DNA methylation analysis, and recent data detecting neuronal death in neuropathological settings. We focus on the potential relevance of these tools in focal epilepsies, like Mesial Temporal Lobe Epilepsy with Hippocampal Sclerosis (MTLE-HS), characterized by severe neuronal loss. We speculate on the potential relevance of cfDNA methylation screening for the detection of neuronal cell death in individuals with high risk of epileptogenesis that would benefit from early diagnosis and consequent early treatment.
Collapse
Affiliation(s)
- Ricardo Martins-Ferreira
- Epigenetics and Immune Disease Group, Josep Carreras Research Institute (IJC), Barcelona, Spain
- Immunogenetics Lab, Molecular Pathology and Immunology, Instituto de Ciências Biomédicas Abel Salazar—Universidade do Porto (ICBAS-UPorto), Porto, Portugal
- Autoimmunity and Neuroscience Group, Unit for Multidisciplinary Research in Biomedicine (UMIB), ICBAS-UPorto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| | - Bárbara Guerra Leal
- Immunogenetics Lab, Molecular Pathology and Immunology, Instituto de Ciências Biomédicas Abel Salazar—Universidade do Porto (ICBAS-UPorto), Porto, Portugal
- Autoimmunity and Neuroscience Group, Unit for Multidisciplinary Research in Biomedicine (UMIB), ICBAS-UPorto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
- *Correspondence: Bárbara Guerra Leal
| | - Paulo Pinho Costa
- Immunogenetics Lab, Molecular Pathology and Immunology, Instituto de Ciências Biomédicas Abel Salazar—Universidade do Porto (ICBAS-UPorto), Porto, Portugal
- Autoimmunity and Neuroscience Group, Unit for Multidisciplinary Research in Biomedicine (UMIB), ICBAS-UPorto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
- Instituto Nacional de Saúde Dr. Ricardo Jorge, Department of Human Genetics, Porto, Portugal
| |
Collapse
|
38
|
Sadeghi S, Rahaie M, Ostad-Hasanzadeh B. Nanostructures in non-invasive prenatal genetic screening. Biomed Eng Lett 2022; 12:3-18. [PMID: 35186357 PMCID: PMC8825889 DOI: 10.1007/s13534-021-00208-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/22/2021] [Accepted: 10/02/2021] [Indexed: 11/24/2022] Open
Abstract
Prenatal screening is an important issue during pregnancy to ensure fetal and maternal health, as well as preventing the birth of a defective fetus and further problems such as extra costs for the family and society. The methods for the screening have progressed to non-invasive approaches over the recent years. Limitations of common standard screening tests, including invasive sampling, high risk of abortion and a big delay in result preparation have led to the introduction of new rapid and non-invasive approaches for screening. Non-invasive prenatal screening includes a wide range of procedures, including fetal cell-free DNA analysis, proteome, RNAs and other fetal biomarkers in maternal serum. These biomarkers require less invasive sampling than usual methods such as chorionic villus sampling, amniocentesis or cordocentesis. Advanced strategies including the development of nanobiosensors and the use of special nanoparticles have provided optimization and development of NIPS tests, which leads to more accurate, specific and sensitive screening tests, rapid and more reliable results and low cost, as well. This review discusses the specifications and limitations of current non-invasive prenatal screening tests and introduces a novel collection of detection methods reported studies on nanoparticles' aided detection. It can open a new prospect for further studies and effective investigations in prenatal screening field.
Collapse
Affiliation(s)
- Samira Sadeghi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, 14399-57131 Tehran, Iran
| | - Mahdi Rahaie
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, 14399-57131 Tehran, Iran
| | - Bita Ostad-Hasanzadeh
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, 14399-57131 Tehran, Iran
| |
Collapse
|
39
|
Kong L, Li S, Zhao Z, Feng J, Chen G, Liu L, Tang W, Li S, Li F, Han X, Wu D, Zhang H, Sun L, Kong X. Haplotype-Based Noninvasive Prenatal Diagnosis of 21 Families With Duchenne Muscular Dystrophy: Real-World Clinical Data in China. Front Genet 2022; 12:791856. [PMID: 34970304 PMCID: PMC8712857 DOI: 10.3389/fgene.2021.791856] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 11/18/2021] [Indexed: 11/13/2022] Open
Abstract
Noninvasive prenatal diagnosis (NIPD) of single-gene disorders has recently become the focus of clinical laboratories. However, reports on the clinical application of NIPD of Duchenne muscular dystrophy (DMD) are limited. This study aimed to evaluate the detection performance of haplotype-based NIPD of DMD in a real clinical environment. Twenty-one DMD families at 7-12 weeks of gestation were prospectively recruited. DNA libraries of cell-free DNA from the pregnant and genomic DNA from family members were captured using a custom assay for the enrichment of DMD gene exons and spanning single-nucleotide polymorphisms, followed by next-generation sequencing. Parental haplotype phasing was based on family linkage analysis, and fetal genotyping was inferred using the Bayes factor through target maternal plasma sequencing. Finally, the entire experimental process was promoted in the local clinical laboratory. We recruited 13 complete families, 6 families without paternal samples, and 2 families without probands in which daughter samples were collected. Two different maternal haplotypes were constructed based on family members in all 21 pedigrees at as early as 7 gestational weeks. Among the included families, the fetal genotypes of 20 families were identified at the first blood collection, and a second blood collection was performed for another family due to low fetal concentration. The NIPD result of each family was reported within 1 week. The fetal fraction in maternal cfDNA ranged from 1.87 to 11.68%. In addition, recombination events were assessed in two fetuses. All NIPD results were concordant with the findings of invasive prenatal diagnosis (chorionic villus sampling or amniocentesis). Exon capture and haplotype-based NIPD of DMD are regularly used for DMD genetic diagnosis, carrier screening, and noninvasive prenatal diagnosis in the clinic. Our method, haplotype-based early screening for DMD fetal genotyping via cfDNA sequencing, has high feasibility and accuracy, a short turnaround time, and is inexpensive in a real clinical environment.
Collapse
Affiliation(s)
- Lingrong Kong
- Department of Fetal Medicine & Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.,Genetic and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shaojun Li
- Celula (China) Medical Technology Co., Ltd., Chengdu, China
| | - Zhenhua Zhao
- Genetic and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jun Feng
- Celula (China) Medical Technology Co., Ltd., Chengdu, China
| | - Guangquan Chen
- Department of Fetal Medicine & Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lina Liu
- Genetic and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weiqin Tang
- Celula (China) Medical Technology Co., Ltd., Chengdu, China
| | - Suqing Li
- Celula (China) Medical Technology Co., Ltd., Chengdu, China
| | - Feifei Li
- Celula (China) Medical Technology Co., Ltd., Chengdu, China
| | - Xiujuan Han
- Celula (China) Medical Technology Co., Ltd., Chengdu, China
| | - Di Wu
- Celula (China) Medical Technology Co., Ltd., Chengdu, China
| | - Haichuan Zhang
- Celula (China) Medical Technology Co., Ltd., Chengdu, China
| | - Luming Sun
- Department of Fetal Medicine & Prenatal Diagnosis Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiangdong Kong
- Genetic and Prenatal Diagnosis Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
40
|
Haidar H, Iskander R. Non-invasive Prenatal Testing for Fetal Whole Genome Sequencing: An Interpretive Critical Review of the Ethical, Legal, Social, and Policy Implications. CANADIAN JOURNAL OF BIOETHICS 2022. [DOI: 10.7202/1087199ar] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
41
|
Chang A, Mzava O, Lenz JS, Cheng AP, Burnham P, Motley ST, Bennett C, Connelly JT, Dadhania DM, Suthanthiran M, Lee JR, Steadman A, De Vlaminck I. Measurement Biases Distort Cell-Free DNA Fragmentation Profiles and Define the Sensitivity of Metagenomic Cell-Free DNA Sequencing Assays. Clin Chem 2021; 68:163-171. [PMID: 34718476 PMCID: PMC8718127 DOI: 10.1093/clinchem/hvab142] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/24/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Metagenomic sequencing of microbial cell-free DNA (cfDNA) in blood and urine is increasingly used as a tool for unbiased infection screening. The sensitivity of metagenomic cfDNA sequencing assays is determined by the efficiency by which the assay recovers microbial cfDNA vs host-specific cfDNA. We hypothesized that the choice of methods used for DNA isolation, DNA sequencing library preparation, and sequencing would affect the sensitivity of metagenomic cfDNA sequencing. METHODS We characterized the fragment length biases inherent to select DNA isolation and library preparation procedures and developed a model to correct for these biases. We analyzed 305 cfDNA sequencing data sets, including publicly available data sets and 124 newly generated data sets, to evaluate the dependence of the sensitivity of metagenomic cfDNA sequencing on pre-analytical variables. RESULTS Length bias correction of fragment length distributions measured from different experimental procedures revealed the ultrashort (<100 bp) nature of microbial-, mitochondrial-, and host-specific urinary cfDNA. The sensitivity of metagenomic sequencing assays to detect the clinically reported microorganism differed by more than 5-fold depending on the combination of DNA isolation and library preparation used. CONCLUSIONS Substantial gains in the sensitivity of microbial and other short fragment recovery can be achieved by easy-to-implement changes in the sample preparation protocol, which highlights the need for standardization in the liquid biopsy field.
Collapse
Affiliation(s)
- Adrienne Chang
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Omary Mzava
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Joan S Lenz
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Alexandre P Cheng
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Philip Burnham
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | | | - Crissa Bennett
- Global Good Fund, Intellectual Ventures Lab, Bellevue, WA, USA
| | | | - Darshana M Dadhania
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Transplantation Medicine, New York Presbyterian Hospital, Weill Cornell Medical Center, New York, NY, USA
| | - Manikkam Suthanthiran
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Transplantation Medicine, New York Presbyterian Hospital, Weill Cornell Medical Center, New York, NY, USA
| | - John R Lee
- Division of Nephrology and Hypertension, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Transplantation Medicine, New York Presbyterian Hospital, Weill Cornell Medical Center, New York, NY, USA
| | | | - Iwijn De Vlaminck
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| |
Collapse
|
42
|
Li D, Chen R, Zhu X, Ye D, Yang Y, Li W, Li H, Yang Y, Liao Q. Light fueled mixing in open surface droplet microfluidics for rapid probe preparation. Phys Chem Chem Phys 2021; 23:26356-26365. [PMID: 34792056 DOI: 10.1039/d1cp03714e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, a contactless, flexible, and interference-free light fueled method has been developed to enhance the mixing between the ssDNA and dynabeads in a droplet, which enables rapid probe preparation for promoting the probe technology based on open surface droplet microfluidics. In this light fueled method, the use of the photothermal effect of a focused infrared laser can easily create non-uniform temperature distribution and accordingly the surface tension gradient over the interface as a result of the localized heating effect, which thereby initiates the Marangoni flow in a droplet. Experimental results confirm that the light-induced Marangoni flow greatly enhances the mixing, ensuring rapid and efficient binding between the ssDNA and dynabeads. Moreover, the mixing intensity and degree can be simply tuned by controlling the laser intensity and laser heating time. The light fueled rapid mixing method developed in the present study paves the way for rapid bio-chemical detection.
Collapse
Affiliation(s)
- Dongliang Li
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China. .,Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Rong Chen
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China. .,Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Xun Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China. .,Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Dingding Ye
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China. .,Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Yang Yang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China. .,Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Wei Li
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China. .,Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Haonan Li
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China. .,Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Yijing Yang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China. .,Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| | - Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China. .,Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400030, China
| |
Collapse
|
43
|
Fox-Fisher I, Piyanzin S, Ochana BL, Klochendler A, Magenheim J, Peretz A, Loyfer N, Moss J, Cohen D, Drori Y, Friedman N, Mandelboim M, Rothenberg ME, Caldwell JM, Rochman M, Jamshidi A, Cann G, Lavi D, Kaplan T, Glaser B, Shemer R, Dor Y. Remote immune processes revealed by immune-derived circulating cell-free DNA. eLife 2021; 10:70520. [PMID: 34842142 PMCID: PMC8651286 DOI: 10.7554/elife.70520] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 11/24/2021] [Indexed: 01/08/2023] Open
Abstract
Blood cell counts often fail to report on immune processes occurring in remote tissues. Here, we use immune cell type-specific methylation patterns in circulating cell-free DNA (cfDNA) for studying human immune cell dynamics. We characterized cfDNA released from specific immune cell types in healthy individuals (N = 242), cross sectionally and longitudinally. Immune cfDNA levels had no individual steady state as opposed to blood cell counts, suggesting that cfDNA concentration reflects adjustment of cell survival to maintain homeostatic cell numbers. We also observed selective elevation of immune-derived cfDNA upon perturbations of immune homeostasis. Following influenza vaccination (N = 92), B-cell-derived cfDNA levels increased prior to elevated B-cell counts and predicted efficacy of antibody production. Patients with eosinophilic esophagitis (N = 21) and B-cell lymphoma (N = 27) showed selective elevation of eosinophil and B-cell cfDNA, respectively, which were undetectable by cell counts in blood. Immune-derived cfDNA provides a novel biomarker for monitoring immune responses to physiological and pathological processes that are not accessible using conventional methods.
Collapse
Affiliation(s)
- Ilana Fox-Fisher
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research, Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Sheina Piyanzin
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research, Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Bracha Lea Ochana
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research, Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Agnes Klochendler
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research, Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Judith Magenheim
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research, Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Ayelet Peretz
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research, Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Netanel Loyfer
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Joshua Moss
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research, Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Daniel Cohen
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research, Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Yaron Drori
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel, and Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Ramat-Gan, Israel
| | - Nehemya Friedman
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel, and Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Ramat-Gan, Israel
| | - Michal Mandelboim
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel, and Central Virology Laboratory, Ministry of Health, Chaim Sheba Medical Center, Ramat-Gan, Israel
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, United States
| | - Julie M Caldwell
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, United States
| | - Mark Rochman
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, United States
| | | | | | - David Lavi
- Department of Hematology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Tommy Kaplan
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Developmental Biology and Cancer Research, The Institute for Medical Research, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Benjamin Glaser
- Endocrinology and Metabolism Service, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Ruth Shemer
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research, Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Yuval Dor
- Department of Developmental Biology and Cancer Research, The Institute for Medical Research, Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
44
|
At the dawn: cell-free DNA fragmentomics and gene regulation. Br J Cancer 2021; 126:379-390. [PMID: 34815523 PMCID: PMC8810841 DOI: 10.1038/s41416-021-01635-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 12/14/2022] Open
Abstract
Epigenetic mechanisms play instrumental roles in gene regulation during embryonic development and disease progression. However, it is challenging to non-invasively monitor the dynamics of epigenomes and related gene regulation at inaccessible human tissues, such as tumours, fetuses and transplanted organs. Circulating cell-free DNA (cfDNA) in peripheral blood provides a promising opportunity to non-invasively monitor the genomes from these inaccessible tissues. The fragmentation patterns of plasma cfDNA are unevenly distributed in the genome and reflect the in vivo gene-regulation status across multiple molecular layers, such as nucleosome positioning and gene expression. In this review, we revisited the computational and experimental approaches that have been recently developed to measure the cfDNA fragmentomics across different resolutions comprehensively. Moreover, cfDNA in peripheral blood is released following cell death, after apoptosis or necrosis, mainly from haematopoietic cells in healthy people and diseased tissues in patients. Several cfDNA-fragmentomics approaches showed the potential to identify the tissues-of-origin in cfDNA from cancer patients and healthy individuals. Overall, these studies paved the road for cfDNA fragmentomics to non-invasively monitor the in vivo gene-regulatory dynamics in both peripheral immune cells and diseased tissues.
Collapse
|
45
|
Schobers G, Koeck R, Pellaers D, Stevens SJC, Macville MVE, Paulussen ADC, Coonen E, van den Wijngaard A, de Die-Smulders C, de Wert G, Brunner HG, Zamani Esteki M. Liquid biopsy: state of reproductive medicine and beyond. Hum Reprod 2021; 36:2824-2839. [PMID: 34562078 PMCID: PMC8523207 DOI: 10.1093/humrep/deab206] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 08/06/2021] [Indexed: 01/23/2023] Open
Abstract
Liquid biopsy is the process of sampling and analyzing body fluids, which enables non-invasive monitoring of complex biological systems in vivo. Liquid biopsy has myriad applications in health and disease as a wide variety of components, ranging from circulating cells to cell-free nucleic acid molecules, can be analyzed. Here, we review different components of liquid biopsy, survey state-of-the-art, non-invasive methods for detecting those components, demonstrate their clinical applications and discuss ethical considerations. Furthermore, we emphasize the importance of artificial intelligence in analyzing liquid biopsy data with the aim of developing ethically-responsible non-invasive technologies that can enhance individualized healthcare. While previous reviews have mainly focused on cancer, this review primarily highlights applications of liquid biopsy in reproductive medicine.
Collapse
Affiliation(s)
- Gaby Schobers
- Department of Clinical Genetics, Maastricht University Medical Centre+, Maastricht, The Netherlands.,Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rebekka Koeck
- Department of Clinical Genetics, Maastricht University Medical Centre+, Maastricht, The Netherlands.,Department of Genetics and Cell Biology, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Dominique Pellaers
- Department of Clinical Genetics, Maastricht University Medical Centre+, Maastricht, The Netherlands.,Department of Genetics and Cell Biology, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Servi J C Stevens
- Department of Clinical Genetics, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Merryn V E Macville
- Department of Clinical Genetics, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Aimée D C Paulussen
- Department of Clinical Genetics, Maastricht University Medical Centre+, Maastricht, The Netherlands.,Department of Genetics and Cell Biology, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Edith Coonen
- Department of Clinical Genetics, Maastricht University Medical Centre+, Maastricht, The Netherlands.,Center for Reproductive Medicine, Maastricht University Medical Centre+, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Arthur van den Wijngaard
- Department of Clinical Genetics, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Christine de Die-Smulders
- Department of Clinical Genetics, Maastricht University Medical Centre+, Maastricht, The Netherlands.,Department of Genetics and Cell Biology, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Guido de Wert
- Faculty of Health, Medicine and Life Sciences, Department of Health, Ethics and Society, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Han G Brunner
- Department of Clinical Genetics, Maastricht University Medical Centre+, Maastricht, The Netherlands.,Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Genetics and Cell Biology, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Masoud Zamani Esteki
- Department of Clinical Genetics, Maastricht University Medical Centre+, Maastricht, The Netherlands.,Department of Genetics and Cell Biology, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
46
|
Bajka A, Bajka M, Chablais F, Burkhardt T. Audit of the first > 7500 noninvasive prenatal aneuploidy tests in a Swiss genetics center. Arch Gynecol Obstet 2021; 305:1185-1192. [PMID: 34533609 PMCID: PMC9013335 DOI: 10.1007/s00404-021-06203-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 08/20/2021] [Indexed: 11/29/2022]
Abstract
Objectives Noninvasive prenatal testing (NIPT) is actually the most accurate method of screening for fetal chromosomal aberration (FCA). We used pregnancy outcome record to evaluate a complete data set of single nucleotide polymorphism-based test results performed by a Swiss genetics center. Materials and methods The Panorama® test assesses the risk of fetal trisomies (21, 18 and 13), gonosomal aneuploidy (GAN), triploidy or vanishing twins (VTT) and five different microdeletions (MD). We evaluated all 7549 test results meeting legal and quality requirements taken in women with nondonor singleton pregnancies between April 2013 and September 2016 classifying them as high or low risk. Follow-up ended after 9 months, data collection 7 months later. Results The Panorama® test provided conclusive results in 96.1% of cases, detecting 153 FCA: T21 n = 76, T18 n = 19, T13 n = 15, GAN n = 19, VTT n = 13 and MD n = 11 (overall prevalence 2.0%). Pregnancy outcome record was available for 68.6% of conclusive laboratory results, including 2.0% high-risk cases. In this cohort the Panorama® test exhibited 99.90% sensitivity for each trisomy; specificity was 99.90% for T21, 99.98% for T18 and 99.94% for T13. False positive rate was 0.10% for T21, 0.02% for T18 and 0.06% for T13. Conclusion SNP-based testing by a Swiss genetics center confirms the expected accuracy of NIPT in FCA detection.
Collapse
Affiliation(s)
- Anahita Bajka
- Department of Obstetrics, University Hospital Zurich, Frauenklinikstr. 10, 8091, Zurich, Switzerland
| | - Michael Bajka
- Department of Gynecology, University Hospital of Zurich, Zurich, Switzerland
| | - Fabian Chablais
- Genetica, Human Genetics and Genetic Counselling Unit, 8001, Zurich, Switzerland
| | - Tilo Burkhardt
- Department of Obstetrics, University Hospital Zurich, Frauenklinikstr. 10, 8091, Zurich, Switzerland.
| |
Collapse
|
47
|
Schmitz D, Henn W. The fetus in the age of the genome. Hum Genet 2021; 141:1017-1026. [PMID: 34426855 PMCID: PMC9160108 DOI: 10.1007/s00439-021-02348-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 08/16/2021] [Indexed: 12/15/2022]
Abstract
Due to a number of recent achievements, the field of prenatal medicine is now on the verge of a profound transformation into prenatal genomic medicine. This transformation is expected to not only substantially expand the spectrum of prenatal diagnostic and screening possibilities, but finally also to advance fetal care and the prenatal management of certain fetal diseases and malformations. It will come along with new and profound challenges for the normative framework and clinical care pathways in prenatal (and reproductive) medicine. To adequately address the potential ethically challenging aspects without discarding the obvious benefits, several agents are required to engage in different debates. The permissibility of the sequencing of the whole fetal exome or genome will have to be examined from a philosophical and legal point of view, in particular with regard to conflicts with potential rights of future children. A second requirement is a societal debate on the question of priority setting and justice in relation to prenatal genomic testing. Third, a professional-ethical debate and positioning on the goal of prenatal genomic testing and a consequential re-structuring of clinical care pathways seems to be important. In all these efforts, it might be helpful to envisage the unborn rather not as a fetus, not as a separate moral subject and a second "patient", but in its unique physical connection with the pregnant woman, and to accept the moral quandaries implicitly given in this situation.
Collapse
Affiliation(s)
- Dagmar Schmitz
- Institute for History, Theory and Ethics in Medicine, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany.
| | - Wolfram Henn
- Institute of Human Genetics, Saarland University, Homburg/Saar, Germany
| |
Collapse
|
48
|
Xu Z, Dixon JR. Genome reconstruction and haplotype phasing using chromosome conformation capture methodologies. Brief Funct Genomics 2021; 19:139-150. [PMID: 31875884 DOI: 10.1093/bfgp/elz026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/06/2019] [Accepted: 09/15/2019] [Indexed: 12/22/2022] Open
Abstract
Genomic analysis of individuals or organisms is predicated on the availability of high-quality reference and genotype information. With the rapidly dropping costs of high-throughput DNA sequencing, this is becoming readily available for diverse organisms and for increasingly large populations of individuals. Despite these advances, there are still aspects of genome sequencing that remain challenging for existing sequencing methods. This includes the generation of long-range contiguity during genome assembly, identification of structural variants in both germline and somatic tissues, the phasing of haplotypes in diploid organisms and the resolution of genome sequence for organisms derived from complex samples. These types of information are valuable for understanding the role of genome sequence and genetic variation on genome function, and numerous approaches have been developed to address them. Recently, chromosome conformation capture (3C) experiments, such as the Hi-C assay, have emerged as powerful tools to aid in these challenges for genome reconstruction. We will review the current use of Hi-C as a tool for aiding in genome sequencing, addressing the applications, strengths, limitations and potential future directions for the use of 3C data in genome analysis. We argue that unique features of Hi-C experiments make this data type a powerful tool to address challenges in genome sequencing, and that future integration of Hi-C data with alternative sequencing assays will facilitate the continuing revolution in genomic analysis and genome sequencing.
Collapse
|
49
|
Filer DL, Mieczkowski PA, Brandt A, Gilmore KL, Powell BC, Berg JS, Wilhelmsen KC, Vora NL. Noninvasive prenatal exome sequencing diagnostic utility limited by sequencing depth and fetal fraction. Prenat Diagn 2021; 42:567-573. [PMID: 34265090 DOI: 10.1002/pd.6009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Sequencing cell-free DNA now allows detection of large chromosomal abnormalities and dominant Mendelian disorders in the prenatal period. Improving upon these methods would allow newborn screening programs to begin with prenatal genetics, ultimately improving the management of rare genetic disorders. METHODS As a pilot study, we performed exome sequencing on the cell-free DNA from three mothers with singleton pregnancies to assess the viability of broad sequencing modalities in a noninvasive prenatal setting. RESULTS We found poor resolution of maternal and fetal genotypes due to both sampling and technical issues. CONCLUSION We find broad sequencing modalities inefficient for noninvasive prenatal applications. Alternatively, we suggest a more targeted path forward for noninvasive prenatal genotyping.
Collapse
Affiliation(s)
- Dayne L Filer
- Department of Genetics, School of Medicine, UNC Chapel Hill, Chapel Hill, NC, USA.,Renaissance Computing Institute, Chapel Hill, NC, USA
| | - Piotr A Mieczkowski
- Department of Genetics, School of Medicine, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Alicia Brandt
- Department of Genetics, School of Medicine, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Kelly L Gilmore
- Department of Obstetrics & Gynecology, School of Medicine, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Bradford C Powell
- Department of Genetics, School of Medicine, UNC Chapel Hill, Chapel Hill, NC, USA.,Renaissance Computing Institute, Chapel Hill, NC, USA
| | - Jonathan S Berg
- Department of Genetics, School of Medicine, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Kirk C Wilhelmsen
- Department of Genetics, School of Medicine, UNC Chapel Hill, Chapel Hill, NC, USA.,Renaissance Computing Institute, Chapel Hill, NC, USA.,Department of Neurology, School of Medicine, UNC Chapel Hill, Chapel Hill, NC, USA
| | - Neeta L Vora
- Department of Genetics, School of Medicine, UNC Chapel Hill, Chapel Hill, NC, USA.,Department of Obstetrics & Gynecology, School of Medicine, UNC Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
50
|
Rosner M, Kolbe T, Hengstschläger M. Fetomaternal microchimerism and genetic diagnosis: On the origins of fetal cells and cell-free fetal DNA in the pregnant woman. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2021; 788:108399. [PMID: 34893150 DOI: 10.1016/j.mrrev.2021.108399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/11/2021] [Accepted: 11/14/2021] [Indexed: 06/14/2023]
Abstract
During pregnancy several types of fetal cells and fetal stem cells, including pregnancy-associated progenitor cells (PAPCs), traffic into the maternal circulation. Whereas they also migrate to various maternal organs and adopt the phenotype of the target tissues to contribute to regenerative processes, fetal cells also play a role in the pathogenesis of maternal diseases. In addition, cell-free fetal DNA (cffDNA) is detectable in the plasma of pregnant women. Together they constitute the well-known phenomenon of fetomaternal microchimerism, which inspired the concept of non-invasive prenatal testing (NIPT) using maternal blood. An in-depth knowledge concerning the origins of these fetal cells and cffDNA allows a more comprehensive understanding of the biological relevance of fetomaternal microchimerism and has implications for the ongoing expansion of resultant clinical applications.
Collapse
Affiliation(s)
- Margit Rosner
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Thomas Kolbe
- Biomodels Austria, University of Veterinary Medicine Vienna, Vienna, Austria; Department IFA Tulln, University of Natural Resources and Life Sciences, Tulln, Austria
| | - Markus Hengstschläger
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|