1
|
Styczinski MJ, Cooper ZS, Glaser DM, Lehmer O, Mierzejewski V, Tarnas J. Chapter 7: Assessing Habitability Beyond Earth. ASTROBIOLOGY 2024; 24:S143-S163. [PMID: 38498826 DOI: 10.1089/ast.2021.0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
All known life on Earth inhabits environments that maintain conditions between certain extremes of temperature, chemical composition, energy availability, and so on (Chapter 6). Life may have emerged in similar environments elsewhere in the Solar System and beyond. The ongoing search for life elsewhere mainly focuses on those environments most likely to support life, now or in the past-that is, potentially habitable environments. Discussion of habitability is necessarily based on what we know about life on Earth, as it is our only example. This chapter gives an overview of the known and presumed requirements for life on Earth and discusses how these requirements can be used to assess the potential habitability of planetary bodies across the Solar System and beyond. We first consider the chemical requirements of life and potential feedback effects that the presence of life can have on habitable conditions, and then the planetary, stellar, and temporal requirements for habitability. We then review the state of knowledge on the potential habitability of bodies across the Solar System and exoplanets, with a particular focus on Mars, Venus, Europa, and Enceladus. While reviewing the case for the potential habitability of each body, we summarize the most prominent and impactful studies that have informed the perspective on where habitable environments are likely to be found.
Collapse
Affiliation(s)
- M J Styczinski
- University of Washington, Seattle, Washington, USA
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Z S Cooper
- University of Washington, Seattle, Washington, USA
| | - D M Glaser
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
| | - O Lehmer
- NASA Ames Research Center, Moffett Field, California, USA
| | - V Mierzejewski
- School of Earth and Space Exploration, Arizona State University, Arizona, USA
| | - J Tarnas
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
2
|
Steele SC, Fu RR, Volk MW, North TL, Brenner AR, Muxworthy AR, Collins GS, Davison TM. Paleomagnetic evidence for a long-lived, potentially reversing martian dynamo at ~3.9 Ga. SCIENCE ADVANCES 2023; 9:eade9071. [PMID: 37224261 PMCID: PMC10957104 DOI: 10.1126/sciadv.ade9071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 04/19/2023] [Indexed: 05/26/2023]
Abstract
The 4.1-billion-year-old meteorite Allan Hills 84001 (ALH 84001) may preserve a magnetic record of the extinct martian dynamo. However, previous paleomagnetic studies have reported heterogeneous, nonunidirectional magnetization in the meteorite at submillimeter scales, calling into question whether it records a dynamo field. We use the quantum diamond microscope to analyze igneous Fe-sulfides in ALH 84001 that may carry remanence as old as 4.1 billion years (Ga). We find that individual, 100-μm-scale ferromagnetic mineral assemblages are strongly magnetized in two nearly antipodal directions. This suggests that the meteorite recorded strong fields following impact heating at 4.1 to 3.95 Ga, after which at least one further impact heterogeneously remagnetized the meteorite in a nearly antipodal local field. These observations are most simply explained by a reversing martian dynamo that was active until 3.9 Ga, thereby implying a late cessation for the martian dynamo and potentially documenting reversing behavior in a nonterrestrial planetary dynamo.
Collapse
Affiliation(s)
- Sarah C. Steele
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Roger R. Fu
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Michael W. R. Volk
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA
- Department of Earth Sciences, Utrecht University, Utrecht 3584 CS, Netherlands
| | - Thomas L. North
- Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, UK
| | - Alec R. Brenner
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Adrian R. Muxworthy
- Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, UK
| | - Gareth S. Collins
- Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, UK
| | - Thomas M. Davison
- Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
3
|
Rodriguez JAP, Robertson DK, Kargel JS, Baker VR, Berman DC, Cohen J, Costard F, Komatsu G, Lopez A, Miyamoto H, Zarroca M. Evidence of an oceanic impact and megatsunami sedimentation in Chryse Planitia, Mars. Sci Rep 2022; 12:19589. [PMID: 36456647 PMCID: PMC9715952 DOI: 10.1038/s41598-022-18082-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 08/04/2022] [Indexed: 12/05/2022] Open
Abstract
In 1976, NASA's Viking 1 Lander (V1L) was the first spacecraft to operate successfully on the Martian surface. The V1L landed near the terminus of an enormous catastrophic flood channel, Maja Valles. However, instead of the expected megaflood record, its cameras imaged a boulder-strewn surface of elusive origin. We identified a 110-km-diameter impact crater (Pohl) ~ 900 km northeast of the landing site, stratigraphically positioned (a) above catastrophic flood-eroded surfaces formed ~ 3.4 Ga during a period of northern plains oceanic inundation and (b) below the younger of two previously hypothesized megatsunami deposits. These stratigraphic relationships suggest that a marine impact likely formed the crater. Our simulated impact-generated megatsunami run-ups closely match the mapped older megatsunami deposit's margins and predict fronts reaching the V1L site. The site's location along a highland-facing lobe aligned to erosional grooves supports a megatsunami origin. Our mapping also shows that Pohl's knobby rim regionally represents a broader history of megatsunami modification involving circum-oceanic glaciation and sedimentary extrusions extending beyond the recorded megatsunami emplacement in Chryse Planitia. Our findings allow that rocks and soil salts at the landing site are of marine origin, inviting the scientific reconsideration of information gathered from the first in-situ measurements on Mars.
Collapse
Affiliation(s)
- J. Alexis P. Rodriguez
- grid.423138.f0000 0004 0637 3991Planetary Science Institute, 1700 East Fort Lowell Road, Suite 106, Tucson, AZ 85719-2395 USA
| | - Darrel K. Robertson
- grid.419075.e0000 0001 1955 7990NASA Ames Research Center, Moffett Field, CA 94035 USA
| | - Jeffrey S. Kargel
- grid.423138.f0000 0004 0637 3991Planetary Science Institute, 1700 East Fort Lowell Road, Suite 106, Tucson, AZ 85719-2395 USA
| | - Victor R. Baker
- grid.134563.60000 0001 2168 186XDepartment of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ 85721 USA
| | - Daniel C. Berman
- grid.423138.f0000 0004 0637 3991Planetary Science Institute, 1700 East Fort Lowell Road, Suite 106, Tucson, AZ 85719-2395 USA
| | - Jacob Cohen
- grid.419075.e0000 0001 1955 7990NASA Ames Research Center, Moffett Field, CA 94035 USA
| | - Francois Costard
- grid.503243.3GEOPS-Géosciences Paris Sud, Université Paris-Sud, CNRS, Université Paris-Saclay, 91405 Orsay, France
| | - Goro Komatsu
- grid.412451.70000 0001 2181 4941International Research School of Planetary Sciences, Università D’Annunzio, Viale Pindaro 42, 65127 Pescara, Italy
| | - Anthony Lopez
- grid.423138.f0000 0004 0637 3991Planetary Science Institute, 1700 East Fort Lowell Road, Suite 106, Tucson, AZ 85719-2395 USA
| | - Hideaki Miyamoto
- grid.26999.3d0000 0001 2151 536XDepartment of Systems Innovation, University of Tokyo, Tokyo, 113-8656 Japan
| | - Mario Zarroca
- grid.7080.f0000 0001 2296 0625External Geodynamics and Hydrogeology Group, Department of Geology, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
4
|
Kim D, Banerdt WB, Ceylan S, Giardini D, Lekić V, Lognonné P, Beghein C, Beucler É, Carrasco S, Charalambous C, Clinton J, Drilleau M, Durán C, Golombek M, Joshi R, Khan A, Knapmeyer-Endrun B, Li J, Maguire R, Pike WT, Samuel H, Schimmel M, Schmerr NC, Stähler SC, Stutzmann E, Wieczorek M, Xu Z, Batov A, Bozdag E, Dahmen N, Davis P, Gudkova T, Horleston A, Huang Q, Kawamura T, King SD, McLennan SM, Nimmo F, Plasman M, Plesa AC, Stepanova IE, Weidner E, Zenhäusern G, Daubar IJ, Fernando B, Garcia RF, Posiolova LV, Panning MP. Surface waves and crustal structure on Mars. Science 2022; 378:417-421. [DOI: 10.1126/science.abq7157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
We detected surface waves from two meteorite impacts on Mars. By measuring group velocity dispersion along the impact-lander path, we obtained a direct constraint on crustal structure away from the InSight lander. The crust north of the equatorial dichotomy had a shear wave velocity of approximately 3.2 kilometers per second in the 5- to 30-kilometer depth range, with little depth variation. This implies a higher crustal density than inferred beneath the lander, suggesting either compositional differences or reduced porosity in the volcanic areas traversed by the surface waves. The lower velocities and the crustal layering observed beneath the landing site down to a 10-kilometer depth are not a global feature. Structural variations revealed by surface waves hold implications for models of the formation and thickness of the martian crust.
Collapse
Affiliation(s)
- D. Kim
- Institute of Geophysics, ETH Zürich, Zürich, Switzerland
- Department of Geology, University of Maryland, College Park, MD, USA
| | - W. B. Banerdt
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - S. Ceylan
- Institute of Geophysics, ETH Zürich, Zürich, Switzerland
| | - D. Giardini
- Institute of Geophysics, ETH Zürich, Zürich, Switzerland
| | - V. Lekić
- Department of Geology, University of Maryland, College Park, MD, USA
| | - P. Lognonné
- Université Paris Cité, Institut de physique du globe de Paris, CNRS, Paris, France
| | - C. Beghein
- Department of Earth, Planetary and Space Sciences, University of California, Los Angeles, CA, USA
| | - É. Beucler
- Nantes Université, Université Angers, Le Mans Université, CNRS, UMR 6112, Laboratoire de Planétologie et Géosciences, Nantes, France
| | - S. Carrasco
- Bensberg Observatory, University of Cologne, Bergisch Gladbach, Germany
| | - C. Charalambous
- Department of Electrical and Electronic Engineering, Imperial College London, London, UK
| | - J. Clinton
- Swiss Seismological Service, ETH Zürich, Zürich, Switzerland
| | - M. Drilleau
- Institut Supérieur de l’Aéronautique et de l’Espace ISAE-SUPAERO, Toulouse, France
| | - C. Durán
- Institute of Geophysics, ETH Zürich, Zürich, Switzerland
| | - M. Golombek
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - R. Joshi
- Max Planck Institute for Solar System Research, Göttingen, Germany
| | - A. Khan
- Institute of Geophysics, ETH Zürich, Zürich, Switzerland
- Physik-Institut, University of Zürich, Zürich, Switzerland
| | | | - J. Li
- Department of Earth, Planetary and Space Sciences, University of California, Los Angeles, CA, USA
| | - R. Maguire
- Department of Geology, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - W. T. Pike
- Bensberg Observatory, University of Cologne, Bergisch Gladbach, Germany
| | - H. Samuel
- Université Paris Cité, Institut de physique du globe de Paris, CNRS, Paris, France
| | - M. Schimmel
- Geosciences Barcelona, CSIC, Barcelona, Spain
| | - N. C. Schmerr
- Department of Geology, University of Maryland, College Park, MD, USA
| | - S. C. Stähler
- Institute of Geophysics, ETH Zürich, Zürich, Switzerland
| | - E. Stutzmann
- Université Paris Cité, Institut de physique du globe de Paris, CNRS, Paris, France
| | - M. Wieczorek
- Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, Laboratoire Lagrange, Nice, France
| | - Z. Xu
- Université Paris Cité, Institut de physique du globe de Paris, CNRS, Paris, France
| | - A. Batov
- Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, Moscow, Russia
| | - E. Bozdag
- Department of Geophysics, Colorado School of Mines, Golden, CO, USA
| | - N. Dahmen
- Institute of Geophysics, ETH Zürich, Zürich, Switzerland
| | - P. Davis
- Department of Earth, Planetary and Space Sciences, University of California, Los Angeles, CA, USA
| | - T. Gudkova
- Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, Moscow, Russia
| | - A. Horleston
- School of Earth Sciences, University of Bristol, Bristol, UK
| | - Q. Huang
- Department of Geophysics, Colorado School of Mines, Golden, CO, USA
| | - T. Kawamura
- Université Paris Cité, Institut de physique du globe de Paris, CNRS, Paris, France
| | - S. D. King
- Department of Geosciences, Virginia Tech, Blacksburg, VA, USA
| | - S. M. McLennan
- Department of Geosciences, Stony Brook University, Stony Brook, NY, USA
| | - F. Nimmo
- Department of Earth and Planetary Sciences, University of California Santa Cruz, Santa Cruz, CA, USA
| | - M. Plasman
- Université Paris Cité, Institut de physique du globe de Paris, CNRS, Paris, France
| | - A. C. Plesa
- Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany
| | - I. E. Stepanova
- Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, Moscow, Russia
| | - E. Weidner
- Department of Earth, Planetary and Space Sciences, University of California, Los Angeles, CA, USA
| | - G. Zenhäusern
- Institute of Geophysics, ETH Zürich, Zürich, Switzerland
| | - I. J. Daubar
- Department of Earth, Environmental, and Planetary Sciences, Brown University, Providence, RI, USA
| | - B. Fernando
- Department of Earth Sciences, University of Oxford, Oxford, UK
| | - R. F. Garcia
- Institut Supérieur de l’Aéronautique et de l’Espace ISAE-SUPAERO, Toulouse, France
| | | | - M. P. Panning
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
5
|
Kite ES, Mischna MA, Fan B, Morgan AM, Wilson SA, Richardson MI. Changing spatial distribution of water flow charts major change in Mars's greenhouse effect. SCIENCE ADVANCES 2022; 8:eabo5894. [PMID: 35613275 PMCID: PMC9132440 DOI: 10.1126/sciadv.abo5894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/31/2022] [Indexed: 06/15/2023]
Abstract
Early Mars had rivers, but the cause of Mars's wet-to-dry transition remains unknown. Past climate on Mars can be probed using the spatial distribution of climate-sensitive landforms. We analyzed global databases of water-worked landforms and identified changes in the spatial distribution of rivers over time. These changes are simply explained by comparison to a simplified meltwater model driven by an ensemble of global climate model simulations, as the result of ≳10 K global cooling, from global average surface temperature [Formula: see text] ≥ 268 K to [Formula: see text] ~ 258 K, due to a weaker greenhouse effect. In other words, river-forming climates on early Mars were warm and wet first, and cold and wet later. Unexpectedly, analysis of the greenhouse effect within our ensemble of global climate model simulations suggests that this shift was primarily driven by waning non-CO2 radiative forcing, and not changes in CO2 radiative forcing.
Collapse
Affiliation(s)
| | - Michael A. Mischna
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - Bowen Fan
- University of Chicago, Chicago, IL 60637, USA
| | - Alexander M. Morgan
- Smithsonian Institution, Washington, DC 20002, USA
- Planetary Science Institute, Tucson, AZ 85719, USA
| | | | | |
Collapse
|
6
|
Abstract
The current Martian climate is not habitable and far from Earth’s climate. At the same time that life spread on Earth (3 Gy ago), the Red Planet was possibly more similar to our Blue Planet. Our model includes a coupled model with dynamic ocean and atmosphere including a hydrological cycle and a simplified glacier mass flux scheme. We show that an ocean is stable in agreement with interpretations of the surface geological records. What was the nature of the Late Hesperian climate, warm and wet or cold and dry? Formulated this way the question leads to an apparent paradox since both options seem implausible. A warm and wet climate would have produced extensive fluvial erosion but few valley networks have been observed at the age of the Late Hesperian. A too cold climate would have kept any northern ocean frozen most of the time. A moderate cold climate would have transferred the water from the ocean to the land in the form of snow and ice. But this would prevent tsunami formation, for which there is some evidence. Here, we provide insights from numerical climate simulations in agreement with surface geological features to demonstrate that the Martian climate could have been both cold and wet. Using an advanced general circulation model (GCM), we demonstrate that an ocean can be stable, even if the Martian mean surface temperature is lower than 0 °C. Rainfall is moderate near the shorelines and in the ocean. The southern plateau is mostly covered by ice with a mean temperature below 0 °C and a glacier return flow back to the ocean. This climate is achieved with a 1-bar CO2-dominated atmosphere with 10% H2. Under this scenario of 3 Ga, the geologic evidence of a shoreline and tsunami deposits along the ocean/land dichotomy are compatible with ice sheets and glacial valleys in the southern highlands.
Collapse
|
7
|
Goodwin A, Papineau D. Biosignatures Associated with Organic Matter in Late Paleoproterozoic Stromatolitic Dolomite and Implications for Martian Carbonates. ASTROBIOLOGY 2022; 22:49-74. [PMID: 34664990 DOI: 10.1089/ast.2021.0010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The documentation of biosignatures in Precambrian rocks is an important requirement in the search for evidence of life on other ancient planetary surfaces. Three major kinds of biosignatures are crucially important: primary microbial sedimentary textures, diagenetic organomineral assemblages, and stable isotope compositions. This study presents new petrographic, mineralogical, and organic geochemical analyses of biosignatures in dolomitic stromatolites from the Pethei Group (N.W.T., Canada) and the Kasegalik Formation of the Belcher Group (Nunavut, Canada). Both are approximately contemporary late Paleoproterozoic stromatolite-bearing dolomitic units deposited after the Great Oxidation Event. Micro-Raman and optical microscopy are used to identify and characterize possible diagenetic biosignatures, which include close spatial association of diagenetic materials (such as ferric-ferrous oxide and anatase) with disseminated organic matter (OM), dolomitic groundmass textures, and mineralized balls. Many of these petrographic relationships point to the oxidation of OM either biotically or abiotically in association with iron reduction and chemically oscillating reactions. Oxidation of OM in these stromatolites is consistent with the widespread oxidation of biomass during the late Paleoproterozoic Shunga-Francevillian Event. Biosignatures identified in this study are also compared with possible carbonate outcrops on Mars, and thereby contribute a basis for comparison with potential biosignatures in ancient martian terrains. Similarities are drawn between the paleoenvironments of the studied units to the Isidis and Chryse planitia as locations for potential extraterrestrial dolomitic stromatolites.
Collapse
Affiliation(s)
- Arthur Goodwin
- Centre for Planetary Sciences, UCL-Birkbeck, London, United Kingdom
| | - Dominic Papineau
- Centre for Planetary Sciences, UCL-Birkbeck, London, United Kingdom
- London Centre for Nanotechnology, University College London, London, United Kingdom
- Department of Earth Sciences, University College London, London, United Kingdom
| |
Collapse
|
8
|
Ojha L, Karunatillake S, Karimi S, Buffo J. Amagmatic hydrothermal systems on Mars from radiogenic heat. Nat Commun 2021; 12:1754. [PMID: 33741920 PMCID: PMC7979869 DOI: 10.1038/s41467-021-21762-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/04/2021] [Indexed: 11/30/2022] Open
Abstract
Long-lived hydrothermal systems are prime targets for astrobiological exploration on Mars. Unlike magmatic or impact settings, radiogenic hydrothermal systems can survive for >100 million years because of the Ga half-lives of key radioactive elements (e.g., U, Th, and K), but remain unknown on Mars. Here, we use geochemistry, gravity, topography data, and numerical models to find potential radiogenic hydrothermal systems on Mars. We show that the Eridania region, which once contained a vast inland sea, possibly exceeding the combined volume of all other Martian surface water, could have readily hosted a radiogenic hydrothermal system. Thus, radiogenic hydrothermalism in Eridania could have sustained clement conditions for life far longer than most other habitable sites on Mars. Water radiolysis by radiogenic heat could have produced H2, a key electron donor for microbial life. Furthermore, hydrothermal circulation may help explain the region's high crustal magnetic field and gravity anomaly.
Collapse
Affiliation(s)
- Lujendra Ojha
- Department of Earth and Planetary Sciences. Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
| | - Suniti Karunatillake
- Department of Geology and Geophysics, Louisiana State University, Baton Rouge, LA, USA
| | - Saman Karimi
- Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Jacob Buffo
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| |
Collapse
|
9
|
Quantin-Nataf C, Carter J, Mandon L, Thollot P, Balme M, Volat M, Pan L, Loizeau D, Millot C, Breton S, Dehouck E, Fawdon P, Gupta S, Davis J, Grindrod PM, Pacifici A, Bultel B, Allemand P, Ody A, Lozach L, Broyer J. Oxia Planum: The Landing Site for the ExoMars "Rosalind Franklin" Rover Mission: Geological Context and Prelanding Interpretation. ASTROBIOLOGY 2021; 21:345-366. [PMID: 33400892 PMCID: PMC7987365 DOI: 10.1089/ast.2019.2191] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 10/20/2020] [Indexed: 05/19/2023]
Abstract
The European Space Agency (ESA) and Roscosmos ExoMars mission will launch the "Rosalind Franklin" rover in 2022 for a landing on Mars in 2023.The goals of the mission are to search for signs of past and present life on Mars, investigate the water/geochemical environment as a function of depth in the shallow subsurface, and characterize the surface environment. To meet these scientific objectives while minimizing the risk for landing, a 5-year-long landing site selection process was conducted by ESA, during which eight candidate sites were down selected to one: Oxia Planum. Oxia Planum is a 200 km-wide low-relief terrain characterized by hydrous clay-bearing bedrock units located at the southwest margin of Arabia Terra. This region exhibits Noachian-aged terrains. We show in this study that the selected landing site has recorded at least two distinct aqueous environments, both of which occurred during the Noachian: (1) a first phase that led to the deposition and alteration of ∼100 m of layered clay-rich deposits and (2) a second phase of a fluviodeltaic system that postdates the widespread clay-rich layered unit. Rounded isolated buttes that overlie the clay-bearing unit may also be related to aqueous processes. Our study also details the formation of an unaltered mafic-rich dark resistant unit likely of Amazonian age that caps the other units and possibly originated from volcanism. Oxia Planum shows evidence for intense erosion from morphology (inverted features) and crater statistics. Due to these erosional processes, two types of Noachian sedimentary rocks are currently exposed. We also expect rocks at the surface to have been exposed to cosmic bombardment only recently, minimizing organic matter damage.
Collapse
Affiliation(s)
- Cathy Quantin-Nataf
- Univ Lyon, Univ Lyon 1, ENS Lyon, CNRS, LGL-TPE, 2 Rue Raphael Dubois, F-69622 Villeurbanne, France, France
- Address correspondence to: Cathy Quantin-Nataf, Univ Lyon, Univ Lyon 1, ENSL, CNRS, LGL-TPE, Villeurbanne F-69622, France
| | - John Carter
- Institut d'Astrophysique Spatiale, Univ Paris Sud, CNRS, UMR 8617, Univ Paris-Saclay, Bat 120-121, F-91405 Orsay, France
| | - Lucia Mandon
- Univ Lyon, Univ Lyon 1, ENS Lyon, CNRS, LGL-TPE, 2 Rue Raphael Dubois, F-69622 Villeurbanne, France, France
| | - Patrick Thollot
- Univ Lyon, Univ Lyon 1, ENS Lyon, CNRS, LGL-TPE, 2 Rue Raphael Dubois, F-69622 Villeurbanne, France, France
| | - Matthew Balme
- Open Univ, Dept Earth & Environm Sci, Milton Keynes MK7 6AA, Bucks, England
| | - Matthieu Volat
- Univ Lyon, Univ Lyon 1, ENS Lyon, CNRS, LGL-TPE, 2 Rue Raphael Dubois, F-69622 Villeurbanne, France, France
| | - Lu Pan
- Univ Lyon, Univ Lyon 1, ENS Lyon, CNRS, LGL-TPE, 2 Rue Raphael Dubois, F-69622 Villeurbanne, France, France
| | - Damien Loizeau
- Univ Lyon, Univ Lyon 1, ENS Lyon, CNRS, LGL-TPE, 2 Rue Raphael Dubois, F-69622 Villeurbanne, France, France
- Institut d'Astrophysique Spatiale, Univ Paris Sud, CNRS, UMR 8617, Univ Paris-Saclay, Bat 120-121, F-91405 Orsay, France
| | - Cédric Millot
- Univ Lyon, Univ Lyon 1, ENS Lyon, CNRS, LGL-TPE, 2 Rue Raphael Dubois, F-69622 Villeurbanne, France, France
| | - Sylvain Breton
- Univ Lyon, Univ Lyon 1, ENS Lyon, CNRS, LGL-TPE, 2 Rue Raphael Dubois, F-69622 Villeurbanne, France, France
| | - Erwin Dehouck
- Univ Lyon, Univ Lyon 1, ENS Lyon, CNRS, LGL-TPE, 2 Rue Raphael Dubois, F-69622 Villeurbanne, France, France
| | - Peter Fawdon
- Open Univ, Dept Earth & Environm Sci, Milton Keynes MK7 6AA, Bucks, England
| | - Sanjeev Gupta
- Univ London Imperial Coll Sci Technol & Med, Dept Earth Sci & Engn, London SW7 2AZ, England
| | - Joel Davis
- Department of Earth Sciences, Natural History Museum, London, United Kingdom
| | - Peter M. Grindrod
- Department of Earth Sciences, Natural History Museum, London, United Kingdom
| | | | - Benjamin Bultel
- Univ Lyon, Univ Lyon 1, ENS Lyon, CNRS, LGL-TPE, 2 Rue Raphael Dubois, F-69622 Villeurbanne, France, France
- Department for Geosciences, Centre for Earth Evolution and Dynamics (CEED), University of Oslo, Oslo, Norway
| | - Pascal Allemand
- Univ Lyon, Univ Lyon 1, ENS Lyon, CNRS, LGL-TPE, 2 Rue Raphael Dubois, F-69622 Villeurbanne, France, France
| | - Anouck Ody
- Univ Lyon, Univ Lyon 1, ENS Lyon, CNRS, LGL-TPE, 2 Rue Raphael Dubois, F-69622 Villeurbanne, France, France
| | - Loic Lozach
- Univ Lyon, Univ Lyon 1, ENS Lyon, CNRS, LGL-TPE, 2 Rue Raphael Dubois, F-69622 Villeurbanne, France, France
| | - Jordan Broyer
- Univ Lyon, Univ Lyon 1, ENS Lyon, CNRS, LGL-TPE, 2 Rue Raphael Dubois, F-69622 Villeurbanne, France, France
| |
Collapse
|
10
|
Duran S, Coulthard TJ. The Kasei Valles, Mars: a unified record of episodic channel flows and ancient ocean levels. Sci Rep 2020; 10:18571. [PMID: 33122736 PMCID: PMC7596472 DOI: 10.1038/s41598-020-75080-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 09/30/2020] [Indexed: 11/08/2022] Open
Abstract
There is widespread evidence across Mars of past flows in major channel systems as well as more than one palaeo ocean level. However, evidence for the timing of channel flows and ocean levels is based on geographically diverse sources with a limited number of dates, making reconstructions of palaeo flows and ocean levels patchy. Here, based on high-resolution topography, image analysis and crater statistics, we have dated 35 different surfaces in Kasei Valles, that are predominantly found within erosional units enabling us to reconstruct a fascinating timeline of episodic flooding events (ranging from 3.7 to 3.6 Ga to ca. 2.0 Ga) interacting with changing ocean/base levels. The temporal correlation of the different surfaces indicates five periods of channel flows driving the evolution of Kasei Valles, in conjunction with the development of (at least) two ocean levels. Furthermore, our results imply that such ocean rose in elevation (ca. 1000 m) between ca. 3.6 Ga and 3.2 Ga and soon afterwards disappeared, thereby indicating a complex ancient Martian hydrosphere capable of supporting a vast ocean, with an active hydrological cycle stretching into the Amazonian.
Collapse
Affiliation(s)
- Sergio Duran
- Energy and Environment Institute, University of Hull, Hull, UK.
| | - Tom J Coulthard
- Energy and Environment Institute, University of Hull, Hull, UK
| |
Collapse
|
11
|
Photochemistry of Anoxic Abiotic Habitable Planet Atmospheres: Impact of New H2O Cross Sections. ACTA ACUST UNITED AC 2020. [DOI: 10.3847/1538-4357/ab9363] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Fujita K, Kurosawa K, Genda H, Hyodo R, Matsuyama S, Yamagishi A, Mikouchi T, Niihara T. Assessment of the probability of microbial contamination for sample return from Martian moons I: Departure of microbes from Martian surface. LIFE SCIENCES IN SPACE RESEARCH 2019; 23:73-84. [PMID: 31791608 DOI: 10.1016/j.lssr.2019.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 05/26/2023]
Abstract
Potential microbial contamination of Martian moons, Phobos and Deimos, which can be brought about by transportation of Mars ejecta produced by meteoroid impacts on the Martian surface, has been comprehensively assessed in a statistical approach, based on the most probable history of recent major gigantic meteoroid collisions on the Martian surface. This article is the first part of our study to assess potential microbial density in Mars ejecta departing from the Martian atmosphere, as a source of the second part (Kurosawa et al., 2019) where statistical analysis of microbial contamination probability is conducted. Potential microbial density on the Martian surface as the source of microorganisms was estimated by analogy to the terrestrial areas having the similar arid and cold environments, from which a probabilistic function was deduced as the asymptotic limit. Microbial survival rate during hypervelocity meteoroid collisions was estimated by numerical analysis of impact phenomena with and without taking internal friction and plastic deformation of the colliding meteoroid and the target ground into consideration. Trajectory calculations of departing ejecta through the Martian atmosphere were conducted with taking account of aerodynamic deceleration and heating by the aid of computational fluid dynamic analysis. It is found that Mars ejecta smaller than 0.03 m in diameter hardly reach the Phobos orbit due to aerodynamic deceleration, or mostly sterilized due to significant aerodynamic heating even though they can reach the Phobos orbit and beyond. Finally, the baseline dataset of microbial density in Mars ejecta departing for Martian moons has been presented for the second part of our study.
Collapse
Affiliation(s)
- Kazuhisa Fujita
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1, Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210, Japan.
| | - Kosuke Kurosawa
- Planetary Exploration Research Center, Chiba Institute of Technology, 2-17-1, Tsudanuma, Narashino, Chiba 275-0016, Japan
| | - Hidenori Genda
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Ryuki Hyodo
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Shingo Matsuyama
- Aeronautical Technology Directorate, Japan Aerospace Exploration Agency, 7-44-1, Jindaijihigasi-machi, Chofu, Tokyo 182-8522, Japan
| | - Akihiko Yamagishi
- Department of Applied Life Sciences, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Takashi Mikouchi
- The University Museum, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takafumi Niihara
- Department of Systems Innovation, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
13
|
Fukushi K, Sekine Y, Sakuma H, Morida K, Wordsworth R. Semiarid climate and hyposaline lake on early Mars inferred from reconstructed water chemistry at Gale. Nat Commun 2019; 10:4896. [PMID: 31653859 PMCID: PMC6814795 DOI: 10.1038/s41467-019-12871-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 10/01/2019] [Indexed: 12/02/2022] Open
Abstract
Salinity, pH, and redox states are fundamental properties that characterize natural waters. These properties of surface waters on early Mars reflect palaeoenvironments, and thus provide clues on the palaeoclimate and habitability. Here we constrain these properties of pore water within lacustrine sediments of Gale Crater, Mars, using smectite interlayer compositions. Regardless of formation conditions of smectite, the pore water that last interacted with the sediments was of Na-Cl type with mild salinity (~0.1-0.5 mol/kg) and circumneutral pH. To interpret this, multiple scenarios for post-depositional alterations are considered. The estimated Na-Cl concentrations would reflect hyposaline, early lakes developed in 104-106-year-long semiarid climates. Assuming that post-depositional sulfate-rich fluids interacted with the sediments, the redox disequilibria in secondary minerals suggest infiltration of oxidizing fluids into reducing sediments. Assuming no interactions, the redox disequilibria could have been generated by interactions of upwelling groundwater with oxidized sediments in early post-depositional stages.
Collapse
Affiliation(s)
- Keisuke Fukushi
- Institute of Nature and Environmental Technology, Kanazawa University, Kanazawa, Ishikawa, Japan.
| | - Yasuhito Sekine
- Institute of Nature and Environmental Technology, Kanazawa University, Kanazawa, Ishikawa, Japan
- Earth-Life Science Institute, Tokyo Institute of Technology, Meguro-ku, Tokyo, Japan
| | - Hiroshi Sakuma
- National Institute for Materials Science, Tsukuba, Ibaraki, Japan
| | - Koki Morida
- Division of Natural System, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Robin Wordsworth
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
| |
Collapse
|
14
|
Duran S, Coulthard TJ, Baynes ERC. Knickpoints in Martian channels indicate past ocean levels. Sci Rep 2019; 9:15153. [PMID: 31641171 PMCID: PMC6805925 DOI: 10.1038/s41598-019-51574-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/23/2019] [Indexed: 12/05/2022] Open
Abstract
On Mars, the presence of extensive networks of sinuous valleys and large channels provides evidence for a wetter and warmer environment where liquid water was more abundant than it is at present. We undertook an analysis of all major channel systems on Mars and detected sharp changes in elevation along the river long profiles associated with steep headwall theatre-like valleys and terraces left downstream by channel incision. These breaks in channel longitudinal slope, headwalls and terraces exhibit a striking resemblance with terrestrial fluvial features, commonly termed ‘knickpoints’. On Earth, such knickpoints can be formed by more resistant bedrock or where changes in channel base-level have initiated erosion that migrates upstream (such as tectonic uplift or sea level change). We observed common elevations of Martian knickpoints in eleven separate channel systems draining into the Martian Northern lowlands. Numerical modeling showed that the common elevations of some of these knickpoints were not random. As the knickpoints are spread across the planet, we suggest that these Martian knickpoints were formed in response to a common base level or ocean level rather than local lithology. Thus, they potentially represent a record of past ocean levels and channel activity on Mars.
Collapse
Affiliation(s)
- Sergio Duran
- Department of Geography, Geology and Environment, University of Hull, Hull, UK.
| | - Tom J Coulthard
- Department of Geography, Geology and Environment, University of Hull, Hull, UK
| | - Edwin R C Baynes
- Department of Civil and Environmental Engineering, University of Auckland, Auckland, New Zealand
| |
Collapse
|
15
|
Rodriguez JAP, Baker VR, Liu T, Zarroca M, Travis B, Hui T, Komatsu G, Berman DC, Linares R, Sykes MV, Banks ME, Kargel JS. The 1997 Mars Pathfinder Spacecraft Landing Site: Spillover Deposits from an Early Mars Inland Sea. Sci Rep 2019; 9:4045. [PMID: 30837500 PMCID: PMC6401135 DOI: 10.1038/s41598-019-39632-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 01/22/2019] [Indexed: 11/16/2022] Open
Abstract
The Martian outflow channels comprise some of the largest known channels in the Solar System. Remote-sensing investigations indicate that cataclysmic floods likely excavated the channels ~3.4 Ga. Previous studies show that, in the southern circum-Chryse region, their flooding pathways include hundreds of kilometers of channel floors with upward gradients. However, the impact of the reversed channel-floor topography on the cataclysmic floods remains uncertain. Here, we show that these channel floors occur within a vast basin, which separates the downstream reaches of numerous outflow channels from the northern plains. Consequently, floods propagating through these channels must have ponded, producing an inland sea, before reaching the northern plains as enormous spillover discharges. The resulting paleohydrological reconstruction reinterprets the 1997 Pathfinder landing site as part of a marine spillway, which connected the inland sea to a hypothesized northern plains ocean. Our flood simulation shows that the presence of the sea would have permitted the propagation of low-depth floods beyond the areas of reversed channel-floor topography. These results explain the formation at the landing site of possible fluvial features indicative of flow depths at least an order of magnitude lower than those apparent from the analyses of orbital remote-sensing observations.
Collapse
Affiliation(s)
- J A P Rodriguez
- Planetary Science Institute, 1700 East Fort Lowell Road, Suite 106, Tucson, AZ, 85719-2395, USA.
| | - V R Baker
- Department of Hydrology & Atmospheric Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - T Liu
- Department of Hydrology & Atmospheric Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - M Zarroca
- External Geodynamics and Hydrogeology Group, Department of Geology, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - B Travis
- Planetary Science Institute, 1700 East Fort Lowell Road, Suite 106, Tucson, AZ, 85719-2395, USA
| | - T Hui
- Department of Hydrology & Atmospheric Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - G Komatsu
- International Research School of Planetary Sciences, Università D'Annunzio, Viale Pindaro 42, 65127, Pescara, Italy
| | - D C Berman
- Planetary Science Institute, 1700 East Fort Lowell Road, Suite 106, Tucson, AZ, 85719-2395, USA
| | - R Linares
- External Geodynamics and Hydrogeology Group, Department of Geology, Autonomous University of Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - M V Sykes
- Planetary Science Institute, 1700 East Fort Lowell Road, Suite 106, Tucson, AZ, 85719-2395, USA
| | - M E Banks
- Planetary Science Institute, 1700 East Fort Lowell Road, Suite 106, Tucson, AZ, 85719-2395, USA
- NASA Goddard Space Flight Center, Goddard, MD, 20771, USA
| | - J S Kargel
- Planetary Science Institute, 1700 East Fort Lowell Road, Suite 106, Tucson, AZ, 85719-2395, USA
| |
Collapse
|
16
|
Khaleque HN, González C, Shafique R, Kaksonen AH, Holmes DS, Watkin ELJ. Uncovering the Mechanisms of Halotolerance in the Extremely Acidophilic Members of the Acidihalobacter Genus Through Comparative Genome Analysis. Front Microbiol 2019; 10:155. [PMID: 30853944 PMCID: PMC6396713 DOI: 10.3389/fmicb.2019.00155] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 01/22/2019] [Indexed: 12/21/2022] Open
Abstract
There are few naturally occurring environments where both acid and salinity stress exist together, consequently, there has been little evolutionary pressure for microorganisms to develop systems that enable them to deal with both stresses simultaneously. Members of the genus Acidihalobacter are iron- and sulfur-oxidizing, halotolerant acidophiles that have developed the ability to tolerate acid and saline stress and, therefore, have the potential to bioleach ores with brackish or saline process waters under acidic conditions. The genus consists of four members, A. prosperus DSM 5130T, A. prosperus DSM 14174, A. prosperus F5 and "A. ferrooxidans" DSM 14175. An in depth genome comparison was undertaken in order to provide a more comprehensive description of the mechanisms of halotolerance used by the different members of this genus. Pangenome analysis identified 29, 3 and 9 protein families related to halotolerance in the core, dispensable and unique genomes, respectively. The genes for halotolerance showed Ka/Ks ratios between 0 and 0.2, confirming that they are conserved and stabilized. All the Acidihalobacter genomes contained similar genes for the synthesis and transport of ectoine, which was recently found to be the dominant osmoprotectant in A. prosperus DSM 14174 and A. prosperus DSM 5130T. Similarities also existed in genes encoding low affinity potassium pumps, however, A. prosperus DSM 14174 was also found to contain genes encoding high affinity potassium pumps. Furthermore, only A. prosperus DSM 5130T and "A. ferrooxidans" DSM 14175 contained genes allowing the uptake of taurine as an osmoprotectant. Variations were also seen in genes encoding proteins involved in the synthesis and/or transport of periplasmic glucans, sucrose, proline, and glycine betaine. This suggests that versatility exists in the Acidihalobacter genus in terms of the mechanisms they can use for halotolerance. This information is useful for developing hypotheses for the search for life on exoplanets and moons.
Collapse
Affiliation(s)
- Himel N. Khaleque
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
- CSIRO Land and Water, Floreat, WA, Australia
| | - Carolina González
- Center for Bioinformatics and Genome Biology, Science for Life Foundation, Santiago, Chile
| | | | | | - David S. Holmes
- Center for Bioinformatics and Genome Biology, Science for Life Foundation, Santiago, Chile
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Elizabeth L. J. Watkin
- School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| |
Collapse
|
17
|
Seybold HJ, Kite E, Kirchner JW. Branching geometry of valley networks on Mars and Earth and its implications for early Martian climate. SCIENCE ADVANCES 2018; 4:eaar6692. [PMID: 29963627 PMCID: PMC6021146 DOI: 10.1126/sciadv.aar6692] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 05/18/2018] [Indexed: 05/29/2023]
Abstract
Mars' surface bears the imprint of valley networks formed billions of years ago. Whether these networks were formed by groundwater sapping, ice melt, or fluvial runoff has been debated for decades. These different scenarios have profoundly different implications for Mars' climatic history and thus for its habitability in the distant past. Recent studies on Earth revealed that valley networks in arid landscapes with more surface runoff branch at narrower angles, while in humid environments with more groundwater flow, branching angles are much wider. We find that valley networks on Mars generally tend to branch at narrow angles similar to those found in arid landscapes on Earth. This result supports the inference that Mars once had an active hydrologic cycle and that Mars' valley networks were formed primarily by overland flow erosion, with groundwater seepage playing only a minor role.
Collapse
Affiliation(s)
| | - Edwin Kite
- University of Chicago, Chicago, IL 60637, USA
| | - James W. Kirchner
- ETH Zurich, 8092 Zurich, Switzerland
- Swiss Federal Research Institute for Forest, Snow and Landscape Research, 8903 Birmensdorf, Switzerland
- Department of Earth and Planetary Science, University of California, 307 McCone Hall, Berkeley, CA 94720–4767, USA
| |
Collapse
|
18
|
High-Resolution Topographic Analyses of Mounds in Southern Acidalia Planitia, Mars: Implications for Possible Mud Volcanism in Submarine and Subaerial Environments. GEOSCIENCES 2018. [DOI: 10.3390/geosciences8050152] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
|