1
|
Li Y, Gurnis M. Rapid shear zone weakening during subduction initiation. Proc Natl Acad Sci U S A 2024; 121:e2404939121. [PMID: 39453749 PMCID: PMC11536125 DOI: 10.1073/pnas.2404939121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 09/12/2024] [Indexed: 10/27/2024] Open
Abstract
Subduction zones play a pivotal role in the mechanics of plate tectonics by providing the driving force through slab pull and weak megathrusts that facilitate the relative motion between tectonic plates. The initiation of subduction zones is intricately linked to the accumulation of slab pull and development of weakness at plate boundaries and, by consequence, the largest changes in the energetics of mantle convection. However, the transient nature of subduction initiation accompanied by intense subsequent tectonic activity, leaves critical evidence poorly preserved and making subduction initiation difficult to constrain. We overcome these limitations through a comprehensive analysis focused on Puysegur, a well-constrained extant example of subduction initiation offshore South Island, New Zealand. Through time-dependent, three-dimensional thermo-mechanical computations and quantitative comparison to new geophysical and geological observations, including topography, stratigraphy, and seismicity, we demonstrate that subduction initiation develops with a fast strain weakening described with a small characteristic displacement ([Formula: see text] 4 to 8 km). Potential physical mechanisms contributing to the strain weakening are explored and we find that the observed fast weakening may arise through a combination of grain-size reduction within the lower lithosphere and fluid pressurization at shallower depths. With the shared commonality in the underlying physics of tectonic processes, the rapid strain weakening constrained at Puysegur offers insights into the formation of the first subduction during early Earth and the onset of plate tectonics.
Collapse
Affiliation(s)
- Yida Li
- Division of Geological and Planetary Sciences, Seismological Laboratory, California Institute of Technology, Pasadena, CA91125
| | - Michael Gurnis
- Division of Geological and Planetary Sciences, Seismological Laboratory, California Institute of Technology, Pasadena, CA91125
| |
Collapse
|
2
|
Shi Y, Morgan JP. Gondwanan flood basalts linked seismically to plume-induced lithosphere instability. Proc Natl Acad Sci U S A 2024; 121:e2320054121. [PMID: 38470921 PMCID: PMC10962961 DOI: 10.1073/pnas.2320054121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/06/2024] [Indexed: 03/14/2024] Open
Abstract
Delamination of the continental lithospheric mantle is well recorded beneath several continents. However, the fate of the removed continental lithosphere has been rarely noted, unlike subducted slabs reasonably well imaged in the upper and mid mantle. Beneath former Gondwana, recent seismic tomographic models indicate the presence of at least 5 horizontal fast-wavespeed anomalies at ~600 km depths that do not appear to be related to slab subduction, including fast structures in locations consistent with delamination associated with the Paraná Flood Basalt event at ~134 Ma and the Deccan Traps event at ~66 Ma. These fast-wavespeed anomalies often lie above broad slow seismic wavespeed trunks at 500 to 700 km depths beneath former Gondwana, with slow wavespeed anomalies branching around them. Numerical experiments indicate that delaminated lithosphere tends to stagnate in the transition zone and mid-mantle above a mantle plume where it shapes subsequent plume upwelling. For hot plumes, the melt volume generated during plume-influenced delamination can easily reach ~2 to 4 × 106 km3, consistent with the basalt eruption volume at the Deccan Traps. This seismic and numerical evidence suggests that observed high-wavespeed mid-mantle anomalies beneath the locations of former flood basalts are delaminated fragments of former continental lithosphere, and that lithospheric delamination events in the presence of subcontinental plumes induced several of the continental flood basalts associated with the multiple breakup stages of Gondwanaland. Continued upwelling in these plumes can also have entrained subcontinental lithosphere in the mid-mantle to bring its distinctive geochemical signal to the modern mid-ocean spreading centers that surround southern and western Africa.
Collapse
Affiliation(s)
- Yanan Shi
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen518055, China
| | - Jason P. Morgan
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen518055, China
| |
Collapse
|
3
|
Zhang K, Liao J, Gerya T. Onset of double subduction controls plate motion reorganisation. Nat Commun 2024; 15:1513. [PMID: 38374036 PMCID: PMC10876953 DOI: 10.1038/s41467-024-44764-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 01/02/2024] [Indexed: 02/21/2024] Open
Abstract
Face-to-face double subduction systems, in which two oceanic plates subduct toward each other, are essential elements of plate tectonics. Two subduction zones in such systems are typically uneven in age and their spatially and temporally variable dynamics remain enigmatic. Here, with 2D numerical modelling, we demonstrate that the onset of the younger subduction zone strongly changes the dynamics of the older subduction zone. The waxing younger subduction may gradually absorb plate convergence from the older one, resulting in older subduction waning featured by the dramatic decrease in subduction rate and trench retreat. The dynamical transformation of subduction predominance alters the intraplate stress and mantle flow, regulating the relative motion among the three different plates. The process of waxing and waning of subduction zones controls plate motion reorganisation, providing a reference to interpret the past, present, and future evolution of several key double subduction regions found on the modern Earth.
Collapse
Affiliation(s)
- Kuidi Zhang
- School of Earth Sciences and Engineering, Sun Yat-Sen University, Guangzhou, China
| | - Jie Liao
- School of Earth Sciences and Engineering, Sun Yat-Sen University, Guangzhou, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
- Guangdong Provincial Key Lab of Geodynamics and Geohazards, Guangzhou, China.
| | - Taras Gerya
- Department of Earth Sciences, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Chen Y, Chen H, Liu M, Gerya T. Vertical tearing of subducting plates controlled by geometry and rheology of oceanic plates. Nat Commun 2023; 14:7931. [PMID: 38040686 PMCID: PMC10692197 DOI: 10.1038/s41467-023-43804-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023] Open
Abstract
Lateral non-uniform subduction is impacted by continuous plate segmentation owing to vertical tearing of the subducting plate. However, the dynamics and physical controls of vertical tearing remain controversial. Here, we employed 3D numerical models to investigate the effects of trench geometry (offset by a transform boundary) and plate rheology (plate age and the magnitude of brittle/plastic strain weakening) on the evolution of shear stress-controlled vertical tearing within a homogenous subducting oceanic plate. Numerical results suggest that the trench offset geometry could result in self-sustained vertical tearing as a narrow shear zone within the intact subducting oceanic plate, and that this process of tearing could operate throughout the entire subduction process. Further, the critical trench offset length for the maturation of vertical tearing is impacted by plate rheology. Comparison between numerical modelling results and natural observations suggests that vertical tearing attributed to trench offset geometry is broadly developed in modern subduction and collision systems worldwide.
Collapse
Affiliation(s)
- Yaguang Chen
- Key Laboratory of Geoscience Big Data and Deep Resource of Zhejiang Province, School of Earth Sciences, Zhejiang University, Hangzhou, China
- Department of Earth Sciences, Institute of Geophysics, ETH Zürich, Zürich, Switzerland
| | - Hanlin Chen
- Key Laboratory of Geoscience Big Data and Deep Resource of Zhejiang Province, School of Earth Sciences, Zhejiang University, Hangzhou, China.
| | - Mingqi Liu
- Department of Earth Sciences, Institute of Geophysics, ETH Zürich, Zürich, Switzerland.
| | - Taras Gerya
- Department of Earth Sciences, Institute of Geophysics, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
5
|
Subduction initiation triggered the Caribbean large igneous province. Nat Commun 2023; 14:786. [PMID: 36774439 PMCID: PMC9922256 DOI: 10.1038/s41467-023-36419-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 01/31/2023] [Indexed: 02/13/2023] Open
Abstract
Subduction provides the primary driving force for plate tectonics. However, the mechanisms leading to the formation of new subduction zones remain debated. An example is the Lesser Antilles Arc in the Atlantic. Previous initiation mechanisms have implied the transmission of subduction from the Pacific Ocean or the impact of a plume head. Here, we use geodynamic models to simulate the evolution of the Caribbean region during the Cretaceous, where the eastern Pacific subduction triggered the formation of a new subduction zone in the Atlantic. The simulations show how the collision of the old Caribbean plateau with the Central America margin lead to the formation of a new Atlantic subduction zone by polarity reversal. The results further show how subduction renewal on the back of the old Caribbean plateau (present-day Central America) resulted in a major mantle flow reorganization that generated a subduction-induced plume consistent with the formation of the Caribbean Large Igneous Province.
Collapse
|
6
|
Chen J, Jiang H, Tang M, Hao J, Tian M, Chu X. Venus' light slab hinders its development of planetary-scale subduction. Nat Commun 2022; 13:7647. [PMID: 36496413 PMCID: PMC9741584 DOI: 10.1038/s41467-022-35304-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
Terrestrial planet Venus has a similar size, mass, and bulk composition to Earth. Previous studies proposed that local plume-induced subduction existed on both early Earth and Venus, and this prototype subduction might initiate plate tectonics on Earth but not on Venus. In this study, we simulate the buoyancy of submerged slabs in a hypothesized 2-D thermo-metamorphic model. We analyze the thermal state of the slab, which is then used for calculating density in response to thermal and phase changes. The buoyancy of slab mantle lithosphere is primarily controlled by the temperatures and the buoyancy of slab crust is dominated by metamorphic phase changes. Difference in the eclogitization process contributes most to the slab buoyancy difference between Earth and Venus, which makes the subducted Venus' slab consistently less dense than Earth's. The greater chemical buoyancy on Venus, acting as a resistance to subduction, may have impeded the transition into self-sustained subduction and led to a different tectonic regime on Venus. This hypothesis may be further tested as more petrological data of Venus become available, which will further help to assess the impact of petro-tectonics on the planet's habitability.
Collapse
Affiliation(s)
- Junxing Chen
- grid.17063.330000 0001 2157 2938Department of Earth Science, University of Toronto, Toronto, Ontario M5S 3B1 Canada
| | - Hehe Jiang
- grid.17063.330000 0001 2157 2938Department of Earth Science, University of Toronto, Toronto, Ontario M5S 3B1 Canada ,grid.9227.e0000000119573309State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, 100029 China
| | - Ming Tang
- grid.11135.370000 0001 2256 9319Key Laboratory of Orogenic Belt and Crustal Evolution, MOE; School of Earth and Space Science, Peking University, Beijing, 100871 China
| | - Jihua Hao
- grid.59053.3a0000000121679639Deep Space Exploration Laboratory/CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026 China
| | - Meng Tian
- grid.5734.50000 0001 0726 5157Center for Space and Habitability, Universität Bern, Bern, 3012 Switzerland
| | - Xu Chu
- grid.17063.330000 0001 2157 2938Department of Earth Science, University of Toronto, Toronto, Ontario M5S 3B1 Canada
| |
Collapse
|
7
|
Wang X, Tang M, Moyen J, Wang D, Kröner A, Hawkesworth C, Xia X, Xie H, Anhaeusser C, Hofmann A, Li J, Li L. The onset of deep recycling of supracrustal materials at the Paleo-Mesoarchean boundary. Natl Sci Rev 2022; 9:nwab136. [PMID: 35265338 PMCID: PMC8900693 DOI: 10.1093/nsr/nwab136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 11/20/2022] Open
Abstract
The recycling of supracrustal materials, and in particular hydrated rocks, has a profound impact on mantle composition and thus on the formation of continental crust, because water modifies the physical properties of lithological systems and the mechanisms of partial melting and fractional fractionation. On the modern Earth, plate tectonics offers an efficient mechanism for mass transport from the Earth's surface to its interior, but how far this mechanism dates back in the Earth's history is still uncertain. Here, we use zircon oxygen (O) isotopes to track recycling of supracrustal materials into the magma sources of early Archean igneous suites from the Kaapvaal Craton, southern Africa. The mean δ 18O values of zircon from TTG (tonalite-trondhjemite-granodiorite) rocks abruptly increase at the Paleo-Mesoarchean boundary (ca. 3230 million years ago; Ma), from mantle zircon values of 5‰-6‰ to approaching 7.1‰, and this increase occurs in ≤3230 Ma rocks with elevated Dy/Yb ratios. The 18O enrichment is a unique signature of low-temperature water-rock interaction on the Earth's surface. Because the later phase was emplaced into the same crustal level as the older one and TTG magmas would derive from melting processes in the garnet stability field (>40 km depth), we suggest that this evident shift in TTG zircon O isotopic compositions records the onset of recycling of the mafic oceanic crust that underwent seawater hydrothermal alteration at low temperature. The onset of the enhanced recycling of supracrustal materials may also have developed elsewhere in other Archean cratons and reflects a significant change in the tectonic realm during craton formation and stabilization, which may be important processes for the operation of plate tectonics on early Earth.
Collapse
Affiliation(s)
- Xiaolei Wang
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Ming Tang
- School of Earth and Space Sciences, Peking University, Beijing 100871, China
| | - Jeff Moyen
- Laboratoire Magmas et Volcans UMR6524, Université de Lyon, UJM-UCA-CNRS-IRD, Saint Etienne 42023,France
| | - Di Wang
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Alfred Kröner
- Institut für Geowissenschaften, Universität Mainz, Mainz 55099, Germany
| | - Chris Hawkesworth
- Department of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK
| | - Xiaoping Xia
- State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Hangqiang Xie
- SHRIMP Center, Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China
| | - Carl Anhaeusser
- Economic Geology Research Unit, University of the Witwatersrand, Johannesburg 2050, South Africa
| | - Axel Hofmann
- Department of Geology, University of Johannesburg, Johannesburg 2006, South Africa
| | - Junyong Li
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Linsen Li
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
8
|
Perchuk AL, Gerya TV, Zakharov VS, Griffin WL. Depletion of the upper mantle by convergent tectonics in the Early Earth. Sci Rep 2021; 11:21489. [PMID: 34728677 PMCID: PMC8563749 DOI: 10.1038/s41598-021-00837-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 10/12/2021] [Indexed: 11/09/2022] Open
Abstract
Partial melting of mantle peridotites at spreading ridges is a continuous global process that forms the oceanic crust and refractory, positively buoyant residues (melt-depleted mantle peridotites). In the modern Earth, these rocks enter subduction zones as part of the oceanic lithosphere. However, in the early Earth, the melt-depleted peridotites were 2-3 times more voluminous and their role in controlling subduction regimes and the composition of the upper mantle remains poorly constrained. Here, we investigate styles of lithospheric tectonics, and related dynamics of the depleted mantle, using 2-D geodynamic models of converging oceanic plates over the range of mantle potential temperatures (Tp = 1300-1550 °C, ∆T = T - Tmodern = 0-250 °C) from the Archean to the present. Numerical modeling using prescribed plate convergence rates reveals that oceanic subduction can operate over this whole range of temperatures but changes from a two-sided regime at ∆T = 250 °C to one-sided at lower mantle temperatures. Two-sided subduction creates V-shaped accretionary terrains up to 180 km thick, composed mainly of highly hydrated metabasic rocks of the subducted oceanic crust, decoupled from the mantle. Partial melting of the metabasic rocks and related formation of sodic granitoids (Tonalite-Trondhjemite-Granodiorite suites, TTGs) does not occur until subduction ceases. In contrast, one sided-subduction leads to volcanic arcs with or without back-arc basins. Both subduction regimes produce over-thickened depleted upper mantle that cannot subduct and thus delaminates from the slab and accumulates under the oceanic lithosphere. The higher the mantle temperature, the larger the volume of depleted peridotites stored in the upper mantle. Extrapolation of the modeling results reveals that oceanic plate convergence at ∆T = 200-250 °C might create depleted peridotites (melt extraction of > 20%) constituting more than half of the upper mantle over relatively short geological times (~ 100-200 million years). This contrasts with the modeling results at modern mantle temperatures, where the amount of depleted peridotites in the upper mantle does not increase significantly with time. We therefore suggest that the bulk chemical composition of upper mantle in the Archean was much more depleted than the present mantle, which is consistent with the composition of the most ancient lithospheric mantle preserved in cratonic keels.
Collapse
Affiliation(s)
- A L Perchuk
- Faculty of Geology, Lomonosov Moscow State University, Moscow, 119234, Russia.
- Korzhinskii Institute of Experimental Mineralogy, Russian Academy of Sciences, Chernogolovka, 142432, Russia.
| | - T V Gerya
- Department of Earth Sciences, Swiss Federal Institute of Technology Zurich, Sonneggstrasse 5, 8092, Zurich, Switzerland
| | - V S Zakharov
- Faculty of Geology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - W L Griffin
- Australian Research Council Centre of Excellence for Core to Crust Fluid Systems/GEMOC, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
9
|
Differentiating induced versus spontaneous subduction initiation using thermomechanical models and metamorphic soles. Nat Commun 2021; 12:4632. [PMID: 34330929 PMCID: PMC8324860 DOI: 10.1038/s41467-021-24896-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 07/08/2021] [Indexed: 02/07/2023] Open
Abstract
Despite the critical role of subduction in plate tectonics, the dynamics of its initiation remains unclear. High-temperature low-pressure metamorphic soles are vestiges of subduction initiation, providing records of the pressure and temperature conditions along the subducting slab surface during subduction initiation that can possibly differentiate the two end-member subduction initiation modes: spontaneous and induced. Here, using numerical models, we show that the slab surface temperature reaches 800-900 °C at ~1 GPa over a wide range of parameter values for spontaneous subduction initiation whereas for induced subduction initiation, such conditions can be reached only if the age of the overriding plate is <5 Ma. These modeling results indicate that spontaneous subduction initiation would be more favorable for creating high-temperature conditions. However, the synthesis of our modeling results and geological observations indicate that the majority of the metamorphic soles likely formed during induced subduction initiation that involved a young overriding plate.
Collapse
|
10
|
Yao J, Cawood PA, Zhao G, Han Y, Xia X, Liu Q, Wang P. Mariana-type ophiolites constrain the establishment of modern plate tectonic regime during Gondwana assembly. Nat Commun 2021; 12:4189. [PMID: 34234127 PMCID: PMC8263587 DOI: 10.1038/s41467-021-24422-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
Initiation of Mariana-type oceanic subduction zones requires rheologically strong oceanic lithosphere, which developed through secular cooling of Earth's mantle. Here, we report a 518 Ma Mariana-type subduction initiation ophiolite from northern Tibet, which, along with compilation of similar ophiolites through Earth history, argues for the establishment of the modern plate tectonic regime by the early Cambrian. The ophiolite was formed during the subduction initiation of the Proto-Tethys Ocean that coincided with slab roll-back along the southern and western Gondwana margins at ca. 530-520 Ma. This global tectonic re-organization and the establishment of modern plate tectonic regime was likely controlled by secular cooling of the Earth, and facilitated by enhanced lubrication of subduction zones by sediments derived from widespread surface erosion of the extensive mountain ranges formed during Gondwana assembly. This time also corresponds to extreme events recorded in climate and surface proxies that herald formation of the contemporary Earth.
Collapse
Affiliation(s)
- Jinlong Yao
- State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Northern Taibai Street 229, Xi'an, 710069, China.
| | - Peter A Cawood
- School of Earth, Atmosphere & Environment, Monash University, Melbourne, VIC, 3800, Australia
| | - Guochun Zhao
- State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Northern Taibai Street 229, Xi'an, 710069, China.
- Department of Earth Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong SAR.
| | - Yigui Han
- State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Northern Taibai Street 229, Xi'an, 710069, China
| | - Xiaoping Xia
- State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Qian Liu
- Department of Earth Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong SAR
| | - Peng Wang
- Department of Earth Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, Hong Kong SAR
| |
Collapse
|
11
|
El Khrepy S, Koulakov I, Gerya T, Al-Arifi N, Alajmi MS, Qadrouh AN. Transition from continental rifting to oceanic spreading in the northern Red Sea area. Sci Rep 2021; 11:5594. [PMID: 33692416 PMCID: PMC7946956 DOI: 10.1038/s41598-021-84952-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 02/08/2021] [Indexed: 11/09/2022] Open
Abstract
Lithosphere extension, which plays an essential role in plate tectonics, occurs both in continents (as rift systems) and oceans (spreading along mid-oceanic ridges). The northern Red Sea area is a unique natural geodynamic laboratory, where the ongoing transition from continental rifting to oceanic spreading can be observed. Here, we analyze travel time data from a merged catalogue provided by the Egyptian and Saudi Arabian seismic networks to build a three-dimensional model of seismic velocities in the crust and uppermost mantle beneath the northern Red Sea and surroundings. The derived structures clearly reveal a high-velocity anomaly coinciding with the Red Sea basin and a narrow low-velocity anomaly centered along the rift axis. We interpret these structures as a transition of lithospheric extension from continental rifting to oceanic spreading. The transitional lithosphere is manifested by a dominantly positive seismic anomaly indicating the presence of a 50–70-km-thick and 200–300-km-wide cold lithosphere. Along the forming oceanic ridge axis, an elongated low-velocity anomaly marks a narrow localized nascent spreading zone that disrupts the transitional lithosphere. Along the eastern margins of the Red Sea, several low-velocity anomalies may represent crustal zone of massive Cenozoic basaltic magmatism.
Collapse
Affiliation(s)
- Sami El Khrepy
- Natural hazards and mineral resources chair, Geology and Geophysics Department, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia.,Seismology Department, National Research Institute of Astronomy and Geophysics (NRIAG), Helwan, 11421, Egypt
| | - Ivan Koulakov
- Trofimuk Institute of Petroleum Geology and Geophysics SB RAS, Prospekt Koptyuga, 3, Novosibirsk, Russia, 630090. .,Novosibirsk State University, Pirogova 2, Novosibirsk, Russia, 630090. .,Institute of Volcanology and Seismology FEB RAS, Piip Boulevard, 9, Petropavlovsk-Kamchatsky, Russia, 693006.
| | - Taras Gerya
- Department of Earth Sciences, ETH Zurich, Sonneggstrasse 5, 8092, Zurich, Switzerland
| | - Nassir Al-Arifi
- Natural hazards and mineral resources chair, Geology and Geophysics Department, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mamdouh S Alajmi
- King Abdulaziz City of Science and Technology, Riyadh, Saudi Arabia
| | - Ayman N Qadrouh
- King Abdulaziz City of Science and Technology, Riyadh, Saudi Arabia
| |
Collapse
|
12
|
Evolution and demise of passive margins through grain mixing and damage. Proc Natl Acad Sci U S A 2021; 118:2011247118. [PMID: 33468670 DOI: 10.1073/pnas.2011247118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
How subduction-the sinking of cold lithospheric plates into the mantle-is initiated is one of the key mysteries in understanding why Earth has plate tectonics. One of the favored locations for subduction triggering is at passive margins, where sea floor abuts continental margins. Such passive margin collapse is problematic because the strength of the old, cold ocean lithosphere should prohibit it from bending under its own weight and sinking into the mantle. Some means of mechanical weakening of the passive margin are therefore necessary. Spontaneous and accumulated grain damage can allow for considerable lithospheric weakening and facilitate passive margin collapse. Grain damage is enhanced where mixing between mineral phases in lithospheric rocks occurs. Such mixing is driven both by compositional gradients associated with petrological heterogeneity and by the state of stress in the lithosphere. With lateral compressive stress imposed by ridge push in an opening ocean basin, bands of mixing and weakening can develop, become vertically oriented, and occupy a large portion of lithosphere after about 100 million y. These bands lead to anisotropic viscosity in the lithosphere that is strong to lateral forcing but weak to bending and sinking, thereby greatly facilitating passive margin collapse.
Collapse
|
13
|
Aarons SM, Reimink JR, Greber ND, Heard AW, Zhang Z, Dauphas N. Titanium isotopes constrain a magmatic transition at the Hadean-Archean boundary in the Acasta Gneiss Complex. SCIENCE ADVANCES 2020; 6:6/50/eabc9959. [PMID: 33298445 PMCID: PMC7725461 DOI: 10.1126/sciadv.abc9959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/23/2020] [Indexed: 06/12/2023]
Abstract
Plate subduction greatly influences the physical and chemical characteristics of Earth's surface and deep interior, yet the timing of its initiation is debated because of the paucity of exposed rocks from Earth's early history. We show that the titanium isotopic composition of orthogneisses from the Acasta Gneiss Complex spanning the Hadean to Eoarchean transition falls on two distinct magmatic differentiation trends. Hadean tonalitic gneisses show titanium isotopic compositions comparable to modern evolved tholeiitic magmas, formed by differentiation of dry parental magmas in plume settings. Younger Eoarchean granitoid gneisses have titanium isotopic compositions comparable to modern calc-alkaline magmas produced in convergent arcs. Our data therefore document a shift from tholeiitic- to calc-alkaline-style magmatism between 4.02 and 3.75 billion years (Ga) in the Slave craton.
Collapse
Affiliation(s)
- Sarah M Aarons
- Origins Laboratory, Department of the Geophysical Sciences and Enrico Fermi Institute, The University of Chicago, Chicago, IL 60637, USA.
- Scripps Institution of Oceanography, University of California, San Diego, San Diego, CA 92037, USA
| | - Jesse R Reimink
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA
- Department of Geosciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Nicolas D Greber
- Institute for Geological Sciences, University of Bern, 3012 Bern, Switzerland
| | - Andy W Heard
- Origins Laboratory, Department of the Geophysical Sciences and Enrico Fermi Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Zhe Zhang
- Origins Laboratory, Department of the Geophysical Sciences and Enrico Fermi Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Nicolas Dauphas
- Origins Laboratory, Department of the Geophysical Sciences and Enrico Fermi Institute, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
14
|
Perchuk AL, Gerya TV, Zakharov VS, Griffin WL. Building cratonic keels in Precambrian plate tectonics. Nature 2020; 586:395-401. [PMID: 33057224 DOI: 10.1038/s41586-020-2806-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 08/26/2020] [Indexed: 11/09/2022]
Abstract
The ancient cores of continents (cratons) are underlain by mantle keels-volumes of melt-depleted, mechanically resistant, buoyant and diamondiferous mantle up to 350 kilometres thick, which have remained isolated from the hotter and denser convecting mantle for more than two billion years. Mantle keels formed only in the Early Earth (approximately 1.5 to 3.5 billion years ago in the Precambrian eon); they have no modern analogues1-4. Many keels show layering in terms of degree of melt depletion5-7. The origin of such layered lithosphere remains unknown and may be indicative of a global tectonics mode (plate rather than plume tectonics) operating in the Early Earth. Here we investigate the possible origin of mantle keels using models of oceanic subduction followed by arc-continent collision at increased mantle temperatures (150-250 degrees Celsius higher than the present-day values). We demonstrate that after Archaean plate tectonics began, the hot, ductile, positively buoyant, melt-depleted sublithospheric mantle layer located under subducting oceanic plates was unable to subduct together with the slab. The moving slab left behind craton-scale emplacements of viscous protokeel beneath adjacent continental domains. Estimates of the thickness of this sublithospheric depleted mantle show that this mechanism was efficient at the time of the major statistical maxima of cratonic lithosphere ages. Subsequent conductive cooling of these protokeels would produce mantle keels with their low modern temperatures, which are suitable for diamond formation. Precambrian subduction of oceanic plates with highly depleted mantle is thus a prerequisite for the formation of thick layered lithosphere under the continents, which permitted their longevity and survival in subsequent plate tectonic processes.
Collapse
Affiliation(s)
- A L Perchuk
- Geological Faculty, Lomonosov Moscow State University, Moscow, Russia. .,Korzhinskii Institute of Experimental Mineralogy, Russian Academy of Sciences, Chernogolovka, Russia.
| | - T V Gerya
- Swiss Federal Institute of Technology Zurich, Department of Earth Sciences, Zurich, Switzerland
| | - V S Zakharov
- Geological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - W L Griffin
- Australian Research Council Centre of Excellence for Core to Crust Fluid Systems/GEMOC, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
15
|
Hawkesworth C, Cawood PA, Dhuime B. The evolution of the continental crust and the onset of plate tectonics. FRONTIERS IN EARTH SCIENCE 2020; 8:326. [PMID: 32944569 PMCID: PMC7116083 DOI: 10.3389/feart.2020.00326] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The Earth is the only known planet where plate tectonics is active, and different studies have concluded that plate tectonics commenced at times from the early Hadean to 700 Ma. Many arguments rely on proxies established on recent examples, such as paired metamorphic belts and magma geochemistry, and it can be difficult to establish the significance of such proxies in a hotter, older Earth. There is the question of scale, and how the results of different case studies are put in a wider global context. We explore approaches that indicate when plate tectonics became the dominant global regime, in part by evaluating when the effects of plate tectonics were established globally, rather than the first sign of its existence regionally. The geological record reflects when the continental crust became rigid enough to facilitate plate tectonics, through the onset of dyke swarms and large sedimentary basins, from relatively high-pressure metamorphism and evidence for crustal thickening. Paired metamorphic belts are a feature of destructive plate margins over the last 700 Myr, but it is difficult to establish whether metamorphic events are associated spatially as well as temporally in older terrains. From 3.8-2.7 Ga, suites of high Th/Nb (subduction-related on the modern Earth) and low Th/Nb (non-subduction-related) magmas were generated at similar times in different locations, and there is a striking link between the geochemistry and the regional tectonic style. Archaean cratons stabilised at different times in different areas from 3.1-2.5 Ga, and the composition of juvenile continental crust changed from mafic to more intermediate compositions. Xenon isotope data indicate that there was little recycling of volatiles before 3 Ga. Evidence for the juxtaposition of continental fragments back to ~2.8 Ga, each with disparate histories highlights that fragments of crust were moving around laterally on the Earth. The reduction in crustal growth at ~ 3 Ga is attributed to an increase in the rates at which differentiated continental crust was destroyed, and that coupled with the other changes at the end of the Archaean are taken to reflect the onset of plate tectonics as the dominant global regime.
Collapse
Affiliation(s)
- Chris Hawkesworth
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, UK
| | - Peter A. Cawood
- School of Earth, Atmosphere and Environment, Monash University, Melbourne, VIC 3800, Australia
| | - Bruno Dhuime
- Géosciences Montpellier, CNRS & Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
| |
Collapse
|
16
|
Tang CA, Webb AAG, Moore WB, Wang YY, Ma TH, Chen TT. Breaking Earth's shell into a global plate network. Nat Commun 2020; 11:3621. [PMID: 32681054 PMCID: PMC7367830 DOI: 10.1038/s41467-020-17480-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 06/22/2020] [Indexed: 11/09/2022] Open
Abstract
The initiation mechanism of Earth's plate tectonic cooling system remains uncertain. A growing consensus suggests that multi-plate tectonics was preceded by cooling through a single-plate lithosphere, but models for how this lithosphere was first broken into plates have not converged on a mechanism or a typical early plate scale. A commonality among prior efforts is the use of continuum mechanics approximations to evaluate this solid mechanics problem. Here we use 3D spherical shell models to demonstrate a self-organized fracture mechanism analogous to thermal expansion-driven lithospheric uplift, in which globe-spanning rifting occurs as a consequence of horizontal extension. Resultant fracture spacing is a function of lithospheric thickness and rheology, wherein geometrically-regular, polygonal-shaped tessellation is an energetically favored solution because it minimizes total crack length. Therefore, warming of the early lithosphere itself-as anticipated by previous studies-should lead to failure, propagating fractures, and the conditions necessary for the onset of multi-plate tectonics.
Collapse
Affiliation(s)
- C A Tang
- State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, 116024, Dalian, China.,State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, 430074, Wuhan, China
| | - A A G Webb
- Division of Earth and Planetary Science and Laboratory for Space Research, University of Hong Kong, Pokfulam Road, 999077, Hong Kong, China.
| | - W B Moore
- Department of Atmospheric and Planetary Sciences, Hampton University, Hampton, VA, 23668, USA.,National Institute of Aerospace, Hampton, VA, 23666, USA
| | - Y Y Wang
- Deep Underground Engineering Research Center, Dalian University of Technology, 116024, Dalian, China
| | - T H Ma
- State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, 116024, Dalian, China.,Deep Underground Engineering Research Center, Dalian University of Technology, 116024, Dalian, China
| | - T T Chen
- School of Resources and Civil Engineering, Northeastern University, 110819, Shenyang, China
| |
Collapse
|
17
|
Munch J, Gerya T, Ueda K. Oceanic crust recycling controlled by weakening at slab edges. Nat Commun 2020; 11:2009. [PMID: 32332715 PMCID: PMC7181835 DOI: 10.1038/s41467-020-15750-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 03/27/2020] [Indexed: 11/09/2022] Open
Abstract
Retreating subduction zones such as the Lesser Antilles, Gibraltar and Scotia have been migrating towards the Atlantic Ocean by cutting their way through the oceanic crust. This spontaneously retreating subduction is enabled by the development of faults at the edges of the slab, but the physical mechanisms controlling fault propagation and direction remain unknown. Here, using 3D numerical subduction models we show that oceanic lithosphere recycling is mainly controlled by the intensity of strain-induced weakening of fractures forming at the edges of the slab. Intense strain-induced weakening causes predominantly brittle fault propagation and slab narrowing until detachment. Without weakening, preponderantly ductile slab edge propagation occurs, which causes slab widening. This rheological control is not affected by the proximity of non-weakened passive continental margins. Natural examples suggest that slab edges follow convergent paths that could be controlled by fractures weakening due to deep water penetration into the oceanic lithosphere.
Collapse
Affiliation(s)
- Jessica Munch
- Department of Earth Sciences, Institute of Geophysics, ETH Zürich, Zürich, Switzerland.
| | - Taras Gerya
- Department of Earth Sciences, Institute of Geophysics, ETH Zürich, Zürich, Switzerland
| | - Kosuke Ueda
- Department of Earth Sciences, Institute of Geophysics, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
18
|
Geodynamic evolution of southwestern North America since the Late Eocene. Nat Commun 2019; 10:5213. [PMID: 31740687 PMCID: PMC6861285 DOI: 10.1038/s41467-019-12950-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 10/10/2019] [Indexed: 11/09/2022] Open
Abstract
Slab rollback, lithospheric body forces, or evolution of plate boundary conditions are strongly debated as possible lithospheric driving mechanisms for Cenozoic extension in southwestern North America. By incorporating paleo-topography, lithospheric structure, and paleo-boundary conditions, we develop a complete geodynamic model that quantifies lithospheric deviatoric stresses and predicts extension and shear history since Late Eocene. We show that lithospheric body forces together with influence of change-over from subduction to transtensional boundary conditions from Late Eocene to Early Miocene were the primary driving factors controlling direction and magnitude of extensional deviatoric stresses that produced topographic collapse. After paleo-highlands collapsed, influence of Pacific-North America plate motion and associated deformation style along the plate boundary became increasingly important from Middle Miocene to present. Smaller-scale convection stress effects from slab rollback and associated mantle flow played only a minor role. However, slab rollback guided deformation rate through introduction of melts and fluids that impacted rheology.
Collapse
|
19
|
Generation of late Mesozoic felsic volcanic rocks in the Hailar Basin, northeastern China in response to overprinting of multiple tectonic regimes. Sci Rep 2019; 9:15854. [PMID: 31676817 PMCID: PMC6825236 DOI: 10.1038/s41598-019-52181-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 10/14/2019] [Indexed: 11/29/2022] Open
Abstract
We performed zircon U–Pb age dating and geochemical analyses of late Mesozoic felsic volcanic rocks in the Hailar Basin, NE China, with the aim of eclucidating their emplacement ages, origin and geodynamic significance. The volcanic rocks consist of dacites, rhyolites and rhyolitic tuffs. Laser ablation–inductively coupled plasma–mass spectrometry zircon U–Pb dating results suggest that the rocks were erupted during the Late Jurassic–Early Cretaceous (161–117 Ma). They belong to the high-K calc-alkaline series and can be divided into two groups. Group I rocks are metaluminous to weakly peraluminous, contain low concentrations of heavy rare earth elements (HREEs) and high field strength elements (HFSEs), and have low zircon saturation temperatures (average 786 °C), all of which indicate an I-type affinity. In contrast, Group II rocks have higher HREE and HFSE concentrations and zircon saturation temperatures (average 918 °C), suggesting an A-type affinity. All the felsic volcanic rocks have positive εHf(t) values of 1.43–12.32 with two-stage model ages of 1110–401 Ma. Our data indicate that the I-type felsic volcanic rocks formed from magmas generated by partial melting of a dominantly juvenile mica-bearing K-rich basaltic lower crust, whereas the A-type felsic volcanic rocks originated from the partial melting of a dry mafic–intermediate middle–lower crust that was dehydrated but not melt depleted. Based on the present results and previous research, we propose that the Late Jurassic I- and A-type felsic volcanic rocks in the Hailar Basin were formed in a post-collisional environment related to break-off of the subducted oceanic slab of the Mongol–Okhotsk Ocean and the subsequent gravitational collapse of the orogenically-thickened crust after closure of the ocean. In contrast, the Early Cretaceous I- and A-type felsic volcanic rocks were erupted in an extensional setting related to rollback of the subducted Paleo-Pacific Plate.
Collapse
|
20
|
Coltice N, Husson L, Faccenna C, Arnould M. What drives tectonic plates? SCIENCE ADVANCES 2019; 5:eaax4295. [PMID: 31693727 PMCID: PMC6821462 DOI: 10.1126/sciadv.aax4295] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 09/16/2019] [Indexed: 06/01/2023]
Abstract
Does Earth's mantle drive plates, or do plates drive mantle flow? This long-standing question may be ill posed, however, as both the lithosphere and mantle belong to a single self-organizing system. Alternatively, this question is better recast as follows: Does the dynamic balance between plates and mantle change over long-term tectonic reorganizations, and at what spatial wavelengths are those processes operating? A hurdle in answering this question is in designing dynamic models of mantle convection with realistic tectonic behavior evolving over supercontinent cycles. By devising these models, we find that slabs pull plates at rapid rates and tear continents apart, with keels of continents only slowing down their drift when they are not attached to a subducting plate. Our models show that the tectonic tessellation varies at a higher degree than mantle flow, which partly unlocks the conceptualization of plate tectonics and mantle convection as a unique, self-consistent system.
Collapse
Affiliation(s)
- Nicolas Coltice
- Laboratoire de Géologie, Ecole Normale Supérieure, PSL Res. Univ., Paris, France
| | - Laurent Husson
- ISTerre, CNRS, Université Grenoble Alpes, Grenoble, France
| | - Claudio Faccenna
- Laboratory of Experimental Tectonics, Universitá degli Studi Roma Tre, Roma, Italy
- Jackson School of Geoscience, University of Texas at Austin, Austin, TX, USA
| | - Maëlis Arnould
- Laboratoire de Géologie, Ecole Normale Supérieure, PSL Res. Univ., Paris, France
| |
Collapse
|
21
|
Lammer H, Sproß L, Grenfell JL, Scherf M, Fossati L, Lendl M, Cubillos PE. The Role of N 2 as a Geo-Biosignature for the Detection and Characterization of Earth-like Habitats. ASTROBIOLOGY 2019; 19:927-950. [PMID: 31314591 DOI: 10.1089/ast.2018.1914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Since the Archean, N2 has been a major atmospheric constituent in Earth's atmosphere. Nitrogen is an essential element in the building blocks of life; therefore, the geobiological nitrogen cycle is a fundamental factor in the long-term evolution of both Earth and Earth-like exoplanets. We discuss the development of Earth's N2 atmosphere since the planet's formation and its relation with the geobiological cycle. Then we suggest atmospheric evolution scenarios and their possible interaction with life-forms: first for a stagnant-lid anoxic world, second for a tectonically active anoxic world, and third for an oxidized tectonically active world. Furthermore, we discuss a possible demise of present Earth's biosphere and its effects on the atmosphere. Since life-forms are the most efficient means for recycling deposited nitrogen back into the atmosphere at present, they sustain its surface partial pressure at high levels. Also, the simultaneous presence of significant N2 and O2 is chemically incompatible in an atmosphere over geological timescales. Thus, we argue that an N2-dominated atmosphere in combination with O2 on Earth-like planets within circumstellar habitable zones can be considered as a geo-biosignature. Terrestrial planets with such atmospheres will have an operating tectonic regime connected with an aerobic biosphere, whereas other scenarios in most cases end up with a CO2-dominated atmosphere. We conclude with implications for the search for life on Earth-like exoplanets inside the habitable zones of M to K stars.
Collapse
Affiliation(s)
- Helmut Lammer
- 1Austrian Academy of Sciences, Space Research Institute, Graz, Austria
| | - Laurenz Sproß
- 1Austrian Academy of Sciences, Space Research Institute, Graz, Austria
- 2Institute of Physics, University of Graz, Graz, Austria
| | - John Lee Grenfell
- 3Department of Extrasolar Planets and Atmospheres, German Aerospace Center, Institute of Planetary Research, Berlin, Germany
| | - Manuel Scherf
- 1Austrian Academy of Sciences, Space Research Institute, Graz, Austria
| | - Luca Fossati
- 1Austrian Academy of Sciences, Space Research Institute, Graz, Austria
| | - Monika Lendl
- 1Austrian Academy of Sciences, Space Research Institute, Graz, Austria
| | | |
Collapse
|
22
|
Sobolev SV, Brown M. Surface erosion events controlled the evolution of plate tectonics on Earth. Nature 2019; 570:52-57. [PMID: 31168102 DOI: 10.1038/s41586-019-1258-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 04/24/2019] [Indexed: 11/09/2022]
Abstract
Plate tectonics is among the most important geological processes on Earth, but its emergence and evolution remain unclear. Here we extrapolate models of present-day plate tectonics to the past and propose that since about three billion years ago the rise of continents and the accumulation of sediments at continental edges and in trenches has provided lubrication for the stabilization of subduction and has been crucial in the development of plate tectonics on Earth. We conclude that the two largest surface erosion and subduction lubrication events occurred after the Palaeoproterozoic Huronian global glaciations (2.45 to 2.2 billion years ago), leading to the formation of the Columbia supercontinent, and after the Neoproterozoic 'snowball' Earth glaciations (0.75 to 0.63 billion years ago). The snowball Earth event followed the 'boring billion'-a period of reduced plate tectonic activity about 1.75 to 0.75 billion years ago that was probably caused by a shortfall of sediments in trenches-and it kick-started the modern episode of active plate tectonics.
Collapse
Affiliation(s)
- Stephan V Sobolev
- GFZ German Research Centre for Geosciences, Section of Geodynamic Modeling, Potsdam, Germany. .,Institute of Geosciences, University of Potsdam, Potsdam, Germany.
| | - Michael Brown
- Laboratory for Crustal Petrology, Department of Geology, University of Maryland, College Park, MD, USA
| |
Collapse
|
23
|
The Thermal and Dynamic Process of Core → Mantle → Crust and the Metallogenesis of Guojiadian Mantle Branch in Northwestern Jiaodong. MINERALS 2019. [DOI: 10.3390/min9040249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Jiaodong gold mineral province, with an overall endowment estimated as >3000 t, located at the eastern segment of the North China Craton (NCC), ranks as the greatest source of Au in China. The structural evolution, magmatic activity and metallogenesis during the Mesozoic played important roles in the large scale regional gold, silver and polymetallic mineralization in this area; among them, the intensive activation of fault structures is the most important factor for metallogenesis. This study takes the regional deep faults as main thread to discuss the controlling role of faults in large scale metallogenesis. The Jiaojia fault and Sanshandao faults in the northwest margin of the Guojiadian mantle branch not only are dominant migration channels for hydrothermal fluid but are very important favorable spaces for ore-forming and ore-hosting during the formation of world-class super large gold deposits in this area. The deep metallogenic process can be summarized as involving intensive Earth’s core, mantle and crust activity → magmatism → uplifting of metamorphic complex → detachment of cover rocks → formation of mantle branch → penetration of hydrothermal fluid along deep faults → concentration of metallogenic materials → formation of super large deposits.
Collapse
|
24
|
Evidence for igneous differentiation in Sudbury Igneous Complex and impact-driven evolution of terrestrial planet proto-crusts. Nat Commun 2019; 10:508. [PMID: 30705262 PMCID: PMC6355857 DOI: 10.1038/s41467-019-08467-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 01/08/2019] [Indexed: 11/08/2022] Open
Abstract
Bolide impact is a ubiquitous geological process in the Solar System, which produced craters and basins filled with impact melt sheets on the terrestrial planets. However, it remains controversial whether these sheets were able to undergo large-scale igneous differentiation, or not. Here, we report on the discovery of large discrete bodies of melanorites that occur throughout almost the entire stratigraphy of the 1.85-billion-year-old Sudbury Igneous Complex (SIC) - the best exposed impact melt sheet on Earth - and use them to reaffirm that conspicuous norite-gabbro-granophyre stratigraphy of the SIC is produced by fractional crystallization of an originally homogeneous impact melt of granodioritic composition. This implies that more ancient and compositionally primitive Hadean impact melt sheets on the Earth and other terrestrial planets also underwent large-volume igneous differentiation. The near-surface differentiation of these giant impact melt sheets may therefore have contributed to the evolution and lithological diversity of the proto-crust on terrestrial planets.
Collapse
|
25
|
Shervais JW, Reagan M, Haugen E, Almeev RR, Pearce JA, Prytulak J, Ryan JG, Whattam SA, Godard M, Chapman T, Li H, Kurz W, Nelson WR, Heaton D, Kirchenbaur M, Shimizu K, Sakuyama T, Li Y, Vetter SK. Magmatic Response to Subduction Initiation: Part 1. Fore-arc Basalts of the Izu-Bonin Arc From IODP Expedition 352. GEOCHEMISTRY, GEOPHYSICS, GEOSYSTEMS : G(3) 2019; 20:314-338. [PMID: 30853858 PMCID: PMC6392113 DOI: 10.1029/2018gc007731] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 11/19/2018] [Accepted: 11/22/2018] [Indexed: 06/09/2023]
Abstract
The Izu-Bonin-Mariana (IBM) fore arc preserves igneous rock assemblages that formed during subduction initiation circa 52 Ma. International Ocean Discovery Program (IODP) Expedition 352 cored four sites in the fore arc near the Ogasawara Plateau in order to document the magmatic response to subduction initiation and the physical, petrologic, and chemical stratigraphy of a nascent subduction zone. Two of these sites (U1440 and U1441) are underlain by fore-arc basalt (FAB). FABs have mid-ocean ridge basalt (MORB)-like compositions, however, FAB are consistently lower in the high-field strength elements (TiO2, P2O5, Zr) and Ni compared to MORB, with Na2O at the low end of the MORB field and FeO* at the high end. Almost all FABs are light rare earth element depleted, with low total REE, and have low ratios of highly incompatible to less incompatible elements (Ti/V, Zr/Y, Ce/Yb, and Zr/Sm) relative to MORB. Chemostratigraphic trends in Hole U1440B are consistent with the uppermost lavas forming off axis, whereas the lower lavas formed beneath a spreading center axis. Axial magma of U1440B becomes more fractionated upsection; overlying off-axis magmas return to more primitive compositions. Melt models require a two-stage process, with early garnet field melts extracted prior to later spinel field melts, with up to 23% melting to form the most depleted compositions. Mantle equilibration temperatures are higher than normal MORB (1,400 °C-1,480 °C) at relatively low pressures (1-2 GPa), which may reflect an influence of the Manus plume during subduction initiation. Our data support previous models of FAB origin by decompression melting but imply a source more depleted than normal MORB source mantle.
Collapse
Affiliation(s)
| | - Mark Reagan
- Department of Earth and Environmental ScienceUniversity of IowaIowa CityIAUSA
| | - Emily Haugen
- Department of GeologyUtah State UniversityLoganUTUSA
- Now at Department of GeologyCalifornia State UniversitySacramentoCAUSA
| | - Renat R. Almeev
- Institut für MineralogieLeibniz Universität HannoverHannoverGermany
| | | | - Julie Prytulak
- Department of Earth SciencesUniversity of DurhamDurhamUK
| | | | - Scott A. Whattam
- Department of GeosciencesKing Fahd University of Petroleum and MineralsDhahranSaudi Arabia
| | - Marguerite Godard
- Géosciences Montpellier, CNRSUniversité de MontpellierMontpellierFrance
| | - Timothy Chapman
- School of GeosciencesUniversity of SydneySydneyNew South WalesAustralia
| | - Hongyan Li
- State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of GeochemistryChinese Academy of SciencesGuangzhouChina
| | - Walter Kurz
- Institute of Earth Sciences, NAWI Graz GeocenterUniversity of GrazGrazAustria
| | - Wendy R. Nelson
- Department of Physics, Astronomy, and GeosciencesTowson UniversityTowsonMDUSA
| | | | - Maria Kirchenbaur
- Institut für MineralogieLeibniz Universität HannoverHannoverGermany
- Institut für MineralogieUniversität zu KölnKölnGermany
| | - Kenji Shimizu
- Japan Agency for Marine‐Earth Science and TechnologyKochi Institute for Core Sample ResearchKochiJapan
| | | | - Yibing Li
- Chinese Academy of Geological ScienceInstitute of GeologyBeijingChina
| | | |
Collapse
|
26
|
Schaefer L, Elkins-Tanton LT. Magma oceans as a critical stage in the tectonic development of rocky planets. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2018; 376:rsta.2018.0109. [PMID: 30275166 PMCID: PMC6189560 DOI: 10.1098/rsta.2018.0109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/19/2018] [Indexed: 05/23/2023]
Abstract
Magma oceans are a common result of the high degree of heating that occurs during planet formation. It is thought that almost all of the large rocky bodies in the Solar System went through at least one magma ocean phase. In this paper, we review some of the ways in which magma ocean models for the Earth, Moon and Mars match present-day observations of mantle reservoirs, internal structure and primordial crusts, and then we present new calculations for the oxidation state of the mantle produced during the magma ocean phase. The crystallization of magma oceans probably leads to a massive mantle overturn that may set up a stably stratified mantle. This may lead to significant delays or total prevention of plate tectonics on some planets. We review recent models that may help alleviate the mantle stability issue and lead to earlier onset of plate tectonics.This article is part of a discussion meeting issue 'Earth dynamics and the development of plate tectonics'.
Collapse
Affiliation(s)
- Laura Schaefer
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA
| | - Linda T Elkins-Tanton
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
27
|
Stern RJ. The evolution of plate tectonics. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2018; 376:rsta.2017.0406. [PMID: 30275158 DOI: 10.1098/rsta.2017.0406] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/23/2018] [Indexed: 05/23/2023]
Abstract
To understand how plate tectonics became Earth's dominant mode of convection, we need to address three related problems. (i) What was Earth's tectonic regime before the present episode of plate tectonics began? (ii) Given the preceding tectonic regime, how did plate tectonics become established? (iii) When did the present episode of plate tectonics begin? The tripartite nature of the problem complicates solving it, but, when we have all three answers, the requisite consilience will provide greater confidence than if we only focus on the long-standing question of when did plate tectonics begin? Earth probably experienced episodes of magma ocean, heat-pipe, and increasingly sluggish single lid magmatotectonism. In this effort we should consider all possible scenarios and lines of evidence. As we address these questions, we should acknowledge there were probably multiple episodes of plate tectonic and non-plate tectonic convective styles on Earth. Non-plate tectonic styles were probably dominated by 'single lid tectonics' and this evolved as Earth cooled and its lithosphere thickened. Evidence from the rock record indicates that the modern episode of plate tectonics began in Neoproterozoic time. A Neoproterozoic transition from single lid to plate tectonics also explains kimberlite ages, the Neoproterozoic climate crisis and the Neoproterozoic acceleration of evolution.This article is part of a discussion meeting issue 'Earth dynamics and the development of plate tectonics'.
Collapse
Affiliation(s)
- Robert J Stern
- Geosciences Department, University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
28
|
Lenardic A. The diversity of tectonic modes and thoughts about transitions between them. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2018; 376:20170416. [PMID: 30275163 PMCID: PMC6189555 DOI: 10.1098/rsta.2017.0416] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/09/2018] [Indexed: 05/18/2023]
Abstract
Plate tectonics is a particular mode of tectonic activity that characterizes the present-day Earth. It is directly linked to not only tectonic deformation but also magmatic/volcanic activity and all aspects of the rock cycle. Other terrestrial planets in our Solar System do not operate in a plate tectonic mode but do have volcanic constructs and signs of tectonic deformation. This indicates the existence of tectonic modes different from plate tectonics. This article discusses the defining features of plate tectonics and reviews the range of tectonic modes that have been proposed for terrestrial planets to date. A categorization of tectonic modes relates to the issue of when plate tectonics initiated on Earth as it provides insights into possible pre-plate tectonic behaviour. The final focus of this contribution relates to transitions between tectonic modes. Different transition scenarios are discussed. One follows classic ideas of regime transitions in which boundaries between tectonic modes are determined by the physical and chemical properties of a planet. The other considers the potential that variations in temporal evolution can introduce contingencies that have a significant effect on tectonic transitions. The latter scenario allows for the existence of multiple stable tectonic modes under the same physical/chemical conditions. The different transition potentials imply different interpretations regarding the type of variable that the tectonic mode of a planet represents. Under the classic regime transition view, the tectonic mode of a planet is a state variable (akin to temperature). Under the multiple stable modes view, the tectonic mode of a planet is a process variable. That is, something that flows through the system (akin to heat). The different implications that follow are discussed as they relate to the questions of when did plate tectonics initiate on Earth and why does Earth have plate tectonics.This article is part of a discussion meeting issue 'Earth dynamics and the development of plate tectonics'.
Collapse
Affiliation(s)
- A Lenardic
- Department of Earth Science, Rice University, Houston, TX 77251-1892, USA
| |
Collapse
|
29
|
O'Neill C, Turner S, Rushmer T. The inception of plate tectonics: a record of failure. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2018; 376:20170414. [PMID: 30275162 PMCID: PMC6189556 DOI: 10.1098/rsta.2017.0414] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/27/2018] [Indexed: 05/23/2023]
Abstract
The development of plate tectonics from a pre-plate tectonics regime requires both the initiation of subduction and the development of nascent subduction zones into long-lived contiguous features. Subduction itself has been shown to be sensitive to system parameters such as thermal state and the specific rheology. While generally it has been shown that cold-interior high-Rayleigh-number convection (such as on the Earth today) favours plates and subduction, due to the ability of the interior stresses to couple with the lid, a given system may or may not have plate tectonics depending on its initial conditions. This has led to the idea that there is a strong history dependence to tectonic evolution-and the details of tectonic transitions, including whether they even occur, may depend on the early history of a planet. However, intrinsic convective stresses are not the only dynamic drivers of early planetary evolution. Early planetary geological evolution is dominated by volcanic processes and impacting. These have rarely been considered in thermal evolution models. Recent models exploring the details of plate tectonic initiation have explored the effect of strong thermal plumes or large impacts on surface tectonism, and found that these 'primary drivers' can initiate subduction, and, in some cases, over-ride the initial state of the planet. The corollary of this, of course, is that, in the absence of such ongoing drivers, existing or incipient subduction systems under early Earth conditions might fail. The only detailed planetary record we have of this development comes from Earth, and is restricted by the limited geological record of its earliest history. Many recent estimates have suggested an origin of plate tectonics at approximately 3.0 Ga, inferring a monotonically increasing transition from pre-plates, through subduction initiation, to continuous subduction and a modern plate tectonic regime around that time. However, both numerical modelling and the geological record itself suggest a strong nonlinearity in the dynamics of the transition, and it has been noted that the early history of Archaean greenstone belts and trondhjemite-tonalite-granodiorite record many instances of failed subduction. Here, we explore the history of subduction failure on the early Earth, and couple these with insights from numerical models of the geodynamic regime at the time.This article is part of a discussion meeting issue 'Earth dynamics and the development of plate tectonics'.
Collapse
Affiliation(s)
- Craig O'Neill
- Department of Earth and Planetary Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Simon Turner
- Department of Earth and Planetary Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| | - Tracy Rushmer
- Department of Earth and Planetary Sciences, Macquarie University, North Ryde, Sydney, NSW 2109, Australia
| |
Collapse
|
30
|
Cawood PA, Hawkesworth CJ, Pisarevsky SA, Dhuime B, Capitanio FA, Nebel O. Geological archive of the onset of plate tectonics. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2018; 376:rsta.2017.0405. [PMID: 30275157 PMCID: PMC6189553 DOI: 10.1098/rsta.2017.0405] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/21/2018] [Indexed: 05/02/2023]
Abstract
Plate tectonics, involving a globally linked system of lateral motion of rigid surface plates, is a characteristic feature of our planet, but estimates of how long it has been the modus operandi of lithospheric formation and interactions range from the Hadean to the Neoproterozoic. In this paper, we review sedimentary, igneous and metamorphic proxies along with palaeomagnetic data to infer both the development of rigid lithospheric plates and their independent relative motion, and conclude that significant changes in Earth behaviour occurred in the mid- to late Archaean, between 3.2 Ga and 2.5 Ga. These data include: sedimentary rock associations inferred to have accumulated in passive continental margin settings, marking the onset of sea-floor spreading; the oldest foreland basin deposits associated with lithospheric convergence; a change from thin, new continental crust of mafic composition to thicker crust of intermediate composition, increased crustal reworking and the emplacement of potassic and peraluminous granites, indicating stabilization of the lithosphere; replacement of dome and keel structures in granite-greenstone terranes, which relate to vertical tectonics, by linear thrust imbricated belts; the commencement of temporally paired systems of intermediate and high dT/dP gradients, with the former interpreted to represent subduction to collisional settings and the latter representing possible hinterland back-arc settings or ocean plateau environments. Palaeomagnetic data from the Kaapvaal and Pilbara cratons for the interval 2780-2710 Ma and from the Superior, Kaapvaal and Kola-Karelia cratons for 2700-2440 Ma suggest significant relative movements. We consider these changes in the behaviour and character of the lithosphere to be consistent with a gestational transition from a non-plate tectonic mode, arguably with localized subduction, to the onset of sustained plate tectonics.This article is part of a discussion meeting issue 'Earth dynamics and the development of plate tectonics'.
Collapse
Affiliation(s)
- Peter A Cawood
- School of Earth, Atmosphere and Environment, Monash University, Melbourne, VIC 3800, Australia
- Department of Earth Sciences, University of St Andrews, St Andrews, Fife KY16 9AL, UK
| | - Chris J Hawkesworth
- Department of Earth Sciences, University of St Andrews, St Andrews, Fife KY16 9AL, UK
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, UK
| | - Sergei A Pisarevsky
- ARC Centre of Excellence for Core to Crust Fluid Systems (CCFS) and Earth Dynamics Research Group, The Institute for Geoscience Research (TIGeR), Department of Applied Geology, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - Bruno Dhuime
- School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS8 1RJ, UK
- CNRS-UMR 5243, Géosciences Montpellier, Université de Montpellier, Montpellier, France
| | - Fabio A Capitanio
- School of Earth, Atmosphere and Environment, Monash University, Melbourne, VIC 3800, Australia
| | - Oliver Nebel
- School of Earth, Atmosphere and Environment, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
31
|
Nebel O, Capitanio FA, Moyen JF, Weinberg RF, Clos F, Nebel-Jacobsen YJ, Cawood PA. When crust comes of age: on the chemical evolution of Archaean, felsic continental crust by crustal drip tectonics. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2018; 376:rsta.2018.0103. [PMID: 30275165 PMCID: PMC6189554 DOI: 10.1098/rsta.2018.0103] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/10/2018] [Indexed: 05/18/2023]
Abstract
The secular evolution of the Earth's crust is marked by a profound change in average crustal chemistry between 3.2 and 2.5 Ga. A key marker for this change is the transition from Archaean sodic granitoid intrusions of the tonalite-trondhjemite-granodiorite (TTG) series to potassic (K) granitic suites, akin (but not identical) to I-type granites that today are associated with subduction zones. It remains poorly constrained as to how and why this change was initiated and if it holds clues about the geodynamic transition from a pre-plate tectonic mode, often referred to as stagnant lid, to mobile plate tectonics. Here, we combine a series of proposed mechanisms for Archaean crustal geodynamics in a single model to explain the observed change in granitoid chemistry. Numeric modelling indicates that upper mantle convection drives crustal flow and subsidence, leading to profound diversity in lithospheric thickness with thin versus thick proto-plates. When convecting asthenospheric mantle interacts with lower lithosphere, scattered crustal drips are created. Under increasing P-T conditions, partial melting of hydrated meta-basalt within these drips produces felsic melts that intrude the overlying crust to form TTG. Dome structures, in which these melts can be preserved, are a positive diapiric expression of these negative drips. Transitional TTG with elevated K mark a second evolutionary stage, and are blends of subsided and remelted older TTG forming K-rich melts and new TTG melts. Ascending TTG-derived melts from asymmetric drips interact with the asthenospheric mantle to form hot, high-Mg sanukitoid. These melts are small in volume, predominantly underplated, and their heat triggered melting of lower crustal successions to form higher-K granites. Importantly, this evolution operates as a disseminated process in space and time over hundreds of millions of years (greater than 200 Ma) in all cratons. This focused ageing of the crust implies that compiled geochemical data can only broadly reflect geodynamic changes on a global or even craton-wide scale. The observed change in crustal chemistry does mark the lead up to but not the initiation of modern-style subduction.This article is part of a discussion meeting issue 'Earth dynamics and the development of plate tectonics'.
Collapse
Affiliation(s)
- O Nebel
- School of Earth, Atmosphere and Environment, Monash University, Clayton, 3800 Victoria, Australia
| | - F A Capitanio
- School of Earth, Atmosphere and Environment, Monash University, Clayton, 3800 Victoria, Australia
| | - J-F Moyen
- Laboratoire Magmas et Volcans, Université de Lyon, UJM-UCA-CNRS-IRD, 23 rue Dr. Paul Michelon, 42023 Saint Etienne, France
| | - R F Weinberg
- School of Earth, Atmosphere and Environment, Monash University, Clayton, 3800 Victoria, Australia
| | - F Clos
- School of Earth, Atmosphere and Environment, Monash University, Clayton, 3800 Victoria, Australia
| | | | - P A Cawood
- School of Earth, Atmosphere and Environment, Monash University, Clayton, 3800 Victoria, Australia
| |
Collapse
|
32
|
Foley BJ. The dependence of planetary tectonics on mantle thermal state: applications to early Earth evolution. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2018; 376:20170409. [PMID: 30275160 PMCID: PMC6189558 DOI: 10.1098/rsta.2017.0409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/24/2018] [Indexed: 05/23/2023]
Abstract
For plate tectonics to operate on a planet, mantle convective forces must be capable of forming weak, localized shear zones in the lithosphere that act as plate boundaries. Otherwise, a planet's mantle will convect in a stagnant lid regime, where subduction and plate motions are absent. Thus, when and how plate tectonics initiated on the Earth is intrinsically tied to the ability of mantle convection to form plate boundaries; however, the physics behind this process are still uncertain. Most mantle convection models have employed a simple pseudoplastic model of the lithosphere, where the lithosphere 'fails' and develops a mobile lid when stresses in the lithosphere reach the prescribed yield stress. With pseudoplasticity high mantle temperatures and high rates of internal heating, conditions relevant for the early Earth, impede plate boundary formation by decreasing lithospheric stresses, and hence favour a stagnant lid for the early Earth. However, when a model for shear zone formation based on grain size reduction is used, early Earth thermal conditions do not favour a stagnant lid. While lithosphere stress drops with increasing mantle temperature or heat production rate, the deformational work, which drives grain size reduction, increases. Thus, the ability of convection to form weak plate boundaries is not impeded by early Earth thermal conditions. However, mantle thermal state does change the style of subduction and lithosphere mobility; high mantle temperatures lead to a more sluggish, drip-like style of subduction. This 'sluggish lid' convection may be able to explain many of the key observations of early Earth crust formation processes preserved in the geologic record. Moreover, this work highlights the importance of understanding the microphysics of plate boundary formation for assessing early Earth tectonics, as different plate boundary formation mechanisms are influenced by mantle thermal state in fundamentally different ways.This article is part of a discussion meeting issue 'Earth dynamics and the development of plate tectonics'.
Collapse
Affiliation(s)
- Bradford J Foley
- Department of Geosciences, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
33
|
Xu Y, Zhang A, Yang B, Bao X, Wang Q, Xia J, Yang W. Bridging the connection between effective viscosity and electrical conductivity through water content in the upper mantle. Sci Rep 2018; 8:1771. [PMID: 29379080 PMCID: PMC5789068 DOI: 10.1038/s41598-018-20250-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 01/15/2018] [Indexed: 11/15/2022] Open
Abstract
Upper mantle viscosity plays a key role in understanding plate tectonics and is usually extrapolated from laboratory-based creep measurements of upper mantle conditions or constrained by modeling geodetic and post-seismic observations. At present, an effective method to obtain a high-resolution viscosity structure is still lacking. Recently, a promising estimation of effective viscosity was obtained from a transform derived from the results of magnetotelluric imaging. Here, we build a relationship between effective viscosity and electrical conductivity in the upper mantle using water content. The contribution of water content to the effective viscosity is isolated in a flow law with reference to relatively dry conditions in the upper mantle. The proposed transform is robust and has been verified by application to data synthesized from an intraoceanic subduction zone model. We then apply the method to transform an electrical conductivity cross-section across the Yangtze block and the North China Craton. The results show that the effective viscosity structure coincides well with that estimated from other independent datasets at depths of 40 to 80 km but differs slightly at depths of 100 to 200 km. We briefly discussed the potentials and associated problems for application.
Collapse
Affiliation(s)
- Yixian Xu
- School of Earth Sciences, Zhejiang University, Hangzhou, 310027, China.
| | - Anqi Zhang
- Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan, 430074, China
| | - Bo Yang
- School of Earth Sciences, Zhejiang University, Hangzhou, 310027, China
| | - Xuewei Bao
- School of Earth Sciences, Zhejiang University, Hangzhou, 310027, China
| | - Qinyan Wang
- School of Earth Sciences, Zhejiang University, Hangzhou, 310027, China
| | - Jianghai Xia
- School of Earth Sciences, Zhejiang University, Hangzhou, 310027, China
| | - Wencai Yang
- School of Earth Sciences, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
34
|
Rozel AB, Golabek GJ, Jain C, Tackley PJ, Gerya T. Continental crust formation on early Earth controlled by intrusive magmatism. Nature 2017; 545:332-335. [PMID: 28482358 DOI: 10.1038/nature22042] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 02/21/2017] [Indexed: 11/09/2022]
Abstract
The global geodynamic regime of early Earth, which operated before the onset of plate tectonics, remains contentious. As geological and geochemical data suggest hotter Archean mantle temperature and more intense juvenile magmatism than in the present-day Earth, two crust-mantle interaction modes differing in melt eruption efficiency have been proposed: the Io-like heat-pipe tectonics regime dominated by volcanism and the "Plutonic squishy lid" tectonics regime governed by intrusive magmatism, which is thought to apply to the dynamics of Venus. Both tectonics regimes are capable of producing primordial tonalite-trondhjemite-granodiorite (TTG) continental crust but lithospheric geotherms and crust production rates as well as proportions of various TTG compositions differ greatly, which implies that the heat-pipe and Plutonic squishy lid hypotheses can be tested using natural data. Here we investigate the creation of primordial TTG-like continental crust using self-consistent numerical models of global thermochemical convection associated with magmatic processes. We show that the volcanism-dominated heat-pipe tectonics model results in cold crustal geotherms and is not able to produce Earth-like primordial continental crust. In contrast, the Plutonic squishy lid tectonics regime dominated by intrusive magmatism results in hotter crustal geotherms and is capable of reproducing the observed proportions of various TTG rocks. Using a systematic parameter study, we show that the typical modern eruption efficiency of less than 40 per cent leads to the production of the expected amounts of the three main primordial crustal compositions previously reported from field data (low-, medium- and high-pressure TTG). Our study thus suggests that the pre-plate-tectonics Archean Earth operated globally in the Plutonic squishy lid regime rather than in an Io-like heat-pipe regime.
Collapse
Affiliation(s)
- A B Rozel
- Institute of Geophysics, ETH Zurich, 8092 Zurich, Switzerland
| | - G J Golabek
- Bayerisches Geoinstitut, University of Bayreuth, 95440 Bayreuth, Germany
| | - C Jain
- Institute of Geophysics, ETH Zurich, 8092 Zurich, Switzerland
| | - P J Tackley
- Institute of Geophysics, ETH Zurich, 8092 Zurich, Switzerland
| | - T Gerya
- Institute of Geophysics, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|