1
|
Puel S, Becker TW, Villa U, Ghattas O, Liu D. Volcanic arc rigidity variations illuminated by coseismic deformation of the 2011 Tohoku-oki M9. SCIENCE ADVANCES 2024; 10:eadl4264. [PMID: 38838148 DOI: 10.1126/sciadv.adl4264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 05/02/2024] [Indexed: 06/07/2024]
Abstract
Rock strength has long been linked to lithospheric deformation and seismicity. However, independent constraints on the related elastic heterogeneity are missing, yet could provide key information for solid Earth dynamics. Using coseismic Global Navigation Satellite Systems (GNSS) data for the 2011 M9 Tohoku-oki earthquake in Japan, we apply an inverse method to infer elastic structure and fault slip simultaneously. We find compliant material beneath the volcanic arc and in the mantle wedge within the partial melt generation zone inferred to lie above ~100 km slab depth. We also identify low-rigidity material closer to the trench matching seismicity patterns, likely associated with accretionary wedge structure. Along with traditional seismic and electromagnetic methods, our approach opens up avenues for multiphysics inversions. Those have the potential to advance earthquake and volcano science, and in particular once expanded to InSAR type constraints, may lead to a better understanding of transient lithospheric deformation across scales.
Collapse
Affiliation(s)
- Simone Puel
- Department of Earth and Planetary Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, TX 78712, USA
- Institute for Geophysics, Jackson School of Geosciences, The University of Texas at Austin, Austin, 78758 TX, USA
| | - Thorsten W Becker
- Department of Earth and Planetary Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, TX 78712, USA
- Institute for Geophysics, Jackson School of Geosciences, The University of Texas at Austin, Austin, 78758 TX, USA
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, TX 78712, USA
| | - Umberto Villa
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, TX 78712, USA
| | - Omar Ghattas
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, TX 78712, USA
- Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Dunyu Liu
- Institute for Geophysics, Jackson School of Geosciences, The University of Texas at Austin, Austin, 78758 TX, USA
| |
Collapse
|
2
|
Lloyd AJ, Crawford O, Al-Attar D, Austermann J, Hoggard MJ, Richards FD, Syvret F. GIA imaging of 3-D mantle viscosity based on palaeo sea level observations - Part I: Sensitivity kernels for an Earth with laterally varying viscosity. GEOPHYSICAL JOURNAL INTERNATIONAL 2024; 236:1139-1171. [PMID: 38162322 PMCID: PMC10753356 DOI: 10.1093/gji/ggad455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 10/27/2022] [Accepted: 11/03/2023] [Indexed: 01/03/2024]
Abstract
A key initial step in geophysical imaging is to devise an effective means of mapping the sensitivity of an observation to the model parameters, that is to compute its Fréchet derivatives or sensitivity kernel. In the absence of any simplifying assumptions and when faced with a large number of free parameters, the adjoint method can be an effective and efficient approach to calculating Fréchet derivatives and requires just two numerical simulations. In the Glacial Isostatic Adjustment problem, these consist of a forward simulation driven by changes in ice mass and an adjoint simulation driven by fictitious loads that are applied at the observation sites. The theoretical basis for this approach has seen considerable development over the last decade. Here, we present the final elements needed to image 3-D mantle viscosity using a dataset of palaeo sea-level observations. Developments include the calculation of viscosity Fréchet derivatives (i.e. sensitivity kernels) for relative sea-level observations, a modification to the numerical implementation of the forward and adjoint problem that permits application to 3-D viscosity structure, and a recalibration of initial sea level that ensures the forward simulation honours present-day topography. In the process of addressing these items, we build intuition concerning how absolute sea-level and relative sea-level observations sense Earth's viscosity structure and the physical processes involved. We discuss examples for potential observations located in the near field (Andenes, Norway), far field (Seychelles), and edge of the forebulge of the Laurentide ice sheet (Barbados). Examination of these kernels: (1) reveals why 1-D estimates of mantle viscosity from far-field relative sea-level observations can be biased; (2) hints at why an appropriate differential relative sea-level observation can provide a better constraint on local mantle viscosity and (3) demonstrates that sea-level observations have non-negligible 3-D sensitivity to deep mantle viscosity structure, which is counter to the intuition gained from 1-D radial viscosity Fréchet derivatives. Finally, we explore the influence of lateral variations in viscosity on relative sea-level observations in the Amundsen Sea Embayment and at Barbados. These predictions are based on a new global 3-D viscosity inference derived from the shear-wave speeds of GLAD-M25 and an inverse calibration scheme that ensures compatibility with certain fundamental geophysical observations. Use of the 3-D viscosity inference leads to: (1) generally greater complexity within the kernel; (2) an increase in sensitivity and presence of shorter length-scale features within lower viscosity regions; (3) a zeroing out of the sensitivity kernel within high-viscosity regions where elastic deformation dominates and (4) shifting of sensitivity at a given depth towards distal regions of weaker viscosity. The tools and intuition built here provide the necessary framework to explore inversions for 3-D mantle viscosity based on palaeo sea-level data.
Collapse
Affiliation(s)
- Andrew J Lloyd
- Lamont Doherty Earth Observatory, Columbia University, Palisades, NY 10964, USA
| | - Ophelia Crawford
- Bullard Laboratories, Department of Earth Sciences, University of Cambridge, Madingley Road, Cambridge CB30EZ, UK
| | - David Al-Attar
- Bullard Laboratories, Department of Earth Sciences, University of Cambridge, Madingley Road, Cambridge CB30EZ, UK
| | | | - Mark J Hoggard
- Research School of Earth Sciences, Australia National University, Acton, ACT 0200, Australia
| | - Fred D Richards
- Department of Earth Science and Engineering, Imperial College London, London SW72AZ, UK
| | - Frank Syvret
- Bullard Laboratories, Department of Earth Sciences, University of Cambridge, Madingley Road, Cambridge CB30EZ, UK
| |
Collapse
|
3
|
Wang H, Liu L, Gao Z, Yang L, Naren G, Mao S. Structure and elasticity of CaC 2O 5 suggests carbonate contribution to the seismic anomalies of Earth's mantle. Nat Commun 2024; 15:755. [PMID: 38272879 PMCID: PMC10811330 DOI: 10.1038/s41467-024-44925-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 01/05/2024] [Indexed: 01/27/2024] Open
Abstract
Knowledge of carbonate compounds under high pressure inside Earth is key to understanding the internal structure of the Earth, the deep carbon cycle and major geological events. Here we use first-principles simulations to calculate the structure and elasticity of CaC2O5-minerals with different symmetries under high pressure. Our calculations show that CaC2O5-minerals represent a group of low-density low-seismic-wave velocity mantle minerals. Changes in seismic wave velocity caused by the phase transformation of CaC2O5-Cc to CaC2O5-I[Formula: see text]2d (CaC2O5-C2-l) agree with wave velocity discontinuity at a depth of 660 km in the mantle transition zone. Moreover, when CaC2O5-Fdd2 transforms into CaC2O5-C2 under 70 GPa, its shear wave velocity decreases by 7.4%, and its density increases by 5.8%, which is consistent with the characteristics of large low-shear-velocity provinces (LLSVPs). Furthermore, the shear wave velocity of CaC2O5-I[Formula: see text]2d is very similar to that of cubic Ca-perovskite, which is one of the main constituents of the previously detected LLSVPs. Therefore, we propose that CaC2O5 and its high-pressure polymorphs may be a main component of LLSVPs.
Collapse
Affiliation(s)
- Hanyu Wang
- State Key Laboratory of Geological Processes and Mineral Resources, and School of Earth Sciences and Resources, China University of Geosciences, 100083, Beijing, China
- United Laboratory of High-Pressure Physics and Earthquake Science, Institute of Earthquake Forecasting, China Earthquake Administration, 100036, Beijing, China
| | - Lei Liu
- United Laboratory of High-Pressure Physics and Earthquake Science, Institute of Earthquake Forecasting, China Earthquake Administration, 100036, Beijing, China.
| | - Zihan Gao
- United Laboratory of High-Pressure Physics and Earthquake Science, Institute of Earthquake Forecasting, China Earthquake Administration, 100036, Beijing, China
| | - Longxing Yang
- State Key Laboratory of Geological Processes and Mineral Resources, and School of Earth Sciences and Resources, China University of Geosciences, 100083, Beijing, China
- United Laboratory of High-Pressure Physics and Earthquake Science, Institute of Earthquake Forecasting, China Earthquake Administration, 100036, Beijing, China
| | - Gerile Naren
- United Laboratory of High-Pressure Physics and Earthquake Science, Institute of Earthquake Forecasting, China Earthquake Administration, 100036, Beijing, China
| | - Shide Mao
- State Key Laboratory of Geological Processes and Mineral Resources, and School of Earth Sciences and Resources, China University of Geosciences, 100083, Beijing, China.
| |
Collapse
|
4
|
Korenaga J, Marchi S. Vestiges of impact-driven three-phase mixing in the chemistry and structure of Earth's mantle. Proc Natl Acad Sci U S A 2023; 120:e2309181120. [PMID: 37812730 PMCID: PMC10614616 DOI: 10.1073/pnas.2309181120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/22/2023] [Indexed: 10/11/2023] Open
Abstract
Highly siderophile elements (HSEs; namely Ru, Rh, Pd, Re, Os, Ir, Pt, and Au) in Earth's mantle require the addition of metals after the formation of Earth's core. Early, large collisions have the potential to deliver metals, but the details of their mixing with Earth's mantle remain unresolved. As a large projectile disrupts and penetrates Earth's mantle, a fraction of its metallic core may directly merge with Earth's core. Ensuing gravitational instabilities remove the remaining projectile's core stranded in Earth's mantle, leaving the latter deprived of HSEs. Here, we propose a framework that can efficiently retain the metallic components during large impacts. The mechanism is based on the ubiquitous presence of a partially molten region in the mantle beneath an impact-generated magma ocean, and it involves rapid three-phase flow with solid silicate, molten silicate, and liquid metal as well as long-term mixing by mantle convection. In addition, large low-shear-velocity provinces in the lower mantle may originate from compositional heterogeneities resulting from the proposed three-phase flow during high-energy collisions.
Collapse
Affiliation(s)
- Jun Korenaga
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT06520
| | - Simone Marchi
- Department of Space Studies, Southwest Research Institute, Boulder, CO80302
| |
Collapse
|
5
|
Deng X, Xu Y, Hao S, Ruan Y, Zhao Y, Wang W, Ni S, Wu Z. Compositional and thermal state of the lower mantle from joint 3D inversion with seismic tomography and mineral elasticity. Proc Natl Acad Sci U S A 2023; 120:e2220178120. [PMID: 37339202 PMCID: PMC10293858 DOI: 10.1073/pnas.2220178120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 04/17/2023] [Indexed: 06/22/2023] Open
Abstract
The compositional and thermal state of Earth's mantle provides critical constraints on the origin, evolution, and dynamics of Earth. However, the chemical composition and thermal structure of the lower mantle are still poorly understood. Particularly, the nature and origin of the two large low-shear-velocity provinces (LLSVPs) in the lowermost mantle observed from seismological studies are still debated. In this study, we inverted for the 3D chemical composition and thermal state of the lower mantle based on seismic tomography and mineral elasticity data by employing a Markov chain Monte Carlo framework. The results show a silica-enriched lower mantle with a Mg/Si ratio less than ~1.16, lower than that of the pyrolitic upper mantle (Mg/Si = 1.3). The lateral temperature distributions can be described by a Gaussian distribution with a standard deviation (SD) of 120 to 140 K at 800 to 1,600 km and the SD increases to 250 K at 2,200 km depth. However, the lateral distribution in the lowermost mantle does not follow the Gaussian distribution. We found that the velocity heterogeneities in the upper lower mantle mainly result from thermal anomalies, while those in the lowermost mantle mainly result from compositional or phase variations. The LLSVPs have higher density at the base and lower density above the depth of ~2,700 km than the ambient mantle, respectively. The LLSVPs are found to have ~500 K higher temperature, higher Bridgmanite and iron content than the ambient mantle, supporting the hypothesis that the LLSVPs may originate from an ancient basal magma ocean formed in Earth's early history.
Collapse
Affiliation(s)
- Xin Deng
- Deep Space Exploration Laboratory / School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui230026, China
| | - Yinhan Xu
- Deep Space Exploration Laboratory / School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui230026, China
| | - Shangqin Hao
- Deep Space Exploration Laboratory / School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui230026, China
- Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA92092
| | - Youyi Ruan
- School of Earth Sciences and Engineering, Nanjing University, Nanjing, Jiangsu210023, China
- Institute of Earth Exploration and Sensing, Nanjing University, Nanjing, Jiangsu210023, China
| | - Yajie Zhao
- Deep Space Exploration Laboratory / School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui230026, China
| | - Wenzhong Wang
- Deep Space Exploration Laboratory / School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui230026, China
- Chinese Academy of Sciences, Center for Excellence in Comparative Planetology, University of Science and Technology of China, Hefei, Anhui233500, China
- National Geophysical Observatory at Mengcheng, University of Science and Technology of China, Hefei, Anhui233500, China
| | - Sidao Ni
- State Key Laboratory of Geodesy and Earth’s Dynamics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei430077, China
| | - Zhongqing Wu
- Deep Space Exploration Laboratory / School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui230026, China
- Chinese Academy of Sciences, Center for Excellence in Comparative Planetology, University of Science and Technology of China, Hefei, Anhui233500, China
- National Geophysical Observatory at Mengcheng, University of Science and Technology of China, Hefei, Anhui233500, China
| |
Collapse
|
6
|
Grabreck A, Flament N, Bodur ÖF. Mapping global kimberlite potential from reconstructions of mantle flow over the past billion years. PLoS One 2022; 17:e0268066. [PMID: 35679269 PMCID: PMC9182341 DOI: 10.1371/journal.pone.0268066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 04/22/2022] [Indexed: 11/18/2022] Open
Abstract
Kimberlites are the primary source of economic grade diamonds. Their geologically rapid eruptions preferentially occur near or through thick and ancient continental lithosphere. Studies combining tomographic models with tectonic reconstructions and kimberlite emplacement ages and locations have revealed spatial correlations between large low shear velocity provinces in the lowermost mantle and reconstructed global kimberlite eruption locations over the last 320 Myr. These spatial correlations assume that the lowermost mantle structure has not changed over time, which is at odds with mantle flow models that show basal thermochemical structures to be mobile features shaped by cold sinking oceanic lithosphere. Here we investigate the match to the global kimberlite record of stationary seismically slow basal mantle structures (as imaged through tomographic modelling) and mobile hot basal structures (as predicted by reconstructions of mantle flow over the past billion years). We refer to these structures as “basal mantle structures” and consider their intersection with reconstructed thick or ancient lithosphere to represent areas with a high potential for past eruptions of kimberlites, and therefore areas of potential interest for diamond exploration. We use the distance between reconstructed kimberlite eruption locations and kimberlite potential maps as an indicator of model success, and we find that mobile lowermost mantle structures are as close to reconstructed kimberlites as stationary ones. Additionally, we find that mobile lowermost mantle structures better fit major kimberlitic events, such as the South African kimberlite bloom around 100 Ma. Mobile basal structures are therefore consistent with both solid Earth dynamics and with the kimberlite record.
Collapse
Affiliation(s)
- Anton Grabreck
- GeoQuEST Research Centre, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, Australia
| | - Nicolas Flament
- GeoQuEST Research Centre, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, Australia
- * E-mail:
| | - Ömer F. Bodur
- GeoQuEST Research Centre, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
7
|
Flament N, Bodur ÖF, Williams SE, Merdith AS. Assembly of the basal mantle structure beneath Africa. Nature 2022; 603:846-851. [PMID: 35355006 DOI: 10.1038/s41586-022-04538-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 02/09/2022] [Indexed: 11/09/2022]
Abstract
Plate tectonics shapes Earth's surface, and is linked to motions within its deep interior1,2. Cold oceanic lithosphere sinks into the mantle, and hot mantle plumes rise from the deep Earth, leading to volcanism3,4. Volcanic eruptions over the past 320 million years have been linked to two large structures at the base of the mantle presently under Africa and the Pacific Ocean5,6. This has led to the hypothesis that these basal mantle structures have been stationary over geological time7,8, in contrast to observations and models suggesting that tectonic plates9,10, subduction zones11-14 and mantle plumes15,16 have been mobile, and that basal mantle structures are presently deforming17,18. Here we reconstruct mantle flow from one billion years ago to the present day to show that the history of volcanism is statistically as consistent with mobile basal mantle structures as with fixed ones. In our reconstructions, cold lithosphere sank deep into the African hemisphere between 740 and 500 million years ago, and from 400 million years ago the structure beneath Africa progressively assembled, pushed by peri-Gondwana slabs, to become a coherent structure as recently as 60 million years ago. Our mantle flow models suggest that basal mantle structures are mobile, and aggregate and disperse over time, similarly to continents at Earth's surface9. Our models also predict the presence of continental material in the mantle beneath Africa, consistent with geochemical data19,20.
Collapse
Affiliation(s)
- Nicolas Flament
- GeoQuEST Research Centre, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, Australia.
| | - Ömer F Bodur
- GeoQuEST Research Centre, School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | | | - Andrew S Merdith
- UnivLyon, Université Lyon 1, ENS de Lyon, CNRS, UMR 5276 LGL-TPE, Villeurbanne, France.,School of Earth and Environment, University of Leeds, Leeds, UK
| |
Collapse
|
8
|
The evolution of basal mantle structure in response to supercontinent aggregation and dispersal. Sci Rep 2021; 11:22967. [PMID: 34824342 PMCID: PMC8617165 DOI: 10.1038/s41598-021-02359-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 11/15/2021] [Indexed: 12/03/2022] Open
Abstract
Seismic studies have revealed two Large Low-Shear Velocity Provinces (LLSVPs) in the lowermost mantle. Whether these structures remain stable over time or evolve through supercontinent cycles is debated. Here we analyze a recently published mantle flow model constrained by a synthetic plate motion model extending back to one billion years ago, to investigate how the mantle evolves in response to changing plate configurations. Our model predicts that sinking slabs segment the basal thermochemical structure below an assembling supercontinent, and that this structure eventually becomes unified due to slab push from circum-supercontinental subduction. In contrast, the basal thermochemical structure below the superocean is generally coherent due to the persistence of a superocean in our imposed plate reconstruction. The two antipodal basal thermochemical structures exchange material several times when part of one of the structures is carved out and merged with the other one, similarly to “exotic” tectonic terranes. Plumes mostly rise from thick basal thermochemical structures and in some instances migrate from the edges towards the interior of basal thermochemical structures due to slab push. Our results suggest that the topography of basal structures and distribution of plumes change over time due to the changing subduction network over supercontinent cycles.
Collapse
|
9
|
Ohira I, Jackson JM, Sturhahn W, Finkelstein GJ, Kawazoe T, Toellner TS, Suzuki A, Ohtani E. The influence of δ-(Al,Fe)OOH on seismic heterogeneities in Earth's lower mantle. Sci Rep 2021; 11:12036. [PMID: 34103572 PMCID: PMC8187711 DOI: 10.1038/s41598-021-91180-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 05/17/2021] [Indexed: 12/02/2022] Open
Abstract
The high-pressure phases of oxyhydroxides (δ-AlOOH, ε-FeOOH, and their solid solution), candidate components of subducted slabs, have wide stability fields, thus potentially influencing volatile circulation and dynamics in the Earth's lower mantle. Here, we report the elastic wave velocities of δ-(Al,Fe)OOH (Fe/(Al + Fe) = 0.13, δ-Fe13) to 79 GPa, determined by nuclear resonant inelastic X-ray scattering. At pressures below 20 GPa, a softening of the phonon spectra is observed. With increasing pressure up to the Fe3+ spin crossover (~ 45 GPa), the Debye sound velocity (vD) increases. At higher pressures, the low spin δ-Fe13 is characterized by a pressure-invariant vD. Using the equation of state for the same sample, the shear-, compressional-, and bulk-velocities (vS, vP, and vΦ) are calculated and extrapolated to deep mantle conditions. The obtained velocity data show that δ-(Al,Fe)OOH may cause low-vΦ and low-vP anomalies in the shallow lower mantle. At deeper depths, we find that this hydrous phase reproduces the anti-correlation between vS and vΦ reported for the large low seismic velocity provinces, thus serving as a potential seismic signature of hydrous circulation in the lower mantle.
Collapse
Affiliation(s)
- Itaru Ohira
- Department of Earth Science, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan.
- Department of Chemistry, Gakushuin University, 1-5-1, Mejiro, Toshima-ku, Tokyo, 171-8588, Japan.
| | - Jennifer M Jackson
- Seismological Laboratory, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Wolfgang Sturhahn
- Seismological Laboratory, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Gregory J Finkelstein
- Seismological Laboratory, California Institute of Technology, Pasadena, CA, 91125, USA
- Department of Geosciences, Princeton University, Princeton, NJ, 08544, USA
| | - Takaaki Kawazoe
- Bayerisches Geoinstitut, University of Bayreuth, 95440, Bayreuth, Germany
- Department of Earth and Planetary Systems Science, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, 739-8526, Japan
| | - Thomas S Toellner
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Akio Suzuki
- Department of Earth Science, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan
| | - Eiji Ohtani
- Department of Earth Science, Graduate School of Science, Tohoku University, Sendai, 980-8578, Japan
| |
Collapse
|
10
|
Wang W, Liu J, Zhu F, Li M, Dorfman SM, Li J, Wu Z. Formation of large low shear velocity provinces through the decomposition of oxidized mantle. Nat Commun 2021; 12:1911. [PMID: 33771990 PMCID: PMC7997914 DOI: 10.1038/s41467-021-22185-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 02/26/2021] [Indexed: 02/01/2023] Open
Abstract
Large Low Shear Velocity Provinces (LLSVPs) in the lowermost mantle are key to understanding the chemical composition and thermal structure of the deep Earth, but their origins have long been debated. Bridgmanite, the most abundant lower-mantle mineral, can incorporate extensive amounts of iron (Fe) with effects on various geophysical properties. Here our high-pressure experiments and ab initio calculations reveal that a ferric-iron-rich bridgmanite coexists with an Fe-poor bridgmanite in the 90 mol% MgSiO3-10 mol% Fe2O3 system, rather than forming a homogeneous single phase. The Fe3+-rich bridgmanite has substantially lower velocities and a higher VP/VS ratio than MgSiO3 bridgmanite under lowermost-mantle conditions. Our modeling shows that the enrichment of Fe3+-rich bridgmanite in a pyrolitic composition can explain the observed features of the LLSVPs. The presence of Fe3+-rich materials within LLSVPs may have profound effects on the deep reservoirs of redox-sensitive elements and their isotopes.
Collapse
Affiliation(s)
- Wenzhong Wang
- grid.59053.3a0000000121679639Laboratory of Seismology and Physics of Earth’s Interior, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China ,grid.83440.3b0000000121901201Department of Earth Sciences, University College London, London, UK
| | - Jiachao Liu
- grid.17088.360000 0001 2150 1785Department of Earth and Environmental Sciences, Michigan State University, East Lansing, MI USA
| | - Feng Zhu
- grid.214458.e0000000086837370Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI USA
| | - Mingming Li
- grid.215654.10000 0001 2151 2636School of Earth and Space Exploration, Arizona State University, Tempe, AZ USA
| | - Susannah M. Dorfman
- grid.17088.360000 0001 2150 1785Department of Earth and Environmental Sciences, Michigan State University, East Lansing, MI USA
| | - Jie Li
- grid.214458.e0000000086837370Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI USA
| | - Zhongqing Wu
- grid.59053.3a0000000121679639Laboratory of Seismology and Physics of Earth’s Interior, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China ,grid.59053.3a0000000121679639National Geophysical Observatory at Mengcheng, University of Science and Technology of China, Hefei, China ,grid.59053.3a0000000121679639CAS Center for Excellence in Comparative Planetology, USTC, Hefei, Anhui China
| |
Collapse
|
11
|
Ancient helium and tungsten isotopic signatures preserved in mantle domains least modified by crustal recycling. Proc Natl Acad Sci U S A 2020; 117:30993-31001. [PMID: 33229590 DOI: 10.1073/pnas.2009663117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Rare high-3He/4He signatures in ocean island basalts (OIB) erupted at volcanic hotspots derive from deep-seated domains preserved in Earth's interior. Only high-3He/4He OIB exhibit anomalous 182W-an isotopic signature inherited during the earliest history of Earth-supporting an ancient origin of high 3He/4He. However, it is not understood why some OIB host anomalous 182W while others do not. We provide geochemical data for the highest-3He/4He lavas from Iceland (up to 42.9 times atmospheric) with anomalous 182W and examine how Sr-Nd-Hf-Pb isotopic variations-useful for tracing subducted, recycled crust-relate to high 3He/4He and anomalous 182W. These data, together with data on global OIB, show that the highest-3He/4He and the largest-magnitude 182W anomalies are found only in geochemically depleted mantle domains-with high 143Nd/144Nd and low 206Pb/204Pb-lacking strong signatures of recycled materials. In contrast, OIB with the strongest signatures associated with recycled materials have low 3He/4He and lack anomalous 182W. These observations provide important clues regarding the survival of the ancient He and W signatures in Earth's mantle. We show that high-3He/4He mantle domains with anomalous 182W have low W and 4He concentrations compared to recycled materials and are therefore highly susceptible to being overprinted with low 3He/4He and normal (not anomalous) 182W characteristic of subducted crust. Thus, high 3He/4He and anomalous 182W are preserved exclusively in mantle domains least modified by recycled crust. This model places the long-term preservation of ancient high 3He/4He and anomalous 182W in the geodynamic context of crustal subduction and recycling and informs on survival of other early-formed heterogeneities in Earth's interior.
Collapse
|
12
|
Martens HR, Rivera L, Simons M. LoadDef: A Python-Based Toolkit to Model Elastic Deformation Caused by Surface Mass Loading on Spherically Symmetric Bodies. EARTH AND SPACE SCIENCE (HOBOKEN, N.J.) 2019; 6:311-323. [PMID: 31008150 PMCID: PMC6472329 DOI: 10.1029/2018ea000462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/02/2019] [Accepted: 01/18/2019] [Indexed: 06/09/2023]
Abstract
Temporal variations of surface masses, such as the hydrosphere and atmosphere of the Earth, load the surfaces of planetary bodies causing temporal variations in deformation. Surface shear forces and gravitational fields also drive ongoing planetary deformation. Characterizing the spatiotemporal patterns of planetary deformation can constrain allowable models for the interior structure of a planetary body as well as for the distribution of surface and body forces. Pertinent applications include hydrology, glaciology, geodynamics, atmospheric science, and climatology. To address the diversity of emerging applications, we introduce a software suite called LoadDef that provides a collection of modular functions for modeling planetary deformation within a self-consistent, Python-based computational framework. Key features of LoadDef include computation of real-valued potential, load, and shear Love numbers for self-gravitating and spherically symmetric planetary models; computation of Love-number partial derivatives with respect to planetary density and elastic structure; computation of displacement, gravity, tilt, and strain load Green's functions; and computation of three-component surface displacements induced by surface mass loading. At a most basic level, only a planetary-structure model and a mass-load model must be supplied as input to LoadDef to utilize all the main features of the software. The end-to-end forward-modeling capabilities for mass-loading applications lay the foundation for sensitivity studies and geodetic tomography. LoadDef results have been validated with Global Navigation Satellite System observations and verified against independent software and published results. As a case study, we use LoadDef to predict the solid Earth's elastic response to ocean tidal loading across the western United States.
Collapse
Affiliation(s)
| | - Luis Rivera
- Institut de Physique du Globe de Strasbourg, UMR 7516 CNRS, Université de StrasbourgStrasbourgFrance
| | - Mark Simons
- Seismological Laboratory, Division of Geological and Planetary SciencesCalifornia Institute of TechnologyPasadenaCAUSA
| |
Collapse
|
13
|
Ghelichkhan S, Bunge HP. The adjoint equations for thermochemical compressible mantle convection: derivation and verification by twin experiments. Proc Math Phys Eng Sci 2019; 474:20180329. [PMID: 30602928 DOI: 10.1098/rspa.2018.0329] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 10/23/2018] [Indexed: 11/12/2022] Open
Abstract
The adjoint method is an efficient way to obtain gradient information in a mantle convection model relative to past flow structure, allowing one to retrodict mantle flow from observations of the present-day mantle state. While adjoint equations for isochemical mantle flow have been derived for both incompressible and compressible flows, here we extend the method to thermochemical mantle flow models, and present thermochemical adjoint equations in the elastic-liquid approximation. We verify the method with twin experiments, and retrodict the flow history of a thermochemical reference model (reference twin) assuming for the final state, either a consistent thermochemical interpretation, using the thermochemical adjoint equations, or an inconsistent purely thermal interpretation, using the isochemical adjoint equations. The consistent simulation correctly retrodicts the flow evolution of the reference twin. The inconsistent case, instead, restores a false flow history whereby internal buoyancy forces and convectively maintained topography are overestimated. Because the cost function is reduced in either case, our results suggest that the adjoint method can be used to link assumptions on the role of chemical mantle heterogeneity to geologic inferences of dynamic topography, thus providing additional means to test hypotheses on mantle composition and dynamics.
Collapse
Affiliation(s)
- S Ghelichkhan
- Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität, Theresienstrasse 41, 80333 Munich, Germany
| | - H-P Bunge
- Department of Earth and Environmental Sciences, Ludwig-Maximilians-Universität, Theresienstrasse 41, 80333 Munich, Germany
| |
Collapse
|
14
|
Valence and spin states of iron are invisible in Earth's lower mantle. Nat Commun 2018; 9:1284. [PMID: 29599446 PMCID: PMC5876394 DOI: 10.1038/s41467-018-03671-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 03/05/2018] [Indexed: 11/09/2022] Open
Abstract
Heterogeneity in Earth's mantle is a record of chemical and dynamic processes over Earth's history. The geophysical signatures of heterogeneity can only be interpreted with quantitative constraints on effects of major elements such as iron on physical properties including density, compressibility, and electrical conductivity. However, deconvolution of the effects of multiple valence and spin states of iron in bridgmanite (Bdg), the most abundant mineral in the lower mantle, has been challenging. Here we show through a study of a ferric-iron-only (Mg0.46Fe3+0.53)(Si0.49Fe3+0.51)O3 Bdg that Fe3+ in the octahedral site undergoes a spin transition between 43 and 53 GPa at 300 K. The resolved effects of the spin transition on density, bulk sound velocity, and electrical conductivity are smaller than previous estimations, consistent with the smooth depth profiles from geophysical observations. For likely mantle compositions, the valence state of iron has minor effects on density and sound velocities relative to major cation composition.
Collapse
|
15
|
|