1
|
Shaikh M, Rubalcaba K, Yan Y. Halide Perovskite Induces Halogen/Hydrogen Atom Transfer (XAT/HAT) for Allylic C-H Amination. Angew Chem Int Ed Engl 2025; 64:e202413012. [PMID: 39231037 DOI: 10.1002/anie.202413012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/06/2024]
Abstract
Allylic C-H amination has emerged as a powerful tool to construct allylamines, common motifs in molecular therapeutics. Such reaction implies an oxidative path for C-H activation but furnishes reductive amines, inferring mild oxidants' inactivity for C-H oxidation but strong oxidants' detriment to products. Herein we report a heterogeneous catalytic approach that manipulates halogen-vacancies of perovskite photocatalyst and exploits halogenated-solvents (i.e. CH2Cl2, CH2Br2) as mild oxidants for selective C-H allyl amination with 19,376 turnovers. CsPbBr3 nanocrystals induce cooperative hydrogen-atom-transfer (HAT, C-H oxidation, and halogen-vacancy CsPbBr3-x formation) and halogen-atom-transfer (XAT, CsPbBr3-x-induced solvent reduction) under a radical chain mechanism. Terminal/internal olefins are amenable to forge aromatic/aliphatic, cyclic/acyclic, secondary/tertiary allylamines (70 examples), including drugs or their derivatives.
Collapse
Affiliation(s)
- Melad Shaikh
- Department of Chemistry and Biochemistry, San Diego State University, 92182, San Diego, CA, USA
| | - Kevin Rubalcaba
- Department of Chemistry and Biochemistry, San Diego State University, 92182, San Diego, CA, USA
| | - Yong Yan
- Department of Chemistry and Biochemistry, San Diego State University, 92182, San Diego, CA, USA
| |
Collapse
|
2
|
Mukherjee K, Cheung KPS, Gevorgyan V. Photoinduced Pd-Catalyzed Direct Sulfonylation of Allylic C-H Bonds. Angew Chem Int Ed Engl 2025; 64:e202413646. [PMID: 39287933 DOI: 10.1002/anie.202413646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/19/2024]
Abstract
Allylic sulfones are valuable motifs due to their medicinal and biological significance and their versatile chemical reactivities. While direct allylic C-H sulfonylation represents a straightforward and desirable approach, these methods are primarily restricted to terminal alkenes, leaving the engagement of the internal counterparts a formidable challenge. Herein we report a photocatalytic approach that accommodates both cyclic and acyclic internal alkenes with diverse substitution patterns and electronic properties. Importantly, the obtained allylic sulfones can be readily diversified into a wide range of products, thus enabling formal alkene transposition and all-carbon quaternary center formation through the sequential C-H functionalization.
Collapse
Affiliation(s)
- Kallol Mukherjee
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas, 75080-3021, United States
| | - Kelvin Pak Shing Cheung
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas, 75080-3021, United States
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 West Campbell Road, Richardson, Texas, 75080-3021, United States
| |
Collapse
|
3
|
Chen X, Li HH, Kramer S. Photoinduced Copper-Catalyzed Enantioselective Allylic C(sp 3)-H Oxidation of Acyclic 1-Aryl-2-alkyl Alkenes as Limiting Substrates. Angew Chem Int Ed Engl 2024; 63:e202413190. [PMID: 39132953 DOI: 10.1002/anie.202413190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 08/13/2024]
Abstract
Herein, we disclose a simple copper-catalyzed method for enantioselective allylic C(sp3)-H oxidation of unsymmetrical acyclic alkenes, specifically 1-aryl-2-alkyl alkenes. The C-H substrates are used in limiting amounts, and the products are obtained with high enantioselectivity, E/Z-selectivity, and regioselectivity. The method exhibits broad functional group tolerance, and E/Z-alkene mixtures are suitable C-H substrates. The transformation is enabled by light irradiation, which sustains the enantioselective copper catalysis by photoinduced oxidant homolysis.
Collapse
Affiliation(s)
- Xuemeng Chen
- Department of Chemistry, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Heng-Hui Li
- Department of Chemistry, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| | - Søren Kramer
- Department of Chemistry, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| |
Collapse
|
4
|
Ding Y, Wu J, Zhang T, Liu H, Huang H. Site-Selective Carbonylative Cyclization with Two Allylic C-H Bonds Enabled by Radical Differentiation. J Am Chem Soc 2024; 146:19635-19642. [PMID: 38980114 DOI: 10.1021/jacs.4c05360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Controlling the site-selectivity of C-H functionalization is of significant importance and a formidable undertaking in synthetic organic chemistry, motivating the continuing development of efficient and sustainable technologies for activating C-H bonds. However, methods that control the site-selectivity for double C-H functionalization are rare. We herein report a conceptually new method to achieve highly site-selective C-H functionalization by implementing a radical single-out strategy. Leveraging the steric hindrance-sensitive CO-insertion as the radical differentiation process, a site-selective and stereoselective carbonylative formal [2 + 2] cycloaddition of imines and alkenes by sequential double allylic C-H bond activation was established without special and complicated HAT-reagents. This reaction was compatible with a wide range of alkenes and imines with diverse skeletons to deliver allylic β-lactams that are of synthetic and medicinal interest.
Collapse
Affiliation(s)
- Yongzheng Ding
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jianing Wu
- Key Laboratory of Precision and Intelligent Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Tianze Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Hongchi Liu
- Key Laboratory of Precision and Intelligent Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Hanmin Huang
- Key Laboratory of Precision and Intelligent Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
5
|
Xi L, Fang X, Wang M, Shi Z. Asymmetric 2,3-Addition of Sulfinylamines with Arylboronic Acids Enabled by Nickel Catalysis. J Am Chem Soc 2024; 146:17587-17594. [PMID: 38913452 DOI: 10.1021/jacs.4c04050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Sulfinamides have been widely used in organic synthesis, with research on their preparation spanning more than a century. Despite advancements in catalytic methodologies, creating sulfur stereocenters within these molecules remains a significant challenge. In this study, we present an effective and versatile method for synthesizing a diverse range of S-chirogenic sulfinamides through catalytic asymmetric aryl addition to sulfinylamines. By utilizing a nickel complex as a catalyst, this process exhibits impressive enantioselectivity and can incorporate various arylboronic acids at the sulfur position. The resulting synthetic sulfinamides are stable and highly adaptable, allowing for their conversion to a variety of sulfur-containing compounds. Our study also incorporates detailed experimental and computational studies to elucidate the reaction mechanism and factors influencing enantioselectivity.
Collapse
Affiliation(s)
- Longlong Xi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Xiaowu Fang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
- School of Chemistry and Materials Science, Nanjing Normal University, 210023 Nanjing, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
6
|
Xia GD, Li R, Zhang L, Wei Y, Hu XQ. Iron-Catalyzed Photochemical Synthesis of Sulfinamides from Aliphatic Hydrocarbons and Sulfinylamines. Org Lett 2024; 26:3703-3708. [PMID: 38668695 DOI: 10.1021/acs.orglett.4c00612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
An iron-catalyzed photochemical sulfinamidation of hydrocarbons with N-sulfinylamines has been developed. The merger of ligand-to-metal charge transfer (LMCT) of FeCl3 with hydrogen atom transfer (HAT) process is the key for the generation of alkyl radicals from hydrocarbons, and the resultant alkyl radicals were readily trapped by N-sulfinylamines to produce structurally diverse sulfinamides. Contrary to traditional methods that inevitably use sensitive organometallic reagents and prefunctionalized substrates, our approach features simple operation and the wide availability of starting materials. Gratifyingly, the reaction is scalable, and the obtained sulfinamides can be conveniently converted to highly functionalized sulfur(VI) derivatives.
Collapse
Affiliation(s)
- Guang-Da Xia
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Run Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Long Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Yi Wei
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Xiao-Qiang Hu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| |
Collapse
|
7
|
Schrader ML, Schäfer FR, Schäfers F, Glorius F. Bridging the information gap in organic chemical reactions. Nat Chem 2024; 16:491-498. [PMID: 38548884 DOI: 10.1038/s41557-024-01470-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 02/02/2024] [Indexed: 04/07/2024]
Abstract
The varying quality of scientific reports is a well-recognized problem and often results from a lack of standardization and transparency in scientific publications. This situation ultimately leads to prominent complications such as reproducibility issues and the slow uptake of newly developed synthetic methods for pharmaceutical and agrochemical applications. In recent years, various impactful approaches have been advocated to bridge information gaps and to improve the quality of experimental protocols in synthetic organic publications. Here we provide a critical overview of these strategies and present the reader with a versatile set of tools to augment their standard procedures. We formulate eight principles to improve data management in scientific publications relating to data standardization, reproducibility and evaluation, and encourage scientists to go beyond current publication standards. We are aware that this is a substantial effort, but we are convinced that the resulting improved data situation will greatly benefit the progress of chemistry.
Collapse
Affiliation(s)
- Malte L Schrader
- Organisch-Chemisches Institut, Universität Münster, Münster, Germany
| | - Felix R Schäfer
- Organisch-Chemisches Institut, Universität Münster, Münster, Germany
| | - Felix Schäfers
- Organisch-Chemisches Institut, Universität Münster, Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, Universität Münster, Münster, Germany.
| |
Collapse
|
8
|
Wang L, Wang CL, Li ZH, Lian PF, Kang JC, Zhou J, Hao Y, Liu RX, Bai HY, Zhang SY. Cooperative Cu/azodiformate system-catalyzed allylic C-H amination of unactivated internal alkenes directed by aminoquinoline. Nat Commun 2024; 15:1483. [PMID: 38374064 PMCID: PMC10876528 DOI: 10.1038/s41467-024-45875-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/07/2024] [Indexed: 02/21/2024] Open
Abstract
Aliphatic allylic amines are common in natural products and pharmaceuticals. The oxidative intermolecular amination of C(sp3)-H bonds represents one of the most straightforward strategies to construct these motifs. However, the utilization of widely internal alkenes with amines in this transformation remains a synthetic challenge due to the inefficient coordination of metals to internal alkenes and excessive coordination with aliphatic and aromatic amines, resulting in decreasing the reactivity of the catalyst. Here, we present a regioselective Cu-catalyzed oxidative allylic C(sp3)-H amination of internal olefins with azodiformates to these problems. A removable bidentate directing group is used to control the regiochemistry and stabilize the π-allyl-metal intermediate. Noteworthy is the dual role of azodiformates as both a nitrogen source and an electrophilic oxidant for the allylic C-H activation. This protocol features simple conditions, remarkable scope and functional group tolerance as evidenced by >40 examples and exhibits high regioselectivity and excellent E/Z selectivity.
Collapse
Affiliation(s)
- Le Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, & Key Laboratory of Green and High-End Utilization of Salt Lake Resources, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Cheng-Long Wang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, & Key Laboratory of Green and High-End Utilization of Salt Lake Resources, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Zi-Hao Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, & Key Laboratory of Green and High-End Utilization of Salt Lake Resources, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Peng-Fei Lian
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, & Key Laboratory of Green and High-End Utilization of Salt Lake Resources, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Jun-Chen Kang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, & Key Laboratory of Green and High-End Utilization of Salt Lake Resources, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Jia Zhou
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, & Key Laboratory of Green and High-End Utilization of Salt Lake Resources, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Yu Hao
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, & Key Laboratory of Green and High-End Utilization of Salt Lake Resources, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Ru-Xin Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, & Key Laboratory of Green and High-End Utilization of Salt Lake Resources, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - He-Yuan Bai
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, & Key Laboratory of Green and High-End Utilization of Salt Lake Resources, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Shu-Yu Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, & Key Laboratory of Green and High-End Utilization of Salt Lake Resources, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| |
Collapse
|
9
|
Roy S, Biswas A, Paul H, Ariyan SK, Chatterjee I. Introducing N-Sulfinylamines into Visible-Light-Induced Carbene Chemistry for the Synthesis of Diverse Amides and α-Iminoesters. Org Lett 2023; 25:8511-8515. [PMID: 37975825 DOI: 10.1021/acs.orglett.3c03486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
A rare example of visible-light-mediated diverse reactivity of N-sulfinylamines with different types of carbene precursors has been disclosed. Acylsilanes and aryldiazoacetates have been utilized as nucleophilic and electrophilic carbene precursors into the N═S═O linchpin, to achieve valuable amides and α-iminoesters, respectively. Interestingly, diazocarbonyls can also participate in the amidation reaction with N-sulfinylamines via in situ generated ketenes. This operationally simple modular method offers a mild, transition-metal-free, and coupling-reagent-free protocol to fabricate structurally diverse amides and a promptly accessible technique to achieve α-iminoesters, where visible light remains as a key promoter.
Collapse
Affiliation(s)
- Sourav Roy
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India
| | - Apurba Biswas
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India
| | - Hrishikesh Paul
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India
| | - S K Ariyan
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India
| | - Indranil Chatterjee
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India
| |
Collapse
|
10
|
Dang HT, Porey A, Nand S, Trevino R, Manning-Lorino P, Hughes WB, Fremin SO, Thompson WT, Dhakal SK, Arman HD, Larionov OV. Kinetically-driven reactivity of sulfinylamines enables direct conversion of carboxylic acids to sulfinamides. Chem Sci 2023; 14:13384-13391. [PMID: 38033883 PMCID: PMC10685282 DOI: 10.1039/d3sc04727j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/08/2023] [Indexed: 12/02/2023] Open
Abstract
Sulfinamides are some of the most centrally important four-valent sulfur compounds that serve as critical entry points to an array of emergent medicinal functional groups, molecular tools for bioconjugation, and synthetic intermediates including sulfoximines, sulfonimidamides, and sulfonimidoyl halides, as well as a wide range of other S(iv) and S(vi) functionalities. Yet, the accessible chemical space of sulfinamides remains limited, and the approaches to sulfinamides are largely confined to two-electron nucleophilic substitution reactions. We report herein a direct radical-mediated decarboxylative sulfinamidation that for the first time enables access to sulfinamides from the broad and structurally diverse chemical space of carboxylic acids. Our studies show that the formation of sulfinamides prevails despite the inherent thermodynamic preference for the radical addition to the nitrogen atom, while a machine learning-derived model facilitates prediction of the reaction efficiency based on computationally generated descriptors of the underlying radical reactivity.
Collapse
Affiliation(s)
- Hang T Dang
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Arka Porey
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Sachchida Nand
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Ramon Trevino
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Patrick Manning-Lorino
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - William B Hughes
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Seth O Fremin
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - William T Thompson
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Shree Krishna Dhakal
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Hadi D Arman
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Oleg V Larionov
- Department of Chemistry, The University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| |
Collapse
|
11
|
Bhadoria D, Kumar R, Kant R, Kumar A. Regio- and Stereoselective Intermolecular Oxysulfonylation of Alkynes with 1,3-Diketones to Access ( Z)-β-Sulfonated Enethers. J Org Chem 2023; 88:13666-13677. [PMID: 37737722 DOI: 10.1021/acs.joc.3c01345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
The first multicomponent regio- and stereoselective difunctionalization of alkynes via concomitant C-O and C-S bond formation using 1,3-diketones and sodium sulfinate has been developed for the synthesis of various sulfonated enethers. The viability of this strategy is unveiled by gram-scale, various synthetic modifications and late-stage functionalization. This transformation does not require any prefunctionalization, metal catalysts, and oxidants. The present operationally simple, efficient, and sustainable approach provides various functionalized olefins in a one-pot protocol with high Z-selectivity.
Collapse
Affiliation(s)
- Deepak Bhadoria
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rajesh Kumar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
| | - Ruchir Kant
- Molecular and Structural Biology, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
| | - Atul Kumar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
12
|
Andrews J, Kalepu J, Palmer CF, Poole DL, Christensen KE, Willis MC. Photocatalytic Carboxylate to Sulfinamide Switching Delivers a Divergent Synthesis of Sulfonamides and Sulfonimidamides. J Am Chem Soc 2023; 145:21623-21629. [PMID: 37738304 PMCID: PMC10557147 DOI: 10.1021/jacs.3c07974] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Indexed: 09/24/2023]
Abstract
sulfinamides, sulfonamides, and sulfonimidamides are in-demand motifs in medicinal chemistry, yet methods for the synthesis of alkyl variants that start from simple, readily available feedstocks are scarce. In addition, bespoke syntheses of each class of molecules are usually needed. In this report, we detail the synthesis of these three distinct sulfur functional groups, using readily available and structurally diverse alkyl carboxylic acids as the starting materials. The method harnesses alkyl radical generation from carboxylic acids using acridine photocatalysts and 400 nm light with subsequent radical addition to sulfinylamine reagents, delivering sulfinamide products. Using the N-alkoxy sulfinylamine reagent t-BuO-NSO as the radical trap provides common N-alkoxy sulfinamide intermediates, which can be converted in a divergent manner to either sulfonamides or sulfonimidamides, by treatment with sodium hydroxide, or an amine, respectively. The reactions are scalable, tolerate a broad range of functional groups, and can be used for the diversification of complex biologically active compounds.
Collapse
Affiliation(s)
- Jonathan
A. Andrews
- Department
of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Jagadeesh Kalepu
- Department
of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | | | - Darren L. Poole
- GlaxoSmithKline
Medicines Research Centre, Gunnels Wood Road, Stevenage, SG1 2NY, U.K.
| | | | - Michael C. Willis
- Department
of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| |
Collapse
|
13
|
Malik M, Senatore R, Castiglione D, Roller-Prado A, Pace V. Highly chemoselective homologative assembly of the α-substituted methylsulfinamide motif from N-sulfinylamines. Chem Commun (Camb) 2023; 59:11065-11068. [PMID: 37644820 DOI: 10.1039/d3cc03326k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
α-Substituted methylsulfinamide are prepared through the homologation of electrophilic N-sulfinylamines with Li-CHXY reagents. The transformation takes place under full chemocontrol and exhibits good flexibility for preparing both N-aryl and N-alkyl analogues. Various sensitive functionalities can be accommodated on the starting materials, thus documenting a wide reaction scope.
Collapse
Affiliation(s)
- Monika Malik
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria.
| | - Raffaele Senatore
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria.
| | - Davide Castiglione
- Department of Chemistry, Via Giuria 7, University of Turin, Turin 10125, Italy
| | - Alexander Roller-Prado
- Department of Inorganic Chemistry - Functional Materials, University of Vienna, Waehringerstrasse 42, 1090, Vienna, Austria
| | - Vittorio Pace
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria.
- Department of Chemistry, Via Giuria 7, University of Turin, Turin 10125, Italy
| |
Collapse
|
14
|
Manna MS, Yoo SY, Sharique M, Choi H, Pudasaini B, Baik MH, Tambar UK. Copper-Catalyzed Regiodivergent Internal Allylic Alkylations. Angew Chem Int Ed Engl 2023; 62:e202304848. [PMID: 37327025 PMCID: PMC10528884 DOI: 10.1002/anie.202304848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/05/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
We report a copper-catalyzed, regioselective, and stereospecific alkylation of unbiased internal allylic carbonates with functionalized alkyl and aryl Grignard reagents. The reactions exhibit high stereospecificity and regioselectivity for either SN 2 or SN 2' products under two sets of copper-catalyzed conditions, which enables the preparation of a broad range of products with E-alkene selectivity. Density functional theory calculations reveal the origins of the regioselectivity based on the different behaviors of homo- and heterocuprates.
Collapse
Affiliation(s)
- Madhu Sudan Manna
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9038, United States
| | - Seok Yeol Yoo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Mohammed Sharique
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9038, United States
| | - Hyoju Choi
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Bimal Pudasaini
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Uttam K. Tambar
- Department of Biochemistry, The University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75390-9038, United States
| |
Collapse
|
15
|
Feng M, Fernandes AJ, Sirvent A, Spinozzi E, Shaaban S, Maulide N. Transfer freier Aminogruppen via α-Aminierung von Carbonylen. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 135:e202304990. [PMID: 38516250 PMCID: PMC10952326 DOI: 10.1002/ange.202304990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Indexed: 03/23/2024]
Abstract
AbstractEine Strategie zur direkten α‐Aminierung unfunktionalisierter Carbonylverbindungen wird berichtet. Unter Verwendung einer kommerziell verfügbaren Stickstoffquelle zur Übertragung der freien Aminogruppe (NH2) werden primäre α‐Aminocarbonylverbindungen unter besonders milden Bedingungen hergestellt. Die direkte Einführung einer ungeschützten, primären Aminogruppe ermöglicht in der Folge zahlreiche in situ Funktionalisierungen der erhaltenen Reaktionsprodukte, einschließlich Peptidkupplungen und Pictet–Spengler Cyclisierungen.
Collapse
Affiliation(s)
- Minghao Feng
- Institut für Organische ChemieUniversität WienWähringer Straße 381090WienÖsterreich
| | - Anthony J. Fernandes
- Institut für Organische ChemieUniversität WienWähringer Straße 381090WienÖsterreich
- Christian-Doppler Labor für Entropieorientiertes Drug DesignJosef-Holaubek-Platz 21090WienÖsterreich
| | - Ana Sirvent
- Institut für Organische ChemieUniversität WienWähringer Straße 381090WienÖsterreich
- Christian-Doppler Labor für Entropieorientiertes Drug DesignJosef-Holaubek-Platz 21090WienÖsterreich
| | - Eleonora Spinozzi
- Institut für Organische ChemieUniversität WienWähringer Straße 381090WienÖsterreich
| | - Saad Shaaban
- Institut für Organische ChemieUniversität WienWähringer Straße 381090WienÖsterreich
| | - Nuno Maulide
- Institut für Organische ChemieUniversität WienWähringer Straße 381090WienÖsterreich
- Christian-Doppler Labor für Entropieorientiertes Drug DesignJosef-Holaubek-Platz 21090WienÖsterreich
| |
Collapse
|
16
|
Feng M, Fernandes AJ, Sirvent A, Spinozzi E, Shaaban S, Maulide N. Free Amino Group Transfer via α-Amination of Native Carbonyls. Angew Chem Int Ed Engl 2023; 62:e202304990. [PMID: 37114555 PMCID: PMC10952782 DOI: 10.1002/anie.202304990] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 04/29/2023]
Abstract
We report herein a straightforward transfer of a free amino group (NH2 ) from a commercially available nitrogen source to unfunctionalized, native carbonyls (amides and ketones) resulting in direct α-amination. Primary α-amino carbonyls are readily produced under mild conditions, further enabling diverse in situ functionalization reactions-including peptide coupling and Pictet-Spengler cyclization-that capitalize on the presence of the unprotected primary amine.
Collapse
Affiliation(s)
- Minghao Feng
- Institute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
| | - Anthony J. Fernandes
- Institute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
- Christian-Doppler Laboratory for Entropy-Oriented Drug DesignJosef-Holaubek-Platz 21090ViennaAustria
| | - Ana Sirvent
- Institute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
- Christian-Doppler Laboratory for Entropy-Oriented Drug DesignJosef-Holaubek-Platz 21090ViennaAustria
| | - Eleonora Spinozzi
- Institute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
| | - Saad Shaaban
- Institute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
| | - Nuno Maulide
- Institute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
- Christian-Doppler Laboratory for Entropy-Oriented Drug DesignJosef-Holaubek-Platz 21090ViennaAustria
| |
Collapse
|
17
|
Xu P, Xie J, Wang DS, Zhang XP. Metalloradical approach for concurrent control in intermolecular radical allylic C-H amination. Nat Chem 2023; 15:498-507. [PMID: 36635599 PMCID: PMC10073309 DOI: 10.1038/s41557-022-01119-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 11/28/2022] [Indexed: 01/13/2023]
Abstract
Although they offer great potentials, the high reactivity and diverse pathways of radical chemistry pose difficult problems for applications in organic synthesis. In addition to the differentiation of multiple competing pathways, the control of various selectivities in radical reactions presents both formidable challenges and great opportunities. To regulate chemoselectivity and regioselectivity, as well as diastereoselectivity and enantioselectivity, calls for the formulation of conceptually new approaches and fundamentally different governing principles. Here we show that Co(II)-based metalloradical catalysis enables the radical chemoselective intermolecular amination of allylic C-H bonds through the employment of modularly designed D2-symmetric chiral amidoporphyrins with a tunable pocket-like environment as the supporting ligand. The reaction exhibits a remarkable convergence of regioselectivity, diastereoselectivity and enantioselectivity in a single catalytic operation. In addition to demonstrating the unique opportunities of metalloradical catalysis in controlling homolytic radical reactions, the Co(II)-catalysed convergent C-H amination offers a route to synthesize valuable chiral α-tertiary amines directly from an isomeric mixture of alkenes.
Collapse
Affiliation(s)
- Pan Xu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Boston, MA, USA
| | - Jingjing Xie
- Department of Chemistry, Merkert Chemistry Center, Boston College, Boston, MA, USA
| | - Duo-Sheng Wang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Boston, MA, USA
| | - X Peter Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Boston, MA, USA.
| |
Collapse
|
18
|
Feng M, Tinelli R, Meyrelles R, González L, Maryasin B, Maulide N. Direct Synthesis of α-Amino Acid Derivatives by Hydrative Amination of Alkynes. Angew Chem Int Ed Engl 2023; 62:e202212399. [PMID: 36222199 PMCID: PMC10098499 DOI: 10.1002/anie.202212399] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Indexed: 11/07/2022]
Abstract
α-Amino acid derivatives are key components of the molecules of life. The synthesis of α-amino carbonyl/carboxyl compounds is a contemporary challenge in organic synthesis. Herein, we report a practical method for the preparation of α-amino acid derivatives via direct hydrative amination of activated alkynes under mild conditions, relying on sulfinamides as the nitrogen source. Computational studies suggest that the reaction is enabled by a new type of sulfonium [2,3]-sigmatropic rearrangement.
Collapse
Affiliation(s)
- Minghao Feng
- Institute of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090, Vienna, Austria
| | - Roberto Tinelli
- Institute of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090, Vienna, Austria.,Vienna Doctoral School in Chemistry, University of Vienna, Währinger Strasse 42, 1090, Vienna, Austria
| | - Ricardo Meyrelles
- Institute of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090, Vienna, Austria.,Institute of Theoretical Chemistry, University of Vienna, Währinger Strasse 17, 1090, Vienna, Austria.,Vienna Doctoral School in Chemistry, University of Vienna, Währinger Strasse 42, 1090, Vienna, Austria
| | - Leticia González
- Institute of Theoretical Chemistry, University of Vienna, Währinger Strasse 17, 1090, Vienna, Austria
| | - Boris Maryasin
- Institute of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090, Vienna, Austria.,Institute of Theoretical Chemistry, University of Vienna, Währinger Strasse 17, 1090, Vienna, Austria
| | - Nuno Maulide
- Institute of Organic Chemistry, University of Vienna, Währinger Strasse 38, 1090, Vienna, Austria
| |
Collapse
|
19
|
Feng M, Tinelli R, Meyrelles R, González L, Maryasin B, Maulide N. Synthese von α-Aminosäurederivaten durch hydrative Aminierung von Alkinen. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 135:e202212399. [PMID: 38516564 PMCID: PMC10952632 DOI: 10.1002/ange.202212399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Indexed: 11/11/2022]
Abstract
Abstractα‐Aminosäurederivate sind Kernbestandteile jeglichen Lebens. Die Synthese von α‐Aminocarbonyl/carboxyl Verbindungen ist jedoch weiterhin eine Herausforderung für die organische Synthese. In dieser Arbeit berichten wir von einer praktischen Herstellungsmethode für α‐Aminosäurederivate durch direkte hydrative Aminierung von aktivierten Alkinen mit Sulfinamiden unter milden Bedingungen. Computergestützte Untersuchungen legen nahe, dass eine [2,3]‐sigmatrope Sulfoniumumlagerung der zentrale Schritt der Reaktion ist.
Collapse
Affiliation(s)
- Minghao Feng
- Institut für Organische ChemieUniversität WienWähringer Straße 381090WienÖsterreich
| | - Roberto Tinelli
- Institut für Organische ChemieUniversität WienWähringer Straße 381090WienÖsterreich
- Vienna Doctoral School in ChemistryUniversität WienWähringer Straße 421090WienÖsterreich
| | - Ricardo Meyrelles
- Institut für Organische ChemieUniversität WienWähringer Straße 381090WienÖsterreich
- Institut für Theoretische ChemieUniversität WienWähringer Straße 171090WienÖsterreich
- Vienna Doctoral School in ChemistryUniversität WienWähringer Straße 421090WienÖsterreich
| | - Leticia González
- Institut für Theoretische ChemieUniversität WienWähringer Straße 171090WienÖsterreich
| | - Boris Maryasin
- Institut für Organische ChemieUniversität WienWähringer Straße 381090WienÖsterreich
- Institut für Theoretische ChemieUniversität WienWähringer Straße 171090WienÖsterreich
| | - Nuno Maulide
- Institut für Organische ChemieUniversität WienWähringer Straße 381090WienÖsterreich
| |
Collapse
|
20
|
Valverde-González A, Borrallo-Aniceto MC, Pintado-Sierra M, Sánchez F, Arnanz A, Boronat M, Iglesias M. BINOL-Containing Chiral Porous Polymers as Platforms for Enantiorecognition. ACS APPLIED MATERIALS & INTERFACES 2022; 14:53936-53946. [PMID: 36417669 PMCID: PMC10471007 DOI: 10.1021/acsami.2c18074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/12/2022] [Indexed: 06/16/2023]
Abstract
The enantioselective discrimination of racemic compounds can be achieved through the design and preparation of a new family of chiral conjugated BINOL-porous polymers (CBPPs) from enantiopure (R)- or (S)-BINOL derivatives and 1,3,5-tris(4-phenylboronic acid)benzene or 1,3,5-tris(4-ethynylphenyl)benzene, 1,3,5-triethynyl-2,4,6-trifluorobenzene, and tetra(4-ethynylphenyl)methane as comonomers following Suzuki-Miyaura and Sonogashira-Hagihara carbon-carbon coupling approaches. The obtained CBPPs show high thermal stability, a good specific surface area, and a robust framework and can be applied successfully in the fluorescence recognition of enantiomers of terpenes (limonene and α-pinene) and 1-phenylethylamine. Fluorescence titration of CBPPs-OH in acetonitrile shows that all Sonogashira hosts exhibit a preference for the (R)-enantiomer over the (S)-enantiomer of 1-phenylethylamine, the selectivity being much higher than that of the corresponding BINOL-based soluble system used as a reference. However, the Suzuki host reveals a preference toward (S)-phenylethylamine. Regarding the sensing of terpenes, only Sonogashira hosts show enantiodifferentiation with an almost total preference for the (S)-enantiomer of limonene and α-pinene. Based on the computational simulations and the experimental data, with 1-phenylethylamine as the analyte, chiral recognition is due to the distinctive binding affinities resulting from N···H-O hydrogen bonds and the π-π interaction between the host and the guest. However, for limonene, the geometry of the adsorption complex is mostly governed by the interaction between the hydroxyl group of the BINOL unit and the C═C bond of the iso-propenyl fragment. The synthetic strategy used to prepare CBPPs opens many possibilities to place chiral centers such as BINOL in porous polymers for different chiral applications such as enantiomer recognition.
Collapse
Affiliation(s)
- Antonio Valverde-González
- Instituto
de Ciencia de Materiales de Madrid, CSIC, C/ Sor Juana Inés de la cruz, 3, Madrid 28049, Spain
| | - M. Carmen Borrallo-Aniceto
- Instituto
de Ciencia de Materiales de Madrid, CSIC, C/ Sor Juana Inés de la cruz, 3, Madrid 28049, Spain
| | | | - Félix Sánchez
- Instituto
de Química Orgánica General, CSIC, C/ Juan de la Cierva, 3, Madrid 28006, Spain
| | - Avelina Arnanz
- Departamento
de Química inorgánica, Universidad
Autónoma de Madrid, Cantoblanco, Madrid 28049, Spain
| | - Mercedes Boronat
- Instituto
de Tecnología Química, Universitat
Politècnica de València- Consejo Superior de Investigaciones
Científicas (UPV-CSIC), Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Marta Iglesias
- Instituto
de Ciencia de Materiales de Madrid, CSIC, C/ Sor Juana Inés de la cruz, 3, Madrid 28049, Spain
| |
Collapse
|
21
|
Fine-tuning the active site terminal oxygen Mo=O of practical active phase via an isomorphous-substitution method for the reaction of isobutene to methacrolein. REACTION KINETICS MECHANISMS AND CATALYSIS 2022. [DOI: 10.1007/s11144-022-02332-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
22
|
Li L, Zhang SQ, Chen Y, Cui X, Zhao G, Tang Z, Li GX. Photoredox Alkylation of Sulfinylamine Enables the Synthesis of Highly Functionalized Sulfinamides and S(VI) Derivatives. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Ling Li
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
- College of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Shi-qi Zhang
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
| | - Yue Chen
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
| | - Xin Cui
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
| | - Gang Zhao
- College of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Zhuo Tang
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
| | - Guang-xun Li
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, Sichuan 610041, China
| |
Collapse
|
23
|
Liu Y, Chen ZH, Li Y, Qian J, Li Q, Wang H. Boryl-Dictated Site-Selective Intermolecular Allylic and Propargylic C-H Amination. J Am Chem Soc 2022; 144:14380-14387. [PMID: 35895901 DOI: 10.1021/jacs.2c06117] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
For internal alkenes possessing two or more sets of electronically and sterically similar allylic protons, the site-selectivity for allylic C-H functionalization is fundamentally challenging. Previously, the negative inductive effect from an electronegative atom has been demonstrated to be effective for several inspiring regioselective C-H functionalization reactions. Yet, the use of an electropositive atom for a similar purpose remains to be developed. α-Aminoboronic acids and their derivatives have found widespread applications. Their current syntheses rely heavily on functional group manipulations. Herein we report a boryl-directed intermolecular C-H amination of allyl N-methyliminodiacetyl boronates (B(MIDA)s) and propargylic B(MIDA)s to give α-amino boronates with an exceptionally high level of site-selectivities (up to 300:1). A wide variety of highly functionalized secondary and tertiary α-amino boronates are formed in generally good to excellent yields, thanks to the mildness of the reaction conditions. The unsaturated double and triple bonds within the product leave room for further decorations. Mechanistic studies reveal that the key stabilization effect of the B(MIDA) moiety on its adjacent developing positive charge is responsible for the high site-selectivity and that a closed transition state might be involved, as the reaction is fully stereoretentive. An activation effect of B(MIDA) is also found.
Collapse
Affiliation(s)
- Yuan Liu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Zhi-Hao Chen
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Yin Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Jiasheng Qian
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Qingjiang Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| | - Honggen Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China
| |
Collapse
|
24
|
Wang S, Gao Y, Liu Z, Ren D, Sun H, Niu L, Yang D, Zhang D, Liang X, Shi R, Qi X, Lei A. Site-selective amination towards tertiary aliphatic allylamines. Nat Catal 2022. [DOI: 10.1038/s41929-022-00818-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
25
|
Wang Z, Gao P, Lin E, Li B. Stereodefined Skipped Dienes through Iridium‐Catalyzed Formal Addition of Tertiary Allylic C−H Bonds to Alkynes. Angew Chem Int Ed Engl 2022; 61:e202200075. [DOI: 10.1002/anie.202200075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Zi‐Xuan Wang
- Center of Basic Molecular Science (CBMS) Department of Chemistry Tsinghua University Beijing 100084 China
| | - Peng‐Chao Gao
- Center of Basic Molecular Science (CBMS) Department of Chemistry Tsinghua University Beijing 100084 China
| | - En‐Ze Lin
- Center of Basic Molecular Science (CBMS) Department of Chemistry Tsinghua University Beijing 100084 China
| | - Bi‐Jie Li
- Center of Basic Molecular Science (CBMS) Department of Chemistry Tsinghua University Beijing 100084 China
- Beijing National Laboratory for Molecular Sciences Beijing 100190 China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 China
| |
Collapse
|
26
|
Mishra DR, Panda BS, Nayak S, Panda J, Mohapatra S. Recent Advances in the Synthesis of 5‐Membered
N
‐Heterocycles via Rhodium Catalysed Cascade Reactions. ChemistrySelect 2022. [DOI: 10.1002/slct.202200531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Deepak R. Mishra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Bhabani S. Panda
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Sabita Nayak
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Jasmine Panda
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| | - Seetaram Mohapatra
- Organic Synthesis Laboratory Department of Chemistry Ravenshaw University Cuttack 753003 Odisha India
| |
Collapse
|
27
|
Yang L, Liu Y, Fan WX, Tan DH, Li Q, Wang H. Regiocontrolled allylic functionalization of internal alkene via selenium-π-acid catalysis guided by boron substitution. Chem Sci 2022; 13:6413-6417. [PMID: 35733886 PMCID: PMC9159098 DOI: 10.1039/d2sc00954d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/22/2022] [Indexed: 12/11/2022] Open
Abstract
The selenium-π-acid-catalysis has received increasing attention as a powerful tool for olefin functionalization, but the regioselectivity is often problematic. Reported herein is a selenium-catalyzed regiocontrolled olefin transpositional chlorination and imidation reaction. The reaction outcome benefits from an allylic B(MIDA) substitution. And the stabilization of α-anion from a hemilabile B(MIDA) moiety was believed to be the key factor for selectivity. Broad substrate scope, good functional group tolerance and generally good yields were observed. The formed products were demonstrated to be valuable precursors for the synthesis of a wide variety of structurally complex organoborons.
Collapse
Affiliation(s)
- Ling Yang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 People's Republic of China
| | - Yuan Liu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 People's Republic of China
| | - Wen-Xin Fan
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 People's Republic of China
| | - Dong-Hang Tan
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 People's Republic of China
| | - Qingjiang Li
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 People's Republic of China
| | - Honggen Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University Guangzhou 510006 People's Republic of China
| |
Collapse
|
28
|
Wang Z, Gao P, Lin E, Li B. Stereodefined Skipped Dienes through Iridium‐Catalyzed Formal Addition of Tertiary Allylic C−H Bonds to Alkynes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zi‐Xuan Wang
- Center of Basic Molecular Science (CBMS) Department of Chemistry Tsinghua University Beijing 100084 China
| | - Peng‐Chao Gao
- Center of Basic Molecular Science (CBMS) Department of Chemistry Tsinghua University Beijing 100084 China
| | - En‐Ze Lin
- Center of Basic Molecular Science (CBMS) Department of Chemistry Tsinghua University Beijing 100084 China
| | - Bi‐Jie Li
- Center of Basic Molecular Science (CBMS) Department of Chemistry Tsinghua University Beijing 100084 China
- Beijing National Laboratory for Molecular Sciences Beijing 100190 China
- Haihe Laboratory of Sustainable Chemical Transformations Tianjin 300192 China
| |
Collapse
|
29
|
Zhao Q, Yao Q, Dou T, Xu T, Zhang J, Chen X. Catalysts Based on the C−H⋅⋅⋅M Weak Interaction: Synthesis, Characterization and Catalytic Application of Bis(pyrazolyl)borate Cu(I) Complexes in Carbene Insertion into Heteroatom Hydrogen Bonds. ChemistrySelect 2022. [DOI: 10.1002/slct.202200552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Qianyi Zhao
- School of Chemistry and Chemical Engineering Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials Key Laboratory of Green Chemical Media and Reactions Ministry of Education Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals Henan Normal University Xinxiang Henan 453007 China
| | - Qiu‐Yue Yao
- School of Chemistry and Chemical Engineering Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials Key Laboratory of Green Chemical Media and Reactions Ministry of Education Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals Henan Normal University Xinxiang Henan 453007 China
| | - Ting Dou
- School of Chemistry and Chemical Engineering Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials Key Laboratory of Green Chemical Media and Reactions Ministry of Education Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals Henan Normal University Xinxiang Henan 453007 China
| | - Ting Xu
- School of Chemistry and Chemical Engineering Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials Key Laboratory of Green Chemical Media and Reactions Ministry of Education Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals Henan Normal University Xinxiang Henan 453007 China
| | - Jie Zhang
- School of Chemistry and Chemical Engineering Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials Key Laboratory of Green Chemical Media and Reactions Ministry of Education Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals Henan Normal University Xinxiang Henan 453007 China
| | - Xuenian Chen
- School of Chemistry and Chemical Engineering Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials Key Laboratory of Green Chemical Media and Reactions Ministry of Education Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals Henan Normal University Xinxiang Henan 453007 China
- College of Chemistry and Molecular Engineering Zhengzhou University Zhengzhou Henan 450001 China
| |
Collapse
|
30
|
Buendia MB, Higginson B, Kegnæs S, Kramer S, Martin R. Redox-Neutral Ni-Catalyzed sp 3 C–H Alkylation of α-Olefins with Unactivated Alkyl Bromides. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mikkel B. Buendia
- Department of Chemistry, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Bradley Higginson
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- Universitat Rovira i Virgili, Department de Quimica, c/Marcel i Domingo, 1, 43007 Tarragona, Spain
| | - Søren Kegnæs
- Department of Chemistry, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Søren Kramer
- Department of Chemistry, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Ruben Martin
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- ICREA, Passeig Lluís Companys, 23, 08010 Barcelona, Spain
| |
Collapse
|
31
|
Ding M, Zhang ZX, Davies TQ, Willis MC. A Silyl Sulfinylamine Reagent Enables the Modular Synthesis of Sulfonimidamides via Primary Sulfinamides. Org Lett 2022; 24:1711-1715. [PMID: 35188396 PMCID: PMC9084605 DOI: 10.1021/acs.orglett.2c00347] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
A new N-silyl sulfinylamine
reagent allows the
rapid preparation of a broad range of (hetero)aryl, alkenyl, and alkyl
primary sulfinamides, using Grignard, organolithium, or organozinc
reagents to introduce the carbon fragment. Treatment of these primary
sulfinamides with an amine in the presence of a hypervalent iodine
reagent leads directly to NH-sulfonimidamides. This two-step sequence
is straightforward to perform and provides a modular approach to sulfonimidamides,
allowing ready variation of both reaction components, including primary
and secondary amines.
Collapse
Affiliation(s)
- Mingyan Ding
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, U.K
| | - Ze-Xin Zhang
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, U.K
| | - Thomas Q. Davies
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, U.K
| | - Michael C. Willis
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, U.K
| |
Collapse
|
32
|
Liu MS, Du HW, Shu W. Metal-free allylic C-H nitrogenation, oxygenation, and carbonation of alkenes by thianthrenation. Chem Sci 2022; 13:1003-1008. [PMID: 35211265 PMCID: PMC8790768 DOI: 10.1039/d1sc06577g] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/18/2021] [Indexed: 11/25/2022] Open
Abstract
Selective functionalization of allylic C–H bonds into other chemical bonds is among the most straightforward and attractive, yet challenging transformations. Herein, a transition-metal-free protocol for direct allylic C–H nitrogenation, oxygenation, and carbonation of alkenes by thianthrenation was developed. This operationally simple protocol allows for the unified allylic C–H amination, esterification, etherification, and arylation of vinyl thianthrenium salts. Notably, the reaction furnishes multialkyl substituted allylic amines, ammonium salts, sulfonyl amides, esters, and ethers in good yields. The reaction proceeds under mild conditions with excellent functional group tolerance and could be applied to late-stage allylation of natural products, drug molecules and peptides with excellent chemoselectivity. Diverse functionalizations of allylic C–H bonds of alkenes by thianthrenation have been demonstrated, featuring Z-selectivity to afford multi-alkyl substituted allylic esters, thioesters, ethers, amines, amides and arenes under metal-free conditions.![]()
Collapse
Affiliation(s)
- Ming-Shang Liu
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen 518055 Guangdong P. R. China
| | - Hai-Wu Du
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen 518055 Guangdong P. R. China
| | - Wei Shu
- Shenzhen Grubbs Institute, Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology Shenzhen 518055 Guangdong P. R. China
| |
Collapse
|
33
|
Maloney TP, Dohoda AF, Zhu AC, Michael FE. Stereoretentive and Regioselective Selenium-catalyzed Intermolecular Propargylic C-H Amination of Alkynes. Chem Sci 2022; 13:2121-2127. [PMID: 35308840 PMCID: PMC8849008 DOI: 10.1039/d1sc07067c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 01/26/2022] [Indexed: 11/21/2022] Open
Abstract
Herein we report an intermolecular propargylic C–H amination of alkynes. This reaction is operationally convenient and requires no transition metal catalysts or additives. Terminal, silyl, and internal alkynes bearing a wide range of functional groups can be aminated in high yields. The regioselectivity of amination for unsymmetrical internal alkynes is strongly influenced by substitution pattern (tertiary > secondary > primary) and by relatively remote heteroatomic substituents. We demonstrate that amination of alkynes bearing α-stereocenters occurs with retention of configuration at the newly-formed C–N bond. Competition experiments between alkynes, kinetic isotope effects, and DFT calculations are performed to confirm the mechanistic hypothesis that initial ene reaction of a selenium bis(imide) species is the rate- and product-determining step. This ene reaction has a transition state that results in substantial partial positive charge development at the carbon atom closer to the amination position. Inductive and/or hyperconjugative stabilization or destabilization of this positive charge explains the observed regioselectivities. Selenium catalysis enables a general intermolecular propargylic C–H amination of alkynes. The concerted mechanism gives rise to high regioselectivity for the more electron-rich end of the alkyne and retention of the C–H propargylic stereocenter.![]()
Collapse
Affiliation(s)
- T Parker Maloney
- University of Washington, Department of Chemistry Box 351700 Seattle Washington 98195-1700 USA
| | - Alexander F Dohoda
- University of Washington, Department of Chemistry Box 351700 Seattle Washington 98195-1700 USA
| | - Alec C Zhu
- University of Washington, Department of Chemistry Box 351700 Seattle Washington 98195-1700 USA
| | - Forrest E Michael
- University of Washington, Department of Chemistry Box 351700 Seattle Washington 98195-1700 USA
| |
Collapse
|
34
|
Wang DJ, Targos K, Wickens ZK. Electrochemical Synthesis of Allylic Amines from Terminal Alkenes and Secondary Amines. J Am Chem Soc 2021; 143:21503-21510. [PMID: 34914394 DOI: 10.1021/jacs.1c11763] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Allylic amines are valuable synthetic targets en route to diverse biologically active amine products. Current allylic C-H amination strategies remain limited with respect to the viable N-substituents. Herein, we disclose a new electrochemical process to prepare aliphatic allylic amines by coupling two abundant starting materials: secondary amines and unactivated alkenes. This oxidative transformation proceeds via electrochemical generation of an electrophilic adduct between thianthrene and the alkene substrates. Treatment of these adducts with aliphatic amine nucleophiles and base provides allylic amine products in high yield. This synthetic strategy is also amenable to functionalization of feedstock gaseous alkenes at 1 atm. In the case of 1-butene, high Z-selective crotylation is observed. This strategy, however, is not limited to the synthesis of simple building blocks; complex biologically active molecules are suitable as both alkene and amine coupling partners. Preliminary mechanistic studies implicate vinylthianthrenium salts as key reactive intermediates.
Collapse
Affiliation(s)
- Diana J Wang
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Karina Targos
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Zachary K Wickens
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
35
|
‘Oxygen-Consuming Complexes’–Catalytic Effects of Iron–Salen Complexes with Dioxygen. Catalysts 2021. [DOI: 10.3390/catal11121462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
[(salen)FeIII]+MeCN complex is a useful catalyst for cyclohexene oxidation with dioxygen. As the main products, ketone and alcohol are formed. In acetonitrile, [(salen)FeII]MeCN is rapidly oxidized by dioxygen, forming iron(III) species. Voltammetric electroreduction of the [(salen)FeIII]+MeCN complex in the presence of dioxygen causes the increase in current observed, which indicates the existence of a catalytic effect. Further transformations of the oxygen-activated iron(III) salen complex generate an effective catalyst. Based on the catalytic and electrochemical results, as well as DFT calculations, possible forms of active species in c-C6H10 oxidation have been proposed.
Collapse
|
36
|
Stereodefined rhodium-catalysed 1,4-H/D delivery for modular syntheses and deuterium integration. Nat Catal 2021. [DOI: 10.1038/s41929-021-00643-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
37
|
Abstract
Sulfinylamines (R-N=S=O), monoaza analogues of sulfur dioxide, have been known for well over a century, and their reactivity as sulfur electrophiles and in Diels-Alder reactions is well-established. However, they have only rarely been used in organic synthesis in recent decades despite the increasing prominence of compounds containing N=S=O functionality, such as sulfoximines and sulfonimidamides. This Minireview aims to bring wider visibility to the unique chemistry enabled by this class of compounds. We focus on advances from the last 10 years, including the first examples of their use in the one-pot syntheses of sulfoximines and sulfonimidamides. Also covered are the reactions of sulfinylamines with carbon-centred radicals, their use for formation of heterocycles through cycloadditions, and catalytic enantioselective allylic oxidation of alkenes via a hetero-ene reaction. These examples highlight the different reactivity modes of sulfinylamines and their underappreciated potential for forming molecules which contain high- or low-valent sulfur, or even no sulfur at all.
Collapse
Affiliation(s)
- Thomas Q. Davies
- Chemistry Research LaboratoryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| | - Michael C. Willis
- Chemistry Research LaboratoryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| |
Collapse
|
38
|
Hou B, Yang S, Yang K, Han X, Tang X, Liu Y, Jiang J, Cui Y. Confinement-Driven Enantioselectivity in 3D Porous Chiral Covalent Organic Frameworks. Angew Chem Int Ed Engl 2021; 60:6086-6093. [PMID: 33295124 DOI: 10.1002/anie.202013926] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/24/2020] [Indexed: 11/09/2022]
Abstract
3D covalent organic frameworks (COFs) with well-defined porous channels are shown to be capable of inducing chiral molecular catalysts from non-enantioselective to highly enantioselective in catalyzing organic transformations. By condensations of a tetrahedral tetraamine and two linear dialdehydes derived from enantiopure 1,1'-binaphthol (BINOL), two chiral 3D COFs with a 9-fold or 11-fold interpenetrated diamondoid framework are prepared. Enhanced Brønsted acidity was observed for the chiral BINOL units that are uniformly distributed within the tubular channels compared to the non-immobilized acids. This facilitates the Brønsted acid catalysis of cyclocondensation of aldehydes and anthranilamides to produce 2,3-dihydroquinazolinones. DFT calculations show the COF catalyst provides preferential secondary interactions between the substrate and framework to induce enantioselectivities that are not achievable in homogeneous systems.
Collapse
Affiliation(s)
- Bang Hou
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shi Yang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kuiwei Yang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117576, Singapore, Singapore
| | - Xing Han
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xianhui Tang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jianwen Jiang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117576, Singapore, Singapore
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
39
|
Hou B, Yang S, Yang K, Han X, Tang X, Liu Y, Jiang J, Cui Y. Confinement‐Driven Enantioselectivity in 3D Porous Chiral Covalent Organic Frameworks. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013926] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Bang Hou
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China
| | - Shi Yang
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China
| | - Kuiwei Yang
- Department of Chemical and Biomolecular Engineering National University of Singapore 117576 Singapore Singapore
| | - Xing Han
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China
| | - Xianhui Tang
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China
| | - Yan Liu
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China
| | - Jianwen Jiang
- Department of Chemical and Biomolecular Engineering National University of Singapore 117576 Singapore Singapore
| | - Yong Cui
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
40
|
Alam MN, Dash SR, Mukherjee A, Pandole S, Marelli UK, Vanka K, Maity P. [1,3]-Claisen Rearrangement via Removable Functional Group Mediated Radical Stabilization. Org Lett 2021; 23:890-895. [PMID: 33443431 DOI: 10.1021/acs.orglett.0c04109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A thermal O-to-C [1,3]-rearrangement of α-hydroxy acid derived enol ethers was achieved under mild conditions. The 2-aminothiophenol protection of carboxylic acids facilitates formation of the [1,3] precursor and its thermal rearrangement via stabilization of a radical intermediate. Experimental and theoretical evidence for dissociative radical pair formation, its captodative stability via aminothiophenol, and a unique solvent effect are presented. The aminothiophenol was deprotected from rearrangement products as well as after derivatization to useful synthons.
Collapse
Affiliation(s)
- Md Nirshad Alam
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Soumya Ranjan Dash
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Physical and Material Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Anirban Mukherjee
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Satish Pandole
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Udaya Kiran Marelli
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kumar Vanka
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Physical and Material Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
| | - Pradip Maity
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Pune 411008, India
| |
Collapse
|
41
|
Zhou Z, Kong X, Liu T. Applications of Proton-Coupled Electron Transfer in Organic Synthesis. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202106001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
42
|
Manna K, Begam HM, Samanta K, Jana R. Overcoming the Deallylation Problem: Palladium(II)-Catalyzed Chemo-, Regio-, and Stereoselective Allylic Oxidation of Aryl Allyl Ether, Amine, and Amino Acids. Org Lett 2020; 22:7443-7449. [PMID: 32955263 DOI: 10.1021/acs.orglett.0c02465] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report herein a Pd(II)/bis-sulfoxide-catalyzed intramolecular allylic C-H acetoxylation of aryl allyl ether, amine, and amino acids with the retention of a labile allyl moiety. Mechanistically, the reaction proceeds through a distinct double-bond isomerization from the allylic to the vinylic position followed by intramolecular carboxypalladation and the β-hydride elimination pathway. For the first time, C-H oxidation of N-allyl-protected amino acids to furnish five-membered heterocycles through 1,3-syn-addition is established with excellent diastereoselectivity.
Collapse
Affiliation(s)
- Kartic Manna
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Hasina Mamataj Begam
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Krishanu Samanta
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Ranjan Jana
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
43
|
Teh WP, Obenschain DC, Black BM, Michael FE. Catalytic Metal-free Allylic C-H Amination of Terpenoids. J Am Chem Soc 2020; 142:16716-16722. [PMID: 32909748 DOI: 10.1021/jacs.0c06997] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The selective replacement of C-H bonds in complex molecules, especially natural products like terpenoids, is a highly efficient way to introduce new functionality and/or couple fragments. Here, we report the development of a new metal-free allylic amination of alkenes that allows the introduction of a wide range of nitrogen functionality at the allylic position of alkenes with unique regioselectivity and no allylic transposition. This reaction employs catalytic amounts of selenium in the form of phosphine selenides or selenoureas. Simple sulfonamides and sulfamates can be used directly in the reaction without the need to prepare isolated nitrenoid precursors. We demonstrate the utility of this transformation by aminating a large set of terpenoids in high yield and regioselectivity.
Collapse
Affiliation(s)
- Wei Pin Teh
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Derek C Obenschain
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Blaise M Black
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| | - Forrest E Michael
- Department of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195-1700, United States
| |
Collapse
|
44
|
Wang YM, Durham AC, Wang Y. Redox-Neutral Propargylic C–H Functionalization by Using Iron Catalysis. Synlett 2020. [DOI: 10.1055/s-0040-1707271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
AbstractIn spite of their rich stoichiometric chemistry, cyclopentadienyliron(II) dicarbonyl complexes are rarely used as catalysts in organic synthesis. Inspired by precedents in the chemistry of cationic olefin complexes and neutral allylmetal species, our group has developed a coupling of alkynes or alkenes with aldehydes and other carbonyl electrophiles to give homopropargylic and homoallylic alcohols, respectively, by using a substituted cyclopentadienyliron(II) dicarbonyl complex as the catalyst. In this article, we first contextualize this development within the conceptual background of C–H functionalization chemistry and relative to key stoichiometric precedents. We then give an account of our group’s discovery and development of the catalytic α-functionalization of alkenes and alkynes with electrophilic reagents.IntroductionPreliminary Stoichiometric WorkHydroxyalkylation Development and ScopeConclusions and Future Directions
Collapse
|
45
|
Lei H, Rovis T. A site-selective amination catalyst discriminates between nearly identical C-H bonds of unsymmetrical disubstituted alkenes. Nat Chem 2020; 12:725-731. [PMID: 32541949 PMCID: PMC7428077 DOI: 10.1038/s41557-020-0470-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 04/21/2020] [Indexed: 12/21/2022]
Abstract
C-H activation reactions enable chemists to unveil new retrosynthetic disconnections and streamline conventional synthetic approaches. A long-standing challenge in C-H activation is the inability to distinguish electronically and sterically similar C-H bonds. Although numerous synergistic combinations of transition-metal complexes and chelating directing groups have been utilized to distinguish C-H bonds, undirected regioselective C-H functionalization strategies remain elusive. Here we report a regioselective C-H activation/amination reaction of various unsymmetrical dialkyl-substituted alkenes. The regioselectivity of C-H activation is correlated to the electronic properties of allylic C-H bonds indicated by the corresponding 1JCH coupling constants. A linear relationship between the difference in the 1JCH coupling constants of the two competing allylic C-H bonds (Δ1JCH) and the C-H activation barriers (ΔΔG‡) has also been determined.
Collapse
Affiliation(s)
- Honghui Lei
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, NY, USA.
| |
Collapse
|
46
|
Farr CMB, Kazerouni AM, Park B, Poff CD, Won J, Sharp KR, Baik MH, Blakey SB. Designing a Planar Chiral Rhodium Indenyl Catalyst for Regio- and Enantioselective Allylic C–H Amidation. J Am Chem Soc 2020; 142:13996-14004. [DOI: 10.1021/jacs.0c07305] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Caitlin M. B. Farr
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Amaan M. Kazerouni
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Bohyun Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Christopher D. Poff
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Joonghee Won
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Kimberly R. Sharp
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Simon B. Blakey
- Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
47
|
Yuan M, Abdellaoui S, Chen H, Kummer MJ, Malapit CA, You C, Minteer SD. Selective Electroenzymatic Oxyfunctionalization by Alkane Monooxygenase in a Biofuel Cell. Angew Chem Int Ed Engl 2020; 59:8969-8973. [PMID: 32198829 DOI: 10.1002/anie.202003032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Indexed: 11/10/2022]
Abstract
Aliphatic synthetic intermediates with high added value are generally produced from alkane sources (e.g., petroleum) by inert carbon-hydrogen (C-H) bond activation using classical chemical methods (i.e. high temperature, rare metals). As an alternative approach for these reactions, alkane monooxygenase from Pseudomonas putida (alkB) is able to catalyze the difficult terminal oxyfunctionalization of alkanes selectively and under mild conditions. Herein, we report an electrosynthetic system using an alkB biocathode which produces alcohols, epoxides, and sulfoxides through bioelectrochemical hydroxylation, epoxidation, sulfoxidation, and demethylation. The capacity of the alkB binding pocket to protect internal functional groups is also demonstrated. By coupling our alkB biocathode with a hydrogenase bioanode and using H2 as a clean fuel source, we have developed and characterized a series of enzymatic fuel cells capable of oxyfunctionalization while simultaneously producing electricity.
Collapse
Affiliation(s)
- Mengwei Yuan
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, UT, 84112, USA
| | - Sofiene Abdellaoui
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, UT, 84112, USA.,Current address: Université de Reims Champagne-Ardenne, INRAE, FARE Laboratory, 51100, Reims, France
| | - Hui Chen
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, UT, 84112, USA
| | - Matthew J Kummer
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, UT, 84112, USA
| | - Christian A Malapit
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, UT, 84112, USA
| | - Chun You
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Shelley D Minteer
- Department of Chemistry, University of Utah, 315 S 1400 E, Salt Lake City, UT, 84112, USA
| |
Collapse
|
48
|
Yuan M, Abdellaoui S, Chen H, Kummer MJ, Malapit CA, You C, Minteer SD. Selective Electroenzymatic Oxyfunctionalization by Alkane Monooxygenase in a Biofuel Cell. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mengwei Yuan
- Department of Chemistry University of Utah 315 S 1400 E Salt Lake City UT 84112 USA
| | - Sofiene Abdellaoui
- Department of Chemistry University of Utah 315 S 1400 E Salt Lake City UT 84112 USA
- Current address: Université de Reims Champagne-Ardenne INRAE, FARE Laboratory 51100 Reims France
| | - Hui Chen
- Department of Chemistry University of Utah 315 S 1400 E Salt Lake City UT 84112 USA
| | - Matthew J. Kummer
- Department of Chemistry University of Utah 315 S 1400 E Salt Lake City UT 84112 USA
| | - Christian A. Malapit
- Department of Chemistry University of Utah 315 S 1400 E Salt Lake City UT 84112 USA
| | - Chun You
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences 32 West 7th Avenue, Tianjin Airport Economic Area Tianjin 300308 China
| | - Shelley D. Minteer
- Department of Chemistry University of Utah 315 S 1400 E Salt Lake City UT 84112 USA
| |
Collapse
|
49
|
Zhang Q, Li Y, Wang J, Yang C, Liu C, Li X, Cheng J. B(C
6
F
5
)
3
/Chiral Phosphoric Acid Catalyzed Ketimine–Ene Reaction of 2‐Aryl‐3
H
‐indol‐3‐ones and α‐Methylstyrenes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915226] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Qing‐Xia Zhang
- State Key Laboratory of Elemento-Organic ChemistryCollege of ChemistryNankai University Tianjin 300071 P. R. China
| | - Yao Li
- State Key Laboratory of Elemento-Organic ChemistryCollege of ChemistryNankai University Tianjin 300071 P. R. China
| | - Jie Wang
- State Key Laboratory of Elemento-Organic ChemistryCollege of ChemistryNankai University Tianjin 300071 P. R. China
| | - Chen Yang
- State Key Laboratory of Elemento-Organic ChemistryCollege of ChemistryNankai University Tianjin 300071 P. R. China
| | - Cheng‐Jun Liu
- State Key Laboratory of Elemento-Organic ChemistryCollege of ChemistryNankai University Tianjin 300071 P. R. China
| | - Xin Li
- State Key Laboratory of Elemento-Organic ChemistryCollege of ChemistryNankai University Tianjin 300071 P. R. China
| | - Jin‐Pei Cheng
- State Key Laboratory of Elemento-Organic ChemistryCollege of ChemistryNankai University Tianjin 300071 P. R. China
| |
Collapse
|
50
|
Zhang QX, Li Y, Wang J, Yang C, Liu CJ, Li X, Cheng JP. B(C 6 F 5 ) 3 /Chiral Phosphoric Acid Catalyzed Ketimine-Ene Reaction of 2-Aryl-3H-indol-3-ones and α-Methylstyrenes. Angew Chem Int Ed Engl 2020; 59:4550-4556. [PMID: 31943586 DOI: 10.1002/anie.201915226] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/30/2019] [Indexed: 11/05/2022]
Abstract
The enantioselective ketimine-ene reaction is one of the most challenging stereocontrolled reaction types in organic synthesis. In this work, catalytic enantioselective ketimine-ene reactions of 2-aryl-3H-indol-3-ones with α-methylstyrenes were achieved by utilizing a B(C6 F5 )3 /chiral phosphoric acid (CPA) catalyst. These ketimine-ene reactions proceed well with low catalyst loading (B(C6 F5 )3 /CPA=2 mol %/2 mol %) under mild conditions, providing rapid and facile access to a series of functionalized 2-allyl-indolin-3-ones with very good reactivity (up to 99 % yield) and excellent enantioselectivity (up to 99 % ee). Theoretical calculations reveal that enhancement of the acidity of the chiral phosphoric acid by B(C6 F5 )3 significantly reduces the activation free energy barrier. Furthermore, collective favorable hydrogen-bonding interactions, especially the enhanced N-H⋅⋅⋅O hydrogen-bonding interaction, differentiates the free energy of the transition states of CPA and B(C6 F5 )3 /CPA, thereby inducing the improvement of stereoselectivity.
Collapse
Affiliation(s)
- Qing-Xia Zhang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yao Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Jie Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Chen Yang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Cheng-Jun Liu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Xin Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Jin-Pei Cheng
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|