1
|
Jeyachandran S, Vibhute P, Kumar D, Ragavendran C. Random mutagenesis as a tool for industrial strain improvement for enhanced production of antibiotics: a review. Mol Biol Rep 2023; 51:19. [PMID: 38100064 DOI: 10.1007/s11033-023-08975-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023]
Abstract
Secondary metabolites are produced by microbes in minimal quantities in the natural environment out of necessity. However, in the pharmaceutical industry, their overproduction becomes essential. To achieve higher yields, genetic modifications are employed to create strains that surpass the productivity of the initially isolated strains. While rational screening and genetic engineering have emerged as valuable practices in recent years, the cost-effective technique of mutagenesis and selection, known as "random screening," remains a preferred method for efficient short-term strain development. This review aims to comprehensively explore all aspects of strain improvement, focusing on why random mutagenesis continues to be widely adopted.
Collapse
Affiliation(s)
- Sivakamavalli Jeyachandran
- Lab in Biotechnology & Bio-signal Transduction, Department of Orthodontics, Saveetha Dental College & Hospitals, Saveetha Institute of Medical & Technical Sciences (SIMATS), Chennai, Tamil Nadu, 600077, India.
| | - Prachi Vibhute
- PG & Research Department of Biotechnology & Microbiology, National College (Autonomous), Tiruchirappalli, Tamil Nadu, 620001, India
| | - Dinesh Kumar
- Applied Phycology and Biotechnology Division, Marine Algal Research Station, CSIR-Central Salt & Marine Chemical Research Institute, Mandapam, Tamil Nadu, 623 519, India
| | - Chinnasamy Ragavendran
- Department of Cariology, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Dental College and Hospitals, Saveetha University, Chennai, 600 077, India
| |
Collapse
|
2
|
A Straightforward Approach to Synthesize 7-Aminocephalosporanic Acid In Vivo in the Cephalosporin C Producer Acremonium chrysogenum. J Fungi (Basel) 2022; 8:jof8050450. [PMID: 35628706 PMCID: PMC9144927 DOI: 10.3390/jof8050450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 12/04/2022] Open
Abstract
The pharmaceutical industry has developed various highly effective semi-synthetic cephalosporins, which are generated by modifying the side chains of the core molecule 7-aminocephalosporanic acid (7-ACA). In industrial productions, the 7-ACA nucleus is obtained in vitro from cephalosporin C (CPC) by chemical or enzymatic processes, which are waste intensive and associated with high production costs. Here, we used a transgenic in vivo approach to express bacterial genes for cephalosporin C acylase (CCA) in the CPC producer Acremonium chrysogenum. Western blot and mass spectrometry analyses verified that the heterologous enzymes are processed into α- and β-subunits in the fungal cell. Extensive HPLC analysis detected substrates and products of CCAs in both fungal mycelia and culture supernatants, with the highest amount of 7-ACA found in the latter. Using different incubation times, temperatures, and pH values, we explored the optimal conditions for the active bacterial acylase to convert CPC into 7-ACA in the culture supernatant. We calculated that the best transgenic fungal strains exhibit a one-step conversion rate of the bacterial acylase of 30%. Our findings can be considered a remarkable contribution to supporting future pharmaceutical manufacturing processes with reduced production costs.
Collapse
|
3
|
Song S, Jiang Y, Chen R, Su W, Liang W, Yang D, Li J, Zhang W, Gao S, Yuan B, Qu G, Sun Z. Whole-cell Biotransformation of Penicillin G by a Three-enzyme Co-expression System with Engineered Deacetoxycephalosporin C Synthase. Chembiochem 2022; 23:e202200179. [PMID: 35384232 DOI: 10.1002/cbic.202200179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/06/2022] [Indexed: 11/10/2022]
Abstract
Deacetoxycephalosporin C synthase (DAOCS) catalyzes the tranformation of penicillin G to phenylacetyl-7-aminodeacetoxycephalosporanic acid (G-7-ADCA) in dependence on 2-oxoglutarate (2OG). However, the low activity of DAOCS and the expense of 2OG restricted the practical application in the production of G-7-ADCA. Herein, a rational design campaign was performed on a DAOCS from Streptomyces clavuligerus (scDAOCS) in the quest to construct novel expandases. The resulting mutants showed 25~58% increase in activity compared to the template. The dominant DAOCS variants were then embeded into a three-enzyme co-expression system, consisting of a catalase and a L-glutamic oxidase for the generation of 2OG, to convert penicillin G into G-7-ADCA in E. coli . The engineered whole-cell enzyme cascade was applied on an up scaled reaction, exhibiting a yield of G-7-ADCA up to 39.21 mM (14.6 g·L -1 ) with a conversion of 78.42 mol%. This work highlights the potential of the integrated whole-cell system that may inspire further research on green and efficient production of 7-ADCA.
Collapse
Affiliation(s)
- Shiyi Song
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences, TIB, CHINA
| | - Yingying Jiang
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences, TIB, CHINA
| | - Ruidong Chen
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences, TIB, CHINA
| | - Wencheng Su
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences, TIB, 32 West 7th Avenue, Tianjin Airport Economic Area, 300308, Tianjin, CHINA
| | - Weinan Liang
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences, TIB, CHINA
| | - Dameng Yang
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences, TIB, 32 West 7th Avenue, Tianjin Airport Economic Area, 300308, CHINA
| | - Jincheng Li
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences, TIB, CHINA
| | - Wuyuan Zhang
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences, TIB, CHINA
| | - Shushan Gao
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences, TIB, CHINA
| | - Bo Yuan
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences, TIB, CHINA
| | - Ge Qu
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences, TIB, CHINA
| | - Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences, National Enyzme Engineering Lab, 32 West 7th Avenue, Tianjin Airport Economic Area, 300308, Tianjin, CHINA
| |
Collapse
|
4
|
Fierro F, Vaca I, Castillo NI, García-Rico RO, Chávez R. Penicillium chrysogenum, a Vintage Model with a Cutting-Edge Profile in Biotechnology. Microorganisms 2022; 10:573. [PMID: 35336148 PMCID: PMC8954384 DOI: 10.3390/microorganisms10030573] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 12/20/2022] Open
Abstract
The discovery of penicillin entailed a decisive breakthrough in medicine. No other medical advance has ever had the same impact in the clinical practise. The fungus Penicillium chrysogenum (reclassified as P. rubens) has been used for industrial production of penicillin ever since the forties of the past century; industrial biotechnology developed hand in hand with it, and currently P. chrysogenum is a thoroughly studied model for secondary metabolite production and regulation. In addition to its role as penicillin producer, recent synthetic biology advances have put P. chrysogenum on the path to become a cell factory for the production of metabolites with biotechnological interest. In this review, we tell the history of P. chrysogenum, from the discovery of penicillin and the first isolation of strains with high production capacity to the most recent research advances with the fungus. We will describe how classical strain improvement programs achieved the goal of increasing production and how the development of different molecular tools allowed further improvements. The discovery of the penicillin gene cluster, the origin of the penicillin genes, the regulation of penicillin production, and a compilation of other P. chrysogenum secondary metabolites will also be covered and updated in this work.
Collapse
Affiliation(s)
- Francisco Fierro
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-Unidad Iztapalapa, Ciudad de México 09340, Mexico
| | - Inmaculada Vaca
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile;
| | - Nancy I. Castillo
- Grupo de Investigación en Ciencias Biológicas y Químicas, Facultad de Ciencias, Universidad Antonio Nariño, Bogotá 110231, Colombia;
| | - Ramón Ovidio García-Rico
- Grupo de Investigación GIMBIO, Departamento De Microbiología, Facultad de Ciencias Básicas, Universidad de Pamplona, Pamplona 543050, Colombia;
| | - Renato Chávez
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170020, Chile;
| |
Collapse
|
5
|
Abstract
One of the greatest sources of metabolic and enzymatic diversity are microorganisms. In recent years, emerging recombinant DNA and genomic techniques have facilitated the development of new efficient expression systems, modification of biosynthetic pathways leading to new metabolites by metabolic engineering, and enhancement of catalytic properties of enzymes by directed evolution. Complete sequencing of industrially important microbial genomes is taking place very rapidly, and there are already hundreds of genomes sequenced. Functional genomics and proteomics are major tools used in the search for new molecules and development of higher-producing strains.
Collapse
Affiliation(s)
| | - Sergio Sánchez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, CDMX, México
| |
Collapse
|
6
|
Nielsen JC, Nielsen J. Development of fungal cell factories for the production of secondary metabolites: Linking genomics and metabolism. Synth Syst Biotechnol 2017; 2:5-12. [PMID: 29062956 PMCID: PMC5625732 DOI: 10.1016/j.synbio.2017.02.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/06/2017] [Accepted: 02/07/2017] [Indexed: 12/01/2022] Open
Abstract
The genomic era has revolutionized research on secondary metabolites and bioinformatics methods have in recent years revived the antibiotic discovery process after decades with only few new active molecules being identified. New computational tools are driven by genomics and metabolomics analysis, and enables rapid identification of novel secondary metabolites. To translate this increased discovery rate into industrial exploitation, it is necessary to integrate secondary metabolite pathways in the metabolic engineering process. In this review, we will describe the novel advances in discovery of secondary metabolites produced by filamentous fungi, highlight the utilization of genome-scale metabolic models (GEMs) in the design of fungal cell factories for the production of secondary metabolites and review strategies for optimizing secondary metabolite production through the construction of high yielding platform cell factories.
Collapse
Affiliation(s)
| | - Jens Nielsen
- Chalmers University of Technology, Kemivägen 10, Sweden
| |
Collapse
|
7
|
Fan K, Lin B, Tao Y, Yang K. Engineering deacetoxycephalosporin C synthase as a catalyst for the bioconversion of penicillins. J Ind Microbiol Biotechnol 2016; 44:705-710. [PMID: 27826726 DOI: 10.1007/s10295-016-1857-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/30/2016] [Indexed: 11/27/2022]
Abstract
7-aminodeacetoxycephalosporanic acid (7-ADCA) is a key intermediate of many clinically useful semisynthetic cephalosporins that were traditionally prepared by processes involving chemical ring expansion of penicillin G. Bioconversion of penicillins to cephalosporins using deacetoxycephalosporin C synthase (DAOCS) is an alternative and environmentally friendly process for 7-ADCA production. Arnold Demain and co-workers pioneered such a process. Later, protein engineering efforts to improve the substrate specificity and catalytic efficiency of DAOCS for penicillins have been made by many groups, and a whole cell process using Escherichia coli for bioconversion of penicillins has been developed.
Collapse
Affiliation(s)
- Keqiang Fan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Beijing, 100101, People's Republic of China
| | - Baixue Lin
- ASCR Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Yong Tao
- ASCR Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Keqian Yang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Beijing, 100101, People's Republic of China.
| |
Collapse
|
8
|
Penicillium arizonense, a new, genome sequenced fungal species, reveals a high chemical diversity in secreted metabolites. Sci Rep 2016; 6:35112. [PMID: 27739446 PMCID: PMC5064400 DOI: 10.1038/srep35112] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/26/2016] [Indexed: 02/08/2023] Open
Abstract
A new soil-borne species belonging to the Penicillium section Canescentia is described, Penicillium arizonense sp. nov. (type strain CBS 141311T = IBT 12289T). The genome was sequenced and assembled into 33.7 Mb containing 12,502 predicted genes. A phylogenetic assessment based on marker genes confirmed the grouping of P. arizonense within section Canescentia. Compared to related species, P. arizonense proved to encode a high number of proteins involved in carbohydrate metabolism, in particular hemicellulases. Mining the genome for genes involved in secondary metabolite biosynthesis resulted in the identification of 62 putative biosynthetic gene clusters. Extracts of P. arizonense were analysed for secondary metabolites and austalides, pyripyropenes, tryptoquivalines, fumagillin, pseurotin A, curvulinic acid and xanthoepocin were detected. A comparative analysis against known pathways enabled the proposal of biosynthetic gene clusters in P. arizonense responsible for the synthesis of all detected compounds except curvulinic acid. The capacity to produce biomass degrading enzymes and the identification of a high chemical diversity in secreted bioactive secondary metabolites, offers a broad range of potential industrial applications for the new species P. arizonense. The description and availability of the genome sequence of P. arizonense, further provides the basis for biotechnological exploitation of this species.
Collapse
|
9
|
Rational biosynthetic approaches for the production of new-to-nature compounds in fungi. Fungal Genet Biol 2016; 89:89-101. [PMID: 26872866 DOI: 10.1016/j.fgb.2016.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 02/04/2016] [Accepted: 02/04/2016] [Indexed: 01/06/2023]
Abstract
Filamentous fungi have the ability to produce a wide range of secondary metabolites some of which are potent toxins whereas others are exploited as food additives or drugs. Fungal natural products still play an important role in the discovery of new chemical entities for potential use as pharmaceuticals. However, in most cases they cannot be directly used as drugs due to toxic side effects or suboptimal pharmacokinetics. To improve drug-like properties, including bioactivity and stability or to produce better precursors for semi-synthetic routes, one needs to generate non-natural derivatives from known fungal secondary metabolites. In this minireview, we describe past and recent biosynthetic approaches for the diversification of fungal natural products, covering examples from precursor-directed biosynthesis, mutasynthesis, metabolic engineering and biocombinatorial synthesis. To illustrate the current state-of-the-art, challenges and pitfalls, we lay particular emphasis on the class of fungal cyclodepsipeptides which have been studied longtime for product diversification and which are of pharmaceutical relevance as drugs.
Collapse
|
10
|
Reconstitution of TCA cycle with DAOCS to engineer Escherichia coli into an efficient whole cell catalyst of penicillin G. Proc Natl Acad Sci U S A 2015. [PMID: 26216972 DOI: 10.1073/pnas.1502866112] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many medically useful semisynthetic cephalosporins are derived from 7-aminodeacetoxycephalosporanic acid (7-ADCA), which has been traditionally made by the polluting chemical method. Here, a whole-cell biocatalytic process based on an engineered Escherichia coli strain expressing 2-oxoglutarate-dependent deacetoxycephalosporin C synthase (DAOCS) for converting penicillin G to G-7-ADCA is developed. The major engineering strategy is to reconstitute the tricarboxylic acid (TCA) cycle of E. coli to force the metabolic flux to go through DAOCS catalyzed reaction for 2-oxoglutarate to succinate conversion. Then the glyoxylate bypass was disrupted to eliminate metabolic flux that may circumvent the reconstituted TCA cycle. Additional engineering steps were taken to reduce the degradation of penicillin G and G-7-ADCA in the bioconversion process. These steps include engineering strategies to reduce acetate accumulation in the biocatalytic process and to knock out a host β-lactamase involved in the degradation of penicillin G and G-7-ADCA. By combining these manipulations in an engineered strain, the yield of G-7-ADCA was increased from 2.50 ± 0.79 mM (0.89 ± 0.28 g/L, 0.07 ± 0.02 g/gDCW) to 29.01 ± 1.27 mM (10.31 ± 0.46 g/L, 0.77 ± 0.03 g/gDCW) with a conversion rate of 29.01 mol%, representing an 11-fold increase compared with the starting strain (2.50 mol%).
Collapse
|
11
|
Construction of an RNAi expression vector and transformation into Penicillium chrysogenum. ANN MICROBIOL 2014. [DOI: 10.1007/s13213-013-0639-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
12
|
Current state and perspectives of penicillin G acylase-based biocatalyses. Appl Microbiol Biotechnol 2014; 98:2867-79. [DOI: 10.1007/s00253-013-5492-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/20/2013] [Accepted: 12/22/2013] [Indexed: 10/25/2022]
|
13
|
Paradkar A, Jensen S, Mosher R. Comparative Genetics and Molecular Biology of ß-Lactam Biosynthesis. ACTA ACUST UNITED AC 2013. [DOI: 10.1201/b14856-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
|
14
|
Hamed RB, Gomez-Castellanos JR, Henry L, Ducho C, McDonough MA, Schofield CJ. The enzymes of β-lactam biosynthesis. Nat Prod Rep 2013; 30:21-107. [DOI: 10.1039/c2np20065a] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
15
|
Liu H, Wang P, Gong G, Wang L, Zhao G, Zheng Z. Morphology engineering of Penicillium chrysogenum by RNA silencing of chitin synthase gene. Biotechnol Lett 2012. [DOI: 10.1007/s10529-012-1099-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
16
|
Liu H, Zheng Z, Wang P, Gong G, Wang L, Zhao G. Morphological changes induced by class III chitin synthase gene silencing could enhance penicillin production of Penicillium chrysogenum. Appl Microbiol Biotechnol 2012. [PMID: 23179625 DOI: 10.1007/s00253-012-4581-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chitin synthases catalyze the formation of β-(1,4)-glycosidic bonds between N-acetylglucosamine residues to form the unbranched polysaccharide chitin, which is the major component of cell walls in most filamentous fungi. Several studies have shown that chitin synthases are structurally and functionally divergent and play crucial roles in the growth and morphogenesis of the genus Aspergillus although little research on this topic has been done in Penicillium chrysogenum. We used BLAST to find the genes encoding chitin synthases in P. chrysogenum related to chitin synthase genes in Aspergillus nidulans. Three homologous sequences coding for a class III chitin synthase CHS4 and two hypothetical proteins in P. chrysogenum were found. The gene which product showed the highest identity and encoded the class III chitin synthase CHS4 was studied in detail. To investigate the role of CHS4 in P. chrysogenum morphogenesis, we developed an RNA interference system to silence the class III chitin synthase gene chs4. After transformation, mutants exhibited a slow growth rate and shorter and more branched hyphae, which were distinct from those of the original strain. The results also showed that the conidiation efficiency of all transformants was reduced sharply and indicated that chs4 is essential in conidia development. The morphologies of all transformants and the original strain in penicillin production were investigated by light microscopy, which showed that changes in chs4 expression led to a completely different morphology during fermentation and eventually caused distinct penicillin yields, especially in the transformants PcRNAi1-17 and PcRNAi2-1 where penicillin production rose by 27 % and 41 %, respectively.
Collapse
Affiliation(s)
- Hui Liu
- Key Lab of Ion Beam Bioengineering, Chinese Academy of Science, Hefei, Anhui 230031, People's Republic of China
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
Microorganisms are one of the greatest sources of metabolic and enzymatic diversity. In recent years, emerging recombinant DNA and genomic techniques have facilitated the development of new efficient expression systems, modification of biosynthetic pathways leading to new metabolites by metabolic engineering, and enhancement of catalytic properties of enzymes by directed evolution. Complete sequencing of industrially important microbial genomes is taking place very rapidly and there are already hundreds of genomes sequenced. Functional genomics and proteomics are major tools used in the search for new molecules and development of higher-producing strains.
Collapse
|
18
|
Production of recombinant proteins by filamentous fungi. Biotechnol Adv 2012; 30:1119-39. [DOI: 10.1016/j.biotechadv.2011.09.012] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 08/30/2011] [Accepted: 09/15/2011] [Indexed: 11/17/2022]
|
19
|
Iterative combinatorial mutagenesis as an effective strategy for generation of deacetoxycephalosporin C synthase with improved activity toward penicillin G. Appl Environ Microbiol 2012; 78:7809-12. [PMID: 22923414 DOI: 10.1128/aem.02122-12] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An iterative combinatorial mutagenesis (ICM) strategy was used to engineer deacetoxycephalosporin C synthase of Streptomyces clavuligerus (scDAOCS) for improved activity toward penicillin G. Seven mutational sites were repeatedly combined onto a starter mutant (C155Y Y184H V275I C281Y) of scDAOCS. Eleven improved combinatorial mutants were identified from 24 mutants in four rounds of ICM.
Collapse
|
20
|
Veiga T, Gombert AK, Landes N, Verhoeven MD, Kiel JA, Krikken AM, Nijland JG, Touw H, Luttik MA, van der Toorn JC, Driessen AJ, Bovenberg RA, van den Berg MA, van der Klei IJ, Pronk JT, Daran JM. Metabolic engineering of β-oxidation in Penicillium chrysogenum for improved semi-synthetic cephalosporin biosynthesis. Metab Eng 2012; 14:437-48. [DOI: 10.1016/j.ymben.2012.02.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 01/13/2012] [Accepted: 02/13/2012] [Indexed: 11/25/2022]
|
21
|
Weber SS, Bovenberg RAL, Driessen AJM. Biosynthetic concepts for the production of β-lactam antibiotics in Penicillium chrysogenum. Biotechnol J 2011; 7:225-36. [PMID: 22057844 DOI: 10.1002/biot.201100065] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2011] [Revised: 08/12/2011] [Accepted: 08/24/2011] [Indexed: 11/08/2022]
Abstract
Industrial production of β-lactam antibiotics by the filamentous fungus Penicillium chrysogenum is based on successive classical strain improvement cycles. This review summarizes our current knowledge on the results of this classical strain improvement process, and discusses avenues to improve β-lactam biosynthesis and to exploit P. chrysogenum as an industrial host for the production of other antibiotics and peptide products. Genomic and transcriptional analysis of strain lineages has led to the identification of several important alterations in high-yielding strains, including the amplification of the penicillin biosynthetic gene cluster, elevated transcription of genes involved in biosynthesis of penicillin and amino acid precursors, and genes encoding microbody proliferation factors. In recent years, successful metabolic engineering and synthetic biology approaches have resulted in the redirection of the penicillin pathway towards the production of cephalosporins. This sets a new direction in industrial antibiotics productions towards more sustainable methods for the fermentative production of unnatural antibiotics and related compounds.
Collapse
Affiliation(s)
- Stefan S Weber
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology, University of Groningen, Zernike Institute for Advanced Materials and Kluyver Center for Genomics of Industrial Fermentation, AG Groningen, The Netherlands
| | | | | |
Collapse
|
22
|
Ji J, Tian X, Fan K, Yang K. New strategy of site-directed mutagenesis identifies new sites to improve Streptomyces clavuligerus deacetoxycephalosporin C synthase activity toward penicillin G. Appl Microbiol Biotechnol 2011; 93:2395-401. [DOI: 10.1007/s00253-011-3566-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 08/10/2011] [Accepted: 08/29/2011] [Indexed: 10/17/2022]
|
23
|
Gombert AK, Veiga T, Puig-Martinez M, Lamboo F, Nijland JG, Driessen AJM, Pronk JT, Daran JM. Functional characterization of the oxaloacetase encoding gene and elimination of oxalate formation in the β-lactam producer Penicillium chrysogenum. Fungal Genet Biol 2011; 48:831-9. [PMID: 21549851 DOI: 10.1016/j.fgb.2011.04.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 04/14/2011] [Accepted: 04/15/2011] [Indexed: 11/28/2022]
Abstract
Penicillium chrysogenum is widely used as an industrial antibiotic producer, in particular in the synthesis of ß-lactam antibiotics such as penicillins and cephalosporins. In industrial processes, oxalic acid formation leads to reduced product yields. Moreover, precipitation of calcium oxalate complicates product recovery. We observed oxalate production in glucose-limited chemostat cultures of P. chrysogenum grown with or without addition of adipic acid, side-chain of the cephalosporin precursor adipoyl-6-aminopenicillinic acid (ad-6-APA). Oxalate accounted for up to 5% of the consumed carbon source. In filamentous fungi, oxaloacetate hydrolase (OAH; EC3.7.1.1) is generally responsible for oxalate production. The P. chrysogenum genome harbours four orthologs of the A. niger oahA gene. Chemostat-based transcriptome analyses revealed a significant correlation between extracellular oxalate titers and expression level of the genes Pc18g05100 and Pc22g24830. To assess their possible involvement in oxalate production, both genes were cloned in Saccharomyces cerevisiae, yeast that does not produce oxalate. Only the expression of Pc22g24830 led to production of oxalic acid in S. cerevisiae. Subsequent deletion of Pc22g28430 in P. chrysogenum led to complete elimination of oxalate production, whilst improving yields of the cephalosporin precursor ad-6-APA.
Collapse
Affiliation(s)
- A K Gombert
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628BC Delft, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Adrio JL, Demain AL. Recombinant organisms for production of industrial products. Bioeng Bugs 2009; 1:116-31. [PMID: 21326937 DOI: 10.4161/bbug.1.2.10484] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 10/30/2009] [Accepted: 11/02/2009] [Indexed: 11/19/2022] Open
Abstract
A revolution in industrial microbiology was sparked by the discoveries of ther double-stranded structure of DNA and the development of recombinant DNA technology. Traditional industrial microbiology was merged with molecular biology to yield improved recombinant processes for the industrial production of primary and secondary metabolites, protein biopharmaceuticals and industrial enzymes. Novel genetic techniques such as metabolic engineering, combinatorial biosynthesis and molecular breeding techniques and their modifications are contributing greatly to the development of improved industrial processes. In addition, functional genomics, proteomics and metabolomics are being exploited for the discovery of novel valuable small molecules for medicine as well as enzymes for catalysis. The sequencing of industrial microbal genomes is being carried out which bodes well for future process improvement and discovery of new industrial products.
Collapse
Affiliation(s)
- Jose-Luis Adrio
- NeuronBioPharma, S.A., Parque Tecnologico de Ciencias de la Salud, Edificio BIC, Armilla, Granada, Spain
| | | |
Collapse
|
25
|
Harris DM, Westerlaken I, Schipper D, van der Krogt ZA, Gombert AK, Sutherland J, Raamsdonk LM, van den Berg MA, Bovenberg RAL, Pronk JT, Daran JM. Engineering of Penicillium chrysogenum for fermentative production of a novel carbamoylated cephem antibiotic precursor. Metab Eng 2009; 11:125-37. [PMID: 19271269 DOI: 10.1016/j.ymben.2008.12.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Penicillium chrysogenum was successfully engineered to produce a novel carbamoylated cephalosporin that can be used as a synthon for semi-synthetic cephalosporins. To this end, genes for Acremonium chrysogenum expandase/hydroxylase and Streptomyces clavuligerus carbamoyltransferase were expressed in a penicillinG high-producing strain of P.chrysogenum. Growth of the engineered strain in the presence of adipic acid resulted in production of adipoyl-7-amino-3-carbamoyloxymethyl-3-cephem-4-carboxylic acid (ad7-ACCCA) and of several adipoylated pathway intermediates. A combinatorial chemostat-based transcriptome study, in which the ad7-ACCCA-producing strain and a strain lacking key genes in beta-lactam synthesis were grown in the presence and absence of adipic acid, enabled the dissection of transcriptional responses to adipic acid per se and to ad7-ACCCA production. Transcriptome analysis revealed that adipate catabolism in P.chrysogenum occurs via beta-oxidation and enabled the identification of putative genes for enzymes involved in mitochondrial and peroxisomal beta-oxidation pathways. Several of the genes that showed a specifically altered transcript level in ad7-ACCCA-producing cultures were previously implicated in oxidative stress responses.
Collapse
Affiliation(s)
- Diana M Harris
- Department of Biotechnology, Delft University of Technology, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Harris DM, van der Krogt ZA, Klaassen P, Raamsdonk LM, Hage S, van den Berg MA, Bovenberg RAL, Pronk JT, Daran JM. Exploring and dissecting genome-wide gene expression responses of Penicillium chrysogenum to phenylacetic acid consumption and penicillinG production. BMC Genomics 2009; 10:75. [PMID: 19203396 PMCID: PMC2657799 DOI: 10.1186/1471-2164-10-75] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Accepted: 02/10/2009] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Since the discovery of the antibacterial activity of penicillin by Fleming 80 years ago, improvements of penicillin titer were essentially achieved by classical strain improvement through mutagenesis and screening. The recent sequencing of Penicillium chrysogenum strain Wisconsin1255-54 and the availability of genomics tools such as DNA-microarray offer new perspective. RESULTS In studies on beta-lactam production by P. chrysogenum, addition and omission of a side-chain precursor is commonly used to generate producing and non-producing scenarios. To dissect effects of penicillinG production and of its side-chain precursor phenylacetic acid (PAA), a derivative of a penicillinG high-producing strain without a functional penicillin-biosynthesis gene cluster was constructed. In glucose-limited chemostat cultures of the high-producing and cluster-free strains, PAA addition caused a small reduction of the biomass yield, consistent with PAA acting as a weak-organic-acid uncoupler. Microarray-based analysis on chemostat cultures of the high-producing and cluster-free strains, grown in the presence and absence of PAA, showed that: (i) Absence of a penicillin gene cluster resulted in transcriptional upregulation of a gene cluster putatively involved in production of the secondary metabolite aristolochene and its derivatives, (ii) The homogentisate pathway for PAA catabolism is strongly transcriptionally upregulated in PAA-supplemented cultures (iii) Several genes involved in nitrogen and sulfur metabolism were transcriptionally upregulated under penicillinG producing conditions only, suggesting a drain of amino-acid precursor pools. Furthermore, the number of candidate genes for penicillin transporters was strongly reduced, thus enabling a focusing of functional analysis studies. CONCLUSION This study demonstrates the usefulness of combinatorial transcriptome analysis in chemostat cultures to dissect effects of biological and process parameters on gene expression regulation. This study provides for the first time clear-cut target genes for metabolic engineering, beyond the three genes of the beta-lactam pathway.
Collapse
Affiliation(s)
- Diana M Harris
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Zita A van der Krogt
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Paul Klaassen
- DSM Anti-Infectives, DAI/INNO (624-0270), Postbus 425, 2600 AK, Delft, The Netherlands
| | - Leonie M Raamsdonk
- DSM Anti-Infectives, DAI/INNO (624-0270), Postbus 425, 2600 AK, Delft, The Netherlands
| | - Susanne Hage
- DSM Anti-Infectives, DAI/INNO (624-0270), Postbus 425, 2600 AK, Delft, The Netherlands
| | - Marco A van den Berg
- DSM Anti-Infectives, DAI/INNO (624-0270), Postbus 425, 2600 AK, Delft, The Netherlands
| | - Roel AL Bovenberg
- DSM Anti-Infectives, DAI/INNO (624-0270), Postbus 425, 2600 AK, Delft, The Netherlands
| | - Jack T Pronk
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, Julianalaan 67, 2628 BC Delft, The Netherlands
| | - Jean-Marc Daran
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, Julianalaan 67, 2628 BC Delft, The Netherlands
| |
Collapse
|
27
|
Sonawane VC. Enzymatic Modifications of Cephalosporins by Cephalosporin Acylase and Other Enzymes. Crit Rev Biotechnol 2008; 26:95-120. [PMID: 16809100 DOI: 10.1080/07388550600718630] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Semisynthetic cephalosporins are important antibacterials in clinical practice. Semisynthetic cephalosporins are manufactured by derivatizing 7-aminocephalosporanic acid (7-ACA) and its desacetylated form. Microbial enzymes such as D-amino acid oxidase, glutaryl-7-ACA acylase and cephalosporin esterase are being used as biocatalysts for the conversion of cephalosporin C (CEPH-C) to 7-ACA and its desacetylated derivatives. Recent developments in the field of enzymatic modifications of cephalosporin with special emphasis on group of enzymes called as cephalosporin acylase is discussed in this review. Aspects related to screening methods, isolation and purification, immobilization, molecular cloning, gene structure and expression and protein engineering of cephalosporin acylases have been covered. Topics pertaining to enzymatic modifications of cephalosporin by D-amino acid oxidase, cephalosporin methoxylase and beta-lactamase are also covered.
Collapse
|
28
|
Expression of the Acremonium chrysogenum cefT gene in Penicillum chrysogenum indicates that it encodes an hydrophilic beta-lactam transporter. Curr Genet 2008; 54:153-61. [PMID: 18668246 DOI: 10.1007/s00294-008-0207-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2008] [Accepted: 07/17/2008] [Indexed: 10/21/2022]
Abstract
The Acremonium chryrsogenum cefT gene encoding a membrane protein of the major facilitator superfamily implicated in the cephalosporin biosynthesis in A. chrysogenum was introduced into Penicillium chrysogenum Wisconsin 54-1255 (a benzylpenicillin producer), P. chrysogenum npe6 pyrG(-) (a derivative of Wisconsin 54-1255 lacking a functional penDE gene) and P. chrysogenum TA98 (a deacetylcephalosporin producer containing the cefD1, cefD2, cefEF and cefG genes from A. chrysogenum). RT-PCR analysis revealed that the cefT gene was expressed in P. chrysogenum strains. HPLC analysis of the culture broths of the TA98 transformants showed an increase in the secretion of deacetylcephalosporin C and hydrophilic penicillins (isopenicillin N and penicillin N). P. chrysogenum Wisconsin 54-1255 strain transformed with cefT showed increased secretion of the isopenicillin N intermediate and a drastic decrease in the benzylpenicillin production. Southern and northern blot analysis indicated that the untransformed P. chrysogenum strains contain an endogenous gene similar to cefT that may be involved in the well-known secretion of the isopenicillin N intermediate. In summary, the cefT transporter is a hydrophilic beta-lactam transporter that is involved in the secretion of hydrophilic beta-lactams containing alpha-aminoadipic acid side chain (isopenicillin N, penicillin N and deacetylcephalosporin C).
Collapse
|
29
|
Nijland JG, Kovalchuk A, van den Berg MA, Bovenberg RAL, Driessen AJM. Expression of the transporter encoded by the cefT gene of Acremonium chrysogenum increases cephalosporin production in Penicillium chrysogenum. Fungal Genet Biol 2008; 45:1415-21. [PMID: 18691664 DOI: 10.1016/j.fgb.2008.07.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2008] [Revised: 07/08/2008] [Accepted: 07/08/2008] [Indexed: 10/21/2022]
Abstract
By introduction of the cefEF genes of Acremonium chrysogenum and the cmcH gene of Streptomyces clavuligerus, Penicillium chrysogenum can be reprogrammed to form adipoyl-7-amino-3-carbamoyloxymethyl-3-cephem-4-carboxylic acid (ad7-ACCCA), a carbamoylated derivate of adipoyl-7-aminodeacetoxy-cephalosporanic acid. The cefT gene of A. chrysogenum encodes a cephalosporin C transporter that belongs to the Major Facilitator Superfamily. Introduction of cefT into an ad7-ACCCA-producing P. chrysogenum strain results in an almost 2-fold increase in cephalosporin production with a concomitant decrease in penicillin by-product formation. These data suggest that cephalosporin production by recombinant P. chrysogenum strains is limited by the ability of the fungus to secrete these compounds.
Collapse
Affiliation(s)
- Jeroen G Nijland
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | | | | | | | | |
Collapse
|
30
|
Abstract
Life on earth is not possible without microorganisms. Microbes have contributed to industrial science for over 100 years. They have given us diversity in enzymatic content and metabolic pathways. The advent of recombinant DNA brought many changes to industrial microbiology. New expression systems have been developed, biosynthetic pathways have been modified by metabolic engineering to give new metabolites, and directed evolution has provided enzymes with modified selectability, improved catalytic activity and stability. More and more genomes of industrial microorganisms are being sequenced giving valuable information about the genetic and enzymatic makeup of these valuable forms of life. Major tools such as functional genomics, proteomics, and metabolomics are being exploited for the discovery of new valuable small molecules for medicine and enzymes for catalysis.
Collapse
Affiliation(s)
- Arnold L Demain
- Research Institute for Scientists Emeriti (R.I.S.E.), Drew University, Madison, NJ 07940, USA.
| | | |
Collapse
|
31
|
Otten LG, Sio CF, Reis CR, Koch G, Cool RH, Quax WJ. A highly active adipyl-cephalosporin acylase obtained via rational randomization. FEBS J 2007; 274:5600-10. [DOI: 10.1111/j.1742-4658.2007.06081.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Ullán RV, Campoy S, Casqueiro J, Fernández FJ, Martín JF. Deacetylcephalosporin C production in Penicillium chrysogenum by expression of the isopenicillin N epimerization, ring expansion, and acetylation genes. ACTA ACUST UNITED AC 2007; 14:329-39. [PMID: 17379148 DOI: 10.1016/j.chembiol.2007.01.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2006] [Revised: 01/04/2007] [Accepted: 01/17/2007] [Indexed: 11/16/2022]
Abstract
Penicillium chrysogenum npe6 lacking isopenicillin N acyltransferase activity is an excellent host for production of different beta-lactam antibiotics. We have constructed P. chrysogenum strains expressing cefD1, cefD2, cefEF, and cefG genes cloned from Acremonium chrysogenum. Northern analysis revealed that the four genes were expressed in P. chrysogenum. The recombinant strains TA64, TA71, and TA98 secreted significant amounts of deacetylcephalosporin C, but cephalosporin C was not detected in the culture broths. DAC-acetyltransferase activity was found in all transformants containing the cefG gene. HPLC analysis of cell extracts showed that transformant TA64, TA71, and TA98 accumulate intracellularly deacetylcephalosporin C and, in the last strain (TA98), also cephalosporin C. Mass spectra analysis confirmed that transformant TA98 synthesize true deacetylcephalosporin C and cephalosporin C. Even when accumulated intracellularly, cephalosporin C was not found in the culture broth.
Collapse
Affiliation(s)
- Ricardo V Ullán
- Instituto de Biotecnología (INBIOTEC) de León, Avda. Real No 1, 24006 León, Spain
| | | | | | | | | |
Collapse
|
33
|
Abstract
Although microorganisms are extremely good in presenting us with an amazing array of valuable products, they usually produce them only in amounts that they need for their own benefit; thus, they tend not to overproduce their metabolites. In strain improvement programs, a strain producing a high titer is usually the desired goal. Genetics has had a long history of contributing to the production of microbial products. The tremendous increases in fermentation productivity and the resulting decreases in costs have come about mainly by mutagenesis and screening/selection for higher producing microbial strains and the application of recombinant DNA technology.
Collapse
Affiliation(s)
- Jose L Adrio
- Department of Biotechnology, Puleva Biotech, S.A., Granada, Spain.
| | | |
Collapse
|
34
|
Wei CL, Yang YB, Deng CH, Liu WC, Hsu JS, Lin YC, Liaw SH, Tsai YC. Directed evolution of Streptomyces clavuligerus deacetoxycephalosporin C synthase for enhancement of penicillin G expansion. Appl Environ Microbiol 2006; 71:8873-80. [PMID: 16332884 PMCID: PMC1317366 DOI: 10.1128/aem.71.12.8873-8880.2005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The deacetoxycephalosporin C synthase from Streptomyces clavuligerus was directly modified for enhancement of penicillin G expansion into phenylacetyl-7-aminodeacetoxycephalosporanic acid, an important intermediate in the industrial manufacture of cephalosporin antibiotics. Nine new mutants, mutants M73T, T91A, A106T, C155Y, Y184H, M188V, M188I, H244Q, and L277Q with 1.4- to 5.7-fold increases in the kcat/Km ratio, were obtained by screening 6,364 clones after error-prone PCR-based random mutagenesis. Subsequently, DNA shuffling was carried out to screen possible combinations of substitutions, including previous point mutations. One quaternary mutant, the C155Y/Y184H/V275I/C281Y mutant, which had a kcat/Km ratio that was 41-fold higher was found after 10,572 clones were assayed. The distinct mutants obtained using different mutagenesis methods demonstrated the complementarity of the techniques. Interestingly, most of the mutated residues that result in enhanced activities are located within or near the unique small barrel subdomain, suggesting that manipulation of this subdomain may be a constructive strategy for improvement of penicillin expansion. Several mutations had very distinct effects on expansion of penicillins N and G, perhaps due to different penicillin-interacting modes within the enzyme. Thus, the present study provided not only promising enzymes for cephalosporin biosynthesis but also a large number of mutants, which provided new insights into the structure-function relationship of the protein that should lead to further rational engineering.
Collapse
Affiliation(s)
- Chia-Li Wei
- Institute of Biochemistry, National Yang-Ming University, 155, Sec. 2, Li-Nong St., Pei-Tou, Taipei 11221, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Otten LG, Sio CF, van der Sloot AM, Cool RH, Quax WJ. Mutational analysis of a key residue in the substrate specificity of a cephalosporin acylase. Chembiochem 2005; 5:820-5. [PMID: 15174165 DOI: 10.1002/cbic.200300764] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
beta-Lactam acylases are crucial for the synthesis of semisynthetic cephalosporins and penicillins. Unfortunately, there are no cephalosporin acylases known that can efficiently hydrolyse the amino-adipic side chain of Cephalosporin C. In a previous directed evolution experiment, residue Asn266 of the glutaryl acylase from Pseudomonas SY-77 was identified as being important for substrate specificity. In order to explore the function of this residue in substrate specificity, we performed a complete mutational analysis of position 266. Codons for all amino acids were introduced in the gene, 16 proteins that could be functionally expressed in Escherichia coli were purified to homogeneity and their catalytic parameters were determined. The mutant enzymes displayed a broad spectrum of affinities and activities, pointing to the flexibility of the enzyme at this position. Mutants in which Asn266 was changed into Phe, Gln, Trp and Tyr displayed up to twofold better catalytic efficiency (k(cat)/K(m))than the wild-type enzyme when adipyl-7-aminodesacetoxycephalosporanic acid (adipyl-7-ADCA) was used as substrate, due to a decreased K(m). Only mutants SY-77(N266H) and SY-77(N266M) showed an improvement of both catalytic parameters, resulting in 10- and 15-times higher catalytic efficiency with adipyl-7-ADCA, respectively. Remarkably, the catalytic activity (k(cat)) of SY-77(N266M) when using adipyl-7-ADCA as substrate was as high as when glutaryl-7-aminocephalosporanic acid (glutaryl-7-ACA) was used, and approaches commercially interesting activity. SY-77(N266Q), SY-77(N266H) and SY-77(N266M) mutants showed a modest improvement in hydrolysing Cephalosporin C. Since these mutants also have a good catalytic efficiency when adipyl-7-ADCA is used and are still active towards glutaryl-7-ACA, they can be regarded as broad substrate acylases. These results demonstrate that the combination of directed evolution for the identification of important positions, together with saturation mutagenesis for finding the optimal amino acid, is a very effective method for finding improved biocatalysts.
Collapse
Affiliation(s)
- Linda G Otten
- University of Groningen, University Centre for Pharmacy, Pharmaceutical Biology, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
36
|
Hsu JS, Yang YB, Deng CH, Wei CL, Liaw SH, Tsai YC. Family shuffling of expandase genes to enhance substrate specificity for penicillin G. Appl Environ Microbiol 2004; 70:6257-63. [PMID: 15466573 PMCID: PMC522083 DOI: 10.1128/aem.70.10.6257-6263.2004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Deacetoxycephalosporin C synthase (expandase) from Streptomyces clavuligerus, encoded by cefE, is an important industrial enzyme for the production of 7-aminodeacetoxycephalosporanic acid from penicillin G. To improve the substrate specificity for penicillin G, eight cefE-homologous genes were directly evolved by using the DNA shuffling technique. After the first round of shuffling and screening, using an Escherichia coli ESS bioassay, four chimeras with higher activity were subjected to a second round. Subsequently, 20 clones were found with significantly enhanced activity. The kinetic parameters of two isolates that lack substrate inhibition showed 8.5- and 118-fold increases in the k(cat)/K(m) ratio compared to the S. clavuligerus expandase. The evolved enzyme with the 118-fold increase is the most active obtained to date anywhere. Our shuffling results also indicate the remarkable plasticity of the expandase, suggesting that more-active chimeras might be achievable with further rounds.
Collapse
Affiliation(s)
- Jyh-Shing Hsu
- Institute of Biochemistry, National Yang-Ming University, 155 Li-Nong St., Sec. 2, Pei-Tou, Taipei 11221, Taiwan
| | | | | | | | | | | |
Collapse
|
37
|
Sio CF, Otten LG, Cool RH, Quax WJ. Analysis of a substrate specificity switch residue of cephalosporin acylase. Biochem Biophys Res Commun 2004; 312:755-60. [PMID: 14680829 DOI: 10.1016/j.bbrc.2003.10.180] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2003] [Indexed: 11/20/2022]
Abstract
Residue Phe375 of cephalosporin acylase has been identified as one of the residues that is involved in substrate specificity. A complete mutational analysis was performed by substituting Phe375 with the 19 other amino acids and characterising all purified mutant enzymes. Several mutations cause a substrate specificity shift from the preferred substrate of the enzyme, glutaryl-7-ACA, towards the desired substrate, adipyl-7-ADCA. The catalytic efficiency ( [Formula: see text] (cat)/ [Formula: see text] (m)) of mutant SY-77(F375C) towards adipyl-7-ADCA was increased 6-fold with respect to the wild-type enzyme, due to a strong decrease of [Formula: see text] (m). The [Formula: see text] (cat) of mutant SY-77(F375H) towards adipyl-7-ADCA was increased 2.4-fold. The mutational effects point at two possible mechanisms by which residue 375 accommodates the long side chain of adipyl-7-ADCA, either by a widening of a hydrophobic ring-like structure that positions the aliphatic part of the side chain of the substrate, or by hydrogen bonding to the carboxylate head of the side chain.
Collapse
Affiliation(s)
- Charles F Sio
- Pharmaceutical Biology, University Centre for Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | | | | | |
Collapse
|
38
|
Elander RP. Industrial production of beta-lactam antibiotics. Appl Microbiol Biotechnol 2003; 61:385-92. [PMID: 12679848 DOI: 10.1007/s00253-003-1274-y] [Citation(s) in RCA: 348] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2002] [Revised: 01/28/2003] [Accepted: 01/31/2003] [Indexed: 10/25/2022]
Abstract
The industrial production of beta-lactam antibiotics by fermentation over the past 50 years is one of the outstanding examples of biotechnology. Today, the beta-lactam antibiotics, particularly penicillins and cephalosporins, represent the world's major biotechnology products with worldwide dosage form sales of approximately 15 billion US dollars or approximately 65% of the total world market for antibiotics. Over the past five decades, major improvements in the productivity of the producer organisms, Penicillium chrysogenum and Acremonium chrysogenum (syn. Cephalosporium acremonium) and improved fermentation technology have culminated in enhanced productivity and substantial cost reduction. Major fermentation producers are now estimated to record harvest titers of 40-50 g/l for penicillin and 20-25 g/l for cephalosporin C. Recovery yields for penicillin G or penicillin V are now >90%. Chemical and enzymatic hydrolysis process technology for 6-aminopenicillanic acid or 7-aminocephalosporanic acid is also highly efficient (approximately 80-90%) with new enzyme technology leading to major cost reductions over the past decade. Europe remains the dominant manufacturing area for both penicillins and cephalosporins. However, due to ever increasing labor, energy and raw material costs, more bulk manufacturing is moving to the Far East, with China, Korea and India becoming major production countries with dosage form filling becoming more dominant in Puerto Rico and in Ireland.
Collapse
Affiliation(s)
- R P Elander
- Biotechnology Consultant, 318 Gravilla Street, La Jolla, CA 92037-6006, USA.
| |
Collapse
|
39
|
Wei CL, Yang YB, Wang WC, Liu WC, Hsu JS, Tsai YC. Engineering Streptomyces clavuligerus deacetoxycephalosporin C synthase for optimal ring expansion activity toward penicillin G. Appl Environ Microbiol 2003; 69:2306-12. [PMID: 12676714 PMCID: PMC154807 DOI: 10.1128/aem.69.4.2306-2312.2003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The deacetoxycephalosporin C synthase (DAOCS) from Streptomyces clavuligerus was engineered with the aim of enhancing the conversion of penicillin G into phenylacetyl-7-aminodeacetoxycephalosporanic acid, a precursor of 7-aminodeacetoxycephalosporanic acid, for industrial application. A single round of random mutagenesis followed by the screening of 5,500 clones identified three mutants, G79E, V275I, and C281Y, that showed a two- to sixfold increase in the k(cat)/K(m) ratio compared to the wild-type enzyme. Site-directed mutagenesis to modify residues surrounding the substrate resulted in three mutants, N304K, I305L, and I305M, with 6- to 14-fold-increased k(cat)/K(m) values. When mutants containing all possible combinations of these six sites were generated to optimize the ring expansion activity for penicillin G, the double mutant, YS67 (V275I, I305M), showed a significant 32-fold increase in the k(cat)/K(m) ratio and a 5-fold increase in relative activity for penicillin G, while the triple mutant, YS81 (V275I, C281Y, I305M), showed an even greater 13-fold increase in relative activity toward penicillin G. Our results demonstrate that this is a robust approach to the modification of DAOCS for an optimized DAOCS-penicillin G reaction.
Collapse
Affiliation(s)
- Chia-Li Wei
- Institute of Biochemistry, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
40
|
Robin J, Bonneau S, Schipper D, Noorman H, Nielsen J. Influence of the adipate and dissolved oxygen concentrations on the beta-lactam production during continuous cultivations of a Penicillium chrysogenum strain expressing the expandase gene from Streptomyces clavuligerus. Metab Eng 2003; 5:42-8. [PMID: 12749843 DOI: 10.1016/s1096-7176(03)00006-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The influence of adipate concentration and dissolved oxygen on production of adipoyl-7-aminodeacetoxycephalosporanic acid (ad-7-ADCA) by a recombinant strain of Penicillium chrysogenum expressing the expandase gene from Streptomyces clavuligerus was studied in glucose-limited continuous cultures. Operating conditions were maintained constant but the adipate and dissolved oxygen concentrations (DOC) were varied separately in a range from 1 to 37.5gl(-1) and from 2% to 125% air saturation (%AS), respectively. The total beta-lactams specific productivity, r(ptotal), was not significantly changed for adipate concentrations from 5 to 25gl(-1), but the flux towards an unknown by-product decreased as the adipate concentration increased. Investigations at different DOC showed that r(ptotal) was stable around 18 micro molgDW(-1)h(-1) for DOC being in the range from 15 to 125%AS. When DOC was decreased from 15 to 7%AS, r(ptotal) increased to 25 micro molgDW(-1)h(-1), mainly due to a two-fold increase in the adipoyl-6-aminopenicillanic acid (ad-6-APA) specific productivity.
Collapse
Affiliation(s)
- J Robin
- Center for Process Biotechnology, Technical University of Denmark, BioCentrum-DTU, Building 223, Room 208, DK-2800, Lyngby, Denmark
| | | | | | | | | |
Collapse
|
41
|
Abstract
Metabolic engineering has become a rational alternative to classical strain improvement in optimisation of beta-lactam production. In metabolic engineering directed genetic modification are introduced to improve the cellular properties of the production strains. This has resulted in substantial increases in the existing beta-lactam production processes. Furthermore, pathway extension, by heterologous expression of novel genes in well-characterised strains, has led to introduction of new fermentation processes that replace environmentally damaging chemical methods. This minireview discusses the recent developments in metabolic engineering and the applications of this approach for improving beta-lactam production.
Collapse
Affiliation(s)
- Jette Thykaer
- Center for Process Biotechnology, BioCentrum, Technical University of Denmark, Building 223, DK-2800, Lyngby, Denmark
| | | |
Collapse
|
42
|
Construction of hybrid bacterial deacetoxycephalosporin C synthases (expandases) by in vivo homeologous recombination. Enzyme Microb Technol 2002. [DOI: 10.1016/s0141-0229(02)00179-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
43
|
Sio CF, Riemens AM, van der Laan JM, Verhaert RMD, Quax WJ. Directed evolution of a glutaryl acylase into an adipyl acylase. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:4495-504. [PMID: 12230561 DOI: 10.1046/j.1432-1033.2002.03143.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Semi-synthetic cephalosporin antibiotics belong to the top 10 of most sold drugs, and are produced from 7-aminodesacetoxycephalosporanic acid (7-ADCA). Recently new routes have been developed which allow for the production of adipyl-7-ADCA by a novel fermentation process. To complete the biosynthesis of 7-ADCA a highly active adipyl acylase is needed for deacylation of the adipyl derivative. Such an adipyl acylase can be generated from known glutaryl acylases. The glutaryl acylase of Pseudomonas SY-77 was mutated in a first round by exploration mutagenesis. For selection the mutants were grown on an adipyl substrate. The residues that are important to the adipyl acylase activity were identified, and in a second round saturation mutagenesis of this selected stretch of residues yielded variants with a threefold increased catalytic efficiency. The effect of the mutations could be rationalized on hindsight by the 3D structure of the acylase. In conclusion, the substrate specificity of a dicarboxylic acid acylase was shifted towards adipyl-7-ADCA by a two-step directed evolution strategy. Although derivatives of the substrate were used for selection, mutants retained activity on the beta-lactam substrate. The strategy herein described may be generally applicable to all beta-lactam acylases.
Collapse
Affiliation(s)
- Charles F Sio
- Pharmaceutical Biology, University Centre for Pharmacy, Groningen, the Netherlands; DSM-Gist, Delft, The Netherlands
| | | | | | | | | |
Collapse
|
44
|
Thykaer J, Christensen B, Nielsen J. Metabolic network analysis of an adipoyl-7-ADCA-producing strain of Penicillium chrysogenum: elucidation of adipate degradation. Metab Eng 2002; 4:151-8. [PMID: 12009794 DOI: 10.1006/mben.2001.0218] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An adipoyl-7-ADCA-producing, recombinant strain of Penicillium chrysogenum was characterized by metabolic network analysis, with special focus on the degradation of adipate and determination of the metabolic fluxes. Degradation of the side-chain precursor, adipate, causes an undesired consumption of adipate in the production of 7-ADCA. Using (13)C-labeled glucose and measurement of metabolite labeling patterns, it was shown that adipate was degraded by beta-oxidation to succinyl-CoA and acetyl-CoA. The labeling analysis indicated that degradation of adipate was taking place in the microbodies and the formed acetyl-CoA was metabolized in the glyoxylate shunt. This hypothesis was further substantiated by an enzyme assay, which showed activity of the key enzyme in the glyoxylate shunt. Flux estimations in two chemostat cultures, one with and one without adipate in the feed, revealed that degradation of adipate replaces the net anaplerotic reaction from pyruvate to oxaloacetate. Thus, with a combination of labeling experiments and enzyme assays, the pathway of adipate degradation was elucidated, and the effect of adipate degradation on the primary metabolism was quantified.
Collapse
Affiliation(s)
- Jette Thykaer
- Center for Process Biotechnology, BioCentrum-DTU, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | | | | |
Collapse
|
45
|
Xie Y, Van de Sandt E, de Weerd T, Wang NH. Purification of adipoyl-7-amino-3-deacetoxycephalosporanic acid from fermentation broth using stepwise elution with a synergistically adsorbed modulator. J Chromatogr A 2001; 908:273-91. [PMID: 11218130 DOI: 10.1016/s0021-9673(00)00997-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Multicomponent adsorption data of a fermentation broth containing adipoyl-7-amino-3-deacetoxycephalosporanic acid (adipoyl-7-ADCA), a cephalosporin precursor for 7-ADCA, and two key impurities, alpha-hydroxyadipoyl-7-ADCA and alpha-aminoadipoyl-7-ADCA were obtained from batch equilibrium and frontal chromatography tests. Amberlite XAD-1600 was chosen as the resin. A rate model was applied to simulate the chromatograms. An alkaline buffer, which by itself has no affinity for the resin, was used as the eluent. The widely used reversed-phase modulator model is inaccurate in explaining the stepwise elution data. A new model, the induced competition model, has been developed to account for apparent retention of the buffer in the presence of adsorbed species. Close agreement between the simulations and the data was achieved with the new model.
Collapse
Affiliation(s)
- Y Xie
- School of Chemical Engineering, Purdue University, West Lafayette, IN 47907-1283, USA
| | | | | | | |
Collapse
|
46
|
Abstract
Comprehensive knowledge regarding Saccharomyces cerevisiae has accumulated over time, and today S. cerevisiae serves as a widley used biotechnological production organism as well as a eukaryotic model system. The high transformation efficiency, in addition to the availability of the complete yeast genome sequence, has facilitated genetic manipulation of this microorganism, and new approaches are constantly being taken to metabolicially engineer this organism in order to suit specific needs. In this paper, strategies and concepts for metabolic engineering are discussed and several examples based upon selected studies involving S. cerevisiae are reviewed. The many different studies of metabolic engineering using this organism illustrate all the categories of this multidisciplinary field: extension of substrate range, improvements of producitivity and yield, elimination of byproduct formation, improvement of process performance, improvements of cellular properties, and extension of product range including heterologous protein production.
Collapse
Affiliation(s)
- S Ostergaard
- Center for Process Biotechnology, Department of Biotechnology, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | | | | |
Collapse
|
47
|
Lee HJ, Lloyd MD, Harlos K, Schofield CJ. The effect of cysteine mutations on recombinant deacetoxycephalosporin C synthase from S. clavuligerus. Biochem Biophys Res Commun 2000; 267:445-8. [PMID: 10623639 DOI: 10.1006/bbrc.1999.1957] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cysteines 100, 155, and 197 of recombinant deacetoxycephalosporin C synthase were mutated to alanine residues. The C100A mutant had properties similar to those of the wild-type enzyme, but mutation of Cys-155 and Cys-197 reduced enzyme activity with penicillin N and penicillin G to different extents.
Collapse
Affiliation(s)
- H J Lee
- Oxford Centre for Molecular Sciences, Dyson Perrins Laboratory, South Parks Road, Oxford, OX1 3QY, United Kingdom
| | | | | | | |
Collapse
|
48
|
Schofield CJ, Zhang Z. Structural and mechanistic studies on 2-oxoglutarate-dependent oxygenases and related enzymes. Curr Opin Struct Biol 1999; 9:722-31. [PMID: 10607676 DOI: 10.1016/s0959-440x(99)00036-6] [Citation(s) in RCA: 304] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Mononuclear nonheme-Fe(II)-dependent oxygenases comprise an extended family of oxidising enzymes, of which the 2-oxoglutarate-dependent oxygenases and related enzymes are the largest known subgroup. Recent crystallographic and mechanistic studies have helped to define the overall fold of the 2-oxoglutarate-dependent enzymes and have led to the identification of coordination chemistry closely related to that of other nonheme-Fe(II)-dependent oxygenases, suggesting related mechanisms for dioxygen activation that involve iron-mediated electron transfer.
Collapse
Affiliation(s)
- C J Schofield
- Department of Chemistry, The Oxford Centre for Molecular Sciences, The Dyson Perrins Laboratory, Oxford, OX1 3QY, UK
| | | |
Collapse
|
49
|
Lloyd MD, Lee HJ, Harlos K, Zhang ZH, Baldwin JE, Schofield CJ, Charnock JM, Garner CD, Hara T, Terwisscha van Scheltinga AC, Valegård K, Viklund JA, Hajdu J, Andersson I, Danielsson A, Bhikhabhai R. Studies on the active site of deacetoxycephalosporin C synthase. J Mol Biol 1999; 287:943-60. [PMID: 10222202 DOI: 10.1006/jmbi.1999.2594] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Fe(II) and 2-oxoglutarate-dependent dioxygenase deacetoxycephalosporin C synthase (DAOCS) from Streptomyces clavuligerus was expressed at ca 25 % of total soluble protein in Escherichia coli and purified by an efficient large-scale procedure. Purified protein catalysed the conversions of penicillins N and G to deacetoxycephems. Gel filtration and light scattering studies showed that in solution monomeric apo-DAOCS is in equilibrium with a trimeric form from which it crystallizes. DAOCS was crystallized +/-Fe(II) and/or 2-oxoglutarate using the hanging drop method. Crystals diffracted to beyond 1.3 A resolution and belonged to the R3 space group (unit cell dimensions: a=b=106.4 A, c=71.2 A; alpha=beta=90 degrees, gamma=120 degrees (in the hexagonal setting)). Despite the structure revealing that Met180 is located close to the reactive oxidizing centre of DAOCS, there was no functional difference between the wild-type and selenomethionine derivatives. X-ray absorption spectroscopic studies in solution generally supported the iron co-ordination chemistry defined by the crystal structures. The Fe K-edge positions of 7121.2 and 7121.4 eV for DAOCS alone and with 2-oxoglutarate were both consistent with the presence of Fe(II). For Fe(II) in DAOCS the best fit to the Extended X-ray Absorption Fine Structure (EXAFS) associated with the Fe K-edge was found with two His imidazolate groups at 1.96 A, three nitrogen or oxygen atoms at 2.11 A and one other light atom at 2.04 A. For the Fe(II) in the DAOCS-2-oxoglutarate complex the EXAFS spectrum was successfully interpreted by backscattering from two His residues (Fe-N at 1.99 A), a bidentate O,O-co-ordinated 2-oxoglutarate with Fe-O distances of 2.08 A, another O atom at 2.08 A and one at 2.03 A. Analysis of the X-ray crystal structural data suggests a binding mode for the penicillin N substrate and possible roles for the C terminus in stabilising the enzyme and ordering the reaction mechanism.
Collapse
Affiliation(s)
- M D Lloyd
- The Dyson Perrins Laboratory and the Oxford Centre for Molecular Sciences, South Parks Road, Oxford, OX1 3QY, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
The most commonly used beta-lactam antibiotics for the therapy of infectious diseases are penicillin and cephalosporin. Penicillin is produced as an end product by some fungi, most notably by Aspergillus (Emericella) nidulans and Penicillium chrysogenum. Cephalosporins are synthesized by both bacteria and fungi, e.g., by the fungus Acremonium chrysogenum (Cephalosporium acremonium). The biosynthetic pathways leading to both secondary metabolites start from the same three amino acid precursors and have the first two enzymatic reactions in common. Penicillin biosynthesis is catalyzed by three enzymes encoded by acvA (pcbAB), ipnA (pcbC), and aatA (penDE). The genes are organized into a cluster. In A. chrysogenum, in addition to acvA and ipnA, a second cluster contains the genes encoding enzymes that catalyze the reactions of the later steps of the cephalosporin pathway (cefEF and cefG). Within the last few years, several studies have indicated that the fungal beta-lactam biosynthesis genes are controlled by a complex regulatory network, e. g., by the ambient pH, carbon source, and amino acids. A comparison with the regulatory mechanisms (regulatory proteins and DNA elements) involved in the regulation of genes of primary metabolism in lower eukaryotes is thus of great interest. This has already led to the elucidation of new regulatory mechanisms. Furthermore, such investigations have contributed to the elucidation of signals leading to the production of beta-lactams and their physiological meaning for the producing fungi, and they can be expected to have a major impact on rational strain improvement programs. The knowledge of biosynthesis genes has already been used to produce new compounds.
Collapse
Affiliation(s)
- A A Brakhage
- Lehrstuhl für Mikrobiologie, Universität München, D-80638 Munich, Germany.
| |
Collapse
|