1
|
Rickard MM, Zhang Y, Pogorelov TV, Gruebele M. Crowding, Sticking, and Partial Folding of GTT WW Domain in a Small Cytoplasm Model. J Phys Chem B 2020; 124:4732-4740. [PMID: 32463238 DOI: 10.1021/acs.jpcb.0c02536] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Recent experimental data has shown that protein folding in the cytoplasm can differ from in vitro folding with respect to speed, stability, and residual structure. Here we investigate the all-atom molecular dynamics (MD) simulations of 9 copies of the model protein GTT WW domain in a small bacterial cytoplasm model using three force fields. GTT has been well-studied by MD in aqueous solution for comparison. We find that folded copies remain folded for up 25 μs, whereas unfolded copies do not fold for up to 190 μs. Unfolded GTT in our cytoplasm model does populate partly folded intermediates with one of the two hairpins formed. Relative to aqueous solution, GTT gets stuck in metastable states with a small RMSD and radius of gyration and extensive burial of surface area against other macromolecules. In particular, GTT is even able to form transient intermolecular β-sheets with other proteins, resulting in a "chimeric structure" that could be a precursor to oligomeric β-aggregates. We conclude that sticking, enhanced by the non-native mutations of GTT, is largely responsible, and we propose, on the basis of our result as well as recent experiments, that coevolution of protein surfaces with their solvation environment (including chaperones) is important for folding and diffusion of proteins in the cytoplasm.
Collapse
Affiliation(s)
- M M Rickard
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Y Zhang
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - T V Pogorelov
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - M Gruebele
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
2
|
Burow S, Mizrahi N, Maugars G, von Krogh K, Nourizadeh-Lillabadi R, Hollander-Cohen L, Shpilman M, Atre I, Weltzien FA, Levavi-Sivan B. Characterization of gonadotropin receptors Fshr and Lhr in Japanese medaka, Oryzias latipes. Gen Comp Endocrinol 2020; 285:113276. [PMID: 31536722 DOI: 10.1016/j.ygcen.2019.113276] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 09/14/2019] [Accepted: 09/14/2019] [Indexed: 10/26/2022]
Abstract
Reproduction in vertebrates is controlled by the brain-pituitary-gonad axis, where the two gonadotropins follicle-stimulating hormone (Fsh) and luteinizing hormone (Lh) play vital parts by activating their cognate receptors in the gonads. The main purpose of this work was to study intra- and interspecies ligand promiscuity of teleost gonadotropin receptors, since teleost receptor specificity is unclear, in contrast to mammalian receptors. Receptor activation was investigated by transfecting COS-7 cells with either Fsh receptor (mdFshr, tiFshr) or Lh receptor (mdLhr, tiLhr), and tested for activation by recombinant homologous and heterologous ligands (mdFshβα, mdLhβα, tiFshβα, tiLhβα) from two representative fish orders, Japanese medaka (Oryzias latipes, Beloniformes) and Nile tilapia (Oreochromis niloticus, Cichliformes). Results showed that each gonadotropin preferentially activates its own cognate receptor. Cross-reactivity was detected to some extent as mdFshβα was able to activate the mdLhr, and mdLhβα the mdFshr. Medaka pituitary extract (MPE) stimulated CRE-LUC activity in COS-7 cells expressing mdlhr, but could not stimulate cells expressing mdfshr. Recombinant tiLhβα, tiFshβα and tilapia pituitary extract (TPE) could activate the mdLhr, suggesting cross-species reactivity for mdLhr. Cross-species reactivity was also detected for mdFshr due to activation by tiFshβα, tiLhβα, and TPE, as well as for tiFshr and tiLhr due to stimulation by mdFshβα, mdLhβα, and MPE. Tissue distribution analysis of gene expression revealed that medaka receptors, fshr and lhr, are highly expressed in both ovary and testis. High expression levels were found for lhr also in brain, while fshr was expressed at low levels. Both fshr and lhr mRNA levels increased significantly during testis development. Amino acid sequence alignment and three-dimensional modelling of ligands and receptors highlighted conserved beta sheet domains of both Fsh and Lh between Japanese medaka and Nile tilapia. It also showed a higher structural homology and similarity of transmembrane regions of Lhr between both species, in contrast to Fshr, possibly related to the substitution of the conserved cysteine residue in the transmembrane domain 6 in medaka Fshr with glycine. Taken together, this is the first characterization of medaka Fshr and Lhr using homologous ligands, enabling to better understand teleost hormone-receptor interactions and specificities. The data suggest partial ligand promiscuity and cross-species reactivity between gonadotropins and their receptors in medaka and tilapia.
Collapse
Affiliation(s)
- Susann Burow
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - Naama Mizrahi
- Department of Animal Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot 76100, Israel
| | - Gersende Maugars
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - Kristine von Krogh
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - Rasoul Nourizadeh-Lillabadi
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - Lian Hollander-Cohen
- Department of Animal Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot 76100, Israel
| | - Michal Shpilman
- Department of Animal Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot 76100, Israel
| | - Ishwar Atre
- Department of Animal Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot 76100, Israel
| | - Finn-Arne Weltzien
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway.
| | - Berta Levavi-Sivan
- Department of Animal Sciences, Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot 76100, Israel.
| |
Collapse
|
3
|
He Y, Wiseman SB, Wang N, Perez-Estrada LA, El-Din MG, Martin JW, Giesy JP. Transcriptional responses of the brain-gonad-liver axis of fathead minnows exposed to untreated and ozone-treated oil sands process-affected water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:9701-9708. [PMID: 22856545 DOI: 10.1021/es3019258] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Oil sands process-affected water (OSPW) produced by the surface mining oil sands industry in Alberta, Canada, is toxic to aquatic organisms. Ozonation of OSPW attenuates this toxicity. Altered concentrations of sex steroid hormones, impaired reproductive performance, and less prominent secondary sexual characteristics have been reported for fish exposed to OSPW. However, the mechanism(s) by which these effects occur and whether ozonation can attenuate these effects in fish was unknown. The objective of this in vivo study was to investigate the endocrine-disrupting effects of OSPW and ozone-treated OSPW on the abundances of transcripts of genes in the brain-gonad-liver (BGL) axis in male and female fathead minnows (Pimephales promelas). Abundances of transcripts of genes important for synthesis of gonadotropins were greater in brains from both male and female fish exposed to untreated OSPW compared to that of control fish. In gonads from male fish exposed to untreated OSPW the abundances of transcripts of gonadotropin receptors and several enzymes of sex hormone steroidogenesis were greater than in control fish. The abundances of transcripts of estrogen-responsive genes were greater in livers from male fish exposed to untreated OSPW than in control fish. In female fish exposed to untreated OSPW there was less abundance of transcripts of gonadotropin receptors in gonads, as well as less abundance of transcripts of estrogen-responsive genes in livers. Many effects were either fully or partially attenuated in fish exposed to ozone-treated OSPW. The results indicate that (1) OSPW has endocrine-disrupting effects at all levels of BGL axis, (2) OSPW has different effects in male and female fish, (3) ozonation attenuates the effects of OSPW on abundances of transcripts of some genes, and the attenuation is more prominent in males than in females, but effects of ozonation on endocrine-disrupting effects of OSPW were less clear than in previous in vitro studies. The results provide a mechanistic basis for the endocrine-disrupting effects of OSPW from other studies.
Collapse
Affiliation(s)
- Yuhe He
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | | | | | | | | | | | | |
Collapse
|
4
|
Van Hiel MB, Vandersmissen HP, Van Loy T, Vanden Broeck J. An evolutionary comparison of leucine-rich repeat containing G protein-coupled receptors reveals a novel LGR subtype. Peptides 2012; 34:193-200. [PMID: 22100731 DOI: 10.1016/j.peptides.2011.11.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Revised: 11/03/2011] [Accepted: 11/03/2011] [Indexed: 10/15/2022]
Abstract
Leucine-rich repeat containing G protein-coupled receptors or LGRs are receptors with important functions in development and reproduction. Belonging to this evolutionarily conserved group of receptors are the well-studied glycoprotein hormone receptors and relaxin receptors in mammals, as well as the bursicon receptor, which triggers cuticle hardening and tanning in freshly enclosed insects. In this study, the numerous LGR sequences in different animal phyla are analyzed and compared. Based on these data a phylogenetic tree was generated. This information sheds new light on structural and evolutionary aspects regarding this receptor group. Apart from vertebrates and insects, LGRs are also present in early chordates (Urochordata, Cephalochordata and Hyperoartia) and other arthropods (Arachnida and Branchiopoda) as well as in Mollusca, Echinodermata, Hemichordata, Nematoda, and even in ancient animal life forms, such as Cnidaria and Placozoa. Three distinct types of LGR exist, distinguishable by their number of leucine-rich repeats (LRRs), their type-specific hinge region and the presence or absence of an LDLa motif. Type C LGRs containing only one LDLa (C1 subtype) appear to be present in nearly all animal phyla. We here describe a second subtype, C2, containing multiple LDLa motifs, which was discovered in echinoderms, mollusks and in one insect species (Pediculus humanis corporis). In addition, eight putative LGRs can be predicted from the genome data of the placozoan species Trichoplax adhaerens. They may represent an ancient form of the LGRs, however, more genomic data will be required to confirm this hypothesis.
Collapse
Affiliation(s)
- Matthias B Van Hiel
- Zoological Institute of the Katholieke Universiteit Leuven, Leuven, Belgium.
| | | | | | | |
Collapse
|
5
|
Freamat M, Sower SA. Functional divergence of glycoprotein hormone receptors. Integr Comp Biol 2010; 50:110-23. [PMID: 21558192 DOI: 10.1093/icb/icq045] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Two lamprey glycoprotein hormone receptors (lGpH-R I and II) highly similar with gnathostome GpH-Rs were cloned from sea lamprey testes and thyroid, respectively. Vertebrate glycoprotein protein receptors have a large extracellular domain (ED) containing a leu rich domain (LRD) linked to a rhodopsin-like transmembrane domain (TMD) through a highly divergent linker region (signal specificity domain, SSD or 'hinge' region) and a third major segment, the intracellular domain. To determine the potential roles of the different domains in the activation of the receptor following ligand-receptor binding, functional assays were performed on lGpH-R I/rat luteinizing hormone (LH)-R domain swapped chimeric receptors. These results show that the functional roles of the lamprey glycoprotein-receptor I (lGpH-R I) domains are conserved compared with its Gnathostome homologs. The ability of different glycoprotein hormones to activate chimeric lamprey/rat receptors suggests that the selectivity of the GpH-Rs in respect to their ligands is not controlled exclusively by a single domain but is the result of specific interactions between domains. We hypothesize that these interactions were refined during millions of years of co-evolution of the receptors with their cognate ligands under particular intramolecular, intermolecular and physiological constraints.
Collapse
Affiliation(s)
- Mihael Freamat
- Department of Biochemistry and Molecular Biology, Center for Molecular and Comparative Endocrinology, University of New Hampshire, Durham, NH 03824, USA
| | | |
Collapse
|
6
|
Levavi-Sivan B, Bogerd J, Mañanós EL, Gómez A, Lareyre JJ. Perspectives on fish gonadotropins and their receptors. Gen Comp Endocrinol 2010; 165:412-37. [PMID: 19686749 DOI: 10.1016/j.ygcen.2009.07.019] [Citation(s) in RCA: 342] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 07/10/2009] [Accepted: 07/16/2009] [Indexed: 12/19/2022]
Abstract
Teleosts lack a hypophyseal portal system and hence neurohormones are carried by nerve fibers from the preoptic region to the pituitary. The various cell types in the teleost pituitary are organized in discrete domains. Fish possess two gonadotropins (GtH) similar to FSH and LH in other vertebrates; they are heterodimeric hormones that consist of a common alpha subunit non-covalently associated with a hormone-specific beta subunit. In recent years the availability of molecular cloning techniques allowed the isolation of the genes coding for the GtH subunits in 56 fish species representing at least 14 teleost orders. Advanced molecular engineering provides the technology to produce recombinant GtHs from isolated cDNAs. Various expression systems have been used for the production of recombinant proteins. Recombinant fish GtHs were produced for carp, seabream, channel and African catfish, goldfish, eel, tilapia, zebrafish, Manchurian trout and Orange-spotted grouper. The hypothalamus in fishes exerts its regulation on the release of the GtHs via several neurohormones such as GnRH, dopamine, GABA, PACAP, IGF-I, norepinephrine, NPY, kisspeptin, leptin and ghrelin. In addition, gonadal steroids and peptides exert their effects on the gonadotropins either directly or via the hypothalamus. All these are discussed in detail in this review. In mammals, the biological activities of FSH and LH are directed to different gonadal target cells through the cell-specific expression of the FSH receptor (FSHR) and LH receptor (LHR), respectively, and the interaction between each gonadotropin-receptor couple is highly selective. In contrast, the bioactivity of fish gonadotropins seems to be less specific as a result of promiscuous hormone-receptor interactions, while FSHR expression in Leydig cells explains the strong steroidogenic activity of FSH in certain fish species.
Collapse
Affiliation(s)
- B Levavi-Sivan
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Department of Animal Sciences, The Hebrew University of Jerusalem, Rehovot 76100, Israel.
| | | | | | | | | |
Collapse
|
7
|
Abstract
Directed evolution circumvents our profound ignorance of how a protein's sequence encodes its function by using iterative rounds of random mutation and artificial selection to discover new and useful proteins. Proteins can be tuned to adapt to new functions or environments by simple adaptive walks involving small numbers of mutations. Directed evolution studies have shown how rapidly some proteins can evolve under strong selection pressures and, because the entire 'fossil record' of evolutionary intermediates is available for detailed study, they have provided new insight into the relationship between sequence and function. Directed evolution has also shown how mutations that are functionally neutral can set the stage for further adaptation.
Collapse
Affiliation(s)
| | - Frances H. Arnold
- Dick and Barbara Dickinson Professor of Chemical Engineering and Biochemistry, Division of Chemistry and Chemical Engineering, 210-41, California Institute of Technology, Pasadena, CA 91125 USA, Tel: (626) 395-4162
| |
Collapse
|
8
|
Conforti L, Wilbrey A, Morreale G, Janeckova L, Beirowski B, Adalbert R, Mazzola F, Di Stefano M, Hartley R, Babetto E, Smith T, Gilley J, Billington RA, Genazzani AA, Ribchester RR, Magni G, Coleman M. Wld S protein requires Nmnat activity and a short N-terminal sequence to protect axons in mice. ACTA ACUST UNITED AC 2009; 184:491-500. [PMID: 19237596 PMCID: PMC2654131 DOI: 10.1083/jcb.200807175] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The slow Wallerian degeneration (WldS) protein protects injured axons from degeneration. This unusual chimeric protein fuses a 70–amino acid N-terminal sequence from the Ube4b multiubiquitination factor with the nicotinamide adenine dinucleotide–synthesizing enzyme nicotinamide mononucleotide adenylyl transferase 1. The requirement for these components and the mechanism of WldS-mediated neuroprotection remain highly controversial. The Ube4b domain is necessary for the protective phenotype in mice, but precisely which sequence is essential and why are unclear. Binding to the AAA adenosine triphosphatase valosin-containing protein (VCP)/p97 is the only known biochemical property of the Ube4b domain. Using an in vivo approach, we show that removing the VCP-binding sequence abolishes axon protection. Replacing the WldS VCP-binding domain with an alternative ataxin-3–derived VCP-binding sequence restores its protective function. Enzyme-dead WldS is unable to delay Wallerian degeneration in mice. Thus, neither domain is effective without the function of the other. WldS requires both of its components to protect axons from degeneration.
Collapse
Affiliation(s)
- Laura Conforti
- Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, England, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Laser H, Conforti L, Morreale G, Mack TGM, Heyer M, Haley JE, Wishart TM, Beirowski B, Walker SA, Haase G, Celik A, Adalbert R, Wagner D, Grumme D, Ribchester RR, Plomann M, Coleman MP. The slow Wallerian degeneration protein, WldS, binds directly to VCP/p97 and partially redistributes it within the nucleus. Mol Biol Cell 2006; 17:1075-84. [PMID: 16371511 PMCID: PMC1382299 DOI: 10.1091/mbc.e05-04-0375] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2005] [Revised: 11/28/2005] [Accepted: 12/02/2005] [Indexed: 11/11/2022] Open
Abstract
Slow Wallerian degeneration (Wld(S)) mutant mice express a chimeric nuclear protein that protects sick or injured axons from degeneration. The C-terminal region, derived from NAD(+) synthesizing enzyme Nmnat1, is reported to confer neuroprotection in vitro. However, an additional role for the N-terminal 70 amino acids (N70), derived from multiubiquitination factor Ube4b, has not been excluded. In wild-type Ube4b, N70 is part of a sequence essential for ubiquitination activity but its role is not understood. We report direct binding of N70 to valosin-containing protein (VCP; p97/Cdc48), a protein with diverse cellular roles including a pivotal role in the ubiquitin proteasome system. Interaction with Wld(S) targets VCP to discrete intranuclear foci where ubiquitin epitopes can also accumulate. Wld(S) lacking its N-terminal 16 amino acids (N16) neither binds nor redistributes VCP, but continues to accumulate in intranuclear foci, targeting its intrinsic NAD(+) synthesis activity to these same foci. Wild-type Ube4b also requires N16 to bind VCP, despite a more C-terminal binding site in invertebrate orthologues. We conclude that N-terminal sequences of Wld(S) protein influence the intranuclear location of both ubiquitin proteasome and NAD(+) synthesis machinery and that an evolutionary recent sequence mediates binding of mammalian Ube4b to VCP.
Collapse
Affiliation(s)
- Heike Laser
- Institute for Genetics and Center for Molecular Medicine, University of Cologne, D-50674 Cologne, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Sudo S, Kuwabara Y, Park JI, Hsu SY, Hsueh AJW. Heterodimeric fly glycoprotein hormone-alpha2 (GPA2) and glycoprotein hormone-beta5 (GPB5) activate fly leucine-rich repeat-containing G protein-coupled receptor-1 (DLGR1) and stimulation of human thyrotropin receptors by chimeric fly GPA2 and human GPB5. Endocrinology 2005; 146:3596-604. [PMID: 15890769 DOI: 10.1210/en.2005-0317] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Glycoprotein hormones play important roles in thyroid and gonadal function in vertebrates. The glycoprotein hormone alpha-subunit forms heterodimers with different beta-subunits to activate TSH or gonadotropin (LH and FSH) receptors. Recent genomic analyses allowed the identification of another alpha-subunit, GPA2, and another beta-subunit, GPB5, in human, capable of forming heterodimers to activate TSH receptors. Based on comparative genomic searches, we isolated the fly orthologs for human GPA2 and GPB5, each consisting of 10 cysteine residues likely involved in cystine-knot formation. RT-PCR analyses in Drosophila melanogaster demonstrated the expression of GPA2 and GPB5 at different developmental stages. Immunoblot analyses further showed that fly GPA2 and GPB5 subunit proteins are of approximately 16 kDa, and coexpression of these subunits yielded heterodimers. Purified recombinant fly GPA2/GPB5 heterodimers were found to be glycoproteins with N-linked glycosylated alpha-subunits and nonglycosylated beta-subunits, capable of stimulating cAMP production mediated by fly orphan receptor DLGR1 but not DLGR2. Although the fly GPA2/GPB5 heterodimers did not activate human TSH or gonadotropin receptors, chimeric fly GPA2/human GPB5 heterodimers stimulated human TSH receptors. These findings indicated that fly GPA2/GPB5 is a ligand for DLGR1, thus showing the ancient origin of this glycoprotein hormone-seven transmembrane receptor-G protein signaling system. The fly GPA2 also could form heterodimers with human GPB5 to activate human TSH receptors, indicating the evolutionary conservation of these genes and suggesting that the GPA2 subunit may serve as a scaffold for the beta-subunit to activate downstream G protein-mediated signaling.
Collapse
Affiliation(s)
- Satoko Sudo
- Stanford University School of Medicine, Department of Obstetrics and Gynecology, Division of Reproductive Biology, Stanford, California 94305-5317, USA
| | | | | | | | | |
Collapse
|
11
|
Abstract
Gonadotropins have been studied in biological systems for decades and many of their properties are well defined. These include pharmacological properties such as affinity, stability, and pharmacokinetics also used to characterize drugs. Technologies applied to research on gonadotropins have led to the creation of hormone analogs with alterations to one or more of these proper-ties. Some of these analogs have potential therapeutic applications. A challenge to realizing this potential is the accurate prediction of how these compounds will perform in humans. This could be facilitated by advances in biological models and the understanding of specific effects of the hormones on their receptors.
Collapse
|
12
|
Moyle WR, Lin W, Myers RV, Cao D, Kerrigan JE, Bernard MP. Models of glycoprotein hormone receptor interaction. Endocrine 2005; 26:189-205. [PMID: 16034173 DOI: 10.1385/endo:26:3:189] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2005] [Accepted: 05/05/2005] [Indexed: 11/11/2022]
Abstract
The glycoprotein hormones regulate reproduction and development through their interactions with receptors in ovarian, testicular, and thyroid tissues. Efforts to design hormone agonists and antagonists useful for treat-ing infertility and hyperthyroidism would benefit from a molecular understanding of hormone-receptor interaction. The structure of a complex containing FSH bound to a fragment of its receptor has been determined at 2.9 Angstroms resolution, but this does not explain several observations made with cell-surface G protein receptors and may reflect the manner in which FSH binds a short alternate spliced receptor form. We discuss observations that must be explained by any model of the cell-surface G protein-coupled glycoprotein hormone receptors and suggest structures for these receptors that satisfy these requirements. Glycoprotein hormones appear to contact two distinct sites in the extracellular domains of their receptors, not just the leucine-rich repeat domain. These dual contacts contribute to ligand binding specificity and appear to be essential for signal transduction. As outlined in this minireview, differences in the manners in which these ligands contact their receptors explain why some ligands and ligand analogs interact with more than one class of receptor and why some receptors and receptor analogs bind more than one ligand. The unique manner in which these ligands appear to interact with their receptors may have facilitated hormone and receptor co-evolution during early vertebrate speciation.
Collapse
Affiliation(s)
- William R Moyle
- Department of OBGYN, Robert Wood Johnson (Rutgers) Medical School, Piscataway, NJ 08854, USA.
| | | | | | | | | | | |
Collapse
|
13
|
Otey CR, Silberg JJ, Voigt CA, Endelman JB, Bandara G, Arnold FH. Functional evolution and structural conservation in chimeric cytochromes p450: calibrating a structure-guided approach. ACTA ACUST UNITED AC 2004; 11:309-18. [PMID: 15123260 DOI: 10.1016/j.chembiol.2004.02.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2003] [Revised: 11/12/2003] [Accepted: 12/02/2003] [Indexed: 10/26/2022]
Abstract
Recombination generates chimeric proteins whose ability to fold depends on minimizing structural perturbations that result when portions of the sequence are inherited from different parents. These chimeric sequences can display functional properties characteristic of the parents or acquire entirely new functions. Seventeen chimeras were generated from two CYP102 members of the functionally diverse cytochrome p450 family. Chimeras predicted to have limited structural disruption, as defined by the SCHEMA algorithm, displayed CO binding spectra characteristic of folded p450s. Even this small population exhibited significant functional diversity: chimeras displayed altered substrate specificities, a wide range in thermostabilities, up to a 40-fold increase in peroxidase activity, and ability to hydroxylate a substrate toward which neither parent heme domain shows detectable activity. These results suggest that SCHEMA-guided recombination can be used to generate diverse p450s for exploring function evolution within the p450 structural framework.
Collapse
Affiliation(s)
- Christopher R Otey
- Biochemistry and Molecular Biophysics Option, Mail Code 210-41, Pasadena, CA 91125, USA
| | | | | | | | | | | |
Collapse
|
14
|
Moyle WR, Xing Y, Lin W, Cao D, Myers RV, Kerrigan JE, Bernard MP. Model of Glycoprotein Hormone Receptor Ligand Binding and Signaling. J Biol Chem 2004; 279:44442-59. [PMID: 15304493 DOI: 10.1074/jbc.m406948200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Studies described here were initiated to develop a model of glycoprotein hormone receptor structure and function. We found that the region that links the lutropin receptor leucine-rich repeat domain (LRD) to its transmembrane domain (TMD) has substantial roles in ligand binding and signaling, hence we term it the signaling specificity domain (SSD). Theoretical considerations indicated the short SSDs in marmoset lutropin and salmon follitropin receptors have KH domain folds. We assembled models of lutropin, follitropin, and thyrotropin receptors by aligning models of their LRD, TMD, and shortened SSD in a manner that explains how substitutions in follitropin and thyrotropin receptors distant from their apparent ligand binding sites enable them to recognize lutropins. In these models, the SSD is parallel to the concave surface of the LRD and makes extensive contacts with TMD outer loops 1 and 2. The LRD appears to contact TMD outer loop 3 and a few residues in helices 1, 5, 6, and 7. We propose that signaling results from contacts of the ligands with the SSD and LRD that alter the LRD, which then moves TMD helices 6 and 7. The positions of the LRD and SSD support the notion that the receptor can be activated by hormones that dock with these domains in either of two different orientations. This would account for the abilities of some ligands and ligand chimeras to bind multiple receptors and for some receptors to bind multiple ligands. This property of the receptor may have contributed significantly to ligand-receptor co-evolution.
Collapse
Affiliation(s)
- William R Moyle
- Department of OB-GYN, Robert Wood Johnson (Rutgers) Medical School, Piscataway, New Jersey 08854, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Vischer HF, Marques RB, Granneman JCM, Linskens MHK, Schulz RW, Bogerd J. Receptor-selective determinants in catfish gonadotropin seat-belt loops. Mol Cell Endocrinol 2004; 224:55-63. [PMID: 15353180 DOI: 10.1016/j.mce.2004.06.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2004] [Revised: 06/01/2004] [Accepted: 06/29/2004] [Indexed: 10/26/2022]
Abstract
Mammalian gonadotropins are highly selective. Charge differences between the Cys(10-11) sequence of FSHbeta and LHbeta/CGbeta seat-belt loops determine the ability of these hormones to interact with the LH-R. Selective FSH-R binding is mainly dependent on the presence of an FSHbeta-specific sequence between Cys(11-12) of the seat-belt loop. Intriguingly, African catfish LHbeta (cfLHbeta) lacks a positively charged Cys(10-11) region and stimulates both catfish LH-R and FSH-R with comparable potencies. Our studies on the promiscuous behaviour of cfLH using chimeric gonadotropins revealed that the Cys(10-11) region of cfLHbeta contains cfLH-R-selective determinants, whereas the Cys(11-12) region of cfLHbeta confers FSH-R-stimulating activity to cfLH. Hence, the location of receptor-selective determinants appeared to be fairly well conserved throughout evolution, despite the low sequence identity between mammalian and catfish seat-belt loops. Moreover, various structure-function differences between gonadotropins are discussed in the context of the different (female) reproductive strategies between mammalian and non-mammalian species that required the divergence to a more specific LH-R-stimulating activity of one of the gonadotropins in mammals.
Collapse
Affiliation(s)
- Henry F Vischer
- Department of Endocrinology, Utrecht University, 3584 CH Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
16
|
Xing Y, Myers RV, Cao D, Lin W, Jiang M, Bernard MP, Moyle WR. Glycoprotein Hormone Assembly in the Endoplasmic Reticulum. J Biol Chem 2004; 279:35449-57. [PMID: 15161904 DOI: 10.1074/jbc.m403054200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vertebrate glycoprotein hormone heterodimers are stabilized by a strand of their beta-subunits known as the "seatbelt" that is wrapped around loop 2 of their alpha-subunits (alpha2). The cysteine that terminates the seatbelt is "latched" by a disulfide to a cysteine in beta-subunit loop 1 (beta1) of all vertebrate hormones except some teleost follitropins (teFSH), wherein it is latched to a cysteine in the beta-subunit NH(2) terminus. As reported here, teFSH analogs of human choriogonadotropin (hCG) are assembled by a pathway in which the subunits dock before the seatbelt is latched; assembly is completed by wrapping the seatbelt around loop alpha2 and latching it to the NH(2) terminus. This differs from hCG assembly, which occurs by threading the glycosylated end of loop alpha2 beneath the latched seatbelt through a hole in the beta-subunit. The seatbelt is the part of the beta-subunit that has the greatest influence on biological function. Changes in its sequence during the divergence of lutropins, follitropins, and thyrotropins and the speciation of teleost fish may have impeded heterodimer assembly by a threading mechanism, as observed when the hCG seatbelt was replaced with its salmon FSH counterpart. Whereas wrapping is less efficient than threading, it may have facilitated natural experimentation with the composition of the seatbelt during the co-evolution of glycoprotein hormones and their receptors. Migration of the seatbelt latch site to the NH(2)-terminal end of the beta-subunit would have facilitated teFSH assembly by a wraparound mechanism and may have contributed also to its ability to distinguish lutropin and follitropin receptors.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Chorionic Gonadotropin, beta Subunit, Human/chemistry
- Chorionic Gonadotropin, beta Subunit, Human/genetics
- Chorionic Gonadotropin, beta Subunit, Human/metabolism
- Dimerization
- Endoplasmic Reticulum/metabolism
- Glycoprotein Hormones, alpha Subunit/chemistry
- Glycoprotein Hormones, alpha Subunit/genetics
- Glycoprotein Hormones, alpha Subunit/metabolism
- Humans
- Models, Molecular
- Molecular Sequence Data
- Protein Binding
- Protein Conformation
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Yongna Xing
- Department of Obstetrics and Gynecology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson (Rutgers) Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Payie KG, Tanaka T, Gal S, Yada RY. Construction, expression and characterization of a chimaeric mammalian-plant aspartic proteinase. Biochem J 2003; 372:671-8. [PMID: 12630913 PMCID: PMC1223440 DOI: 10.1042/bj20021126] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2002] [Revised: 02/26/2003] [Accepted: 03/12/2003] [Indexed: 01/05/2023]
Abstract
Aspartic proteinases are a well-characterized class of proteinases. In plants, all nascent aspartic proteinases possess a 100-amino-acid, plant-specific sequence (PSS) within their C-terminal lobe, presumed to possess a targeting role in vivo. In this study, the PSS domain from the Arabidopsis thaliana aspartic proteinase was inserted into porcine pepsinogen at the identical location found in nascent plant aspartic proteinases, to create a chimaeric mammalian-plant enzyme. Based on enzymic activity, this chimaeric enzyme demonstrated increases in pH stability above 6 and temperature stability above 60 degrees C compared with commercial pepsin. Differential scanning calorimetry of the chimaeric enzyme illustrated an approx. 2 degrees C increase in denaturation temperature ( T (m)), with increases in co-operativity and similar enthalpy values. Kinetic analysis indicated an increase in K (m) and decreased k (cat) compared with pepsin, but with a catalytic efficiency similar to the monomeric plant aspartic proteinase from wheat. Using oxidized insulin B-chain, the chimaeric enzyme demonstrated more restricted substrate specificity in comparison with commercial pepsin. This study highlights the use of a chimaeric enzyme strategy in order to characterize unique protein domains within enzyme families, and, for the first time, a putative structure-function role for the PSS as it pertains to plant aspartic proteinases.
Collapse
Affiliation(s)
- Kenneth G Payie
- Department of Food Science, University of Guelph, ON N1G 2W1, Canada
| | | | | | | |
Collapse
|
18
|
Smits G, Campillo M, Govaerts C, Janssens V, Richter C, Vassart G, Pardo L, Costagliola S. Glycoprotein hormone receptors: determinants in leucine-rich repeats responsible for ligand specificity. EMBO J 2003; 22:2692-703. [PMID: 12773385 PMCID: PMC156757 DOI: 10.1093/emboj/cdg260] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Glycoprotein hormone receptors [thyrotropin (TSHr), luteinizing hormone/chorionic gonadotropin (LH/CGr), follicle stimulating hormone (FSHr)] are rhodopsin-like G protein-coupled receptors with a large extracellular N-terminal portion responsible for hormone recognition and binding. In structural models, this ectodomain is composed of two cysteine clusters flanking nine leucine-rich repeats (LRRs). The LRRs form a succession of beta-strands and alpha-helices organized into a horseshoe-shaped structure. It has been proposed that glycoprotein hormones interact with residues of the beta-strands making the concave surface of the horseshoe. Gain-of-function homology scanning of the beta-strands of glycoprotein hormone receptors allowed identification of the critical residues responsible for the specificity towards human chorionic gonadotropin (hCG). Substitution of eight or two residues of the LH/CGr into the TSHr or FSHr, respectively, resulted in constructs displaying almost the same affinity and sensitivity for hCG as wild-type LH/CGr. Molecular dynamics simulations and additional site-directed mutagenesis provided a structural rationale for the evolution of binding specificity in this duplicated gene family.
Collapse
MESH Headings
- Amino Acid Substitution
- Animals
- COS Cells
- Humans
- Kinetics
- Leucine/chemistry
- Ligands
- Models, Molecular
- Mutagenesis, Site-Directed
- Protein Structure, Tertiary
- Receptors, FSH/chemistry
- Receptors, FSH/genetics
- Receptors, FSH/metabolism
- Receptors, LH/chemistry
- Receptors, LH/genetics
- Receptors, LH/metabolism
- Receptors, Neuropeptide/chemistry
- Receptors, Neuropeptide/genetics
- Receptors, Neuropeptide/metabolism
- Receptors, Thyrotropin/chemistry
- Receptors, Thyrotropin/genetics
- Receptors, Thyrotropin/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Repetitive Sequences, Amino Acid
- Static Electricity
- Thermodynamics
Collapse
Affiliation(s)
- Guillaume Smits
- IRIBHM, Université Libre de Bruxelles, Campus Erasme, 808 route de Lennik, B-1070 Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Szkudlinski MW, Fremont V, Ronin C, Weintraub BD. Thyroid-stimulating hormone and thyroid-stimulating hormone receptor structure-function relationships. Physiol Rev 2002; 82:473-502. [PMID: 11917095 DOI: 10.1152/physrev.00031.2001] [Citation(s) in RCA: 305] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This review focuses on recent advances in the structure-function relationships of thyroid-stimulating hormone (TSH) and its receptor. TSH is a member of the glycoprotein hormone family constituting a subset of the cystine-knot growth factor superfamily. TSH is produced by the pituitary thyrotrophs and released to the circulation in a pulsatile manner. It stimulates thyroid functions using specific membrane TSH receptor (TSHR) that belongs to the superfamily of G protein-coupled receptors (GPCRs). New insights into the structure-function relationships of TSH permitted better understanding of the role of specific protein and carbohydrate domains in the synthesis, bioactivity, and clearance of this hormone. Recent progress in studies on TSHR as well as studies on the other GPCRs provided new clues regarding the molecular mechanisms of receptor activation. Such advances are a result of extensive site-directed mutagenesis, peptide and antibody approaches, detailed sequence analyses, and molecular modeling as well as studies on naturally occurring gain- and loss-of-function mutations. This review integrates expanding information on TSH and TSHR structure-function relationships and summarizes current concepts on ligand-dependent and -independent TSHR activation. Special emphasis has been placed on TSH domains involved in receptor recognition, constitutive activity of TSHR, new insights into the evolution of TSH bioactivity, and the development of high-affinity TSH analogs. Such structural, physiological, pathophysiological, evolutionary, and therapeutic implications of TSH-TSHR structure-function studies are frequently discussed in relation to concomitant progress made in studies on gonadotropins and their receptors.
Collapse
Affiliation(s)
- Mariusz W Szkudlinski
- Section of Protein Engineering, Laboratory of Molecular Endocrinology, Medical Biotechnology Center, University of Maryland Biotechnology Institute, Baltimore, Maryland, USA.
| | | | | | | |
Collapse
|
20
|
Smits G, Govaerts C, Nubourgh I, Pardo L, Vassart G, Costagliola S. Lysine 183 and glutamic acid 157 of the TSH receptor: two interacting residues with a key role in determining specificity toward TSH and human CG. Mol Endocrinol 2002; 16:722-35. [PMID: 11923469 DOI: 10.1210/mend.16.4.0815] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A naturally occurring mutation in the ectodomain of the TSH receptor (TSHr), K183R, has been described recently in a familial case of gestational hyperthyroidism. Hyperthyroidism was explained by the widening of the specificity of the mutant receptor toward human CG (hCG). In the present study, we attempted to understand in molecular terms the structure-phenotype relationships of this mutant in light of the available structural model of TSHr ectodomain established on the template of the atomic structure of the porcine ribonuclease inhibitor. To this aim, we studied by site-directed mutagenesis and functional assays in transfected COS cells the effects of substituting amino acids with different physicochemical properties for lysine 183. Unexpectedly, all TSHr mutants displayed widening of their specificity toward hCG. Molecular dynamics simulations suggested that the gain of function would be secondary to the release of a nearby glutamate residue (E157) from a salt bridge with K183. This hypothesis was supported by further site-directed mutagenesis experiments showing that the presence of an acidic residue in position 157, or in its vicinity, was required to observe the increase in sensitivity to hCG (an acidic residue in position 183 can partially fulfill the role of a free acidic residue in position 157 when tested on the background of a E157A mutant). Our results suggest also that additional natural mutations (especially K183M, N, or Q) in position 183 of TSHr are expected to be found in gestational hyperthyroidism.
Collapse
Affiliation(s)
- Guillaume Smits
- Service de Génétique Médicale, Hôpital Erasme, B-1070 Bruxelles, Belgium
| | | | | | | | | | | |
Collapse
|
21
|
Xing Y, Lin W, Jiang M, Myers RV, Cao D, Bernard MP, Moyle WR. Alternatively folded choriogonadotropin analogs. Implications for hormone folding and biological activity. J Biol Chem 2001; 276:46953-60. [PMID: 11591722 DOI: 10.1074/jbc.m108374200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Most heterodimeric proteins are stabilized by intersubunit contacts or disulfide bonds. In contrast, human chorionic gonadotropin (hCG) and other glycoprotein hormones are secured by a strand of their beta-subunits that is wrapped around alpha-subunit loop 2 "like a seatbelt." During studies of hCG synthesis in COS-7 cells, we found that, when the seatbelt was prevented from forming the disulfide that normally "latches" it to the beta-subunit, its carboxyl-terminal end can "scan" the surface of the heterodimer and become latched by a disulfide to cysteines substituted for residues in the alpha-subunit. Analogs in which the seatbelt was latched to residues 35, 37, 41-43, and 56 of alpha-subunit loop 2 had similar lutropin activities to those of hCG; that in which it was latched to residue 92 at the carboxyl terminus had 10-20% the activity of hCG. Attachment of the seatbelt to alpha-subunit residues 45-51, 86, 88, 90, and 91 reduced lutropin activity substantially. These findings show that the heterodimer can form before the beta-subunit has folded completely and support the notions that the carboxyl-terminal end of the seatbelt, portions of alpha-subunit loop 2, and the end of the alpha-subunit carboxyl terminus do not participate in lutropin receptor interactions. They suggest also that several different architectures could have been sampled without disrupting hormone activity as the glycoprotein hormones diverged from other cysteine knot proteins.
Collapse
Affiliation(s)
- Y Xing
- Department of Obstetrics and Gynecology, Robert Wood Johnson (Rutgers) Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Birken S, Kovalevskaya G, O'Connor J. Immunochemical measurement of early pregnancy isoforms of HCG: potential applications to fertility research, prenatal diagnosis, and cancer. Arch Med Res 2001; 32:635-43. [PMID: 11750741 DOI: 10.1016/s0188-4409(01)00329-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Human chorionic gonadotropin, the glycoprotein hormone of pregnancy, is found naturally in blood and urine in a variety of isoforms. These variants are related to both peptide bond cleavages (such as the nicked forms of hCG) and the beta core fragment urinary metabolite, as well as the larger variety of species resulting from carbohydrate heterogeneity. We have recently developed immunoassay systems that can measure nicked forms of hCG (antibody B151) as well as particular high carbohydrate variants (hyperglycosylated forms) of hCG (B152), which are associated with cancers producing hCG. Using the assay system for nicked hCG, we found that nicked hCG does not appear to be present as a significant hCG isoform during normal pregnancies if the urine specimens are well preserved. Applying the assay for hyperglycosylated hCG isoforms, we discovered that these forms are prevalent during very early pregnancy and decline rapidly to low concentration after the first 6 weeks of pregnancy. Persistence of these early pregnancy forms does not bode well for the pregnancy. Other investigators report that measurement of such hCG isoforms may aid in diagnosis of Down syndrome pregnancies. In summary, measurement of the hyperglycosylated hCG isoforms are useful for evaluation of healthy progress of normal pregnancy, as an additional detection marker for Down syndrome pregnancies, and as a potential new marker of trophoblastic malignancy. New reference preparations will soon be available for the calibration of assay systems for measurement of many of these hCG variants and metabolites.
Collapse
Affiliation(s)
- S Birken
- Department of Obstetrics and Gynecology and the Irving Center for Clinical Research, Columbia College of Physicians & Surgeons, New York, NY 10032, USA.
| | | | | |
Collapse
|
23
|
Sroga GE, Dordick JS. Generation of a broad esterolytic subtilisin using combined molecular evolution and periplasmic expression. PROTEIN ENGINEERING 2001; 14:929-37. [PMID: 11742113 DOI: 10.1093/protein/14.11.929] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Concomitant activity improvement of an evolved enzyme toward two very different ester substrates was achieved when a unique combination of functional periplasmic enzyme expression in Escherichia coli, random mutagenesis, DNA shuffling and cell-based kinetic screenings was applied. Specifically, we focused on the conversion of subtilisin E into an enzyme with broader esterase activity as opposed to its native amidase activity. Cell-based microtiter assays were performed on N-acetyl-D,L-phenylalanine p-nitrophenyl ester (Phe-NPE) and sucrose 1'-adipate (S1'A), as well as on the tetrapeptide amide substrate N-succinyl-L-Ala-L-Ala-L-Pro-L-Phe-p-nitroanilide. After a single modified cycle of directed molecular evolution, we isolated a number of clones exhibiting increased activity toward Phe-NPE. In the following rounds of screenings, mutants with improved activity on Phe-NPE were also tested on S1'A. Three mutants were identified with increased esterolytic activity on Phe-NPE and S1'A, while having similar amidase activity to that of the parental enzymes. Because the two ester substrates are structurally distinct, we have evolved a more general esterolytic subtilisin and this may have important applications in synthesis.
Collapse
Affiliation(s)
- G E Sroga
- Department of Chemical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA
| | | |
Collapse
|
24
|
Abécassis V, Pompon D, Truan G. High efficiency family shuffling based on multi-step PCR and in vivo DNA recombination in yeast: statistical and functional analysis of a combinatorial library between human cytochrome P450 1A1 and 1A2. Nucleic Acids Res 2000; 28:E88. [PMID: 11024190 PMCID: PMC110804 DOI: 10.1093/nar/28.20.e88] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The design of a family shuffling strategy (CLERY: Combinatorial Libraries Enhanced by Recombination in Yeast) associating PCR-based and in vivo recombination and expression in yeast is described. This strategy was tested using human cytochrome P450 CYP1A1 and CYP1A2 as templates, which share 74% nucleotide sequence identity. Construction of highly shuffled libraries of mosaic structures and reduction of parental gene contamination were two major goals. Library characterization involved multiprobe hybridization on DNA macro-arrays. The statistical analysis of randomly selected clones revealed a high proportion of chimeric genes (86%) and a homogeneous representation of the parental contribution among the sequences (55.8 +/- 2.5% for parental sequence 1A2). A microtiter plate screening system was designed to achieve colorimetric detection of polycyclic hydrocarbon hydroxylation by transformed yeast cells. Full sequences of five randomly picked and five functionally selected clones were analyzed. Results confirmed the shuffling efficiency and allowed calculation of the average length of sequence exchange and mutation rates. The efficient and statistically representative generation of mosaic structures by this type of family shuffling in a yeast expression system constitutes a novel and promising tool for structure-function studies and tuning enzymatic activities of multicomponent eucaryote complexes involving non-soluble enzymes.
Collapse
Affiliation(s)
- V Abécassis
- Centre de Génétique Moléculaire du CNRS, UPR 2137, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | | | | |
Collapse
|
25
|
Szkudlinski MW, Grossmann M, Leitolf H, Weintraub BD. Human thyroid-stimulating hormone: structure-function analysis. Methods 2000; 21:67-81. [PMID: 10764608 DOI: 10.1006/meth.2000.0976] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This article provides the reader with an overview of methodological strategies to investigate structure-function relationships of human thyroid-stimulating hormone (hTSH). Various aspects of hTSH production, purification, and characterization described here in more detail are not only relevant to studies on other members of the glycoprotein hormone family, but also applicable to studies of other glycosylated proteins. Knowledge of structure-function relationships of specific hTSH domains is important for a better understanding of the molecular mechanisms of its action. New insights from such studies permit the design of glycoprotein hormone analogs with specific pharmacological properties and potential clinical applications.
Collapse
Affiliation(s)
- M W Szkudlinski
- Laboratory of Molecular Endocrinology, Department of Medicine, University of Maryland School of Medicine and the Institute of Human Virology, Medical Biotechnology Center, 725 West Lombard Street, Baltimore, Maryland 21201-1009, USA.
| | | | | | | |
Collapse
|
26
|
Abstract
FSH has a key role in the development and function of the reproductive system and is widely used both diagnostically and therapeutically in developmental and reproductive medicine. The accurate measurement of FSH levels, in patients for diagnosis and monitoring and in therapeutic preparations for clinical use, is essential for safe and successful treatment. Historically, FSH was defined on the basis of classical in vivo endocrine activity, and early therapeutic preparations were calibrated using in vivo bioassays. There was early recognition that reference preparations were required for calibration if the results from different laboratories were to be comparable. In response to the perceived need, the World Health Organization established the first standard for such preparations in 1959. Subsequent developments in biotechnology have led to recognition that there is no single molecule that can be uniquely defined as FSH, and that FSH can induce a range of biological activities. Several highly purified standards for FSH are now available, but discontinuity and heterogeneity of estimates of FSH activity in terms of these standards made using in vitro assays and binding assays have been noted. It is thus essential that any measurement of FSH include specification both of the standard with which the measured FSH is compared and the assay method used for that comparison.
Collapse
Affiliation(s)
- M P Rose
- Division of Endocrinology, National Institute for Biological Standards and Control, Hertfordshire, United Kingdom.
| | | | | |
Collapse
|
27
|
Lin W, Ransom MX, Myers RV, Bernard MP, Moyle WR. Addition of an N-terminal dimerization domain promotes assembly of hCG analogs: implications for subunit combination and structure-function analysis. Mol Cell Endocrinol 1999; 152:91-8. [PMID: 10432227 DOI: 10.1016/s0303-7207(99)00056-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human chorionic gonadotropin (hCG) is a heterodimeric placental glycoprotein hormone that acts through ovarian lutropin receptors (LHR) to maintain early pregnancy. Its ability to distinguish LHR and follitropin receptors (FSHR) is controlled by 20 beta-subunit 'seatbelt' residues that surround alpha-subunit loop 2. Positively charged amino acids between residues 93-100, a small loop within the seatbelt, have been postulated to make essential LH receptor contacts. Previous studies showed that analogs containing negatively charged amino acids in this small loop had 5-10% the activity of hCG and 1-10% the lutropin activities of hCG/hFSH chimeric analogs capable of binding LHR and FSHR. These effects might be due to the influence of these residues on receptor contacts or on hormone conformation. During efforts to distinguish these possibilities, we increased and decreased the number of residues in this loop, mutations we anticipated would distort its conformation. Consistent with this supposition, these changes inhibited dimer formation, precluding assessment of these mutations on hormone activity. Addition of Fos and Jun dimerization domains to the N-termini of hCGalpha- and hCG/hFSHbeta-subunit chimeras overcame the effects of the seatbelt mutations on subunit combination and enabled preparation of heterodimers containing six, seven, or nine residues in their seatbelt loops. These had 0.1-10% the lutropin and 3-60% the follitropin activities of bifunctional chimeras containing 8 residues derived from hCG in the seatbelt loop. The abilities of N-terminal dimerization domains to promote subunit combination may permit structure/function analysis of other residues that influence heterodimer formation.
Collapse
Affiliation(s)
- W Lin
- Department of Obstetrics and Gynecology, UMDNJ-Robert Wood Johnson (Rutgers) Medical School, Piscataway, NJ 08854, USA
| | | | | | | | | |
Collapse
|
28
|
Grasberger H, Buettner C, Janssen OE. Modularity of serpins. A bifunctional chimera possessing alpha1-proteinase inhibitor and thyroxine-binding globulin properties. J Biol Chem 1999; 274:15046-51. [PMID: 10329708 DOI: 10.1074/jbc.274.21.15046] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
An exciting application of protein engineering is the creation of proteins with novel functions by the retrofitting of native proteins. Such attempts might be facilitated by the idea of a mosaic architecture of proteins out of structural units. Even though numerous theoretical concepts deal with the delineation of structural "modules," their potential in the design of proteins has not yet been sufficiently exploited. To address this question we used a gain of function approach by designing modular chimeric molecules out of two structurally homologous but functionally diverse members of the superfamily of serine-proteinase inhibitors, alpha1-proteinase inhibitor and thyroxine-binding globulin. Substitution of two of four alpha1-proteinase inhibitor modules (Lys222 to Leu288 and Pro362 to Lys394, respectively), identified by alpha-backbone distance analysis, with their thyroxine-binding globulin homologues resulted in a bifunctional chimera with inhibition of human leukocyte elastase and high affinity thyroxine binding. To our knowledge, this is the first report on a bifunctional chimera engineered from modules of homologous globular proteins. Our results demonstrate how a modular concept can facilitate the design of new functional proteins by swapping structural units chosen from members of a protein superfamily.
Collapse
Affiliation(s)
- H Grasberger
- Department of Medicine, Klinikum Innenstadt, Ludwig-Maximilians-University, D-80336 Munich, Germany
| | | | | |
Collapse
|
29
|
Stevens CW, Newman LC. Spinal administration of selective opioid antagonists in amphibians: evidence for an opioid unireceptor. Life Sci 1999; 64:PL125-30. [PMID: 10096442 DOI: 10.1016/s0024-3205(99)00013-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In mammals, opioids act by interactions with three distinct types of receptors: mu, delta, or kappa opioid receptors. Using a novel assay of antinociception in the Northern grass frog, Rana pipiens, previous work demonstrated that selective mu, delta, or kappa opioids produced a potent antinociception when administered by the spinal route. The relative potency of this effect was highly correlated to that found in mammals. Present studies employing selective opioid antagonists, beta-FNA, NTI, or nor-BNI demonstrated that, in general, these antagonists were not selective in the amphibian model. These data have implications for the functional evolution of opioid receptors in vertebrates and suggest that the tested mu, delta, and kappa opioids mediate antinociception via a single type of opioid receptor in amphibians, termed the unireceptor.
Collapse
Affiliation(s)
- C W Stevens
- Department of Pharmacology and Physiology, Oklahoma State University, College of Osteopathic Medicine, Tulsa 74107, USA.
| | | |
Collapse
|
30
|
Functional homodimeric glycoprotein hormones: implications for hormone action and evolution. ACTA ACUST UNITED AC 1998. [DOI: 10.1016/s1074-5521(98)90617-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
31
|
Combarnous Y, Richard F, Martinat N. Mammalian follicle-stimulating hormone receptors and their ligands. Eur J Obstet Gynecol Reprod Biol 1998; 77:125-30. [PMID: 9578267 DOI: 10.1016/s0301-2115(97)00259-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Y Combarnous
- URA INRA-CNRS No. 1291, Physiologie de la Reproduction des Mammifères Domestiques, Nouzilly, France.
| | | | | |
Collapse
|
32
|
Abstract
Improvement of enzymes is one of the important objectives of biotechnology. In vitro evolution of enzymes using DNA shuffling involves the assembly of two or more DNA segments into a full-length gene by homologous, or site-specific, recombination. Before the assembly, the segments are often subjected to random mutagenesis by error-prone PCR, random nucleotide insertion or other methods. Many useful enzymes and peptides have been isolated following the artificial evolution.
Collapse
Affiliation(s)
- S Harayama
- Marine Biotechnology Institute, Iwate, Japan
| |
Collapse
|
33
|
Yee AR, Kronstad JW. Dual sets of chimeric alleles identify specificity sequences for the bE and bW mating and pathogenicity genes of Ustilago maydis. Mol Cell Biol 1998; 18:221-32. [PMID: 9418869 PMCID: PMC121480 DOI: 10.1128/mcb.18.1.221] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The b mating-type locus of the fungal plant pathogen Ustilago maydis encodes two multiallelic gene products, bE and bW, that control the formation and maintenance of the infectious cell type. Dimerization via the N-terminal regions of bE and bW proteins encoded by alleles of different specificities establishes a homeodomain-containing transcription factor. The bE and bW products encoded by alleles of like specificities fail to dimerize. We constructed sets of chimeric alleles for the bE1 and bE2 genes and for the bW1 and bW2 genes to identify sequences that control specificity. The mating behavior of strains carrying chimeric alleles identified three classes of specificity: b2 (class I), specificity different from either parental type (class II), and b1 (class III). Crosses between strains carrying bE and bW chimeric alleles identified two short blocks of amino acids that influence specificity and that are located in the N-terminal variable regions of the b proteins. Comparisons of pairs of chimeric alleles encoding polypeptides differing in specificity and differing at single amino acid positions identified 16 codon positions that influence the interaction between bE and bW. Fifteen of these positions lie within the blocks of amino acids identified by crosses between the strains carrying chimeric alleles. Overall, this work provides insight into the organization of the regions that control recognition.
Collapse
Affiliation(s)
- A R Yee
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
34
|
Patten PA, Howard RJ, Stemmer WP. Applications of DNA shuffling to pharmaceuticals and vaccines. Curr Opin Biotechnol 1997; 8:724-33. [PMID: 9425664 DOI: 10.1016/s0958-1669(97)80127-9] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
DNA shuffling is a practical process for directed molecular evolution which uses recombination to dramatically accelerate the rate at which one can evolve genes. Single and multigene traits that require many mutations for improved phenotypes can be evolved rapidly. DNA shuffling technology has been significantly enhanced in the past year, extending its range of applications to small molecule pharmaceuticals, pharmaceutical proteins, gene therapy vehicles and transgenes, vaccines and evolved viruses for vaccines, and laboratory animal models.
Collapse
Affiliation(s)
- P A Patten
- Maxygen, Inc., Santa Clara, CA 95051, USA.
| | | | | |
Collapse
|