1
|
Kim MS, Park W, Park SI, Song J, Sim HS, Kim JJ, Kim BK, Bae MH. Tailoring Single-Electron Emission Distributions in the Time-Energy Phase Space. NANO LETTERS 2024; 24:13140-13146. [PMID: 39382529 DOI: 10.1021/acs.nanolett.4c02653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
The precise characterization and control of single-electron wave functions emitted from a single-electron source are essential for advancing electron quantum optics. Here, we introduce a method for tailoring a single-electron emission distribution using energy filtering, enabling selective control of the distribution under various energy barrier conditions of the filter. The tailored electron is studied by reconstructing its Wigner distribution in the time-energy phase space using the continuous-variable tomography method. Our results reveal that the filtering cuts the portion of the distribution below the energy-barrier height of the filter in the time-energy space. While the filtering is demonstrated in a classical regime of the emitted electrons, we expect that this study significantly contributes to the design and implementation of advanced experiments toward quantum information processing based on single electrons.
Collapse
Affiliation(s)
- Min-Sik Kim
- Department of Physics, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Wanki Park
- Department of Physics & Center for Quantum Coherence in Condensed Matter, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Suk-In Park
- Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Jindong Song
- Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - H-S Sim
- Department of Physics & Center for Quantum Coherence in Condensed Matter, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Ju-Jin Kim
- Department of Physics, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Bum-Kyu Kim
- Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| | - Myung-Ho Bae
- Korea Research Institute of Standards and Science, Daejeon 34113, Republic of Korea
| |
Collapse
|
2
|
Lin C, Futamata K, Akiho T, Muraki K, Fujisawa T. Resonant Plasmon-Assisted Tunneling in a Double Quantum Dot Coupled to a Quantum Hall Plasmon Resonator. PHYSICAL REVIEW LETTERS 2024; 133:036301. [PMID: 39094171 DOI: 10.1103/physrevlett.133.036301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/30/2024] [Accepted: 06/06/2024] [Indexed: 08/04/2024]
Abstract
Edge magnetoplasmon is an emergent chiral bosonic mode promising for studying electronic quantum optics. While the plasmon transport has been investigated with various techniques for decades, its coupling to a mesoscopic device remained unexplored. Here, we demonstrate the coupling between a single plasmon mode in a quantum Hall plasmon resonator and a double quantum dot (DQD). Resonant plasmon-assisted tunneling is observed in the DQD through absorbing or emitting plasmons stored in the resonator. By using the DQD as a spectrometer, the plasmon energy and the coupling strength are evaluated, which can be controlled by changing the electrostatic environment of the quantum Hall edge. The observed plasmon-electron coupling encourages us for studying strong coupling regimes of plasmonic cavity quantum electrodynamics.
Collapse
Affiliation(s)
- Chaojing Lin
- Department of Physics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8551, Japan
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | | | | | | | | |
Collapse
|
3
|
Portugal P, Brange F, Flindt C. Heat Pulses in Electron Quantum Optics. PHYSICAL REVIEW LETTERS 2024; 132:256301. [PMID: 38996267 DOI: 10.1103/physrevlett.132.256301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/10/2024] [Accepted: 05/21/2024] [Indexed: 07/14/2024]
Abstract
Electron quantum optics aims to realize ideas from the quantum theory of light with the role of photons being played by charge pulses in electronic conductors. Experimentally, the charge pulses are excited by time-dependent voltages; however, one could also generate heat pulses by heating and cooling an electrode. Here, we explore this intriguing idea by formulating a Floquet scattering theory of heat pulses in mesoscopic conductors. The adiabatic emission of heat pulses leads to a heat current that in linear response is given by the thermal conductance quantum. However, we also find a high-frequency component, which ensures that the fluctuation-dissipation theorem for heat currents, whose validity has been debated, is fulfilled. The heat pulses are uncharged, and we probe their electron-hole content by evaluating the partition noise in the outputs of a quantum point contact. We also employ a Hong-Ou-Mandel setup to examine if the pulses bunch or antibunch. Finally, to generate an electric current, we use a Mach-Zehnder interferometer that breaks the electron-hole symmetry and thereby enables a thermoelectric effect. Our Letter paves the way for systematic investigations of heat pulses in mesoscopic conductors, and it may stimulate future experiments.
Collapse
|
4
|
Chen Z, Zhang B, Pan Y, Krüger M. Quantum wave function reconstruction by free-electron spectral shearing interferometry. SCIENCE ADVANCES 2023; 9:eadg8516. [PMID: 37418516 PMCID: PMC10328397 DOI: 10.1126/sciadv.adg8516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/05/2023] [Indexed: 07/09/2023]
Abstract
The quantum wave function measurement of a free electron remains challenging in quantum mechanics and is subject to disputes about ψ-ontic/epistemic interpretations of the wave function. Here, we theoretically propose a realistic spectral method for reconstructing quantum wave function of an electron pulse, free-electron spectral shearing interferometry (FESSI). We use a Wien filter to generate two time-delayed replicas of the electron wave packet and then shift one replica in energy using a light-electron modulator driven by a mid-infrared laser. As a direct demonstration, we numerically reconstruct a pulsed electron wave function with a kinetic energy of 10 keV. FESSI is experimentally feasible and enables us to fully determine distinct orders of spectral phases and their physical implications in quantum foundations and quantum technologies, providing a universal approach to characterize ultrashort electron pulses.
Collapse
Affiliation(s)
- Zhaopin Chen
- Department of Physics, Technion–Israel Institute of Technology, Haifa 3200003, Israel
- Solid State Institute, Technion–Israel Institute of Technology, Haifa 3200003, Israel
- The Helen Diller Quantum Center, Technion–Israel Institute of Technology, Haifa 3200003, Israel
| | - Bin Zhang
- Department of Electrical Engineering Physical Electronics, Tel Aviv University, Ramat Aviv 6997801, Israel
| | - Yiming Pan
- Department of Physics, Technion–Israel Institute of Technology, Haifa 3200003, Israel
- The Helen Diller Quantum Center, Technion–Israel Institute of Technology, Haifa 3200003, Israel
- School of Physical Science and Technology and Center for Transformative Science, ShanghaiTech University, Shanghai 200031, China
| | - Michael Krüger
- Department of Physics, Technion–Israel Institute of Technology, Haifa 3200003, Israel
- Solid State Institute, Technion–Israel Institute of Technology, Haifa 3200003, Israel
- The Helen Diller Quantum Center, Technion–Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
5
|
Ubbelohde N, Freise L, Pavlovska E, Silvestrov PG, Recher P, Kokainis M, Barinovs G, Hohls F, Weimann T, Pierz K, Kashcheyevs V. Two electrons interacting at a mesoscopic beam splitter. NATURE NANOTECHNOLOGY 2023; 18:733-740. [PMID: 37169898 DOI: 10.1038/s41565-023-01370-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/10/2023] [Indexed: 05/13/2023]
Abstract
The nonlinear response of a beam splitter to the coincident arrival of interacting particles enables numerous applications in quantum engineering and metrology. Yet, it poses considerable challenges to control interactions on the individual particle level. Here, we probe the coincidence correlations at a mesoscopic constriction between individual ballistic electrons in a system with unscreened Coulomb interactions and introduce concepts to quantify the associated parametric nonlinearity. The full counting statistics of joint detection allows us to explore the interaction-mediated energy exchange. We observe an increase from 50% up to 70% in coincidence counts between statistically indistinguishable on-demand sources and a correlation signature consistent with the independent tomography of the electron emission. Analytical modelling and numerical simulations underpin the consistency of the experimental results with Coulomb interactions between two electrons counterpropagating in a quadratic saddle potential. Coulomb repulsion energy and beam splitter dispersion define a figure of merit, which in this experiment is demonstrated to be sufficiently large to enable future applications, such as single-shot in-flight detection and quantum logic gates.
Collapse
Affiliation(s)
- Niels Ubbelohde
- Physikalisch-Technische Bundesanstalt, Braunschweig, Germany.
| | - Lars Freise
- Physikalisch-Technische Bundesanstalt, Braunschweig, Germany
| | | | - Peter G Silvestrov
- Institut für Mathematische Physik, Technische Universität Braunschweig, Braunschweig, Germany
| | - Patrik Recher
- Institut für Mathematische Physik, Technische Universität Braunschweig, Braunschweig, Germany
- Laboratory for Emerging Nanometrology Braunschweig, Braunschweig, Germany
| | - Martins Kokainis
- Department of Physics, University of Latvia, Riga, Latvia
- Faculty of Computing, University of Latvia, Riga, Latvia
| | - Girts Barinovs
- Department of Physics, University of Latvia, Riga, Latvia
| | - Frank Hohls
- Physikalisch-Technische Bundesanstalt, Braunschweig, Germany
| | - Thomas Weimann
- Physikalisch-Technische Bundesanstalt, Braunschweig, Germany
| | - Klaus Pierz
- Physikalisch-Technische Bundesanstalt, Braunschweig, Germany
| | | |
Collapse
|
6
|
Fletcher JD, Park W, Ryu S, See P, Griffiths JP, Jones GAC, Farrer I, Ritchie DA, Sim HS, Kataoka M. Time-resolved Coulomb collision of single electrons. NATURE NANOTECHNOLOGY 2023:10.1038/s41565-023-01369-4. [PMID: 37169897 DOI: 10.1038/s41565-023-01369-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/10/2023] [Indexed: 05/13/2023]
Abstract
A series of recent experiments have shown that collision of ballistic electrons in semiconductors can be used to probe the indistinguishability of single-electron wavepackets. Perhaps surprisingly, their Coulomb interaction has not been seen due to screening. Here we show Coulomb-dominated collision of high-energy single electrons in counter-propagating ballistic edge states, probed by measuring partition statistics while adjusting the collision timing. Although some experimental data suggest antibunching behaviour, we show that this is not due to quantum statistics but to strong repulsive Coulomb interactions. This prevents the wavepacket overlap needed for fermionic exchange statistics but suggests new ways to utilize Coulomb interactions: microscopically isolated and time-resolved interactions between ballistic electrons can enable the use of the Coulomb interaction for high-speed sensing or gate operations on flying electron qubits.
Collapse
Affiliation(s)
| | - W Park
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, Korea.
| | - S Ryu
- Instituto de Física Interdisciplinary Sistemas Complejos IFISC (CSIC-UIB), Palma de Mallorca, Spain
| | - P See
- National Physical Laboratory, Teddington, UK
| | - J P Griffiths
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - G A C Jones
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - I Farrer
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
- Department of Electronic and Electrical Engineering, University of Sheffield, Sheffield, UK
| | - D A Ritchie
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - H-S Sim
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, Korea.
| | - M Kataoka
- National Physical Laboratory, Teddington, UK.
| |
Collapse
|
7
|
Wang J, Edlbauer H, Richard A, Ota S, Park W, Shim J, Ludwig A, Wieck AD, Sim HS, Urdampilleta M, Meunier T, Kodera T, Kaneko NH, Sellier H, Waintal X, Takada S, Bäuerle C. Coulomb-mediated antibunching of an electron pair surfing on sound. NATURE NANOTECHNOLOGY 2023:10.1038/s41565-023-01368-5. [PMID: 37169896 DOI: 10.1038/s41565-023-01368-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/10/2023] [Indexed: 05/13/2023]
Abstract
Electron flying qubits are envisioned as potential information links within a quantum computer, but also promise-like photonic approaches-to serve as self-standing quantum processing units. In contrast to their photonic counterparts, electron-quantum-optics implementations are subject to Coulomb interactions, which provide a direct route to entangle the orbital or spin degree of freedom. However, controlled interaction of flying electrons at the single-particle level has not yet been established experimentally. Here we report antibunching of a pair of single electrons that is synchronously shuttled through a circuit of coupled quantum rails by means of a surface acoustic wave. The in-flight partitioning process exhibits a reciprocal gating effect which allows us to ascribe the observed repulsion predominantly to Coulomb interaction. Our single-shot experiment marks an important milestone on the route to realize a controlled-phase gate for in-flight quantum manipulations.
Collapse
Affiliation(s)
- Junliang Wang
- Université Grenoble Alpes, CNRS, Institut Néel, Grenoble, France
| | - Hermann Edlbauer
- Université Grenoble Alpes, CNRS, Institut Néel, Grenoble, France
| | - Aymeric Richard
- Université Grenoble Alpes, CNRS, Institut Néel, Grenoble, France
| | - Shunsuke Ota
- Department of Electrical and Electronic Engineering, Tokyo Institute of Technology, Tokyo, Japan
- National Institute of Advanced Industrial Science and Technology (AIST), National Metrology Institute of Japan (NMIJ), Tsukuba, Japan
| | - Wanki Park
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Jeongmin Shim
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- Arnold Sommerfeld Center for Theoretical Physics, Center for NanoScience, and Munich Center for Quantum Science and Technology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Arne Ludwig
- Lehrstuhl für Angewandte Festkörperphysik, Ruhr-Universität Bochum, Bochum, Germany
| | - Andreas D Wieck
- Lehrstuhl für Angewandte Festkörperphysik, Ruhr-Universität Bochum, Bochum, Germany
| | - Heung-Sun Sim
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | | | - Tristan Meunier
- Université Grenoble Alpes, CNRS, Institut Néel, Grenoble, France
| | - Tetsuo Kodera
- Department of Electrical and Electronic Engineering, Tokyo Institute of Technology, Tokyo, Japan
| | - Nobu-Hisa Kaneko
- National Institute of Advanced Industrial Science and Technology (AIST), National Metrology Institute of Japan (NMIJ), Tsukuba, Japan
| | - Hermann Sellier
- Université Grenoble Alpes, CNRS, Institut Néel, Grenoble, France
| | - Xavier Waintal
- Université Grenoble Alpes, CEA, INAC-Pheliqs, Grenoble, France
| | - Shintaro Takada
- National Institute of Advanced Industrial Science and Technology (AIST), National Metrology Institute of Japan (NMIJ), Tsukuba, Japan
| | | |
Collapse
|
8
|
Ryu S, Sim HS. Partition of Two Interacting Electrons by a Potential Barrier. PHYSICAL REVIEW LETTERS 2022; 129:166801. [PMID: 36306761 DOI: 10.1103/physrevlett.129.166801] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/01/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Scattering or tunneling of an electron at a potential barrier is a fundamental quantum effect. Electron-electron interactions often affect the scattering, and understanding of the interaction effect is crucial in detection of various phenomena of electron transport and their application to electron quantum optics. We theoretically study the partition and collision of two interacting hot electrons at a potential barrier. We predict their kinetic energy change by their Coulomb interaction during the scattering delay time inside the barrier. The energy change results in characteristic deviation of the partition probabilities from the noninteracting case. The derivation includes nonmonotonic dependence of the probabilities on the barrier height, which qualitatively agrees with recent experiments, and reduction of the fermionic antibunching.
Collapse
Affiliation(s)
- Sungguen Ryu
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
- Institute for Cross-Disciplinary Physics and Complex Systems IFISC (UIB-CSIC), E-07122 Palma de Mallorca, Spain
| | - H-S Sim
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| |
Collapse
|
9
|
Ryu S, López R, Serra L, Sánchez D. Beating Carnot efficiency with periodically driven chiral conductors. Nat Commun 2022; 13:2512. [PMID: 35523762 PMCID: PMC9076907 DOI: 10.1038/s41467-022-30039-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 03/28/2022] [Indexed: 11/19/2022] Open
Abstract
Classically, the power generated by an ideal thermal machine cannot be larger than the Carnot limit. This profound result is rooted in the second law of thermodynamics. A hot question is whether this bound is still valid for microengines operating far from equilibrium. Here, we demonstrate that a quantum chiral conductor driven by AC voltage can indeed work with efficiencies much larger than the Carnot bound. The system also extracts work from common temperature baths, violating Kelvin-Planck statement. Nonetheless, with the proper definition, entropy production is always positive and the second law is preserved. The crucial ingredients to obtain efficiencies beyond the Carnot limit are: i) irreversible entropy production by the photoassisted excitation processes due to the AC field and ii) absence of power injection thanks to chirality. Our results are relevant in view of recent developments that use small conductors to test the fundamental limits of thermodynamic engines.
Collapse
Affiliation(s)
- Sungguen Ryu
- Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB), E-07122, Palma, Spain.
| | - Rosa López
- Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB), E-07122, Palma, Spain
| | - Llorenç Serra
- Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB), E-07122, Palma, Spain
| | - David Sánchez
- Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB), E-07122, Palma, Spain
| |
Collapse
|
10
|
Brange F, Prech K, Flindt C. Dynamic Cooper Pair Splitter. PHYSICAL REVIEW LETTERS 2021; 127:237701. [PMID: 34936782 DOI: 10.1103/physrevlett.127.237701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 11/08/2021] [Indexed: 06/14/2023]
Abstract
Cooper pair splitters are promising candidates for generating spin-entangled electrons. However, the splitting of Cooper pairs is a random and noisy process, which hinders further synchronized operations on the entangled electrons. To circumvent this problem, we here propose and analyze a dynamic Cooper pair splitter that produces a noiseless and regular flow of spin-entangled electrons. The Cooper pair splitter is based on a superconductor coupled to quantum dots, whose energy levels are tuned in and out of resonance to control the splitting process. We identify the optimal operating conditions for which exactly one Cooper pair is split per period of the external drive and the flow of entangled electrons becomes noiseless. To characterize the regularity of the Cooper pair splitter in the time domain, we analyze the g^{(2)} function of the output currents and the distribution of waiting times between split Cooper pairs. Our proposal is feasible using current technology, and it paves the way for dynamic quantum information processing with spin-entangled electrons.
Collapse
Affiliation(s)
- Fredrik Brange
- Department of Applied Physics, Aalto University, 00076 Aalto, Finland
| | - Kacper Prech
- Department of Applied Physics, Aalto University, 00076 Aalto, Finland
- School of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Christian Flindt
- Department of Applied Physics, Aalto University, 00076 Aalto, Finland
| |
Collapse
|
11
|
Kotilahti J, Burset P, Moskalets M, Flindt C. Multi-Particle Interference in an Electronic Mach-Zehnder Interferometer. ENTROPY (BASEL, SWITZERLAND) 2021; 23:736. [PMID: 34200952 PMCID: PMC8230567 DOI: 10.3390/e23060736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 11/24/2022]
Abstract
The development of dynamic single-electron sources has made it possible to observe and manipulate the quantum properties of individual charge carriers in mesoscopic circuits. Here, we investigate multi-particle effects in an electronic Mach-Zehnder interferometer driven by a series of voltage pulses. To this end, we employ a Floquet scattering formalism to evaluate the interference current and the visibility in the outputs of the interferometer. An injected multi-particle state can be described by its first-order correlation function, which we decompose into a sum of elementary correlation functions that each represent a single particle. Each particle in the pulse contributes independently to the interference current, while the visibility (given by the maximal interference current) exhibits a Fraunhofer-like diffraction pattern caused by the multi-particle interference between different particles in the pulse. For a sequence of multi-particle pulses, the visibility resembles the diffraction pattern from a grid, with the role of the grid and the spacing between the slits being played by the pulses and the time delay between them. Our findings may be observed in future experiments by injecting multi-particle pulses into a Mach-Zehnder interferometer.
Collapse
Affiliation(s)
- Janne Kotilahti
- Department of Applied Physics, Aalto University, 00076 Aalto, Finland; (J.K.); (C.F.)
| | - Pablo Burset
- Department of Applied Physics, Aalto University, 00076 Aalto, Finland; (J.K.); (C.F.)
- Department of Theoretical Condensed Matter Physics, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Michael Moskalets
- Department of Metal and Semiconductor Physics, NTU “Kharkiv Polytechnic Institute”, 61002 Kharkiv, Ukraine;
| | - Christian Flindt
- Department of Applied Physics, Aalto University, 00076 Aalto, Finland; (J.K.); (C.F.)
| |
Collapse
|
12
|
Phase-space studies of backscattering diffraction of defective Schrödinger cat states. Sci Rep 2021; 11:11619. [PMID: 34078940 PMCID: PMC8172851 DOI: 10.1038/s41598-021-90738-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/17/2021] [Indexed: 11/08/2022] Open
Abstract
The coherent superposition of two well separated Gaussian wavepackets, with defects caused by their imperfect preparation, is considered within the phase-space approach based on the Wigner distribution function. This generic state is called the defective Schrödinger cat state due to this imperfection which significantly modifies the interference term. Propagation of this state in the phase space is described by the Moyal equation which is solved for the case of a dispersive medium with a Gaussian barrier in the above-barrier reflection regime. Formally, this regime constitutes conditions for backscattering diffraction phenomena. Dynamical quantumness and the degree of localization in the phase space of the considered state as a function of its imperfection are the subject of the performed analysis. The obtained results allow concluding that backscattering communication based on the defective Schrödinger cat states appears to be feasible with existing experimental capabilities.
Collapse
|
13
|
Moskalets M. Auto- versus Cross-Correlation Noise in Periodically Driven Quantum Coherent Conductors. ENTROPY 2021; 23:e23040393. [PMID: 33806199 PMCID: PMC8066600 DOI: 10.3390/e23040393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/21/2021] [Accepted: 03/23/2021] [Indexed: 11/16/2022]
Abstract
Expressing currents and their fluctuations at the terminals of a multi-probe conductor in terms of the wave functions of carriers injected into the Fermi sea provides new insight into the physics of electric currents. This approach helps us to identify two physically different contributions to shot noise. In the quantum coherent regime, when current is carried by non-overlapping wave packets, the product of current fluctuations in different leads, the cross-correlation noise, is determined solely by the duration of the wave packet. In contrast, the square of the current fluctuations in one lead, the autocorrelation noise, is additionally determined by the coherence of the wave packet, which is associated with the spread of the wave packet in energy. The two contributions can be addressed separately in the weak back-scattering regime, when the autocorrelation noise depends only on the coherence. Analysis of shot noise in terms of these contributions allows us, in particular, to predict that no individual traveling particles with a real wave function, such as Majorana fermions, can be created in the Fermi sea in a clean manner, that is, without accompanying electron-hole pairs.
Collapse
Affiliation(s)
- Michael Moskalets
- Department of Metal and Semiconductor Physics, NTU "Kharkiv Polytechnic Institute", 61002 Kharkiv, Ukraine
| |
Collapse
|
14
|
Ito R, Takada S, Ludwig A, Wieck AD, Tarucha S, Yamamoto M. Coherent Beam Splitting of Flying Electrons Driven by a Surface Acoustic Wave. PHYSICAL REVIEW LETTERS 2021; 126:070501. [PMID: 33666445 DOI: 10.1103/physrevlett.126.070501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
We develop a coherent beam splitter for single electrons driven through two tunnel-coupled quantum wires by surface acoustic waves (SAWs). The output current through each wire oscillates with gate voltages to tune the tunnel coupling and potential difference between the wires. This oscillation is assigned to coherent electron tunneling motion that can be used to encode a flying qubit and is well reproduced by numerical calculations of time evolution of the SAW-driven single electrons. The oscillation visibility is currently limited to about 3%, but robust against decoherence, indicating that the SAW electron can serve as a novel platform for a solid-state flying qubit.
Collapse
Affiliation(s)
- R Ito
- Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - S Takada
- National Institute of Advanced Industrial Science and Technology, National Metrology Institute of Japan, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8563, Japan
| | - A Ludwig
- Angewandte Festkörperphysk, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | - A D Wieck
- Angewandte Festkörperphysk, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | - S Tarucha
- Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - M Yamamoto
- Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
15
|
Bouchard F, Sit A, Zhang Y, Fickler R, Miatto FM, Yao Y, Sciarrino F, Karimi E. Two-photon interference: the Hong-Ou-Mandel effect. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2021; 84:012402. [PMID: 33232945 DOI: 10.1088/1361-6633/abcd7a] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nearly 30 years ago, two-photon interference was observed, marking the beginning of a new quantum era. Indeed, two-photon interference has no classical analogue, giving it a distinct advantage for a range of applications. The peculiarities of quantum physics may now be used to our advantage to outperform classical computations, securely communicate information, simulate highly complex physical systems and increase the sensitivity of precise measurements. This separation from classical to quantum physics has motivated physicists to study two-particle interference for both fermionic and bosonic quantum objects. So far, two-particle interference has been observed with massive particles, among others, such as electrons and atoms, in addition to plasmons, demonstrating the extent of this effect to larger and more complex quantum systems. A wide array of novel applications to this quantum effect is to be expected in the future. This review will thus cover the progress and applications of two-photon (two-particle) interference over the last three decades.
Collapse
Affiliation(s)
- Frédéric Bouchard
- Department of Physics, University of Ottawa, Advanced Research Complex, 25 Templeton Street, Ottawa ON K1N 6N5, Canada
| | - Alicia Sit
- Department of Physics, University of Ottawa, Advanced Research Complex, 25 Templeton Street, Ottawa ON K1N 6N5, Canada
| | - Yingwen Zhang
- National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
| | - Robert Fickler
- Department of Physics, University of Ottawa, Advanced Research Complex, 25 Templeton Street, Ottawa ON K1N 6N5, Canada
| | - Filippo M Miatto
- Télécom Paris, LTCI, Institut Polytechnique de Paris, 19 Place Marguerite Peray, 91120 Palaiseau, France
| | - Yuan Yao
- Télécom Paris, LTCI, Institut Polytechnique de Paris, 19 Place Marguerite Peray, 91120 Palaiseau, France
| | - Fabio Sciarrino
- Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Ebrahim Karimi
- Department of Physics, University of Ottawa, Advanced Research Complex, 25 Templeton Street, Ottawa ON K1N 6N5, Canada
- National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A 0R6, Canada
| |
Collapse
|
16
|
Brange F, Schmidt A, Bayer JC, Wagner T, Flindt C, Haug RJ. Controlled emission time statistics of a dynamic single-electron transistor. SCIENCE ADVANCES 2021; 7:eabe0793. [PMID: 33523976 PMCID: PMC7787478 DOI: 10.1126/sciadv.abe0793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/28/2020] [Indexed: 06/12/2023]
Abstract
Quantum technologies involving qubit measurements based on electronic interferometers rely critically on accurate single-particle emission. However, achieving precisely timed operations requires exquisite control of the single-particle sources in the time domain. Here, we demonstrate accurate control of the emission time statistics of a dynamic single-electron transistor by measuring the waiting times between emitted electrons. By ramping up the modulation frequency, we controllably drive the system through a crossover from adiabatic to nonadiabatic dynamics, which we visualize by measuring the temporal fluctuations at the single-electron level and explain using detailed theory. Our work paves the way for future technologies based on the ability to control, transmit, and detect single quanta of charge or heat in the form of electrons, photons, or phonons.
Collapse
Affiliation(s)
- Fredrik Brange
- Department of Applied Physics, Aalto University, 00076 Aalto, Finland
| | - Adrian Schmidt
- Institut für Festkörperphysik, Leibniz Universität Hannover, Hannover, Germany
| | - Johannes C Bayer
- Institut für Festkörperphysik, Leibniz Universität Hannover, Hannover, Germany
| | - Timo Wagner
- Institut für Festkörperphysik, Leibniz Universität Hannover, Hannover, Germany
| | - Christian Flindt
- Department of Applied Physics, Aalto University, 00076 Aalto, Finland.
| | - Rolf J Haug
- Institut für Festkörperphysik, Leibniz Universität Hannover, Hannover, Germany.
| |
Collapse
|
17
|
Belogolovskii M, Zhitlukhina E, Seidel P. Voltage- and temperature-controllable quantum-data processing across three-terminal superconducting nanodevices. APPLIED NANOSCIENCE 2020. [DOI: 10.1007/s13204-019-01117-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
18
|
Filippone M, Marguerite A, Le Hur K, Fève G, Mora C. Phase-Coherent Dynamics of Quantum Devices with Local Interactions. ENTROPY (BASEL, SWITZERLAND) 2020; 22:E847. [PMID: 33286618 PMCID: PMC7517448 DOI: 10.3390/e22080847] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/21/2020] [Accepted: 07/02/2020] [Indexed: 11/16/2022]
Abstract
This review illustrates how Local Fermi Liquid (LFL) theories describe the strongly correlated and coherent low-energy dynamics of quantum dot devices. This approach consists in an effective elastic scattering theory, accounting exactly for strong correlations. Here, we focus on the mesoscopic capacitor and recent experiments achieving a Coulomb-induced quantum state transfer. Extending to out-of-equilibrium regimes, aimed at triggered single electron emission, we illustrate how inelastic effects become crucial, requiring approaches beyond LFLs, shedding new light on past experimental data by showing clear interaction effects in the dynamics of mesoscopic capacitors.
Collapse
Affiliation(s)
- Michele Filippone
- Department of Quantum Matter Physics, University of Geneva 24 Quai Ernest-Ansermet, CH-1211 Geneva, Switzerland
| | - Arthur Marguerite
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 7610001, Israel;
| | - Karyn Le Hur
- CPHT, CNRS, Institut Polytechnique de Paris, Route de Saclay, 91128 Palaiseau, France;
| | - Gwendal Fève
- Laboratoire de Physique de l’Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France;
| | - Christophe Mora
- Laboratoire Matériaux et Phénomènes Quantiques, CNRS, Université de Paris, F-75013 Paris, France;
| |
Collapse
|
19
|
Rodriguez RH, Parmentier FD, Ferraro D, Roulleau P, Gennser U, Cavanna A, Sassetti M, Portier F, Mailly D, Roche P. Relaxation and revival of quasiparticles injected in an interacting quantum Hall liquid. Nat Commun 2020; 11:2426. [PMID: 32415091 PMCID: PMC7229030 DOI: 10.1038/s41467-020-16331-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/28/2020] [Indexed: 11/18/2022] Open
Abstract
The one-dimensional, chiral edge channels of the quantum Hall effect are a promising platform in which to implement electron quantum optics experiments; however, Coulomb interactions between edge channels are a major source of decoherence and energy relaxation. It is therefore of large interest to understand the range and limitations of the simple quantum electron optics picture. Here we confirm experimentally for the first time the predicted relaxation and revival of electrons injected at finite energy into an edge channel. The observed decay of the injected electrons is reproduced theoretically within a Tomonaga-Luttinger liquid framework, including an important dissipation towards external degrees of freedom. This gives us a quantitative empirical understanding of the strength of the interaction and the dissipation.
Collapse
Affiliation(s)
- R H Rodriguez
- Université Paris-Saclay, CEA, CNRS, SPEC, Gif-sur-Yvette, 91191, France
| | - F D Parmentier
- Université Paris-Saclay, CEA, CNRS, SPEC, Gif-sur-Yvette, 91191, France.
| | - D Ferraro
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146, Genova, Italy
- SPIN-CNR, Via Dodecaneso 33, 16146, Genova, Italy
| | - P Roulleau
- Université Paris-Saclay, CEA, CNRS, SPEC, Gif-sur-Yvette, 91191, France
| | - U Gennser
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies (C2N), Palaiseau, 91120, France
| | - A Cavanna
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies (C2N), Palaiseau, 91120, France
| | - M Sassetti
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146, Genova, Italy
- SPIN-CNR, Via Dodecaneso 33, 16146, Genova, Italy
| | - F Portier
- Université Paris-Saclay, CEA, CNRS, SPEC, Gif-sur-Yvette, 91191, France
| | - D Mailly
- Université Paris-Saclay, CNRS, Centre de Nanosciences et de Nanotechnologies (C2N), Palaiseau, 91120, France
| | - P Roche
- Université Paris-Saclay, CEA, CNRS, SPEC, Gif-sur-Yvette, 91191, France
| |
Collapse
|
20
|
Keski-Rahkonen J, Ruhanen A, Heller EJ, Räsänen E. Quantum Lissajous Scars. PHYSICAL REVIEW LETTERS 2019; 123:214101. [PMID: 31809168 DOI: 10.1103/physrevlett.123.214101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Indexed: 06/10/2023]
Abstract
A quantum scar-an enhancement of a quantum probability density in the vicinity of a classical periodic orbit-is a fundamental phenomenon connecting quantum and classical mechanics. Here we demonstrate that some of the eigenstates of the perturbed two-dimensional anisotropic (elliptic) harmonic oscillator are strongly scarred by the Lissajous orbits of the unperturbed classical counterpart. In particular, we show that the occurrence and geometry of these quantum Lissajous scars are connected to the anisotropy of the harmonic confinement, but unlike the classical Lissajous orbits the scars survive under a small perturbation of the potential. This Lissajous scarring is caused by the combined effect of the quantum (near) degeneracies in the unperturbed system and the localized character of the perturbation. Furthermore, we discuss experimental schemes to observe this perturbation-induced scarring.
Collapse
Affiliation(s)
- J Keski-Rahkonen
- Computational Physics Laboratory, Tampere University, Tampere 33720, Finland
| | - A Ruhanen
- Computational Physics Laboratory, Tampere University, Tampere 33720, Finland
| | - E J Heller
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| | - E Räsänen
- Computational Physics Laboratory, Tampere University, Tampere 33720, Finland
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
21
|
Fletcher JD, Johnson N, Locane E, See P, Griffiths JP, Farrer I, Ritchie DA, Brouwer PW, Kashcheyevs V, Kataoka M. Continuous-variable tomography of solitary electrons. Nat Commun 2019; 10:5298. [PMID: 31757944 PMCID: PMC6874662 DOI: 10.1038/s41467-019-13222-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 10/15/2019] [Indexed: 11/17/2022] Open
Abstract
A method for characterising the wave-function of freely-propagating particles would provide a useful tool for developing quantum-information technologies with single electronic excitations. Previous continuous-variable quantum tomography techniques developed to analyse electronic excitations in the energy-time domain have been limited to energies close to the Fermi level. We show that a wide-band tomography of single-particle distributions is possible using energy-time filtering and that the Wigner representation of the mixed-state density matrix can be reconstructed for solitary electrons emitted by an on-demand single-electron source. These are highly localised distributions, isolated from the Fermi sea. While we cannot resolve the pure state Wigner function of our excitations due to classical fluctuations, we can partially resolve the chirp and squeezing of the Wigner function imposed by emission conditions and quantify the quantumness of the source. This tomography scheme, when implemented with sufficient experimental resolution, will enable quantum-limited measurements, providing information on electron coherence and entanglement at the individual particle level. Quantum tomographic techniques enable the complete characterisation of continuous variable quantum states. Here the authors demonstrate a broadband tomography protocol for single electrons that goes beyond the bandwidth restrictions of existing methods.
Collapse
Affiliation(s)
- J D Fletcher
- National Physical Laboratory, Hampton Road, Teddington, Middlesex, TW11 0LW, UK
| | - N Johnson
- National Physical Laboratory, Hampton Road, Teddington, Middlesex, TW11 0LW, UK.,London Centre for Nanotechnology and Department of Electronic and Electrical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.,NTT Basic Research Laboratories, NTT Corporation, Atsugi, Japan
| | - E Locane
- Dahlem Center for Complex Quantum Systems and Institut für Theoretische Physik, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - P See
- National Physical Laboratory, Hampton Road, Teddington, Middlesex, TW11 0LW, UK
| | - J P Griffiths
- Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge, CB3 0HE, UK
| | - I Farrer
- Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge, CB3 0HE, UK.,Department of Electronic & Electrical Engineering, The University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK
| | - D A Ritchie
- Cavendish Laboratory, University of Cambridge, J. J. Thomson Avenue, Cambridge, CB3 0HE, UK
| | - P W Brouwer
- Dahlem Center for Complex Quantum Systems and Institut für Theoretische Physik, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - V Kashcheyevs
- Department of Physics, University of Latvia, Jelgavas street 3, Riga, LV 1004, Latvia
| | - M Kataoka
- National Physical Laboratory, Hampton Road, Teddington, Middlesex, TW11 0LW, UK.
| |
Collapse
|
22
|
Yamahata G, Ryu S, Johnson N, Sim HS, Fujiwara A, Kataoka M. Picosecond coherent electron motion in a silicon single-electron source. NATURE NANOTECHNOLOGY 2019; 14:1019-1023. [PMID: 31686007 DOI: 10.1038/s41565-019-0563-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 09/26/2019] [Indexed: 06/10/2023]
Abstract
An advanced understanding of ultrafast coherent electron dynamics is necessary for the application of submicrometre devices under a non-equilibrium drive to quantum technology, including on-demand single-electron sources1, electron quantum optics2-4, qubit control5-7, quantum sensing8,9 and quantum metrology10. Although electron dynamics along an extended channel has been studied extensively2-4,11, it is hard to capture the electron motion inside submicrometre devices. The frequency of the internal, coherent dynamics is typically higher than 100 GHz, beyond the state-of-the-art experimental bandwidth of less than 10 GHz (refs. 6,12,13). Although the dynamics can be detected by means of a surface-acoustic-wave quantum dot14, this method does not allow for a time-resolved detection. Here we theoretically and experimentally demonstrate how we can observe the internal dynamics in a silicon single-electron source that comprises a dynamic quantum dot in an effective time-resolved fashion with picosecond resolution using a resonant level as a detector. The experimental observations and the simulations with realistic parameters show that a non-adiabatically excited electron wave packet15 spatially oscillates quantum coherently at ~250 GHz inside the source at 4.2 K. The developed technique may, in future, enable the detection of fast dynamics in cavities, the control of non-adiabatic excitations15 or a single-electron source that emits engineered wave packets16. With such achievements, high-fidelity initialization of flying qubits5, high-resolution and high-speed electromagnetic-field sensing8 and high-accuracy current sources17 may become possible.
Collapse
Affiliation(s)
- Gento Yamahata
- NTT Basic Research Laboratories, NTT Corporation, Atsugi, Japan.
| | - Sungguen Ryu
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, Korea
- Institute for Cross-Disciplinary Physics and Complex Systems IFISC (UIB-CSIC), Palma de Mallorca, Spain
| | - Nathan Johnson
- NTT Basic Research Laboratories, NTT Corporation, Atsugi, Japan
| | - H-S Sim
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon, Korea.
| | - Akira Fujiwara
- NTT Basic Research Laboratories, NTT Corporation, Atsugi, Japan
| | | |
Collapse
|
23
|
Fève G. Picosecond detection of electron motion. NATURE NANOTECHNOLOGY 2019; 14:1005-1006. [PMID: 31686008 DOI: 10.1038/s41565-019-0576-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
- G Fève
- Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, France.
| |
Collapse
|
24
|
Takada S, Edlbauer H, Lepage HV, Wang J, Mortemousque PA, Georgiou G, Barnes CHW, Ford CJB, Yuan M, Santos PV, Waintal X, Ludwig A, Wieck AD, Urdampilleta M, Meunier T, Bäuerle C. Sound-driven single-electron transfer in a circuit of coupled quantum rails. Nat Commun 2019; 10:4557. [PMID: 31594936 PMCID: PMC6783466 DOI: 10.1038/s41467-019-12514-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 09/10/2019] [Indexed: 11/28/2022] Open
Abstract
Surface acoustic waves (SAWs) strongly modulate the shallow electric potential in piezoelectric materials. In semiconductor heterostructures such as GaAs/AlGaAs, SAWs can thus be employed to transfer individual electrons between distant quantum dots. This transfer mechanism makes SAW technologies a promising candidate to convey quantum information through a circuit of quantum logic gates. Here we present two essential building blocks of such a SAW-driven quantum circuit. First, we implement a directional coupler allowing to partition a flying electron arbitrarily into two paths of transportation. Second, we demonstrate a triggered single-electron source enabling synchronisation of the SAW-driven sending process. Exceeding a single-shot transfer efficiency of 99%, we show that a SAW-driven integrated circuit is feasible with single electrons on a large scale. Our results pave the way to perform quantum logic operations with flying electron qubits.
Collapse
Affiliation(s)
- Shintaro Takada
- Université Grenoble Alpes, CNRS, Institut Néel, 38000, Grenoble, France
- National Institute of Advanced Industrial Science and Technology (AIST), National Metrology Institute of Japan (NMIJ), 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8563, Japan
| | - Hermann Edlbauer
- Université Grenoble Alpes, CNRS, Institut Néel, 38000, Grenoble, France
| | - Hugo V Lepage
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Junliang Wang
- Université Grenoble Alpes, CNRS, Institut Néel, 38000, Grenoble, France
| | | | - Giorgos Georgiou
- Université Grenoble Alpes, CNRS, Institut Néel, 38000, Grenoble, France
- Université Savoie Mont-Blanc, CNRS, IMEP-LAHC, 73370, Le Bourget du Lac, France
| | - Crispin H W Barnes
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Christopher J B Ford
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Mingyun Yuan
- Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, 10117, Berlin, Germany
| | - Paulo V Santos
- Paul-Drude-Institut für Festkörperelektronik, Hausvogteiplatz 5-7, 10117, Berlin, Germany
| | - Xavier Waintal
- Université Grenoble Alpes, CEA, IRIG-Pheliqs, 38000, Grenoble, France
| | - Arne Ludwig
- Lehrstuhl für Angewandte Festkörperphysik, Ruhr-Universität Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Andreas D Wieck
- Lehrstuhl für Angewandte Festkörperphysik, Ruhr-Universität Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | | | - Tristan Meunier
- Université Grenoble Alpes, CNRS, Institut Néel, 38000, Grenoble, France
| | | |
Collapse
|
25
|
Bisognin R, Marguerite A, Roussel B, Kumar M, Cabart C, Chapdelaine C, Mohammad-Djafari A, Berroir JM, Bocquillon E, Plaçais B, Cavanna A, Gennser U, Jin Y, Degiovanni P, Fève G. Quantum tomography of electrical currents. Nat Commun 2019; 10:3379. [PMID: 31358764 PMCID: PMC6662746 DOI: 10.1038/s41467-019-11369-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 07/04/2019] [Indexed: 11/08/2022] Open
Abstract
In quantum nanoelectronics, time-dependent electrical currents are built from few elementary excitations emitted with well-defined wavefunctions. However, despite the realization of sources generating quantized numbers of excitations, and despite the development of the theoretical framework of time-dependent quantum electronics, extracting electron and hole wavefunctions from electrical currents has so far remained out of reach, both at the theoretical and experimental levels. In this work, we demonstrate a quantum tomography protocol which extracts the generated electron and hole wavefunctions and their emission probabilities from any electrical current. It combines two-particle interferometry with signal processing. Using our technique, we extract the wavefunctions generated by trains of Lorentzian pulses carrying one or two electrons. By demonstrating the synthesis and complete characterization of electronic wavefunctions in conductors, this work offers perspectives for quantum information processing with electrical currents and for investigating basic quantum physics in many-body systems.
Collapse
Affiliation(s)
- R Bisognin
- Laboratoire de Physique de l' Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, Paris, 75005, France
| | - A Marguerite
- Laboratoire de Physique de l' Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, Paris, 75005, France
| | - B Roussel
- Univ Lyon, Ens de Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire de Physique, F-69342, Lyon, France
- European Space Agency-Advanced Concepts Team, ESTEC, Keplerlaan 1, 2201 AZ, Noordwijk, The Netherlands
| | - M Kumar
- Laboratoire de Physique de l' Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, Paris, 75005, France
| | - C Cabart
- Univ Lyon, Ens de Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire de Physique, F-69342, Lyon, France
| | - C Chapdelaine
- Laboratoire des signaux et systèmes, CNRS, Centrale-Supélec-Université Paris-Saclay, Gif-sur-Yvette, F-91190, France
| | - A Mohammad-Djafari
- Laboratoire des signaux et systèmes, CNRS, Centrale-Supélec-Université Paris-Saclay, Gif-sur-Yvette, F-91190, France
| | - J-M Berroir
- Laboratoire de Physique de l' Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, Paris, 75005, France
| | - E Bocquillon
- Laboratoire de Physique de l' Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, Paris, 75005, France
| | - B Plaçais
- Laboratoire de Physique de l' Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, Paris, 75005, France
| | - A Cavanna
- Centre de Nanosciences et de Nanotechnologies (C2N), CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91120, Palaiseau, France
| | - U Gennser
- Centre de Nanosciences et de Nanotechnologies (C2N), CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91120, Palaiseau, France
| | - Y Jin
- Centre de Nanosciences et de Nanotechnologies (C2N), CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91120, Palaiseau, France
| | - P Degiovanni
- Univ Lyon, Ens de Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire de Physique, F-69342, Lyon, France
| | - G Fève
- Laboratoire de Physique de l' Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris Cité, Paris, 75005, France.
| |
Collapse
|
26
|
Yin Y. Quasiparticle states of on-demand coherent electron sources. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2019; 31:245301. [PMID: 30870815 DOI: 10.1088/1361-648x/ab0fc4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We introduce a general approach to extract the wave function of quasiparticles from the scattering matrix of a quantum conductor, which offers a unified way to study the features of quasiparticles from on-demand coherent electron sources with different configurations. We first show that the quasiparticles are particle-hole pairs in the Fermi sea, which can be indexed with the flow density [Formula: see text]. Both the excitation probability and the particle/hole components of the quasiparticles can be solely decided from the polar decomposition of the scattering matrix. By using such approach, we then investigate the quasiparticles from the electron sources based on a quantum point contact and a quantum dot (QD). We find that the quasiparticles from different electron sources have different features, which can be seen from the corresponding [Formula: see text]-dependence of the excitation probability and the particle/hole components. We further show that these features can also be characterized by the full counting statistics of the quasiparticles, which can be approximated by a binomial distribution with cumulant generating function [Formula: see text]. For the quantum-point-contact-based electron sources, both [Formula: see text] and [Formula: see text] are monotonically increasing functions of the driving strength. In contrast, for the quantum-dot-based electron sources, both [Formula: see text] and [Formula: see text] can exhibit oscillations, which can be attributed to the interplay between the charge excitation and charge relaxation processes in the QD.
Collapse
Affiliation(s)
- Y Yin
- College of Physical Science and Technology, Sichuan University, Chengdu, Sichuan, 610065, People's Republic of China
| |
Collapse
|
27
|
Wagner G, Nguyen DX, Kovrizhin DL, Simon SH. Interaction Effects and Charge Quantization in Single-Particle Quantum Dot Emitters. PHYSICAL REVIEW LETTERS 2019; 122:127701. [PMID: 30978103 DOI: 10.1103/physrevlett.122.127701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Indexed: 06/09/2023]
Abstract
We discuss a theoretical model of an on-demand single-particle emitter that employs a quantum dot, attached to an integer or fractional quantum Hall edge state. Via an exact mapping of the model onto the spin-boson problem we show that Coulomb interactions between the dot and the chiral quantum Hall edge state, unavoidable in this setting, lead to a destruction of precise charge quantization in the emitted wave packet. Our findings cast doubt on the viability of this setup as a single-particle source of quantized charge pulses. We further show how to use a spin-boson master equation approach to explicitly calculate the current pulse shape in this setup.
Collapse
Affiliation(s)
- Glenn Wagner
- Rudolf Peierls Centre for Theoretical Physics, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Dung X Nguyen
- Rudolf Peierls Centre for Theoretical Physics, Parks Road, Oxford OX1 3PU, United Kingdom
| | - Dmitry L Kovrizhin
- Rudolf Peierls Centre for Theoretical Physics, Parks Road, Oxford OX1 3PU, United Kingdom
- NRC Kurchatov Institute, 1 Kurchatov Square, 123182 Moscow, Russia
| | - Steven H Simon
- Rudolf Peierls Centre for Theoretical Physics, Parks Road, Oxford OX1 3PU, United Kingdom
| |
Collapse
|
28
|
de Bonis SL, Urgell C, Yang W, Samanta C, Noury A, Vergara-Cruz J, Dong Q, Jin Y, Bachtold A. Ultrasensitive Displacement Noise Measurement of Carbon Nanotube Mechanical Resonators. NANO LETTERS 2018; 18:5324-5328. [PMID: 30062893 PMCID: PMC6089494 DOI: 10.1021/acs.nanolett.8b02437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Mechanical resonators based on a single carbon nanotube are exceptional sensors of mass and force. The force sensitivity in these ultralight resonators is often limited by the noise in the detection of the vibrations. Here, we report on an ultrasensitive scheme based on a RLC resonator and a low-temperature amplifier to detect nanotube vibrations. We also show a new fabrication process of electromechanical nanotube resonators to reduce the separation between the suspended nanotube and the gate electrode down to ∼150 nm. These advances in detection and fabrication allow us to reach [Formula: see text] displacement sensitivity. Thermal vibrations cooled cryogenically at 300 mK are detected with a signal-to-noise ratio as high as 17 dB. We demonstrate [Formula: see text] force sensitivity, which is the best force sensitivity achieved thus far with a mechanical resonator. Our work is an important step toward imaging individual nuclear spins and studying the coupling between mechanical vibrations and electrons in different quantum electron transport regimes.
Collapse
Affiliation(s)
- S L de Bonis
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology , 08860 Castelldefels, Barcelona , Spain
| | - C Urgell
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology , 08860 Castelldefels, Barcelona , Spain
| | - W Yang
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology , 08860 Castelldefels, Barcelona , Spain
| | - C Samanta
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology , 08860 Castelldefels, Barcelona , Spain
| | - A Noury
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology , 08860 Castelldefels, Barcelona , Spain
| | - J Vergara-Cruz
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology , 08860 Castelldefels, Barcelona , Spain
| | - Q Dong
- Centre de Nanosciences et de Nanotechnologies, CNRS , University of Paris-Sud, University of Paris-Saclay, C2N Marcoussis, 91460 Marcoussis , France
| | - Y Jin
- Centre de Nanosciences et de Nanotechnologies, CNRS , University of Paris-Sud, University of Paris-Saclay, C2N Marcoussis, 91460 Marcoussis , France
| | - A Bachtold
- ICFO - Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology , 08860 Castelldefels, Barcelona , Spain
| |
Collapse
|
29
|
Yin Y. On-demand electron source with tunable energy distribution. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:285301. [PMID: 29808830 DOI: 10.1088/1361-648x/aac843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We propose a scheme to manipulate the electron-hole excitation in the voltage pulse electron source, which can be realized by a voltage-driven Ohmic contact connecting to a quantum hall edge channel. It has been known that the electron-hole excitation can be suppressed via Lorentzian pulses, leading to noiseless electron current. We show that, instead of the Lorentzian pulses, driven via the voltage pulse [Formula: see text] with duration t 0, the electron-hole excitation can be tuned so that the corresponding energy distribution of the emitted electrons follows the Fermi distribution with temperature [Formula: see text], with T S being the electron temperature in the Ohmic contact. Such Fermi distribution can be established without introducing additional energy relaxation mechanism and can be detected via shot noise thermometry technique, making it helpful in the study of thermal transport and decoherence in mesoscopic system.
Collapse
Affiliation(s)
- Y Yin
- Laboratory of Mesoscopic and Low Dimensional Physics, Department of Physics, Sichuan University, Chengdu, Sichuan 610064, People's Republic of China
| |
Collapse
|
30
|
Bäuerle C, Christian Glattli D, Meunier T, Portier F, Roche P, Roulleau P, Takada S, Waintal X. Coherent control of single electrons: a review of current progress. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2018; 81:056503. [PMID: 29355831 DOI: 10.1088/1361-6633/aaa98a] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this report we review the present state of the art of the control of propagating quantum states at the single-electron level and its potential application to quantum information processing. We give an overview of the different approaches that have been developed over the last few years in order to gain full control over a propagating single-electron in a solid-state system. After a brief introduction of the basic concepts, we present experiments on flying qubit circuits for ensemble of electrons measured in the low frequency (DC) limit. We then present the basic ingredients necessary to realise such experiments at the single-electron level. This includes a review of the various single-electron sources that have been developed over the last years and which are compatible with integrated single-electron circuits. This is followed by a review of recent key experiments on electron quantum optics with single electrons. Finally we will present recent developments in the new physics that has emerged using ultrashort voltage pulses. We conclude our review with an outlook and future challenges in the field.
Collapse
Affiliation(s)
- Christopher Bäuerle
- Univ. Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Karlovets DV, Serbo VG. Possibility to Probe Negative Values of a Wigner Function in Scattering of a Coherent Superposition of Electronic Wave Packets by Atoms. PHYSICAL REVIEW LETTERS 2017; 119:173601. [PMID: 29219469 DOI: 10.1103/physrevlett.119.173601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Indexed: 06/07/2023]
Abstract
Within a plane-wave approximation in scattering, an incoming wave packet's Wigner function stays positive everywhere, which obscures such purely quantum phenomena as nonlocality and entanglement. With the advent of the electron microscopes with subnanometer-sized beams, one can enter a genuinely quantum regime where the latter effects become only moderately attenuated. Here we show how to probe negative values of the Wigner function in scattering of a coherent superposition of two Gaussian packets with a nonvanishing impact parameter between them (a Schrödinger's cat state) by atomic targets. For hydrogen in the ground 1s state, a small parameter of the problem, a ratio a/σ_{⊥} of the Bohr radius a to the beam width σ_{⊥}, is no longer vanishing. We predict an azimuthal asymmetry of the scattered electrons, which is found to be up to 10%, and argue that it can be reliably detected. The production of beams with the not-everywhere-positive Wigner functions and the probing of such quantum effects can open new perspectives for noninvasive electron microscopy, quantum tomography, particle physics, and so forth.
Collapse
Affiliation(s)
| | - Valeriy G Serbo
- Novosibirsk State University, Pirogova 2, 630090 Novosibirsk, Russia
- Sobolev Institute of Mathematics, Koptyuga 4, 630090 Novosibirsk, Russia
| |
Collapse
|
32
|
Rech J, Ferraro D, Jonckheere T, Vannucci L, Sassetti M, Martin T. Minimal Excitations in the Fractional Quantum Hall Regime. PHYSICAL REVIEW LETTERS 2017; 118:076801. [PMID: 28256856 DOI: 10.1103/physrevlett.118.076801] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Indexed: 06/06/2023]
Abstract
We study the minimal excitations of fractional quantum Hall edges, extending the notion of levitons to interacting systems. Using both perturbative and exact calculations, we show that they arise in response to a Lorentzian potential with quantized flux. They carry an integer charge, thus involving several Laughlin quasiparticles, and leave a Poissonian signature in a Hanbury Brown-Twiss partition noise measurement at low transparency. This makes them readily accessible experimentally, ultimately offering the opportunity to study real-time transport of Abelian and non-Abelian excitations.
Collapse
Affiliation(s)
- J Rech
- Aix Marseille Univ, Université de Toulon, CNRS, CPT, Marseille, France
| | - D Ferraro
- Aix Marseille Univ, Université de Toulon, CNRS, CPT, Marseille, France
| | - T Jonckheere
- Aix Marseille Univ, Université de Toulon, CNRS, CPT, Marseille, France
| | - L Vannucci
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy
- CNR-SPIN, Via Dodecaneso 33, 16146 Genova, Italy
| | - M Sassetti
- Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, 16146 Genova, Italy
- CNR-SPIN, Via Dodecaneso 33, 16146 Genova, Italy
| | - T Martin
- Aix Marseille Univ, Université de Toulon, CNRS, CPT, Marseille, France
| |
Collapse
|
33
|
Lima LRF, Hernández AR, Pinheiro FA, Lewenkopf C. A 50/50 electronic beam splitter in graphene nanoribbons as a building block for electron optics. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:505303. [PMID: 27768605 DOI: 10.1088/0953-8984/28/50/505303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Based on the investigation of the multi-terminal conductance of a system composed of two graphene nanoribbons, in which one is on top of the other and rotated by [Formula: see text], we propose a setup for a 50/50 electronic beam splitter that neither requires large magnetic fields nor ultra low temperatures. Our findings are based on an atomistic tight-binding description of the system and on the Green function method to compute the Landauer conductance. We demonstrate that this system acts as a perfect 50/50 electronic beam splitter, in which its operation can be switched on and off by varying the doping (Fermi energy). We show that this device is robust against thermal fluctuations and long range disorder, as zigzag valley chiral states of the nanoribbons are protected against backscattering. We suggest that the proposed device can be applied as the fundamental element of the Hong-Ou-Mandel interferometer, as well as a building block of many devices in electron optics.
Collapse
Affiliation(s)
- Leandro R F Lima
- Instituto de Física, Universidade Federal Fluminense, 24210-346 Niterói, RJ, Brazil
| | | | | | | |
Collapse
|
34
|
Dasenbrook D, Flindt C. Dynamical Scheme for Interferometric Measurements of Full-Counting Statistics. PHYSICAL REVIEW LETTERS 2016; 117:146801. [PMID: 27740844 DOI: 10.1103/physrevlett.117.146801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Indexed: 06/06/2023]
Abstract
We propose a dynamical scheme for measuring the full-counting statistics in a mesoscopic conductor using an electronic Mach-Zehnder interferometer. The conductor couples capacitively to one arm of the interferometer and causes a phase shift which is proportional to the number of transferred charges. Importantly, the full-counting statistics can be obtained from average current measurements at the outputs of the interferometer. The counting field can be controlled by varying the time delay between two separate voltage signals applied to the conductor and the interferometer, respectively. As a specific application, we consider measuring the entanglement entropy generated by partitioning electrons on a quantum point contact. Our scheme is robust against moderate environmental dephasing and may be realized thanks to recent advances in gigahertz quantum electronics.
Collapse
Affiliation(s)
- David Dasenbrook
- Département de Physique Théorique, Université de Genève, 1211 Genève, Switzerland
| | - Christian Flindt
- Department of Applied Physics, Aalto University, 00076 Aalto, Finland
| |
Collapse
|
35
|
Ryu S, Kataoka M, Sim HS. Ultrafast Emission and Detection of a Single-Electron Gaussian Wave Packet: A Theoretical Study. PHYSICAL REVIEW LETTERS 2016; 117:146802. [PMID: 27740812 DOI: 10.1103/physrevlett.117.146802] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Indexed: 06/06/2023]
Abstract
Generating and detecting a prescribed single-electron state is an important step towards solid-state fermion optics. We propose how to generate an electron in a Gaussian state, using a quantum-dot pump with gigahertz operation and realistic parameters. With the help of a strong magnetic field, the electron occupies a coherent state in the pump, insensitive to the details of nonadiabatic evolution. The state changes during the emission from the pump, governed by competition between the Landauer-Buttiker traversal time and the passage time. When the former is much shorter than the latter, the emitted state is a Gaussian wave packet. The Gaussian packet can be identified by using a dynamical potential barrier, with a resolution reaching the Heisenberg minimal uncertainty ℏ/2.
Collapse
Affiliation(s)
- Sungguen Ryu
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - M Kataoka
- National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW, United Kingdom
| | - H-S Sim
- Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| |
Collapse
|
36
|
Moskalets M. Fractionally Charged Zero-Energy Single-Particle Excitations in a Driven Fermi Sea. PHYSICAL REVIEW LETTERS 2016; 117:046801. [PMID: 27494490 DOI: 10.1103/physrevlett.117.046801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Indexed: 06/06/2023]
Abstract
A voltage pulse of a Lorentzian shape carrying half of the flux quantum excites out of a zero-temperature Fermi sea an electron in a mixed state, which looks like a quasiparticle with an effectively fractional charge e/2. A prominent feature of such an excitation is a narrow peak in the energy distribution function lying exactly at the Fermi energy μ. Another spectacular feature is that the distribution function has symmetric tails around μ, which results in a zero-energy excitation. This sounds improbable since at zero temperature all available states below μ are fully occupied. The resolution lies in the fact that such a voltage pulse also excites electron-hole pairs, which free some space below μ and thus allow a zero-energy quasiparticle to exist. I discuss also how to address separately electron-hole pairs and a fractionally charged zero-energy excitation in an experiment.
Collapse
Affiliation(s)
- Michael Moskalets
- Department of Metal and Semiconductor Physics, NTU "Kharkiv Polytechnic Institute", 61002 Kharkiv, Ukraine
| |
Collapse
|
37
|
Lu D, Xin T, Yu N, Ji Z, Chen J, Long G, Baugh J, Peng X, Zeng B, Laflamme R. Tomography is Necessary for Universal Entanglement Detection with Single-Copy Observables. PHYSICAL REVIEW LETTERS 2016; 116:230501. [PMID: 27341217 DOI: 10.1103/physrevlett.116.230501] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Indexed: 06/06/2023]
Abstract
Entanglement, one of the central mysteries of quantum mechanics, plays an essential role in numerous tasks of quantum information science. A natural question of both theoretical and experimental importance is whether universal entanglement detection can be accomplished without full state tomography. In this Letter, we prove a no-go theorem that rules out this possibility for nonadaptive schemes that employ single-copy measurements only. We also examine a previously implemented experiment [H. Park et al., Phys. Rev. Lett. 105, 230404 (2010)], which claimed to detect entanglement of two-qubit states via adaptive single-copy measurements without full state tomography. In contrast, our simulation and experiment both support the opposite conclusion that the protocol, indeed, leads to full state tomography, which supplements our no-go theorem. These results reveal a fundamental limit of single-copy measurements in entanglement detection and provide a general framework of the detection of other interesting properties of quantum states, such as the positivity of partial transpose and the k-symmetric extendibility.
Collapse
Affiliation(s)
- Dawei Lu
- Institute for Quantum Computing, University of Waterloo, Waterloo N2L 3G1, Ontario, Canada
| | - Tao Xin
- Institute for Quantum Computing, University of Waterloo, Waterloo N2L 3G1, Ontario, Canada
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
| | - Nengkun Yu
- Institute for Quantum Computing, University of Waterloo, Waterloo N2L 3G1, Ontario, Canada
- Centre for Quantum Computation and Intelligent Systems, Faculty of Engineering and Information Technology, University of Technology Sydney, NSW 2007, Australia
- Department of Mathematics and Statistics, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Zhengfeng Ji
- Institute for Quantum Computing, University of Waterloo, Waterloo N2L 3G1, Ontario, Canada
- State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing 100190, China
| | - Jianxin Chen
- Joint Center for Quantum Information and Computer Science, University of Maryland, College Park, Maryland 20742, USA
| | - Guilu Long
- State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
| | - Jonathan Baugh
- Institute for Quantum Computing, University of Waterloo, Waterloo N2L 3G1, Ontario, Canada
| | - Xinhua Peng
- Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230036, China
| | - Bei Zeng
- Institute for Quantum Computing, University of Waterloo, Waterloo N2L 3G1, Ontario, Canada
- Department of Mathematics and Statistics, University of Guelph, Guelph, Ontario N1G 2W1, Canada
- Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada
| | - Raymond Laflamme
- Institute for Quantum Computing, University of Waterloo, Waterloo N2L 3G1, Ontario, Canada
- Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada
- Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada
| |
Collapse
|
38
|
Hong-Ou-Mandel experiment for temporal investigation of single-electron fractionalization. Nat Commun 2015; 6:6854. [PMID: 25896625 PMCID: PMC4410626 DOI: 10.1038/ncomms7854] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 03/04/2015] [Indexed: 11/08/2022] Open
Abstract
Coulomb interaction has a striking effect on electronic propagation in one-dimensional conductors. The interaction of an elementary excitation with neighbouring conductors favours the emergence of collective modes, which eventually leads to the destruction of the Landau quasiparticle. In this process, an injected electron tends to fractionalize into separated pulses carrying a fraction of the electron charge. Here we use two-particle interferences in the electronic analogue of the Hong-Ou-Mandel experiment in a quantum Hall conductor at filling factor 2 to probe the fate of a single electron emitted in the outer edge channel and interacting with the inner one. By studying both channels, we analyse the propagation of the single electron and the generation of interaction-induced collective excitations in the inner channel. These complementary pieces of information reveal the fractionalization process in the time domain and establish its relevance for the destruction of the quasiparticle, which degrades into the collective modes. A charge injected into the edge of a correlated one-dimensional system can split into separate charge packages. Freulon et al. now study this electron fractionalization on the picosecond timescale using Hong-Ou-Mandel interferometry.
Collapse
|