1
|
Zeng C, Waheed AA, Li T, Yu J, Zheng YM, Yount JS, Wen H, Freed EO, Liu SL. SERINC proteins potentiate antiviral type I IFN production and proinflammatory signaling pathways. Sci Signal 2021; 14:eabc7611. [PMID: 34520227 DOI: 10.1126/scisignal.abc7611] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Cong Zeng
- Center for Retrovirus Research, Ohio State University, Columbus, OH 43210, USA.,Department of Veterinary Biosciences, Ohio State University, Columbus, OH 43210, USA
| | - Abdul A Waheed
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, Frederick, MD 21702, USA
| | - Tianliang Li
- Department of Microbial Infection and Immunity, Ohio State University, Columbus, OH 43210, USA
| | - Jingyou Yu
- Center for Retrovirus Research, Ohio State University, Columbus, OH 43210, USA.,Department of Veterinary Biosciences, Ohio State University, Columbus, OH 43210, USA
| | - Yi-Min Zheng
- Center for Retrovirus Research, Ohio State University, Columbus, OH 43210, USA.,Department of Veterinary Biosciences, Ohio State University, Columbus, OH 43210, USA
| | - Jacob S Yount
- Department of Microbial Infection and Immunity, Ohio State University, Columbus, OH 43210, USA
| | - Haitao Wen
- Department of Microbial Infection and Immunity, Ohio State University, Columbus, OH 43210, USA
| | - Eric O Freed
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, National Cancer Institute, Frederick, Frederick, MD 21702, USA
| | - Shan-Lu Liu
- Center for Retrovirus Research, Ohio State University, Columbus, OH 43210, USA.,Department of Veterinary Biosciences, Ohio State University, Columbus, OH 43210, USA.,Department of Microbial Infection and Immunity, Ohio State University, Columbus, OH 43210, USA.,Viruses and Emerging Pathogens Program, Infectious Diseases Institute, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
2
|
Morshed A, Karawdeniya BI, Bandara Y, Kim MJ, Dutta P. Mechanical characterization of vesicles and cells: A review. Electrophoresis 2020; 41:449-470. [PMID: 31967658 PMCID: PMC7567447 DOI: 10.1002/elps.201900362] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/05/2019] [Accepted: 12/08/2019] [Indexed: 12/30/2022]
Abstract
Vesicles perform many essential functions in all living organisms. They respond like a transducer to mechanical stress in converting the applied force into mechanical and biological responses. At the same time, both biochemical and biophysical signals influence the vesicular response in bearing mechanical loads. In recent years, liposomes, artificial lipid vesicles, have gained substantial attention from the pharmaceutical industry as a prospective drug carrier which can also serve as an artificial cell-mimetic system. The ability of these vesicles to enter through pores of even smaller size makes them ideal candidates for therapeutic agents to reach the infected sites effectively. Engineering of vesicles with desired mechanical properties that can encapsulate drugs and release as required is the prime challenge in this field. This requirement has led to the modifications of the composition of the bilayer membrane by adding cholesterol, sphingomyelin, etc. In this article, we review the manufacturing and characterization techniques of various artificial/synthetic vesicles. We particularly focus on the electric field-driven characterization techniques to determine different properties of vesicle and its membranes, such as bending rigidity, viscosity, capacitance, conductance, etc., which are indicators of their content and mobility. Similarities and differences between artificial vesicles, natural vesicles, and cells are highlighted throughout the manuscript since most of these artificial vesicles are intended for cell mimetic functions.
Collapse
Affiliation(s)
- Adnan Morshed
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920
| | - Buddini Iroshika Karawdeniya
- Department of Mechanical Engineering, Lyle School of Engineering, Southern Methodist University, Dallas, Texas, USA
| | - Y.M.NuwanD.Y. Bandara
- Department of Mechanical Engineering, Lyle School of Engineering, Southern Methodist University, Dallas, Texas, USA
| | - Min Jun Kim
- Department of Mechanical Engineering, Lyle School of Engineering, Southern Methodist University, Dallas, Texas, USA
| | - Prashanta Dutta
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920
| |
Collapse
|
3
|
D Urbano V, De Crignis E, Re MC. Host Restriction Factors and Human Immunodeficiency Virus (HIV-1): A Dynamic Interplay Involving All Phases of the Viral Life Cycle. Curr HIV Res 2019; 16:184-207. [PMID: 30117396 DOI: 10.2174/1570162x16666180817115830] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/31/2018] [Accepted: 08/09/2018] [Indexed: 02/08/2023]
Abstract
Mammalian cells have evolved several mechanisms to prevent or block lentiviral infection and spread. Among the innate immune mechanisms, the signaling cascade triggered by type I interferon (IFN) plays a pivotal role in limiting the burden of HIV-1. In the presence of IFN, human cells upregulate the expression of a number of genes, referred to as IFN-stimulated genes (ISGs), many of them acting as antiviral restriction factors (RFs). RFs are dominant proteins that target different essential steps of the viral cycle, thereby providing an early line of defense against the virus. The identification and characterization of RFs have provided unique insights into the molecular biology of HIV-1, further revealing the complex host-pathogen interplay that characterizes the infection. The presence of RFs drove viral evolution, forcing the virus to develop specific proteins to counteract their activity. The knowledge of the mechanisms that prevent viral infection and their viral counterparts may offer new insights to improve current antiviral strategies. This review provides an overview of the RFs targeting HIV-1 replication and the mechanisms that regulate their expression as well as their impact on viral replication and the clinical course of the disease.
Collapse
Affiliation(s)
- Vanessa D Urbano
- Retrovirus Laboratory, Operative Unit of Clinical Microbiology, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Elisa De Crignis
- Retrovirus Laboratory, Operative Unit of Clinical Microbiology, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Maria Carla Re
- Retrovirus Laboratory, Operative Unit of Clinical Microbiology, S. Orsola-Malpighi University Hospital, Bologna, Italy
| |
Collapse
|
4
|
TIM-mediated inhibition of HIV-1 release is antagonized by Nef but potentiated by SERINC proteins. Proc Natl Acad Sci U S A 2019; 116:5705-5714. [PMID: 30842281 DOI: 10.1073/pnas.1819475116] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The T cell Ig and mucin domain (TIM) proteins inhibit release of HIV-1 and other enveloped viruses by interacting with cell- and virion-associated phosphatidylserine (PS). Here, we show that the Nef proteins of HIV-1 and other lentiviruses antagonize TIM-mediated restriction. TIM-1 more potently inhibits the release of Nef-deficient relative to Nef-expressing HIV-1, and ectopic expression of Nef relieves restriction. HIV-1 Nef does not down-regulate the overall level of TIM-1 expression, but promotes its internalization from the plasma membrane and sequesters its expression in intracellular compartments. Notably, Nef mutants defective in modulating membrane protein endocytic trafficking are incapable of antagonizing TIM-mediated inhibition of HIV-1 release. Intriguingly, depletion of SERINC3 or SERINC5 proteins in human peripheral blood mononuclear cells (PBMCs) attenuates TIM-1 restriction of HIV-1 release, in particular that of Nef-deficient viruses. In contrast, coexpression of SERINC3 or SERINC5 increases the expression of TIM-1 on the plasma membrane and potentiates TIM-mediated inhibition of HIV-1 production. Pulse-chase metabolic labeling reveals that the half-life of TIM-1 is extended by SERINC5 from <2 to ∼6 hours, suggesting that SERINC5 stabilizes the expression of TIM-1. Consistent with a role for SERINC protein in potentiating TIM-1 restriction, we find that MLV glycoGag and EIAV S2 proteins, which, like Nef, antagonize SERINC-mediated diminishment of HIV-1 infectivity, also effectively counteract TIM-mediated inhibition of HIV-1 release. Collectively, our work reveals a role of Nef in antagonizing TIM-1 and highlights the complex interplay between Nef and HIV-1 restriction by TIMs and SERINCs.
Collapse
|
5
|
Uhl J, Gujarathi S, Waheed AA, Gordon A, Freed EO, Gousset K. Myosin-X is essential to the intercellular spread of HIV-1 Nef through tunneling nanotubes. J Cell Commun Signal 2018; 13:209-224. [PMID: 30443895 DOI: 10.1007/s12079-018-0493-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 11/01/2018] [Indexed: 12/18/2022] Open
Abstract
Tunneling nanotubes (TNTs) are intercellular structures that allow for the passage of vesicles, organelles, genomic material, pathogenic proteins and pathogens. The unconventional actin molecular motor protein Myosin-X (Myo10) is a known inducer of TNTs in neuronal cells, yet its role in other cell types has not been examined. The Nef HIV-1 accessory protein is critical for HIV-1 pathogenesis and can self-disseminate in culture via TNTs. Understanding its intercellular spreading mechanism could reveal ways to control its damaging effects during HIV-1 infection. Our goal in this study was to characterize the intercellular transport mechanism of Nef from macrophages to T cells. We demonstrate that Nef increases TNTs in a Myo10-dependent manner in macrophages and observed the transfer of Nef via TNTs from macrophages to T cells. To quantify this transfer mechanism, we established an indirect flow cytometry assay. Since Nef expression in T cells down-regulates the surface receptor CD4, we correlated the decrease in CD4 to the transfer of Nef between these cells. Thus, we co-cultured macrophages expressing varying levels of Nef with a T cell line expressing high levels of CD4 and quantified the changes in CD4 surface expression resulting from Nef transfer. We demonstrate that Nef transfer occurs via a cell-to-cell dependent mechanism that directly correlates with the presence of Myo10-dependent TNTs. Thus, we show that Nef can regulate Myo10 expression, thereby inducing TNT formation, resulting in its own transfer from macrophages to T cells. In addition, we demonstrate that up-regulation of Myo10 induced by Nef also occurs in human monocyte derived macrophages during HIV-1 infection.
Collapse
Affiliation(s)
- Jaime Uhl
- Biology Department, California State University Fresno, Fresno, 93740, USA
| | - Shivalee Gujarathi
- Biology Department, California State University Fresno, Fresno, 93740, USA
| | - Abdul A Waheed
- HIV Dynamics and Replication Program, National Cancer Institute-Frederick, Frederick, MD, 21702, USA
| | - Ana Gordon
- Biology Department, California State University Fresno, Fresno, 93740, USA
| | - Eric O Freed
- HIV Dynamics and Replication Program, National Cancer Institute-Frederick, Frederick, MD, 21702, USA
| | - Karine Gousset
- Biology Department, California State University Fresno, Fresno, 93740, USA.
| |
Collapse
|
6
|
Felli C, Vincentini O, Silano M, Masotti A. HIV-1 Nef Signaling in Intestinal Mucosa Epithelium Suggests the Existence of an Active Inter-kingdom Crosstalk Mediated by Exosomes. Front Microbiol 2017. [PMID: 28642743 PMCID: PMC5462933 DOI: 10.3389/fmicb.2017.01022] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The human intestinal mucosal surface represents the first defense against pathogens and regulates the immune response through the combination of epithelial cell (EC) functions and immunological factors. ECs act as sensors of luminal stimuli and interact with the immune cells through signal-transduction pathways, thus representing the first barrier that HIV-1 virus encounters during infection. In particular, the HIV-1 Nef protein plays a crucial role in viral invasion and replication. Nef is expressed early during viral infection and interacts with numerous cellular proteins as a scaffold/adaptor. Nef is localized primarily to cellular membranes and affects several signaling cascades in infected cells modulating the expression of cell surface receptors critical for HIV-1 infection and transmission, also accompanied by the production of specific cytokines and progressive depletion of CD4+ T cells. At the intestinal level, Nef contributes to affect the mucosal barrier by increasing epithelial permeability, that results in the translocation of microbial antigens and consequently in immune system activation. However, the pathological role of Nef in mucosal dysfunction has not been fully elucidated. Interestingly, Nef is secreted also within exosomes and contributes to regulate the intercellular communication exploiting the vesicular trafficking machinery of the host. This can be considered as a potential inter-kingdom communication pathway between virus and humans, where viral Nef contributes to modulate and post-transcriptionally regulate the host gene expression and immune response. In this mini-review we discuss the effects of HIV-1 Nef protein on intestinal epithelium and propose the existence of an inter-kingdom communication process mediated by exosomes.
Collapse
Affiliation(s)
- Cristina Felli
- Gene Expression - Microarrays Laboratory, Bambino Gesù Children's Hospital - Istituto di Ricovero e Cura a Carattere ScientificoRome, Italy
| | - Olimpia Vincentini
- Unit of Human Nutrition and Health, Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità - Italian National Institute of HealthRome, Italy
| | - Marco Silano
- Unit of Human Nutrition and Health, Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità - Italian National Institute of HealthRome, Italy
| | - Andrea Masotti
- Gene Expression - Microarrays Laboratory, Bambino Gesù Children's Hospital - Istituto di Ricovero e Cura a Carattere ScientificoRome, Italy
| |
Collapse
|
7
|
Manzourolajdad A, Gonzalez M, Spouge JL. Changes in the Plasticity of HIV-1 Nef RNA during the Evolution of the North American Epidemic. PLoS One 2016; 11:e0163688. [PMID: 27685447 PMCID: PMC5042412 DOI: 10.1371/journal.pone.0163688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 09/13/2016] [Indexed: 02/04/2023] Open
Abstract
Because of a high mutation rate, HIV exists as a viral swarm of many sequence variants evolving under various selective pressures from the human immune system. Although the Nef gene codes for the most immunogenic of HIV accessory proteins, which alone makes it of great interest to HIV research, it also encodes an RNA structure, whose contribution to HIV virulence has been largely unexplored. Nef RNA helps HIV escape RNA interference (RNAi) through nucleotide changes and alternative folding. This study examines Historic and Modern Datasets of patient HIV-1 Nef sequences during the evolution of the North American epidemic for local changes in RNA plasticity. By definition, RNA plasticity refers to an RNA molecule’s ability to take alternative folds (i.e., alternative conformations). Our most important finding is that an evolutionarily conserved region of the HIV-1 Nef gene, which we denote by R2, recently underwent a statistically significant increase in its RNA plasticity. Thus, our results indicate that Modern Nef R2 typically accommodates an alternative fold more readily than Historic Nef R2. Moreover, the increase in RNA plasticity resides mostly in synonymous nucleotide changes, which cannot be a response to selective pressures on the Nef protein. R2 may therefore be of interest in the development of antiviral RNAi therapies.
Collapse
Affiliation(s)
- Amirhossein Manzourolajdad
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| | - Mileidy Gonzalez
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| | - John L. Spouge
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|