1
|
Vanvelk N, de Mesy Bentley KL, Verhofstad MHJ, Metsemakers WJ, Moriarty TF, Siverino C. Development of an ex vivo model to study Staphylococcus aureus invasion of the osteocyte lacuno-canalicular network. J Orthop Res 2025; 43:446-456. [PMID: 39380444 DOI: 10.1002/jor.25988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/08/2024] [Accepted: 09/18/2024] [Indexed: 10/10/2024]
Abstract
Staphylococcus aureus has multiple mechanisms to evade the host's immune system and antibiotic treatment. One such mechanism is the invasion of the osteocyte lacuno-canalicular network (OLCN), which may be particularly important in recurrence of infection after debridement and antibiotic therapy. The aim of this study was to develop an ex vivo model to facilitate further study of S. aureus invasion of the OLCN and early-stage testing of antibacterial strategies against bacteria in this niche. The diameter of the canaliculi of non-infected human, sheep, and mouse bones was measured microscopically on Schmorl's picrothionin stained sections, showing a large overlap in canalicular diameter. S. aureus successfully invaded the OLCN in all species in vitro as revealed by presence in osteocyte lacunae in Brown and Brenn-stained sections and by scanning electron microscopy. Murine bones were then selected for further experiments, and titanium pins with either a wild-type or ΔPBP4 mutant S. aureus USA300 were placed trans-cortically and incubated for 2 weeks in tryptic soy broth. Wild-type S. aureus readily invaded the osteocyte lacunae in mouse bones while the ΔPBP4 showed a significantly lower invasion of the OLCN (p = 0.0005). Bone specimens were then treated with gentamicin, sitafloxacin, R14 bacteriophages, or left untreated. Gentamicin (p = 0.0027) and sitafloxacin (p = 0.0280) significantly reduced the proportion of S. aureus-occupied lacunae, whilst bacteriophage treatment had no effect. This study shows that S. aureus is able to invade the OLCN in an ex vivo model. This ex vivo model can be used for future early-stage studies before proceeding to in vivo studies.
Collapse
Affiliation(s)
- Niels Vanvelk
- AO Research Institute Davos, Davos, Switzerland
- Trauma Research Unit, Department of Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Karen L de Mesy Bentley
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York, USA
- Center for Advanced Research Technology (CART), University of Rochester Medical Center Rochester, Rochester, New York, USA
| | - Michael H J Verhofstad
- Trauma Research Unit, Department of Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Willem-Jan Metsemakers
- Department of Trauma Surgery, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven-University of Leuven, Leuven, Belgium
| | - Thomas F Moriarty
- AO Research Institute Davos, Davos, Switzerland
- Center for Muskuloskeletal Infections (ZMSI), University Hospital Basel, Basel, Switzerland
| | | |
Collapse
|
2
|
López-Menéndez H, Luque-Rioja C, Kharbedia M, Herráez-Aguilar D, Santiago JA, Monroy F. Multiscale modelling of active hydrogel elasticity driven by living polymers: softening by bacterial motor protein FtsZ. SOFT MATTER 2025. [PMID: 39760521 DOI: 10.1039/d4sm00839a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
We present a neo-Hookean elasticity theory for hybrid mechano-active hydrogels, integrating motor proteins into polymer meshes to create composite materials with active softening due to modulable chain overlaps. Focusing on polyacrylamide (PA) hydrogels embedded with FtsZ, a bacterial cytokinetic protein powered by GTP, we develop a multiscale model using microscopic Flory theory of rubbery meshes through mesoscopic De Gennes' scaling concepts for meshwork dynamics and phenomenological Landau's formalism for second-order phase transitions. Our theoretical multiscale model explains the active softening observed in hybrid FtsZ-PA hydrogels by incorporating modulable meshwork dynamics, such as overlapping functionality and reptation dynamics, into an active mean-field of unbinding interactions. The novel FtsZ-based metamaterial and companion multiscale theory offer insights for designing, predicting, and controlling complex active hydrogels, with potential applications in technology and biomedicine.
Collapse
Affiliation(s)
- Horacio López-Menéndez
- Department of Physical Chemistry, Complutense University of Madrid, Av. Complutense s/n, 28040 Madrid, Spain.
| | - Clara Luque-Rioja
- Department of Physical Chemistry, Complutense University of Madrid, Av. Complutense s/n, 28040 Madrid, Spain.
- Unit of Translational Biophysics, IIS Hospital Doce de Octubre (Imas12), Av. Andalucía s/n, 28041 Madrid, Spain
| | - Mikheil Kharbedia
- Department of Physical Chemistry, Complutense University of Madrid, Av. Complutense s/n, 28040 Madrid, Spain.
| | - Diego Herráez-Aguilar
- Instituto de Investigaciones Biosanitarias, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda, 28223 Pozuelo de Alarcón, Spain
| | - José A Santiago
- Department of Physical Chemistry, Complutense University of Madrid, Av. Complutense s/n, 28040 Madrid, Spain.
- Departamento de Matemáticas Aplicadas y Sistemas, Universidad Autónoma Metropolitana Cuajimalpa, Vasco de Quiroga 4871, 05348 Ciudad de México, Mexico
| | - Francisco Monroy
- Department of Physical Chemistry, Complutense University of Madrid, Av. Complutense s/n, 28040 Madrid, Spain.
- Unit of Translational Biophysics, IIS Hospital Doce de Octubre (Imas12), Av. Andalucía s/n, 28041 Madrid, Spain
| |
Collapse
|
3
|
Sun N, Deng X, Kong H, Zhi Z, Jiang G, Xiong J, Chen S, Li S, Yuan W, Wong WL. Magnolol as an Antibacterial Agent Against Drug-resistant Bacteria Targeting Filamentous Temperature-sensitive Mutant Z. Chem Biodivers 2024:e202402800. [PMID: 39714990 DOI: 10.1002/cbdv.202402800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/25/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
The emergence of multiple drug-resistant bacteria poses critical health threats worldwide. It is urgently needed to develop potent and safe antibacterial agents with novel bactericidal mechanisms to treat these infections. In this study, magnolol was identified as a potential bacterial cell division inhibitor by a cell-based screening approach. This compound showed good antibacterial activity against a number of Gram-positive pathogens (minimum inhibitory concentration 8-16 µg/mL) including methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus. Further results obtained from biochemical experiments demonstrated that magnolol could markedly disrupt GTPase activity and filamentous temperature-sensitive mutant Z (FtsZ) polymerization, consistent with the impediment to cell division in the bacteria tested. The in vivo antibacterial activity of magnolol was evaluated with a Galleria mellonella larvae model. The results showed that magnolol significantly increased the survival rate of larvae infected with methicillin-resistant S. aureus. The interaction pattern of magnolol with FtsZ was investigated through molecular docking. The finding may offer meaningful insights into the mechanism of action of the compound. The results point to magnolol as a promising antimicrobial compound that inhibits cell division by affecting FtsZ polymerization and has the potential to be developed into an effective antimicrobial drug by further structure modification.
Collapse
Affiliation(s)
- Ning Sun
- Guangzhou 11th People's Hospital, Guangzhou Cadre and Talent Health Management Center, Guangzhou, P. R. China
| | - Xin Deng
- Guangzhou 11th People's Hospital, Guangzhou Cadre and Talent Health Management Center, Guangzhou, P. R. China
| | - Hanqin Kong
- Guangzhou 11th People's Hospital, Guangzhou Cadre and Talent Health Management Center, Guangzhou, P. R. China
| | - Ziling Zhi
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, P. R. China
| | - Guli Jiang
- Guangzhou 11th People's Hospital, Guangzhou Cadre and Talent Health Management Center, Guangzhou, P. R. China
| | - Jing Xiong
- Guangzhou 11th People's Hospital, Guangzhou Cadre and Talent Health Management Center, Guangzhou, P. R. China
| | - Sisi Chen
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, P. R. China
| | - Song Li
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, P. R. China
| | - Wenchang Yuan
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, P. R. China
| | - Wing-Leung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, P. R. China
| |
Collapse
|
4
|
Liu J, Ha T. Connecting single-molecule and superresolution microscopies to cell biology through theoretical modeling. Biophys J 2024:S0006-3495(24)02236-7. [PMID: 39600094 DOI: 10.1016/j.bpj.2024.11.3308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/12/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024] Open
Abstract
Recent developments of single-molecule and superresolution microscopies reveal novel spatial-temporal features of various cellular processes with unprecedented details, and greatly facilitate the development of theoretical models. In this review, we synthesize our view of how to meaningfully integrate these experimental approaches with theoretical modeling to obtain deeper understanding of the physical mechanisms of cell biology.
Collapse
Affiliation(s)
- Jian Liu
- Department of Cell Biology, Center for Cell Dynamics, School of Medicine, Johns Hopkins University, Baltimore, Maryland.
| | - Taekjip Ha
- Howard Hughes Medical Institute and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, Massachusetts; Department of Pediatrics, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
5
|
Pinho MG, Foster SJ. Cell Growth and Division of Staphylococcus aureus. Annu Rev Microbiol 2024; 78:293-310. [PMID: 39565951 DOI: 10.1146/annurev-micro-041222-125931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Bacterial cell growth and division require temporal and spatial coordination of multiple processes to ensure viability and morphogenesis. These mechanisms both determine and are determined by dynamic cellular structures and components, from within the cytoplasm to the cell envelope. The characteristic morphological changes during the cell cycle are largely driven by the architecture and mechanics of the cell wall. A constellation of proteins governs growth and division in Staphylococcus aureus, with counterparts also found in other organisms, alluding to underlying conserved mechanisms. Here, we review the status of knowledge regarding the cell cycle of this important pathogen and describe how this informs our understanding of the action of antibiotics and the specter of antimicrobial resistance.
Collapse
Affiliation(s)
- Mariana G Pinho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal;
| | - Simon J Foster
- The Florey Institute, School of Biosciences, University of Sheffield, Sheffield, United Kingdom;
| |
Collapse
|
6
|
Butler MS, Vollmer W, Goodall ECA, Capon RJ, Henderson IR, Blaskovich MAT. A Review of Antibacterial Candidates with New Modes of Action. ACS Infect Dis 2024; 10:3440-3474. [PMID: 39018341 PMCID: PMC11474978 DOI: 10.1021/acsinfecdis.4c00218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 07/19/2024]
Abstract
There is a lack of new antibiotics to combat drug-resistant bacterial infections that increasingly threaten global health. The current pipeline of clinical-stage antimicrobials is primarily populated by "new and improved" versions of existing antibiotic classes, supplemented by several novel chemical scaffolds that act on traditional targets. The lack of fresh chemotypes acting on previously unexploited targets (the "holy grail" for new antimicrobials due to their scarcity) is particularly unfortunate as these offer the greatest opportunity for innovative breakthroughs to overcome existing resistance. In recognition of their potential, this review focuses on this subset of high value antibiotics, providing chemical structures where available. This review focuses on candidates that have progressed to clinical trials, as well as selected examples of promising pioneering approaches in advanced stages of development, in order to stimulate additional research aimed at combating drug-resistant infections.
Collapse
Affiliation(s)
- Mark S. Butler
- Centre
for Superbug Solutions and ARC Training Centre for Environmental and
Agricultural Solutions to Antimicrobial Resistance, Institute for
Molecular Bioscience, The University of
Queensland, St. Lucia, Queensland 4072, Australia
| | - Waldemar Vollmer
- Centre
for Superbug Solutions and ARC Training Centre for Environmental and
Agricultural Solutions to Antimicrobial Resistance, Institute for
Molecular Bioscience, The University of
Queensland, St. Lucia, Queensland 4072, Australia
| | - Emily C. A. Goodall
- Centre
for Superbug Solutions and ARC Training Centre for Environmental and
Agricultural Solutions to Antimicrobial Resistance, Institute for
Molecular Bioscience, The University of
Queensland, St. Lucia, Queensland 4072, Australia
| | - Robert J. Capon
- Centre
for Superbug Solutions and ARC Training Centre for Environmental and
Agricultural Solutions to Antimicrobial Resistance, Institute for
Molecular Bioscience, The University of
Queensland, St. Lucia, Queensland 4072, Australia
| | - Ian R. Henderson
- Centre
for Superbug Solutions and ARC Training Centre for Environmental and
Agricultural Solutions to Antimicrobial Resistance, Institute for
Molecular Bioscience, The University of
Queensland, St. Lucia, Queensland 4072, Australia
| | - Mark A. T. Blaskovich
- Centre
for Superbug Solutions and ARC Training Centre for Environmental and
Agricultural Solutions to Antimicrobial Resistance, Institute for
Molecular Bioscience, The University of
Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
7
|
Gong H, Yan D, Cui Y, Li Y, Yang J, Yang W, Zhan R, Wan Q, Wang X, He H, Chen X, Lutkenhaus J, Yang X, Du S. The divisome is a self-enhancing machine in Escherichia coli and Caulobacter crescentus. Nat Commun 2024; 15:8198. [PMID: 39294118 PMCID: PMC11410940 DOI: 10.1038/s41467-024-52217-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/27/2024] [Indexed: 09/20/2024] Open
Abstract
During bacterial cytokinesis, polymers of the bacterial tubulin FtsZ coalesce into the Z ring to orchestrate divisome assembly and septal cell wall synthesis. Previous studies have found that Z ring condensation and stability is critical for successful cell division. However, how FtsZ filaments condense into a Z ring remains enigmatic and whether septal cell wall synthesis can feedback to the Z ring has not been investigated. Here, we show that FtsZ-associated proteins (Zaps) play important roles in Z ring condensation and stability, and discover septal cell wall synthesis as a novel player for Z ring condensation and stabilization in Escherichia coli and Caulobacter crescentus. Moreover, we find that the interaction between the Z ring membrane anchor, FtsA, and components of the septal cell wall synthetic complex are critical for septal cell wall synthesis-mediated Z ring condensation. Altogether, these findings suggest that the divisome is a self-enhancing machine in these two gram-negative bacteria, where the Z ring and the septal cell wall synthetic complex communicate with and reinforce each other to ensure robustness of cell division.
Collapse
Affiliation(s)
- Han Gong
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
- Key Laboratory of Polar Environment Monitoring and Public Governance (Ministry of Education), Wuhan University, Wuhan, China
| | - Di Yan
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yuanyuan Cui
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Ying Li
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Jize Yang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Wenjie Yang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Rui Zhan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Qianqian Wan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xinci Wang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Haofeng He
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiangdong Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Joe Lutkenhaus
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Xinxing Yang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| | - Shishen Du
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China.
- Key Laboratory of Polar Environment Monitoring and Public Governance (Ministry of Education), Wuhan University, Wuhan, China.
| |
Collapse
|
8
|
Ludwig K, Puls JS, Matos de Opitz CL, Innocenti P, Daniel JM, Bornikoel J, Arts M, Krannich S, Straetener J, Brajtenbach D, Henrichfreise B, Sass P, Mueller A, Martin NI, Brötz-Oesterhelt H, Kubitscheck U, Grein F, Schneider T. The Dual Mode of Antibacterial Action of the Synthetic Small Molecule DCAP Involves Lipid II Binding. J Am Chem Soc 2024; 146:24855-24862. [PMID: 39197836 PMCID: PMC11403595 DOI: 10.1021/jacs.4c05138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024]
Abstract
The synthetic small molecule DCAP is a chemically well-characterized compound with antibiotic activity against Gram-positive and Gram-negative bacteria, including drug-resistant pathogens. Until now, its mechanism of action was proposed to rely exclusively on targeting the bacterial membrane, thereby causing membrane depolarization, and increasing membrane permeability (Eun et al. 2012, J. Am. Chem. Soc. 134 (28), 11322-11325; Hurley et al. 2015, ACS Med. Chem. Lett. 6, 466-471). Here, we show that the antibiotic activity of DCAP results from a dual mode of action that is more targeted and multifaceted than previously anticipated. Using microbiological and biochemical assays in combination with fluorescence microscopy, we provide evidence that DCAP interacts with undecaprenyl pyrophosphate-coupled cell envelope precursors, thereby blocking peptidoglycan biosynthesis and impairing cell division site organization. Our work discloses a concise model for the mode of action of DCAP which involves the binding to a specific target molecule to exert pleiotropic effects on cell wall biosynthetic and divisome machineries.
Collapse
Affiliation(s)
- Kevin
C. Ludwig
- Institute
for Pharmaceutical Microbiology, University of Bonn, University Hospital Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
- German
Center for Infection Research (DZIF), Partner
Site Bonn-Cologne, 53115 Bonn, Germany
| | - Jan-Samuel Puls
- Institute
for Pharmaceutical Microbiology, University of Bonn, University Hospital Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
| | - Cruz L. Matos de Opitz
- Department
of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology
& Infection Medicine, University of
Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Paolo Innocenti
- Biological
Chemistry Group, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands
| | - Jan-Martin Daniel
- Institute
for Pharmaceutical Microbiology, University of Bonn, University Hospital Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
- German
Center for Infection Research (DZIF), Partner
Site Bonn-Cologne, 53115 Bonn, Germany
| | - Jan Bornikoel
- Department
of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology
& Infection Medicine, University of
Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Melina Arts
- Institute
for Pharmaceutical Microbiology, University of Bonn, University Hospital Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
| | - Sebastian Krannich
- Institute
for Pharmaceutical Microbiology, University of Bonn, University Hospital Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
| | - Jan Straetener
- Department
of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology
& Infection Medicine, University of
Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Dominik Brajtenbach
- Clausius-Institute
for Physical and Theoretical Chemistry, University of Bonn, Wegelerstraße 12, 53115 Bonn, Germany
| | - Beate Henrichfreise
- Institute
for Pharmaceutical Microbiology, University of Bonn, University Hospital Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
| | - Peter Sass
- Department
of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology
& Infection Medicine, University of
Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
- German Center
for Infection Research (DZIF), Partner Site
Tübingen, 72076 Tübingen, Germany
| | - Anna Mueller
- Institute
for Pharmaceutical Microbiology, University of Bonn, University Hospital Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
| | - Nathaniel I. Martin
- Biological
Chemistry Group, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, the Netherlands
| | - Heike Brötz-Oesterhelt
- Department
of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology
& Infection Medicine, University of
Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
- German Center
for Infection Research (DZIF), Partner Site
Tübingen, 72076 Tübingen, Germany
- Cluster
of Excellence “Controlling Microbes to Fight Infections”, University of Tübingen, 72076 Tübingen, Germany
| | - Ulrich Kubitscheck
- Clausius-Institute
for Physical and Theoretical Chemistry, University of Bonn, Wegelerstraße 12, 53115 Bonn, Germany
| | - Fabian Grein
- Institute
for Pharmaceutical Microbiology, University of Bonn, University Hospital Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
- German
Center for Infection Research (DZIF), Partner
Site Bonn-Cologne, 53115 Bonn, Germany
| | - Tanja Schneider
- Institute
for Pharmaceutical Microbiology, University of Bonn, University Hospital Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
- German
Center for Infection Research (DZIF), Partner
Site Bonn-Cologne, 53115 Bonn, Germany
| |
Collapse
|
9
|
Poddar SM, Chakraborty J, Gayathri P, Srinivasan R. Disruption of salt bridge interactions in the inter-domain cleft of the tubulin-like protein FtsZ of Escherichia coli makes cells sensitive to the cell division inhibitor PC190723. Cytoskeleton (Hoboken) 2024. [PMID: 39230425 DOI: 10.1002/cm.21924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 08/01/2024] [Accepted: 08/22/2024] [Indexed: 09/05/2024]
Abstract
FtsZ forms a ring-like assembly at the site of division in bacteria. It is the first protein involved in the formation of the divisome complex to split the cell into two halves, indicating its importance in bacterial cell division. FtsZ is an attractive target for developing new anti-microbial drugs to overcome the challenges of antibiotic resistance. The most potent inhibitor against FtsZ is PC190723, which is effective against all strains and species of Staphylococcus, including the methicillin- and multi-drug-resistant Staphylococcus aureus and strains of Bacillus. However, FtsZs from bacteria such as E. coli, Streptococcus, and Enterococcus were shown to be resistant to this inhibitor. In this study, we provide further evidence that the three pairwise bridging interactions, between residues S227 and G191, R307 and E198 and D299 and R202, between S7, S9, S10 β-strands and the H7 helix occlude the inhibitor from binding to E. coli FtsZ. We generated single, double and triple mutations to disrupt those bridges and tested the effectiveness of PC190723 directly on Z-ring assembly in vivo. Our results show that the disruption of S227-G191 and R307-E198 bridges render EcFtsZ highly sensitive to PC190723 for Z-ring assembly. Ectopic expression of the double mutants, FtsZ S227I R307V results in hypersensitivity of the susceptible E. coli imp4213 strain to PC190723. Our studies could further predict the effectiveness of PC190723 or its derivatives towards FtsZs of other bacterial genera.
Collapse
Affiliation(s)
- Sakshi Mahesh Poddar
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India
- Homi Bhabha National Institutes (HBNI), Training School Complex, Mumbai, India
| | | | - Pananghat Gayathri
- Biology, Indian Institute of Science Education and Research, Pune, India
| | - Ramanujam Srinivasan
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India
- Homi Bhabha National Institutes (HBNI), Training School Complex, Mumbai, India
| |
Collapse
|
10
|
Cui XH, Wei YC, Li XG, Qi XQ, Wu LF, Zhang WJ. N-terminus GTPase domain of the cytoskeleton protein FtsZ plays a critical role in its adaptation to high hydrostatic pressure. Front Microbiol 2024; 15:1441398. [PMID: 39220037 PMCID: PMC11362102 DOI: 10.3389/fmicb.2024.1441398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Studies in model microorganisms showed that cell division is highly vulnerable to high hydrostatic pressure (HHP). Disassembly of FtsZ filaments induced by HHP results in the failure of cell division and formation of filamentous cells in E. coli. The specific characteristics of FtsZ that allow for functional cell division in the deep-sea environments, especially in obligate piezophiles that grow exclusively under HHP condition, remain enigmatic. In this study, by using a self-developed HHP in-situ fixation apparatus, we investigated the effect of HHP on FtsZ by examining the subcellular localization of GFP-tagged FtsZ in vivo and the stability of FtsZ filament in vitro. We compared the pressure tolerance of FtsZ proteins from pressure-sensitive strain Shewanella oneidensis MR-1 (FtsZSo) and obligately piezophilic strain Shewanella benthica DB21MT-2 (FtsZSb). Our findings showed that, unlike FtsZSo, HHP hardly affected the Z-ring formation of FtsZSb, and filaments composed of FtsZSb were more stable after incubation under 50 MPa. By constructing chimeric and single amino acid mutated FtsZ proteins, we identified five residues in the N-terminal GTPase domain of FtsZSb whose mutation would impair the Z-ring formation under HHP conditions. Overall, these results demonstrate that FtsZ from the obligately piezophilic strain exhibits superior pressure tolerance than its homologue from shallow water species, both in vivo and in vitro. Differences in pressure tolerance of FtsZ are largely attributed to the N-terminal GTPase domain. This represents the first in-depth study of the adaptation of microbial cytoskeleton protein FtsZ to high hydrostatic pressure, which may provide insights into understanding the complex bioprocess of cell division under extreme environments.
Collapse
Affiliation(s)
- Xue-Hua Cui
- Laboratory of Deep-Sea Microbial Cell Biology, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yu-Chen Wei
- Laboratory of Deep-Sea Microbial Cell Biology, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Xue-Gong Li
- Laboratory of Deep-Sea Microbial Cell Biology, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- Institution of Deep-Sea Life Sciences, IDSSE-BGI, Sanya, China
| | - Xiao-Qing Qi
- Laboratory of Deep-Sea Microbial Cell Biology, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- Institution of Deep-Sea Life Sciences, IDSSE-BGI, Sanya, China
| | - Long-Fei Wu
- Laboratory of Deep-Sea Microbial Cell Biology, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- Institution of Deep-Sea Life Sciences, IDSSE-BGI, Sanya, China
- Aix Marseille University, CNRS, LCB, Marseille, France
| | - Wei-Jia Zhang
- Laboratory of Deep-Sea Microbial Cell Biology, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
- Institution of Deep-Sea Life Sciences, IDSSE-BGI, Sanya, China
| |
Collapse
|
11
|
Vanhille-Campos C, Whitley KD, Radler P, Loose M, Holden S, Šarić A. Self-organization of mortal filaments and its role in bacterial division ring formation. NATURE PHYSICS 2024; 20:1670-1678. [PMID: 39416851 PMCID: PMC11473364 DOI: 10.1038/s41567-024-02597-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/27/2024] [Indexed: 10/19/2024]
Abstract
Filaments in the cell commonly treadmill. Driven by energy consumption, they grow on one end while shrinking on the other, causing filaments to appear motile even though individual proteins remain static. This process is characteristic of cytoskeletal filaments and leads to collective filament self-organization. Here we show that treadmilling drives filament nematic ordering by dissolving misaligned filaments. Taking the bacterial FtsZ protein involved in cell division as an example, we show that this mechanism aligns FtsZ filaments in vitro and drives the organization of the division ring in living Bacillus subtilis cells. We find that ordering via local dissolution also allows the system to quickly respond to chemical and geometrical biases in the cell, enabling us to quantitatively explain the ring formation dynamics in vivo. Beyond FtsZ and other cytoskeletal filaments, our study identifies a mechanism for self-organization via constant birth and death of energy-consuming filaments.
Collapse
Affiliation(s)
- Christian Vanhille-Campos
- Institute of Science and Technology Austria, Klosterneuburg, Austria
- Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, London, UK
| | - Kevin D. Whitley
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Philipp Radler
- Institute of Science and Technology Austria, Klosterneuburg, Austria
- Archaea Biology and Ecogenomics Unit, Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Martin Loose
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Séamus Holden
- School of Life Sciences, The University of Warwick, Coventry, UK
| | - Anđela Šarić
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| |
Collapse
|
12
|
Sun N, Zhi Z, Xiao T, Deng X, He T, Dong W, Feng S, Chen S, Wong WL, Yuan W. The study of honokiol as a natural product-based antimicrobial agent and its potential interaction with FtsZ protein. Front Microbiol 2024; 15:1361508. [PMID: 39104591 PMCID: PMC11298477 DOI: 10.3389/fmicb.2024.1361508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 07/10/2024] [Indexed: 08/07/2024] Open
Abstract
Multidrug resistant bacteria have been a global health threat currently and frontline clinical treatments for these infections are very limited. To develop potent antibacterial agents with new bactericidal mechanisms is thus needed urgently to address this critical antibiotic resistance challenge. Natural products are a treasure of small molecules with high bioactive and low toxicity. In the present study, we demonstrated that a natural compound, honokiol, showed potent antibacterial activity against a number of Gram-positive bacteria including MRSA and VRE. Moreover, honokiol in combination with clinically used β-lactam antibiotics exhibits strong synergistic antimicrobial effects against drug-resistant S. aureus strains. Biochemical studies further reveal that honokiol may disrupt the GTPase activity, FtsZ polymerization, cell division. These biological impacts induced by honokiol may ultimately cause bacterial cell death. The in vivo antibacterial activity of honokiol against S. aureus infection was also verified with a biological model of G. mellonella larvae. The in vivo results support that honokiol is low toxic against the larvae and effectively increases the survival rate of the larvae infected with S. aureus. These findings demonstrate the potential of honokiol for further structural advancement as a new class of antibacterial agents with high potency against multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Ning Sun
- Guangzhou 11th People's Hospital, Guangzhou Cadre and Talent Health Management Center, Guangzhou, China
| | - Ziling Zhi
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, King Med School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Ting Xiao
- Guangzhou 11th People's Hospital, Guangzhou Cadre and Talent Health Management Center, Guangzhou, China
| | - Xin Deng
- Guangzhou 11th People's Hospital, Guangzhou Cadre and Talent Health Management Center, Guangzhou, China
| | - Tenghui He
- Guangzhou 11th People's Hospital, Guangzhou Cadre and Talent Health Management Center, Guangzhou, China
| | - Wanyang Dong
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, King Med School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Shuyi Feng
- Guangzhou 11th People's Hospital, Guangzhou Cadre and Talent Health Management Center, Guangzhou, China
| | - Sisi Chen
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, King Med School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Wing-Leung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Wenchang Yuan
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, King Med School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
13
|
Sena FV, Sousa FM, Pereira AR, Catarino T, Cabrita EJ, Pinho MG, Pinto FR, Pereira MM. The two alternative NADH:quinone oxidoreductases from Staphylococcus aureus: two players with different molecular and cellular roles. Microbiol Spectr 2024; 12:e0415223. [PMID: 39012110 DOI: 10.1128/spectrum.04152-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 06/01/2024] [Indexed: 07/17/2024] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen that has emerged as a major public health threat due to the increased incidence of its drug resistance. S. aureus presents a remarkable capacity to adapt to different niches due to the plasticity of its energy metabolism. In this work, we investigated the energy metabolism of S. aureus, focusing on the alternative NADH:quinone oxidoreductases, NDH-2s. S. aureus presents two genes encoding NDH-2s (NDH-2A and NDH-2B) and lacks genes coding for Complex I, the canonical respiratory NADH:quinone oxidoreductase. This observation makes the action of NDH-2s crucial for the regeneration of NAD+ and, consequently, for the progression of metabolism. Our study involved the comprehensive biochemical characterization of NDH-2B and the exploration of the cellular roles of NDH-2A and NDH-2B, utilizing knockout mutants (Δndh-2a and Δndh-2b). We show that NDH-2B uses NADPH instead of NADH, does not establish a charge-transfer complex in the presence of NADPH, and its reduction by this substrate is the catalytic rate-limiting step. In the case of NDH-2B, the reduction of the flavin is inherently slow, and we suggest the establishment of a charge transfer complex between NADP+ and FADH2, as previously observed for NDH-2A, to slow down quinone reduction and, consequently, prevent the overproduction of reactive oxygen species, which is potentially unnecessary. Furthermore, we observed that the lack of NDH-2A or NDH-2B impacts cell growth, volume, and division differently. The absence of these enzymes results in distinct metabolic phenotypes, emphasizing the unique cellular roles of each NDH-2 in energy metabolism.IMPORTANCEStaphylococcus aureus is an opportunistic pathogen, posing a global challenge in clinical medicine due to the increased incidence of its drug resistance. For this reason, it is essential to explore and understand the mechanisms behind its resistance, as well as the fundamental biological features such as energy metabolism and the respective players that allow S. aureus to live and survive. Despite its prominence as a pathogen, the energy metabolism of S. aureus remains underexplored, with its respiratory enzymes often escaping thorough investigation. S. aureus bioenergetic plasticity is illustrated by its ability to use different respiratory enzymes, two of which are investigated in the present study. Understanding the metabolic adaptation strategies of S. aureus to bioenergetic challenges may pave the way for the design of therapeutic approaches that interfere with the ability of the pathogen to successfully adapt when it invades different niches within its host.
Collapse
Affiliation(s)
- Filipa V Sena
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Lisbon, Lisboa, Portugal
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisboa, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Filipe M Sousa
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Lisbon, Lisboa, Portugal
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisboa, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ana R Pereira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Teresa Catarino
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Eurico J Cabrita
- Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Mariana G Pinho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Francisco R Pinto
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Lisbon, Lisboa, Portugal
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisboa, Portugal
| | - Manuela M Pereira
- Department of Chemistry and Biochemistry, Faculty of Sciences, University of Lisbon, Lisboa, Portugal
- BioISI-Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Lisboa, Portugal
| |
Collapse
|
14
|
Barrows JM, Talavera-Figueroa BK, Payne IP, Smith EL, Goley ED. GTPase activity regulates FtsZ ring positioning in Caulobacter crescentus. Mol Biol Cell 2024; 35:ar97. [PMID: 38758654 PMCID: PMC11244171 DOI: 10.1091/mbc.e23-09-0365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024] Open
Abstract
Bacterial cell division is crucial for replication and requires careful coordination via proteins collectively called the divisome. The tubulin-like GTPase FtsZ is the master regulator of this process and serves to recruit downstream divisome proteins and regulate their activities. Upon assembling at mid-cell, FtsZ exhibits treadmilling motion driven by GTP binding and hydrolysis. Treadmilling is proposed to play roles in Z-ring condensation and in distribution and regulation of peptidoglycan (PG) cell wall enzymes. FtsZ polymer superstructure and dynamics are central to its function, yet their regulation is incompletely understood. We addressed these gaps in knowledge by evaluating the contribution of GTPase activity to FtsZ's function in vitro and in Caulobacter crescentus cells. We observed that a lethal mutation that abrogates FtsZ GTP hydrolysis impacts FtsZ dynamics and Z-ring positioning, but not constriction. Aberrant Z-ring positioning was due to insensitivity to the FtsZ regulator MipZ when GTPase activity is reduced. Z-ring mislocalization resulted in DNA damage, likely due to constriction over the nucleoid. Collectively, our results indicate that GTP hydrolysis serves primarily to position the Z-ring at mid-cell in Caulobacter. Proper Z-ring localization is required for effective coordination with chromosome segregation to prevent DNA damage and ensure successful cell division.
Collapse
Affiliation(s)
- Jordan M. Barrows
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | | | - Isaac P. Payne
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Erika L. Smith
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Erin D. Goley
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
15
|
Xu Q, Tang L, Liu W, Xu N, Hu Y, Zhang Y, Chen S. Phage protein Gp11 blocks Staphylococcus aureus cell division by inhibiting peptidoglycan biosynthesis. mBio 2024; 15:e0067924. [PMID: 38752726 PMCID: PMC11237401 DOI: 10.1128/mbio.00679-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/10/2024] [Indexed: 06/13/2024] Open
Abstract
Phages and bacteria have a long history of co-evolution. However, these dynamics of phage-host interactions are still largely unknown; identification of phage inhibitors that remodel host metabolism will provide valuable information for target development for antimicrobials. Here, we perform a comprehensive screen for early-gene products of ΦNM1 that inhibit cell growth in Staphylococcus aureus. A small membrane protein, Gp11, with inhibitory effects on S. aureus cell division was identified. A bacterial two-hybrid library containing 345 essential S. aureus genes was constructed to screen for targets of Gp11, and Gp11 was found to interact with MurG and DivIC. Defects in cell growth and division caused by Gp11 were dependent on MurG and DivIC, which was further confirmed using CRISPRi hypersensitivity assay. Gp11 interacts with MurG, the protein essential for cell wall formation, by inhibiting the production of lipid II to regulate peptidoglycan (PG) biosynthesis on the cell membrane. Gp11 also interacts with cell division protein DivIC, an essential part of the division machinery necessary for septal cell wall assembly, to disrupt the recruitment of division protein FtsW. Mutations in Gp11 result in loss of its ability to cause growth defects, whereas infection with phage in which the gp11 gene has been deleted showed a significant increase in lipid II production in S. aureus. Together, our findings reveal that a phage early-gene product interacts with essential host proteins to disrupt PG biosynthesis and block S. aureus cell division, suggesting a potential pathway for the development of therapeutic approaches to treat pathogenic bacterial infections. IMPORTANCE Understanding the interplay between phages and their hosts is important for the development of novel therapies against pathogenic bacteria. Although phages have been used to control methicillin-resistant Staphylococcus aureus infections, our knowledge related to the processes in the early stages of phage infection is still limited. Owing to the fact that most of the phage early proteins have been classified as hypothetical proteins with uncertain functions, we screened phage early-gene products that inhibit cell growth in S. aureus, and one protein, Gp11, selectively targets essential host genes to block the synthesis of the peptidoglycan component lipid II, ultimately leading to cell growth arrest in S. aureus. Our study provides a novel insight into the strategy by which Gp11 blocks essential host cellular metabolism to influence phage-host interaction. Importantly, dissecting the interactions between phages and host cells will contribute to the development of new and effective therapies to treat bacterial infections.
Collapse
Affiliation(s)
- Qi Xu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Li Tang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Weilin Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Neng Xu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Yangbo Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Yong Zhang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Shiyun Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
16
|
Chakraborty J, Poddar S, Dutta S, Bahulekar V, Harne S, Srinivasan R, Gayathri P. Dynamics of interdomain rotation facilitates FtsZ filament assembly. J Biol Chem 2024; 300:107336. [PMID: 38718863 PMCID: PMC11157280 DOI: 10.1016/j.jbc.2024.107336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/31/2024] Open
Abstract
FtsZ, the tubulin homolog essential for bacterial cell division, assembles as the Z-ring at the division site, and directs peptidoglycan synthesis by treadmilling. It is unclear how FtsZ achieves kinetic polarity that drives treadmilling. To obtain insights into fundamental features of FtsZ assembly dynamics independent of peptidoglycan synthesis, we carried out structural and biochemical characterization of FtsZ from the cell wall-less bacteria, Spiroplasma melliferum (SmFtsZ). Interestingly the structures of SmFtsZ, bound to GDP and GMPPNP respectively, were captured as domain swapped dimers. SmFtsZ was found to be a slower GTPase with a higher critical concentration (CC) compared to Escherichia coli FtsZ (EcFtsZ). In FtsZs, a conformational switch from R-state (close) to T-state (open) favors polymerization. We identified that Phe224, located at the interdomain cleft of SmFtsZ, is crucial for R- to T-state transition. SmFtsZF224M exhibited higher GTPase activity and lower CC, whereas the corresponding EcFtsZM225F resulted in cell division defects in E. coli. Our results demonstrate that relative rotation of the domains is a rate-limiting step of polymerization. Our structural analysis suggests that the rotation is plausibly triggered upon addition of a GTP-bound monomer to the filament through interaction of the preformed N-terminal domain (NTD). Hence, addition of monomers to the NTD-exposed end of filament is slower in comparison to the C-terminal domain (CTD) end, thus explaining kinetic polarity. In summary, the study highlights the importance of interdomain interactions and conformational changes in regulating FtsZ assembly dynamics.
Collapse
Affiliation(s)
- Joyeeta Chakraborty
- Biology Division, Indian Institute of Science Education and Research, Pune, India
| | - Sakshi Poddar
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India; Homi Bhabha National Institutes (HBNI), Training School Complex, Mumbai, India
| | - Soumyajit Dutta
- Biology Division, Indian Institute of Science Education and Research, Pune, India
| | - Vaishnavi Bahulekar
- Biology Division, Indian Institute of Science Education and Research, Pune, India
| | - Shrikant Harne
- Biology Division, Indian Institute of Science Education and Research, Pune, India
| | - Ramanujam Srinivasan
- School of Biological Sciences, National Institute of Science Education and Research, Bhubaneswar, India; Homi Bhabha National Institutes (HBNI), Training School Complex, Mumbai, India
| | - Pananghat Gayathri
- Biology Division, Indian Institute of Science Education and Research, Pune, India.
| |
Collapse
|
17
|
Perez AJ, Xiao J. Stay on track - revelations of bacterial cell wall synthesis enzymes and things that go by single-molecule imaging. Curr Opin Microbiol 2024; 79:102490. [PMID: 38821027 PMCID: PMC11162910 DOI: 10.1016/j.mib.2024.102490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 06/02/2024]
Abstract
In this review, we explore the regulation of septal peptidoglycan (sPG) synthesis in bacterial cell division, a critical process for cell viability and proper morphology. Recent single-molecule imaging studies have revealed the processive movement of the FtsW:bPBP synthase complex along the septum, shedding light on the spatiotemporal dynamics of sPG synthases and their regulators. In diderm bacteria (E. coli and C. crescentus), the movement occurs at two distinct speeds, reflecting active synthesis or inactivity driven by FtsZ-treadmilling. In monoderm bacteria (B. subtilis, S. pneumoniae, and S. aureus), however, these enzymes exhibit only the active sPG-track-coupled processive movement. By comparing the dynamics of sPG synthases in these organisms and that of class-A penicillin-binding proteins in vivo and in vitro, we propose a unifying model for septal cell wall synthesis regulation across species, highlighting the roles of the sPG- and Z-tracks in orchestrating a robust bacterial cell wall constriction process.
Collapse
Affiliation(s)
- Amilcar J Perez
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jie Xiao
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
18
|
Zheng Y, Zhu X, Jiang M, Cao F, You Q, Chen X. Development and Applications of D-Amino Acid Derivatives-based Metabolic Labeling of Bacterial Peptidoglycan. Angew Chem Int Ed Engl 2024; 63:e202319400. [PMID: 38284300 DOI: 10.1002/anie.202319400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 01/30/2024]
Abstract
Peptidoglycan, an essential component within the cell walls of virtually all bacteria, is composed of glycan strands linked by stem peptides that contain D-amino acids. The peptidoglycan biosynthesis machinery exhibits high tolerance to various D-amino acid derivatives. D-amino acid derivatives with different functionalities can thus be specifically incorporated into and label the peptidoglycan of bacteria, but not the host mammalian cells. This metabolic labeling strategy is highly selective, highly biocompatible, and broadly applicable, which has been utilized in various fields. This review introduces the metabolic labeling strategies of peptidoglycan by using D-amino acid derivatives, including one-step and two-step strategies. In addition, we emphasize the various applications of D-amino acid derivative-based metabolic labeling, including bacterial peptidoglycan visualization (existence, biosynthesis, and dynamics, etc.), bacterial visualization (including bacterial imaging and visualization of growth and division, metabolic activity, antibiotic susceptibility, etc.), pathogenic bacteria-targeted diagnostics and treatment (positron emission tomography (PET) imaging, photodynamic therapy, photothermal therapy, gas therapy, immunotherapy, etc.), and live bacteria-based therapy. Finally, a summary of this metabolic labeling and an outlook is provided.
Collapse
Affiliation(s)
- Yongfang Zheng
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou, 350007, P.R. China
| | - Xinyu Zhu
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou, 350007, P.R. China
| | - Mingyi Jiang
- Fujian-Taiwan Science and Technology Cooperation Base of Biomedical Materials and Tissue Engineering, Engineering Research Center of Industrial Biocatalysis, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou, 350007, P.R. China
| | - Fangfang Cao
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
| | - Qing You
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
| |
Collapse
|
19
|
Cossart P, Hacker J, Holden DH, Normark S, Vogel J. Meeting report 'Microbiology 2023: from single cell to microbiome and host', an international interacademy conference in Würzburg. MICROLIFE 2024; 5:uqae008. [PMID: 38665235 PMCID: PMC11044969 DOI: 10.1093/femsml/uqae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024]
Abstract
On September 20-22 September 2023, the international conference 'Microbiology 2023: from single cell to microbiome and host' convened microbiologists from across the globe for a very successful symposium, showcasing cutting-edge research in the field. Invited lecturers delivered exceptional presentations covering a wide range of topics, with a major emphasis on phages and microbiomes, on the relevant bacteria within these ecosystems, and their multifaceted roles in diverse environments. Discussions also spanned the intricate analysis of fundamental bacterial processes, such as cell division, stress resistance, and interactions with phages. Organized by four renowned Academies, the German Leopoldina, the French Académie des sciences, the Royal Society UK, and the Royal Swedish Academy of Sciences, the symposium provided a dynamic platform for experts to share insights and discoveries, leaving participants inspired and eager to integrate new knowledge into their respective projects. The success of Microbiology 2023 prompted the decision to host the next quadrennial academic meeting in Sweden. This choice underscores the commitment to fostering international collaboration and advancing the frontiers of microbiological knowledge. The transition to Sweden promises to be an exciting step in the ongoing global dialogue and specific collaborations on microbiology, a field where researchers will continue to push the boundaries of knowledge, understanding, and innovation not only in health and disease but also in ecology.
Collapse
Affiliation(s)
| | - Jörg Hacker
- German National Academy of Science Leopoldina, Jägerberg 1, D-06108 Halle, Germany
| | - David H Holden
- Department of Infectious Disease, Centre for Bacterial Resistance Biology, Flowers Building, South Kensington Campus, Exhibition Road, Imperial College London, London SW7 2AZ, United Kingdom
| | - Staffan Normark
- Karolinska Institute, Tumor-och-cellbiologi, C1 Microbial Pathogenesis, 17177 Stockholm, Sweden
| | - Jörg Vogel
- Faculty of Medicine, Institute for Molecular Infection Biology (IMIB), University of Würzburg, D-97080 Würzburg, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Josef-Schneider-Str2/Gebaude D15; É. D-97080 Würzburg, Germany
| |
Collapse
|
20
|
Whitley KD, Grimshaw J, Roberts DM, Karinou E, Stansfeld PJ, Holden S. Peptidoglycan synthesis drives a single population of septal cell wall synthases during division in Bacillus subtilis. Nat Microbiol 2024; 9:1064-1074. [PMID: 38480901 PMCID: PMC10994842 DOI: 10.1038/s41564-024-01650-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 02/23/2024] [Indexed: 04/06/2024]
Abstract
Bacterial cell division requires septal peptidoglycan (sPG) synthesis by the divisome complex. Treadmilling of the essential tubulin homologue FtsZ has been implicated in septal constriction, though its precise role remains unclear. Here we used live-cell single-molecule imaging of the divisome transpeptidase PBP2B to investigate sPG synthesis dynamics in Bacillus subtilis. In contrast to previous models, we observed a single population of processively moving PBP2B molecules whose motion is driven by peptidoglycan synthesis and is not associated with FtsZ treadmilling. However, despite the asynchronous motions of PBP2B and FtsZ, a partial dependence of PBP2B processivity on FtsZ treadmilling was observed. Additionally, through single-molecule counting experiments we provide evidence that the divisome synthesis complex is multimeric. Our results support a model for B. subtilis division where a multimeric synthesis complex follows a single track dependent on sPG synthesis whose activity and dynamics are asynchronous with FtsZ treadmilling.
Collapse
Affiliation(s)
- Kevin D Whitley
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
| | - James Grimshaw
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - David M Roberts
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Eleni Karinou
- Centre for Bacterial Cell Biology, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Phillip J Stansfeld
- School of Life Sciences, University of Warwick, Coventry, UK
- Department of Chemistry, University of Warwick, Coventry, UK
| | - Séamus Holden
- School of Life Sciences, University of Warwick, Coventry, UK.
| |
Collapse
|
21
|
Schäper S, Brito AD, Saraiva BM, Squyres GR, Holmes MJ, Garner EC, Hensel Z, Henriques R, Pinho MG. Cell constriction requires processive septal peptidoglycan synthase movement independent of FtsZ treadmilling in Staphylococcus aureus. Nat Microbiol 2024; 9:1049-1063. [PMID: 38480900 PMCID: PMC10994846 DOI: 10.1038/s41564-024-01629-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 02/01/2024] [Indexed: 04/06/2024]
Abstract
Bacterial cell division requires recruitment of peptidoglycan (PG) synthases to the division site by the tubulin homologue, FtsZ. Septal PG synthases promote septum growth. FtsZ treadmilling is proposed to drive the processive movement of septal PG synthases and septal constriction in some bacteria; however, the precise mechanisms spatio-temporally regulating PG synthase movement and activity and FtsZ treadmilling are poorly understood. Here using single-molecule imaging of division proteins in the Gram-positive pathogen Staphylococcus aureus, we showed that the septal PG synthase complex FtsW/PBP1 and its putative activator protein, DivIB, move with similar velocity around the division site. Impairing FtsZ treadmilling did not affect FtsW or DivIB velocities or septum constriction rates. Contrarily, PG synthesis inhibition decelerated or stopped directional movement of FtsW and DivIB, and septum constriction. Our findings suggest that a single population of processively moving FtsW/PBP1 associated with DivIB drives cell constriction independently of FtsZ treadmilling in S. aureus.
Collapse
Affiliation(s)
- Simon Schäper
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal.
| | - António D Brito
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Bruno M Saraiva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Georgia R Squyres
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Matthew J Holmes
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Ethan C Garner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Zach Hensel
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Ricardo Henriques
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- MRC-Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Mariana G Pinho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal.
| |
Collapse
|
22
|
Costa SF, Saraiva BM, Veiga H, Marques LB, Schäper S, Sporniak M, Vega DE, Jorge AM, Duarte AM, Brito AD, Tavares AC, Reed P, Pinho MG. The role of GpsB in Staphylococcus aureus cell morphogenesis. mBio 2024; 15:e0323523. [PMID: 38319093 PMCID: PMC10936418 DOI: 10.1128/mbio.03235-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 02/07/2024] Open
Abstract
For decades, cells of the Gram-positive bacterial pathogen Staphylococcus aureus were thought to lack a dedicated elongation machinery. However, S. aureus cells were recently shown to elongate before division, in a process that requires a shape elongation division and sporulation (SEDS)/penicillin-binding protein (PBP) pair for peptidoglycan synthesis, consisting of the glycosyltransferase RodA and the transpeptidase PBP3. In ovococci and rod-shaped bacteria, the elongation machinery, or elongasome, is composed of various proteins besides a dedicated SEDS/PBP pair. To identify proteins required for S. aureus elongation, we screened the Nebraska Transposon Mutant Library, which contains transposon mutants in virtually all non-essential staphylococcal genes, for mutants with modified cell shape. We confirmed the roles of RodA/PBP3 in S. aureus elongation and identified GpsB, SsaA, and RodZ as additional proteins involved in this process. The gpsB mutant showed the strongest phenotype, mediated by the partial delocalization from the division septum of PBP2 and PBP4, two penicillin-binding proteins that synthesize and cross-link peptidoglycan. Increased levels of these PBPs at the cell periphery versus the septum result in higher levels of peptidoglycan insertion/crosslinking throughout the entire cell, possibly overriding the RodA/PBP3-mediated peptidoglycan synthesis at the outer edge of the septum and/or increasing stiffness of the peripheral wall, impairing elongation. Consequently, in the absence of GpsB, S. aureus cells become more spherical. We propose that GpsB has a role in the spatio-temporal regulation of PBP2 and PBP4 at the septum versus cell periphery, contributing to the maintenance of the correct cell morphology in S. aureus. IMPORTANCE Staphylococcus aureus is a Gram-positive clinical pathogen, which is currently the second cause of death by antibiotic-resistant infections worldwide. For decades, S. aureus cells were thought to be spherical and lack the ability to undergo elongation. However, super-resolution microscopy techniques allowed us to observe the minor morphological changes that occur during the cell cycle of this pathogen, including cell elongation. S. aureus elongation is not required for normal growth in laboratory conditions. However, it seems to be essential in the context of some infections, such as osteomyelitis, during which S. aureus cells apparently elongate to invade small channels in the bones. In this work, we uncovered new determinants required for S. aureus cell elongation. In particular, we show that GpsB has an important role in the spatio-temporal regulation of PBP2 and PBP4, two proteins involved in peptidoglycan synthesis, contributing to the maintenance of the correct cell morphology in S. aureus.
Collapse
Affiliation(s)
- Sara F. Costa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Bruno M. Saraiva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Helena Veiga
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Leonor B. Marques
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Simon Schäper
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Marta Sporniak
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Daniel E. Vega
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Ana M. Jorge
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Andreia M. Duarte
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - António D. Brito
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Andreia C. Tavares
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Patricia Reed
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Mariana G. Pinho
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA de Lisboa, Oeiras, Portugal
| |
Collapse
|
23
|
Kalia VC, Patel SKS, Karthikeyan KK, Jeya M, Kim IW, Lee JK. Manipulating Microbial Cell Morphology for the Sustainable Production of Biopolymers. Polymers (Basel) 2024; 16:410. [PMID: 38337299 DOI: 10.3390/polym16030410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
The total rate of plastic production is anticipated to surpass 1.1 billion tons per year by 2050. Plastic waste is non-biodegradable and accumulates in natural ecosystems. In 2020, the total amount of plastic waste was estimated to be 367 million metric tons, leading to unmanageable waste disposal and environmental pollution issues. Plastics are produced from petroleum and natural gases. Given the limited fossil fuel reserves and the need to circumvent pollution problems, the focus has shifted to biodegradable biopolymers, such as polyhydroxyalkanoates (PHAs), polylactic acid, and polycaprolactone. PHAs are gaining importance because diverse bacteria can produce them as intracellular inclusion bodies using biowastes as feed. A critical component in PHA production is the downstream processing procedures of recovery and purification. In this review, different bioengineering approaches targeted at modifying the cell morphology and synchronizing cell lysis with the biosynthetic cycle are presented for product separation and extraction. Complementing genetic engineering strategies with conventional downstream processes, these approaches are expected to produce PHA sustainably.
Collapse
Affiliation(s)
- Vipin C Kalia
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Sanjay K S Patel
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Kugalur K Karthikeyan
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Marimuthu Jeya
- Marine Biotechnology Division, National Institute of Ocean Technology, Chennai 600100, India
| | - In-Won Kim
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
24
|
Reed P, Sorg M, Alwardt D, Serra L, Veiga H, Schäper S, Pinho MG. A CRISPRi-based genetic resource to study essential Staphylococcus aureus genes. mBio 2024; 15:e0277323. [PMID: 38054745 PMCID: PMC10870820 DOI: 10.1128/mbio.02773-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE Staphylococcus aureus is an important clinical pathogen that causes a high number of antibiotic-resistant infections. The study of S. aureus biology, and particularly of the function of essential proteins, is of particular importance to develop new approaches to combat this pathogen. We have optimized a clustered regularly interspaced short palindromic repeat interference (CRISPRi) system that allows efficient targeting of essential S. aureus genes. Furthermore, we have used that system to construct a library comprising 261 strains, which allows the depletion of essential proteins encoded by 200 genes/operons. This library, which we have named Lisbon CRISPRi Mutant Library, should facilitate the study of S. aureus pathogenesis and biology.
Collapse
Affiliation(s)
- Patricia Reed
- Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Moritz Sorg
- Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Dominik Alwardt
- Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Lúcia Serra
- Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Helena Veiga
- Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Simon Schäper
- Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Mariana G. Pinho
- Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|
25
|
Cameron TA, Margolin W. Insights into the assembly and regulation of the bacterial divisome. Nat Rev Microbiol 2024; 22:33-45. [PMID: 37524757 PMCID: PMC11102604 DOI: 10.1038/s41579-023-00942-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2023] [Indexed: 08/02/2023]
Abstract
The ability to split one cell into two is fundamental to all life, and many bacteria can accomplish this feat several times per hour with high accuracy. Most bacteria call on an ancient homologue of tubulin, called FtsZ, to localize and organize the cell division machinery, the divisome, into a ring-like structure at the cell midpoint. The divisome includes numerous other proteins, often including an actin homologue (FtsA), that interact with each other at the cytoplasmic membrane. Once assembled, the protein complexes that comprise the dynamic divisome coordinate membrane constriction with synthesis of a division septum, but only after overcoming checkpoints mediated by specialized protein-protein interactions. In this Review, we summarize the most recent evidence showing how the divisome proteins of Escherichia coli assemble at the cell midpoint, interact with each other and regulate activation of septum synthesis. We also briefly discuss the potential of divisome proteins as novel antibiotic targets.
Collapse
Affiliation(s)
- Todd A Cameron
- Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, TX, USA
| | - William Margolin
- Department of Microbiology and Molecular Genetics, McGovern Medical School, Houston, TX, USA.
| |
Collapse
|
26
|
Harpring M, Cox JV. Plasticity in the cell division processes of obligate intracellular bacteria. Front Cell Infect Microbiol 2023; 13:1205488. [PMID: 37876871 PMCID: PMC10591338 DOI: 10.3389/fcimb.2023.1205488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 09/07/2023] [Indexed: 10/26/2023] Open
Abstract
Most bacteria divide through a highly conserved process called binary fission, in which there is symmetric growth of daughter cells and the synthesis of peptidoglycan at the mid-cell to enable cytokinesis. During this process, the parental cell replicates its chromosomal DNA and segregates replicated chromosomes into the daughter cells. The mechanisms that regulate binary fission have been extensively studied in several model organisms, including Eschericia coli, Bacillus subtilis, and Caulobacter crescentus. These analyses have revealed that a multi-protein complex called the divisome forms at the mid-cell to enable peptidoglycan synthesis and septation during division. In addition, rod-shaped bacteria form a multi-protein complex called the elongasome that drives sidewall peptidoglycan synthesis necessary for the maintenance of rod shape and the lengthening of the cell prior to division. In adapting to their intracellular niche, the obligate intracellular bacteria discussed here have eliminated one to several of the divisome gene products essential for binary fission in E. coli. In addition, genes that encode components of the elongasome, which were mostly lost as rod-shaped bacteria evolved into coccoid organisms, have been retained during the reductive evolutionary process that some coccoid obligate intracellular bacteria have undergone. Although the precise molecular mechanisms that regulate the division of obligate intracellular bacteria remain undefined, the studies summarized here indicate that obligate intracellular bacteria exhibit remarkable plasticity in their cell division processes.
Collapse
Affiliation(s)
| | - John V. Cox
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
27
|
Mallik S, Dodia H, Ghosh A, Srinivasan R, Good L, Raghav SK, Beuria TK. FtsE, the Nucleotide Binding Domain of the ABC Transporter Homolog FtsEX, Regulates Septal PG Synthesis in E. coli. Microbiol Spectr 2023; 11:e0286322. [PMID: 37014250 PMCID: PMC10269673 DOI: 10.1128/spectrum.02863-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 03/11/2023] [Indexed: 04/05/2023] Open
Abstract
The peptidoglycan (PG) layer, a crucial component of the tripartite E.coli envelope, is required to maintain cellular integrity, protecting the cells from mechanical stress resulting from intracellular turgor pressure. Thus, coordinating synthesis and hydrolysis of PG during cell division (septal PG) is crucial for bacteria. The FtsEX complex directs septal PG hydrolysis through the activation of amidases; however, the mechanism and regulation of septal PG synthesis are unclear. In addition, how septal PG synthesis and hydrolysis are coordinated has remained unclear. Here, we have shown that overexpression of FtsE leads to a mid-cell bulging phenotype in E.coli, which is different from the filamentous phenotype observed during overexpression of other cell division proteins. Silencing of the common PG synthesis genes murA and murB reduced bulging, confirming that this phenotype is due to excess PG synthesis. We further demonstrated that septal PG synthesis is independent of FtsE ATPase activity and FtsX. These observations and previous results suggest that FtsEX plays a role during septal PG hydrolysis, whereas FtsE alone coordinates septal PG synthesis. Overall, our study findings support a model in which FtsE plays a role in coordinating septal PG synthesis with bacterial cell division. IMPORTANCE The peptidoglycan (PG) layer is an essential component of the E.coli envelope that is required to maintain cellular shape and integrity. Thus, coordinating PG synthesis and hydrolysis at the mid-cell (septal PG) is crucial during bacterial division. The FtsEX complex directs septal PG hydrolysis through the activation of amidases; however, its role in regulation of septal PG synthesis is unclear. Here, we demonstrate that overexpression of FtsE in E.coli leads to a mid-cell bulging phenotype due to excess PG synthesis. This phenotype was reduced upon silencing of common PG synthesis genes murA and murB. We further demonstrated that septal PG synthesis is independent of FtsE ATPase activity and FtsX. These observations suggest that the FtsEX complex plays a role during septal PG hydrolysis, whereas FtsE alone coordinates septal PG synthesis. Our study indicates that FtsE plays a role in coordinating septal PG synthesis with bacterial cell division.
Collapse
Affiliation(s)
- Sunanda Mallik
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Hiren Dodia
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, India
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Arup Ghosh
- Institute of Life Sciences, Nalco Square, Bhubaneswar, Odisha, India
| | - Ramanujam Srinivasan
- National Institute of Science Education and Research, Bhubaneswar, Odisha, India
| | - Liam Good
- The Royal Veterinary College, University of London, London, United Kingdom
| | | | | |
Collapse
|
28
|
Puls JS, Brajtenbach D, Schneider T, Kubitscheck U, Grein F. Inhibition of peptidoglycan synthesis is sufficient for total arrest of staphylococcal cell division. SCIENCE ADVANCES 2023; 9:eade9023. [PMID: 36947615 PMCID: PMC10032595 DOI: 10.1126/sciadv.ade9023] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Bacterial cell wall biosynthesis is the target of many important antibiotics. Its spatiotemporal organization is closely coordinated with cell division. However, the role of peptidoglycan synthesis within cell division is not fully understood. Even less is known about the impact of antibiotics on the coordination of these two essential processes. Visualizing the essential cell division protein FtsZ and other key proteins in Staphylococcus aureus, we show that antibiotics targeting peptidoglycan synthesis arrest cell division within minutes of treatment. The glycopeptides vancomycin and telavancin completely inhibit septum constriction in all phases of cell division. The beta-lactam oxacillin stops division progress by preventing recruitment of the major peptidoglycan synthase PBP2 to the septum, revealing PBP2 as crucial for septum closure. Our work identifies cell division as key cellular target of these antibiotics and provides evidence that peptidoglycan synthesis is the essential driving force of septum constriction throughout cell division of S. aureus.
Collapse
Affiliation(s)
- Jan-Samuel Puls
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
| | - Dominik Brajtenbach
- Clausius Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115 Bonn, Germany
| | - Tanja Schneider
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
| | - Ulrich Kubitscheck
- Clausius Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstr. 12, 53115 Bonn, Germany
| | - Fabian Grein
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
- German Center for Infection Research (DZIF), Partner site Bonn-Cologne, 53115 Bonn, Germany
| |
Collapse
|
29
|
Sidders AE, Kedziora KM, Arts M, Daniel JM, de Benedetti S, Beam JE, Bui DT, Parsons JB, Schneider T, Rowe SE, Conlon BP. Antibiotic-induced accumulation of lipid II synergizes with antimicrobial fatty acids to eradicate bacterial populations. eLife 2023; 12:80246. [PMID: 36876902 PMCID: PMC10030119 DOI: 10.7554/elife.80246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 03/05/2023] [Indexed: 03/07/2023] Open
Abstract
Antibiotic tolerance and antibiotic resistance are the two major obstacles to the efficient and reliable treatment of bacterial infections. Identifying antibiotic adjuvants that sensitize resistant and tolerant bacteria to antibiotic killing may lead to the development of superior treatments with improved outcomes. Vancomycin, a lipid II inhibitor, is a frontline antibiotic for treating methicillin-resistant Staphylococcus aureus and other Gram-positive bacterial infections. However, vancomycin use has led to the increasing prevalence of bacterial strains with reduced susceptibility to vancomycin. Here, we show that unsaturated fatty acids act as potent vancomycin adjuvants to rapidly kill a range of Gram-positive bacteria, including vancomycin-tolerant and resistant populations. The synergistic bactericidal activity relies on the accumulation of membrane-bound cell wall intermediates that generate large fluid patches in the membrane leading to protein delocalization, aberrant septal formation, and loss of membrane integrity. Our findings provide a natural therapeutic option that enhances vancomycin activity against difficult-to-treat pathogens, and the underlying mechanism may be further exploited to develop antimicrobials that target recalcitrant infection.
Collapse
Affiliation(s)
- Ashelyn E Sidders
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Katarzyna M Kedziora
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, United States
- Bioinformatics and Analytics Research Collaborative, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Melina Arts
- Institute for Pharmaceutical Microbiology, University of Bonn, Bonn, Germany
| | - Jan-Martin Daniel
- Institute for Pharmaceutical Microbiology, University of Bonn, Bonn, Germany
| | | | - Jenna E Beam
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Duyen T Bui
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Joshua B Parsons
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, United States
- Division of Infectious Diseases, Duke University, Durham, United States
| | - Tanja Schneider
- Institute for Pharmaceutical Microbiology, University of Bonn, Bonn, Germany
| | - Sarah E Rowe
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Brian P Conlon
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, United States
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, United States
| |
Collapse
|
30
|
Models versus pathogens: how conserved is the FtsZ in bacteria? Biosci Rep 2023; 43:232502. [PMID: 36695643 PMCID: PMC9939409 DOI: 10.1042/bsr20221664] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/10/2023] [Accepted: 01/25/2023] [Indexed: 01/26/2023] Open
Abstract
Combating anti-microbial resistance by developing alternative strategies is the need of the hour. Cell division, particularly FtsZ, is being extensively studied for its potential as an alternative target for anti-bacterial therapy. Bacillus subtilis and Escherichia coli are the two well-studied models for research on FtsZ, the leader protein of the cell division machinery. As representatives of gram-positive and gram-negative bacteria, respectively, these organisms have provided an extensive outlook into the process of cell division in rod-shaped bacteria. However, research on other shapes of bacteria, like cocci and ovococci, lags behind that of model rods. Even though most regions of FtsZ show sequence and structural conservation throughout bacteria, the differences in FtsZ functioning and interacting partners establish several different modes of division in different bacteria. In this review, we compare the features of FtsZ and cell division in the model rods B. subtilis and E. coli and the four pathogens: Staphylococcus aureus, Streptococcus pneumoniae, Mycobacterium tuberculosis, and Pseudomonas aeruginosa. Reviewing several recent articles on these pathogenic bacteria, we have highlighted the functioning of FtsZ, the unique roles of FtsZ-associated proteins, and the cell division processes in them. Further, we provide a detailed look at the anti-FtsZ compounds discovered and their target bacteria, emphasizing the need for elucidation of the anti-FtsZ mechanism of action in different bacteria. Current challenges and opportunities in the ongoing journey of identifying potent anti-FtsZ drugs have also been described.
Collapse
|
31
|
Song Y, Zhang X, Zhang Z, Shentu X, Yu X. Physiology and Transcriptional Analysis of ppGpp-Related Regulatory Effects in Streptomyces diastatochromogenes 1628. Microbiol Spectr 2023; 11:e0120022. [PMID: 36475882 PMCID: PMC9927088 DOI: 10.1128/spectrum.01200-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
ppGpp is a ubiquitous small nucleotide messenger that mediates cellular self-protective responses under environmental stress. However, the mechanisms of ppGpp that control transcription and other metabolic processes depend on the species, and ppGpp regulates the same process via different mechanisms. The level of ppGpp is regulated by RelA/SpoT homolog (RSH) enzymes that synthesize and hydrolyze the alarmone. Here, we constructed a ppGpp0 strain and monitored the effects of ppGpp on the transcriptional level, physiology, and secondary metabiotic production in the antibiotic producer Streptomyces diastatochromogenes 1628. The results showed the cell division and growth of ppGpp0 increased by measurement of gene transcription and DCWs. The utilization of nitrogen was affected depending on the nitrogen type with a significantly higher DCW of the ppGpp0 mutant in the medium supplied with the yeast extract and a lower growth rate in the inorganic nitrogen ammonium salt. The ppGpp-mediated stringent response could not affect the usage of carbon resources. More importantly, ppGpp0 inhibited the expression of antibiotic clusters and the production of toyocamycin and tetramycin P. The antibiotic resistance was also significantly downregulated in the ppGpp0 mutant. In conclusion, this study showed detailed changes in ppGpp-mediated stringent responses on S. diastatochromogenes 1628 cell growth, nutrient utilization, morphological characteristics, antibiotic production, and resistance, which will provide insights into the role of ppGpp in Streptomyces. IMPORTANCE The ppGpp-mediated stringent response is widely distributed in Escherichia coli, Bacillus subtilis, Streptomyces, Staphylococcus aureus, etc. Stringent responses give strains the ability to resist environmental stresses, and survival from nutrition starvation, virulence, long-term persistence, biofilm formation, and gut colonization. ppGpp has many targets in cells and can reprogram DNA replication, transcription, ribosome biogenesis and function, and lipid metabolism. However, the mechanism of ppGpp to control transcription and other metabolic processes depends on the bacterial species and regulates the same process via a different mechanism. In Streptomyces, how ppGpp regulates the transcription remains to be elucidated. However, because ppGpp regulates many genes involved in primary and secondary metabolism, we compared the transcription and cell division, cell growth, morphological differentiation, antibiotic resistance, and secondary synthesis in the wild-type S. diastatochromogenes and ppGpp0 strains.
Collapse
Affiliation(s)
- Yang Song
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| | - Xiangli Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| | - Zixuan Zhang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| | - Xuping Shentu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| |
Collapse
|
32
|
Barbuti MD, Myrbråten IS, Morales Angeles D, Kjos M. The cell cycle of Staphylococcus aureus: An updated review. Microbiologyopen 2023; 12:e1338. [PMID: 36825883 PMCID: PMC9733580 DOI: 10.1002/mbo3.1338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
As bacteria proliferate, DNA replication, chromosome segregation, cell wall synthesis, and cytokinesis occur concomitantly and need to be tightly regulated and coordinated. Although these cell cycle processes have been studied for decades, several mechanisms remain elusive, specifically in coccus-shaped cells such as Staphylococcus aureus. In recent years, major progress has been made in our understanding of how staphylococci divide, including new, fundamental insights into the mechanisms of cell wall synthesis and division site selection. Furthermore, several novel proteins and mechanisms involved in the regulation of replication initiation or progression of the cell cycle have been identified and partially characterized. In this review, we will summarize our current understanding of the cell cycle processes in the spheroid model bacterium S. aureus, with a focus on recent advances in the understanding of how these processes are regulated.
Collapse
Affiliation(s)
- Maria D. Barbuti
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life Sciences (NMBU)ÅsNorway
| | - Ine S. Myrbråten
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life Sciences (NMBU)ÅsNorway
| | - Danae Morales Angeles
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life Sciences (NMBU)ÅsNorway
| | - Morten Kjos
- Faculty of Chemistry, Biotechnology and Food ScienceNorwegian University of Life Sciences (NMBU)ÅsNorway
| |
Collapse
|
33
|
Yue K, Li Y, Cao M, Shen L, Gu J, Kai L. Bottom-Up Synthetic Biology Using Cell-Free Protein Synthesis. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 185:1-20. [PMID: 37526707 DOI: 10.1007/10_2023_232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Technical advances in biotechnology have greatly accelerated the development of bottom-up synthetic biology. Unlike top-down approaches, bottom-up synthetic biology focuses on the construction of a minimal cell from scratch and the application of these principles to solve challenges. Cell-free protein synthesis (CFPS) systems provide minimal machinery for transcription and translation, from either a fractionated cell lysate or individual purified protein elements, thus speeding up the development of synthetic cell projects. In this review, we trace the history of the cell-free technique back to the first in vitro fermentation experiment using yeast cell lysate. Furthermore, we summarized progresses of individual cell mimicry modules, such as compartmentalization, gene expression regulation, energy regeneration and metabolism, growth and division, communication, and motility. Finally, current challenges and future perspectives on the field are outlined.
Collapse
Affiliation(s)
- Ke Yue
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Yingqiu Li
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Mengjiao Cao
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Lulu Shen
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Jingsheng Gu
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Lei Kai
- School of Life Sciences, Jiangsu Normal University, Xuzhou, China.
| |
Collapse
|
34
|
Lund V, Gangotra H, Zhao Z, Sutton JAF, Wacnik K, DeMeester K, Liang H, Santiago C, Leimkuhler Grimes C, Jones S, Foster SJ. Coupling Novel Probes with Molecular Localization Microscopy Reveals Cell Wall Homeostatic Mechanisms in Staphylococcus aureus. ACS Chem Biol 2022; 17:3298-3305. [PMID: 36414253 PMCID: PMC9764285 DOI: 10.1021/acschembio.2c00741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/15/2022] [Indexed: 11/24/2022]
Abstract
Bacterial cell wall peptidoglycan is essential for viability, and its synthesis is targeted by antibiotics, including penicillin. To determine how peptidoglycan homeostasis controls cell architecture, growth, and division, we have developed novel labeling approaches. These are compatible with super-resolution fluorescence microscopy to examine peptidoglycan synthesis, hydrolysis, and the localization of the enzymes required for its biosynthesis (penicillin binding proteins (PBPs)). Synthesis of a cephalosporin-based fluorescent probe revealed a pattern of PBPs at the septum during division, supporting a model of dispersed peptidoglycan synthesis. Metabolic and hydroxylamine-based probes respectively enabled the synthesis of glycan strands and associated reducing termini of the peptidoglycan to be mapped. Foci and arcs of reducing termini appear as a result of both synthesis of glycan strands and glucosaminidase activity of the major peptidoglycan hydrolase, SagB. Our studies provide molecular level details of how essential peptidoglycan dynamics are controlled during growth and division.
Collapse
Affiliation(s)
- Victoria
A. Lund
- School
of Biosciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
- The
Florey Institute for Host−Pathogen Interactions, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Haneesh Gangotra
- The
Florey Institute for Host−Pathogen Interactions, University of Sheffield, Sheffield S10 2TN, United Kingdom
- The
Department of Chemistry, University of Sheffield, Sheffield S3 7HF, United Kingdom
| | - Zhen Zhao
- The
Florey Institute for Host−Pathogen Interactions, University of Sheffield, Sheffield S10 2TN, United Kingdom
- The
Department of Chemistry, University of Sheffield, Sheffield S3 7HF, United Kingdom
| | - Joshua A. F. Sutton
- School
of Biosciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
- The
Florey Institute for Host−Pathogen Interactions, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Katarzyna Wacnik
- School
of Biosciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
- The
Florey Institute for Host−Pathogen Interactions, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Kristen DeMeester
- Department
of Chemistry and Biochemistry and Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, United States
| | - Hai Liang
- Department
of Chemistry and Biochemistry and Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, United States
| | - Cintia Santiago
- Department
of Chemistry and Biochemistry and Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, United States
| | - Catherine Leimkuhler Grimes
- Department
of Chemistry and Biochemistry and Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, United States
| | - Simon Jones
- The
Florey Institute for Host−Pathogen Interactions, University of Sheffield, Sheffield S10 2TN, United Kingdom
- The
Department of Chemistry, University of Sheffield, Sheffield S3 7HF, United Kingdom
| | - Simon J. Foster
- School
of Biosciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
- The
Florey Institute for Host−Pathogen Interactions, University of Sheffield, Sheffield S10 2TN, United Kingdom
| |
Collapse
|
35
|
The Staphylococcus aureus cell division protein, DivIC, interacts with the cell wall and controls its biosynthesis. Commun Biol 2022; 5:1228. [DOI: 10.1038/s42003-022-04161-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/24/2022] [Indexed: 11/13/2022] Open
Abstract
AbstractBacterial cell division is a complex, dynamic process that requires multiple protein components to orchestrate its progression. Many division proteins are highly conserved across bacterial species alluding to a common, basic mechanism. Central to division is a transmembrane trimeric complex involving DivIB, DivIC and FtsL in Gram-positives. Here, we show a distinct, essential role for DivIC in division and survival of Staphylococcus aureus. DivIC spatially regulates peptidoglycan synthesis, and consequently cell wall architecture, by influencing the recruitment to the division septum of the major peptidoglycan synthetases PBP2 and FtsW. Both the function of DivIC and its recruitment to the division site depend on its extracellular domain, which interacts with the cell wall via binding to wall teichoic acids. DivIC facilitates the spatial and temporal coordination of peptidoglycan synthesis with the developing architecture of the septum during cell division. A better understanding of the cell division mechanisms in S. aureus and other pathogenic microorganisms can provide possibilities for the development of new, more effective treatments for bacterial infections.
Collapse
|
36
|
Shinn MK, Cohan MC, Bullock JL, Ruff KM, Levin PA, Pappu RV. Connecting sequence features within the disordered C-terminal linker of Bacillus subtilis FtsZ to functions and bacterial cell division. Proc Natl Acad Sci U S A 2022; 119:e2211178119. [PMID: 36215496 PMCID: PMC9586301 DOI: 10.1073/pnas.2211178119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/20/2022] [Indexed: 11/21/2022] Open
Abstract
Intrinsically disordered regions (IDRs) can function as autoregulators of folded enzymes to which they are tethered. One example is the bacterial cell division protein FtsZ. This includes a folded core and a C-terminal tail (CTT) that encompasses a poorly conserved, disordered C-terminal linker (CTL) and a well-conserved 17-residue C-terminal peptide (CT17). Sites for GTPase activity of FtsZs are formed at the interface between GTP binding sites and T7 loops on cores of adjacent subunits within dimers. Here, we explore the basis of autoregulatory functions of the CTT in Bacillus subtilis FtsZ (Bs-FtsZ). Molecular simulations show that the CT17 of Bs-FtsZ makes statistically significant CTL-mediated contacts with the T7 loop. Statistical coupling analysis of more than 1,000 sequences from FtsZ orthologs reveals clear covariation of the T7 loop and the CT17 with most of the core domain, whereas the CTL is under independent selection. Despite this, we discover the conservation of nonrandom sequence patterns within CTLs across orthologs. To test how the nonrandom patterns of CTLs mediate CTT-core interactions and modulate FtsZ functionalities, we designed Bs-FtsZ variants by altering the patterning of oppositely charged residues within the CTL. Such alterations disrupt the core-CTT interactions, lead to anomalous assembly and inefficient GTP hydrolysis in vitro and protein degradation, aberrant assembly, and disruption of cell division in vivo. Our findings suggest that viable CTLs in FtsZs are likely to be IDRs that encompass nonrandom, functionally relevant sequence patterns that also preserve three-way covariation of the CT17, the T7 loop, and core domain.
Collapse
Affiliation(s)
- Min Kyung Shinn
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130
- Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130
| | - Megan C. Cohan
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130
| | - Jessie L. Bullock
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - Kiersten M. Ruff
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130
- Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130
| | - Petra A. Levin
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - Rohit V. Pappu
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130
- Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130
| |
Collapse
|
37
|
Nierhaus T, McLaughlin SH, Bürmann F, Kureisaite-Ciziene D, Maslen SL, Skehel JM, Yu CWH, Freund SMV, Funke LFH, Chin JW, Löwe J. Bacterial divisome protein FtsA forms curved antiparallel double filaments when binding to FtsN. Nat Microbiol 2022; 7:1686-1701. [PMID: 36123441 PMCID: PMC7613929 DOI: 10.1038/s41564-022-01206-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 07/19/2022] [Indexed: 11/08/2022]
Abstract
During bacterial cell division, filaments of tubulin-like FtsZ form the Z-ring, which is the cytoplasmic scaffold for divisome assembly. In Escherichia coli, the actin homologue FtsA anchors the Z-ring to the membrane and recruits divisome components, including bitopic FtsN. FtsN regulates the periplasmic peptidoglycan synthase FtsWI. To characterize how FtsA regulates FtsN, we applied electron microscopy to show that E. coli FtsA forms antiparallel double filaments on lipid monolayers when bound to the cytoplasmic tail of FtsN. Using X-ray crystallography, we demonstrate that Vibrio maritimus FtsA crystallizes as an equivalent double filament. We identified an FtsA-FtsN interaction site in the IA-IC interdomain cleft of FtsA using X-ray crystallography and confirmed that FtsA forms double filaments in vivo by site-specific cysteine cross-linking. FtsA-FtsN double filaments reconstituted in or on liposomes prefer negative Gaussian curvature, like those of MreB, the actin-like protein of the elongasome. We propose that curved antiparallel FtsA double filaments together with treadmilling FtsZ filaments organize septal peptidoglycan synthesis in the division plane.
Collapse
Affiliation(s)
- Tim Nierhaus
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | | | | - Sarah L Maslen
- MRC Laboratory of Molecular Biology, Cambridge, UK
- The Francis Crick Institute, London, UK
| | - J Mark Skehel
- MRC Laboratory of Molecular Biology, Cambridge, UK
- The Francis Crick Institute, London, UK
| | - Conny W H Yu
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | | - Jason W Chin
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Jan Löwe
- MRC Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
38
|
Lyu Z, Yahashiri A, Yang X, McCausland JW, Kaus GM, McQuillen R, Weiss DS, Xiao J. FtsN maintains active septal cell wall synthesis by forming a processive complex with the septum-specific peptidoglycan synthases in E. coli. Nat Commun 2022; 13:5751. [PMID: 36180460 PMCID: PMC9525312 DOI: 10.1038/s41467-022-33404-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 09/16/2022] [Indexed: 01/06/2023] Open
Abstract
FtsN plays an essential role in promoting the inward synthesis of septal peptidoglycan (sPG) by the FtsWI complex during bacterial cell division. How it achieves this role is unclear. Here we use single-molecule tracking to investigate FtsN's dynamics during sPG synthesis in E. coli. We show that septal FtsN molecules move processively at ~9 nm s-1, the same as FtsWI molecules engaged in sPG synthesis (termed sPG-track), but much slower than the ~30 nm s-1 speed of inactive FtsWI molecules coupled to FtsZ's treadmilling dynamics (termed FtsZ-track). Importantly, processive movement of FtsN is exclusively coupled to sPG synthesis and is required to maintain active sPG synthesis by FtsWI. Our findings indicate that FtsN is part of the FtsWI sPG synthesis complex, and that while FtsN is often described as a "trigger" for the initiation for cell wall constriction, it must remain part of the processive FtsWI complex to maintain sPG synthesis activity.
Collapse
Affiliation(s)
- Zhixin Lyu
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Atsushi Yahashiri
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Xinxing Yang
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- The Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Joshua W McCausland
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Gabriela M Kaus
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Ryan McQuillen
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - David S Weiss
- Department of Microbiology and Immunology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA.
| | - Jie Xiao
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
39
|
MraZ Transcriptionally Controls the Critical Level of FtsL Required for Focusing Z-Rings and Kickstarting Septation in Bacillus subtilis. J Bacteriol 2022; 204:e0024322. [PMID: 35943250 PMCID: PMC9487581 DOI: 10.1128/jb.00243-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bacterial division and cell wall (dcw) cluster is a highly conserved region of the genome which encodes several essential cell division factors, including the central divisome protein FtsZ. Understanding the regulation of this region is key to our overall understanding of the division process. mraZ is found at the 5' end of the dcw cluster, and previous studies have described MraZ as a sequence-specific DNA binding protein. In this article, we investigate MraZ to elucidate its role in Bacillus subtilis. Through our investigation, we demonstrate that increased levels of MraZ result in lethal filamentation due to repression of its own operon (mraZ-mraW-ftsL-pbpB). We observed rescue of filamentation upon decoupling ftsL expression, but not other genes in the operon, from MraZ control. Our data suggest that regulation of the mra operon may be an alternative way for cells to quickly arrest cytokinesis, potentially during entry into the stationary phase and in the event of DNA replication arrest. Furthermore, through time-lapse microscopy, we were able to identify that overexpression of mraZ or depletion of FtsL results in decondensation of the FtsZ ring (Z-ring). Using fluorescent d-amino acid labeling, we also observed that coordinated peptidoglycan insertion at the division site is dysregulated in the absence of FtsL. Thus, we reveal that the precise role of FtsL is in Z-ring maturation and focusing septal peptidoglycan synthesis. IMPORTANCE MraZ is a highly conserved protein found in a diverse range of bacteria, including genome-reduced Mycoplasma. We investigated the role of MraZ in Bacillus subtilis and found that overproduction of MraZ is toxic due to cell division inhibition. Upon further analysis, we observed that MraZ is a repressor of its own operon, which includes genes that encode the essential cell division factors FtsL and PBP2B. We noted that decoupling of ftsL alone was sufficient to abolish MraZ-mediated cell division inhibition. Using time-lapse microscopy, we showed that under conditions where the FtsL level is depleted, the cell division machinery is unable to initiate cytokinesis. Thus, our results pinpoint that the precise role of FtsL is in concentrating septal cell wall synthesis to facilitate cell division.
Collapse
|
40
|
Xu Y, Hernández-Rocamora VM, Lorent JH, Cox R, Wang X, Bao X, Stel M, Vos G, van den Bos RM, Pieters RJ, Gray J, Vollmer W, Breukink E. Metabolic labeling of the bacterial peptidoglycan by functionalized glucosamine. iScience 2022; 25:104753. [PMID: 35942089 PMCID: PMC9356107 DOI: 10.1016/j.isci.2022.104753] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/09/2022] [Accepted: 07/08/2022] [Indexed: 11/28/2022] Open
Abstract
N-Acetylglucosamine (GlcNAc) is an essential monosaccharide required in almost all organisms. Fluorescent labeling of the peptidoglycan (PG) on N-acetylglucosamine has been poorly explored. Here, we report on the labeling of the PG with a bioorthogonal handle on the GlcNAc. We developed a facile one-step synthesis of uridine diphosphate N-azidoacetylglucosamine (UDP-GlcNAz) using the glycosyltransferase OleD, followed by in vitro incorporation of GlcNAz into the peptidoglycan precursor Lipid II and fluorescent labeling of the azido group via click chemistry. In a PG synthesis assay, fluorescent GlcNAz-labeled Lipid II was incorporated into peptidoglycan by the DD-transpeptidase activity of bifunctional class A penicillin-binding proteins. We further demonstrate the incorporation of GlcNAz into the PG layer of OleD-expressed bacteria by feeding with 2-chloro-4-nitrophenyl GlcNAz (GlcNAz-CNP). Hence, our labeling method using the heterologous expression of OleD is useful to study PG synthesis and possibly other biological processes involving GlcNAc metabolism in vivo. Peptidoglycan consists of N-acetylglucosamine, N-acetylmuramic acid, and amino acids We developed a one-step synthesis of azide-labeled UDP-N-acetylglucosamine In vivo generated azide-labeled UDP-N-acetylglucosamine gets incorporated into peptidoglycan Bacteria were fluorescently labeled on N-acetylglucosamine of peptidoglycan
Collapse
Affiliation(s)
- Yang Xu
- Membrane Biochemistry and Biophysics, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands
| | | | - Joseph H. Lorent
- Membrane Biochemistry and Biophysics, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands
| | - Ruud Cox
- Membrane Biochemistry and Biophysics, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands
| | - Xiaoqi Wang
- Membrane Biochemistry and Biophysics, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands
| | - Xue Bao
- Membrane Biochemistry and Biophysics, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands
| | - Marjon Stel
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 Utrecht, the Netherlands
| | - Gaël Vos
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 Utrecht, the Netherlands
| | - Ramon M. van den Bos
- Membrane Biochemistry and Biophysics, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands
| | - Roland J. Pieters
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 Utrecht, the Netherlands
| | - Joe Gray
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Eefjan Breukink
- Membrane Biochemistry and Biophysics, Bijvoet Centre for Biomolecular Research, Department of Chemistry, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands
- Corresponding author
| |
Collapse
|
41
|
Andreu JM, Huecas S, Araújo-Bazán L, Vázquez-Villa H, Martín-Fontecha M. The Search for Antibacterial Inhibitors Targeting Cell Division Protein FtsZ at Its Nucleotide and Allosteric Binding Sites. Biomedicines 2022; 10:1825. [PMID: 36009372 PMCID: PMC9405007 DOI: 10.3390/biomedicines10081825] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/18/2022] [Accepted: 07/25/2022] [Indexed: 11/18/2022] Open
Abstract
The global spread of bacterial antimicrobial resistance is associated to millions of deaths from bacterial infections per year, many of which were previously treatable. This, combined with slow antibiotic deployment, has created an urgent need for developing new antibiotics. A still clinically unexploited mode of action consists in suppressing bacterial cell division. FtsZ, an assembling GTPase, is the key protein organizing division in most bacteria and an attractive target for antibiotic discovery. Nevertheless, developing effective antibacterial inhibitors targeting FtsZ has proven challenging. Here we review our decade-long multidisciplinary research on small molecule inhibitors of bacterial division, in the context of global efforts to discover FtsZ-targeting antibiotics. We focus on methods to characterize synthetic inhibitors that either replace bound GTP from the FtsZ nucleotide binding pocket conserved across diverse bacteria or selectively bind into the allosteric site at the interdomain cleft of FtsZ from Bacillus subtilis and the pathogen Staphylococcus aureus. These approaches include phenotype screening combined with fluorescence polarization screens for ligands binding into each site, followed by detailed cytological profiling, and biochemical and structural studies. The results are analyzed to design an optimized workflow to identify effective FtsZ inhibitors, and new approaches for the discovery of FtsZ-targeting antibiotics are discussed.
Collapse
Affiliation(s)
- José M. Andreu
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain; (S.H.); (L.A.-B.)
| | - Sonia Huecas
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain; (S.H.); (L.A.-B.)
| | - Lidia Araújo-Bazán
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, 28040 Madrid, Spain; (S.H.); (L.A.-B.)
| | - Henar Vázquez-Villa
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid, Spain;
| | - Mar Martín-Fontecha
- Departamento de Química Orgánica, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040 Madrid, Spain
| |
Collapse
|
42
|
Vitamin K3 inhibits FtsZ assembly, disrupts the Z-ring in Streptococcus pneumoniae, and displays anti-pneumococcal activity. Biochem J 2022; 479:1543-1558. [PMID: 35789252 DOI: 10.1042/bcj20220077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022]
Abstract
The respiratory pathogen, Streptococcus pneumoniae has acquired multiple-drug resistance over the years. An attractive strategy to combat pneumococcal infection is to target cell division to inhibit the proliferation of S. pneumoniae. This work presents Vitamin K3 as a potential anti-pneumococcal drug that targets FtsZ, the master coordinator of bacterial cell division. Vitamin K3 strongly inhibited S. pneumoniae proliferation with a Minimum Inhibitory Concentration (MIC) and a Minimum Bactericidal Concentration (MBC) of 6 μg/mL. Vitamin K3 disrupted the Z-ring localization in both S. pneumoniae and Bacillus subtilis within 30 minutes of treatment, while the membrane integrity and nucleoid segregation remain unchanged. Several complementary experiments showed that Vitamin K3 inhibits the assembly of purified S. pneumoniae FtsZ (SpnFtsZ) and induces conformational changes in the protein. Interestingly, Vitamin K3 interfered with GTP-binding onto FtsZ and increased the GTPase activity of FtsZ polymers. The intrinsic tryptophan fluorescence of SpnFtsZ revealed that Vitamin K3 delays the nucleation of FtsZ polymers and reduces the rate of polymerization. In the presence of a non-hydrolyzable analog of GTP, Vitamin K3 did not show inhibition of FtsZ polymerization. These results indicated that Vitamin K3 induces conformational changes in FtsZ that increase GTP hydrolysis and thereby, destabilize the FtsZ polymers. Together, our data provide evidence that Vitamin K3 derives its potent anti-pneumococcal activity by inhibiting FtsZ assembly.
Collapse
|
43
|
Encapsulation of the septal cell wall protects Streptococcus pneumoniae from its major peptidoglycan hydrolase and host defenses. PLoS Pathog 2022; 18:e1010516. [PMID: 35731836 PMCID: PMC9216600 DOI: 10.1371/journal.ppat.1010516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 04/11/2022] [Indexed: 11/19/2022] Open
Abstract
Synthesis of the capsular polysaccharide, a major virulence factor for many pathogenic bacteria, is required for bacterial survival within the infected host. In Streptococcus pneumoniae, Wze, an autophosphorylating tyrosine kinase, and Wzd, a membrane protein required for Wze autophosphorylation, co-localize at the division septum and guarantee the presence of capsule at this subcellular location. To determine how bacteria regulate capsule synthesis, we studied pneumococcal proteins that interact with Wzd and Wze using bacterial two hybrid assays and fluorescence microscopy. We found that Wzd interacts with Wzg, the putative ligase that attaches capsule to the bacterial cell wall, and recruits it to the septal area. This interaction required residue V56 of Wzd and both the transmembrane regions and DNA-PPF domain of Wzg. When compared to the wild type, Wzd null pneumococci lack capsule at midcell, bind the peptidoglycan hydrolase LytA better and are more susceptible to LytA-induced lysis, and are less virulent in a zebrafish embryo infection model. In this manuscript, we propose that the Wzd/Wze pair guarantees full encapsulation of pneumococcal bacteria by recruiting Wzg to the division septum, ensuring that capsule attachment is coordinated with peptidoglycan synthesis. Impairing the encapsulation process, at localized subcellular sites, may facilitate elimination of bacteria by strategies that target the pneumococcal peptidoglycan.
Collapse
|
44
|
Melzer ES, Kado T, García-Heredia A, Gupta KR, Meniche X, Morita YS, Sassetti CM, Rego EH, Siegrist MS. Cell Wall Damage Reveals Spatial Flexibility in Peptidoglycan Synthesis and a Nonredundant Role for RodA in Mycobacteria. J Bacteriol 2022; 204:e0054021. [PMID: 35543537 PMCID: PMC9210966 DOI: 10.1128/jb.00540-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/06/2022] [Indexed: 12/28/2022] Open
Abstract
Cell wall peptidoglycan is a heteropolymeric mesh that protects the bacterium from internal turgor and external insults. In many rod-shaped bacteria, peptidoglycan synthesis for normal growth is achieved by two distinct pathways: the Rod complex, comprised of MreB, RodA, and a cognate class B penicillin-binding protein (PBP), and the class A PBPs (aPBPs). In contrast to laterally growing bacteria, pole-growing mycobacteria do not encode an MreB homolog and do not require SEDS protein RodA for in vitro growth. However, RodA contributes to the survival of Mycobacterium tuberculosis in some infection models, suggesting that the protein could have a stress-dependent role in maintaining cell wall integrity. Under basal conditions, we find here that the subcellular distribution of RodA largely overlaps that of the aPBP PonA1 and that both RodA and the aPBPs promote polar peptidoglycan assembly. Upon cell wall damage, RodA fortifies Mycobacterium smegmatis against lysis and, unlike aPBPs, contributes to a shift in peptidoglycan assembly from the poles to the sidewall. Neither RodA nor PonA1 relocalize; instead, the redistribution of nascent cell wall parallels that of peptidoglycan precursor synthase MurG. Our results support a model in which mycobacteria balance polar growth and cell-wide repair via spatial flexibility in precursor synthesis and extracellular insertion. IMPORTANCE Peptidoglycan synthesis is a highly successful target for antibiotics. The pathway has been extensively studied in model organisms under laboratory-optimized conditions. In natural environments, bacteria are frequently under attack. Moreover, the vast majority of bacterial species are unlikely to fit a single paradigm of cell wall assembly because of differences in growth mode and/or envelope structure. Studying cell wall synthesis under nonoptimal conditions and in nonstandard species may improve our understanding of pathway function and suggest new inhibition strategies. Mycobacterium smegmatis, a relative of several notorious human and animal pathogens, has an unusual polar growth mode and multilayered envelope. In this work, we challenged M. smegmatis with cell wall-damaging enzymes to characterize the roles of cell wall-building enzymes when the bacterium is under attack.
Collapse
Affiliation(s)
- Emily S. Melzer
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Takehiro Kado
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Alam García-Heredia
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | - Xavier Meniche
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Yasu S. Morita
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, USA
| | - Christopher M. Sassetti
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - E. Hesper Rego
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - M. Sloan Siegrist
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
45
|
Corbin Goodman LC, Erickson HP. FtsZ at mid-cell is essential in Escherichia coli until the late stage of constriction. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35679326 DOI: 10.1099/mic.0.001194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
There has been recent debate as to the source of constriction force during cell division. FtsZ can generate a constriction force on tubular membranes in vitro, suggesting it may generate the constriction force in vivo. However, another study showed that mutants of FtsZ did not affect the rate of constriction, whereas mutants of the PG assembly did, suggesting that PG assembly may push the constriction from the outside. Supporting this model, two groups found that cells that have initiated constriction can complete septation while the Z ring is poisoned with the FtsZ targeting antibiotic PC190723. PC19 arrests treadmilling but leaves FtsZ in place. We sought to determine if a fully assembled Z ring is necessary during constriction. To do this, we used a temperature-sensitive FtsZ mutant, FtsZ84. FtsZ84 supports cell division at 30 °C, but it disassembles from the Z ring within 1 min upon a temperature jump to 42 °C. Following the temperature jump we found that cells in early constriction stop constricting. Cells that had progressed to the later stage of division finished constriction without a Z ring. These results show that in Escherichia coli, an assembled Z ring is essential for constriction except in the final stage, contradicting the simplest interpretation of previous studies using PC19.
Collapse
Affiliation(s)
| | - Harold P Erickson
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA.,Department of Cell Biology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
46
|
Kohga H, Mori T, Tanaka Y, Yoshikaie K, Taniguchi K, Fujimoto K, Fritz L, Schneider T, Tsukazaki T. Crystal structure of the lipid flippase MurJ in a "squeezed" form distinct from its inward- and outward-facing forms. Structure 2022; 30:1088-1097.e3. [PMID: 35660157 DOI: 10.1016/j.str.2022.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/15/2022] [Accepted: 05/10/2022] [Indexed: 11/29/2022]
Abstract
The bacterial peptidoglycan enclosing the cytoplasmic membrane is a fundamental cellular architecture. The integral membrane protein MurJ plays an essential role in flipping the cell wall building block Lipid II across the cytoplasmic membrane for peptidoglycan biosynthesis. Previously reported crystal structures of MurJ have elucidated its V-shaped inward- or outward-facing forms with an internal cavity for substrate binding. MurJ transports Lipid II using its cavity through conformational transitions between these two forms. Here, we report two crystal structures of inward-facing forms from Arsenophonus endosymbiont MurJ and an unprecedented crystal structure of Escherichia coli MurJ in a "squeezed" form, which lacks a cavity to accommodate the substrate, mainly because of the increased proximity of transmembrane helices 2 and 8. Subsequent molecular dynamics simulations supported the hypothesis that the squeezed form is an intermediate conformation. This study fills a gap in our understanding of the Lipid II flipping mechanism.
Collapse
Affiliation(s)
- Hidetaka Kohga
- Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Takaharu Mori
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Yoshiki Tanaka
- Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | | | | | - Kei Fujimoto
- Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Lisa Fritz
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
| | - Tanja Schneider
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany
| | - Tomoya Tsukazaki
- Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan.
| |
Collapse
|
47
|
Verheul J, Lodge A, Yau HCL, Liu X, Boelter G, Liu X, Solovyova AS, Typas A, Banzhaf M, Vollmer W, den Blaauwen T. Early midcell localization of Escherichia coli PBP4 supports the function of peptidoglycan amidases. PLoS Genet 2022; 18:e1010222. [PMID: 35604931 PMCID: PMC9166362 DOI: 10.1371/journal.pgen.1010222] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 06/03/2022] [Accepted: 04/27/2022] [Indexed: 11/24/2022] Open
Abstract
Insertion of new material into the Escherichia coli peptidoglycan (PG) sacculus between the cytoplasmic membrane and the outer membrane requires a well-organized balance between synthetic and hydrolytic activities to maintain cell shape and avoid lysis. Since most bacteria carry multiple enzymes carrying the same type of PG hydrolytic activity, we know little about the specific function of given enzymes. Here we show that the DD-carboxy/endopeptidase PBP4 localizes in a PBP1A/LpoA and FtsEX dependent fashion at midcell during septal PG synthesis. Midcell localization of PBP4 requires its non-catalytic domain 3 of unknown function, but not the activity of PBP4 or FtsE. Microscale thermophoresis with isolated proteins shows that PBP4 interacts with NlpI and the FtsEX-interacting protein EnvC, an activator of amidases AmiA and AmiB, which are needed to generate denuded glycan strands to recruit the initiator of septal PG synthesis, FtsN. The domain 3 of PBP4 is needed for the interaction with NlpI and EnvC, but not PBP1A or LpoA. In vivo crosslinking experiments confirm the interaction of PBP4 with PBP1A and LpoA. We propose that the interaction of PBP4 with EnvC, whilst not absolutely necessary for mid-cell recruitment of either protein, coordinates the activities of PBP4 and the amidases, which affects the formation of denuded glycan strands that attract FtsN. Consistent with this model, we found that the divisome assembly at midcell was premature in cells lacking PBP4, illustrating how the complexity of interactions affect the timing of cell division initiation. Peptidoglycan biosynthesis is a major target for antibacterials. The covalently closed peptidoglycan mesh, called sacculus, protects the bacterium from lysis due to its turgor. Sacculus growth is facilitated by the balanced activities of synthases and hydrolases, and disturbing this balance leads to cell lysis and bacterial death. Because of the large number and possible redundant functions of peptidoglycan hydrolases, it has been difficult to decipher their individual functions. In this paper we show that the DD-endopeptidase PBP4 localizes at midcell during septal peptidoglycan synthesis in Escherichia coli and is involved in the timing of the assembly and activation of the division machinery. This shows that inhibition of certain hydrolases could weaken the cells and might enhance antibiotic action.
Collapse
Affiliation(s)
- Jolanda Verheul
- Bacterial Cell Biology, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Adam Lodge
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Hamish C. L. Yau
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Xiaolong Liu
- Bacterial Cell Biology, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Gabriela Boelter
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Xinwei Liu
- Bacterial Cell Biology, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Athanasios Typas
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
- European Molecular Biology Laboratory, Structural & Computational Unit, Heidelberg, Germany
| | - Manuel Banzhaf
- Institute of Microbiology & Infection and School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
- * E-mail: (MB); (WV); (TdB)
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- * E-mail: (MB); (WV); (TdB)
| | - Tanneke den Blaauwen
- Bacterial Cell Biology, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
- * E-mail: (MB); (WV); (TdB)
| |
Collapse
|
48
|
Localized Production of Cell Wall Precursors May Be Critical for Regulating the Mycobacterial Cell Wall. J Bacteriol 2022; 204:e0012522. [PMID: 35543536 DOI: 10.1128/jb.00125-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The paper "Cell wall damage reveals spatial flexibility in peptidoglycan synthesis and a nonredundant role for RodA in mycobacteria" by Melzer et al. (E. S. Melzer, T. Kado, A. Garcia-Heredia, K. R. Gupta, et al., J Bacteriol 204:e00540-21, 2022, https://doi.org/10.1128/JB.00540-21) presents several new observations about the localization and function of cell wall enzymes in Mycobacterium smegmatis and their responses to stress. This work illustrates some important aspects of cell wall physiology in mycobacteria and also points to a new model for how peptidoglycan synthesis may be organized in pole-growing bacteria.
Collapse
|
49
|
Yang W, Cui K, Tong Q, Ma S, Sun Y, He G, Li D, Lin L, Blazekovic B, Chevalier S, Wang Y, Wei Q, Wang Y. Traditional Chinese Medicine Tanreqing Targets Both Cell Division and Virulence in Staphylococcus aureus. Front Cell Infect Microbiol 2022; 12:884045. [PMID: 35573768 PMCID: PMC9093593 DOI: 10.3389/fcimb.2022.884045] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 03/31/2022] [Indexed: 12/03/2022] Open
Abstract
Staphylococcus aureus has been recognized as an important human pathogen and poses a serious health threat worldwide. With the advent of antibiotic resistance, such as the increased number of methicillin-resistant Staphylococcus aureus (MRSA), there is an urgent need to develop new therapeutical agents. In this study, Chinese traditional medicine Tanreqing (TRQ) has been used as an alternative treating agent against MRSA and we aim to unravel the mode of action of TRQ underlying MRSA inhibition. TRQ treatment affected numerous gene expression as revealed by RNA-seq analysis. Meanwhile, TRQ targeted cell division to inhibit cell growth as shown by illumination microscopy. Besides, we confirmed that TRQ downregulates the expression of virulence factors such as hemolysin and autolysin. Finally, we used a murine model to demonstrate that TRQ efficiently reduces bacterial virulence. Altogether, we have proved TRQ formula to be an effective agent against S. aureus infections.
Collapse
Affiliation(s)
- Weifeng Yang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kaiyu Cui
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qian Tong
- School of Biological Engineering and Food Science, Hubei University of Technology, Wuhan, China
| | - Shuhua Ma
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanan Sun
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Gaiying He
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dongying Li
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Longfei Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Biljana Blazekovic
- Department of Pharmacognosy, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Sylvie Chevalier
- Laboratory of Microbiology Signals and Microenvironment, Normandy University, University of Rouen Normandy, Evreux, France
| | - Yuanhong Wang
- College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin, China
| | - Qing Wei
- Nanchang Institute of Technology, Nanchang, China
- *Correspondence: Qing Wei, ; Yi Wang,
| | - Yi Wang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Qing Wei, ; Yi Wang,
| |
Collapse
|
50
|
Lamanna MM, Maurelli AT. What Is Motion? Recent Advances in the Study of Molecular Movement Patterns of the Peptidoglycan Synthesis Machines. J Bacteriol 2022; 204:e0059821. [PMID: 34928180 PMCID: PMC9017339 DOI: 10.1128/jb.00598-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
How proteins move through space and time is a fundamental question in biology. While great strides have been made toward a mechanistic understanding of protein movement, many questions remain. We discuss the biological implications of motion in the context of the peptidoglycan (PG) synthesis machines. We reviewed systems in several bacteria, including Escherichia coli, Bacillus subtilis, and Streptococcus pneumoniae, and present a comprehensive view of our current knowledge regarding movement dynamics. Discrepancies are also addressed because "one size does not fit all". For bacteria to divide, new PG is synthesized and incorporated into the growing cell wall by complex multiprotein nanomachines consisting of PG synthases (transglycosylases [TG] and/or transpeptidases [TP]) as well as a variety of regulators and cytoskeletal factors. Advances in imaging capabilities and labeling methods have revealed that these machines are not static but rather circumferentially transit the cell via directed motion perpendicular to the long axis of model rod-shaped bacteria such as E. coli and B. subtilis. The enzymatic activity of the TG:TPs drives motion in some species while motion is mediated by FtsZ treadmilling in others. In addition, both directed and diffusive motion of the PG synthases have been observed using single-particle tracking technology. Here, we examined the biological role of diffusion regarding transit. Lastly, findings regarding the monofunctional transglycosylases (RodA and FtsW) as well as the Class A PG synthases are discussed. This minireview serves to showcase recent advances, broach mechanistic unknowns, and stimulate future areas of study.
Collapse
Affiliation(s)
- Melissa Mae Lamanna
- Department of Environmental & Global Health and Emerging Pathogens Institute, University of Floridagrid.15276.37, Gainesville, Florida, USA
| | - Anthony T. Maurelli
- Department of Environmental & Global Health and Emerging Pathogens Institute, University of Floridagrid.15276.37, Gainesville, Florida, USA
| |
Collapse
|