1
|
Pandey V, Srivastava A, Ali A, Gupta R, Shahid MS, Gaur RK. Predicting candidate miRNAs for targeting begomovirus to induce sequence-specific gene silencing in chilli plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1460540. [PMID: 39376242 PMCID: PMC11456425 DOI: 10.3389/fpls.2024.1460540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 08/30/2024] [Indexed: 10/09/2024]
Abstract
The begomoviruses are the most economically damaging pathogens that pose a serious risk to India's chilli crop and have been associated with the chilli leaf curl disease (ChiLCD). Chilli cultivars infected with begomovirus have suffered significant decreases in biomass output, negatively impacting their economic characteristics. We used the C-mii tool to predict twenty plant miRNA families from SRA chilli transcriptome data (retrieved from the NCBI and GenBank databases). Five target prediction algorithms, i.e., C-mii, miRanda, psRNATarget, RNAhybrid, and RNA22, were applied to identify and evaluate chilli miRNAs (microRNAs) as potential therapeutic targets against ten begomoviruses that cause ChiLCD. In this study, the top five chilli miRNAs which were identified by all five algorithms were thoroughly examined. Moreover, we also noted strong complementarities between these miRNAs and the AC1 (REP), AC2 (TrAP) and betaC1 genes. Three computational approaches (miRanda, RNA22, and psRNATarget) identified the consensus hybridization site for CA-miR838 at locus 2052. The top predicted targets within ORFs were indicated by CA-miR2673 (a and b). Through Circos algorithm, we identified novel targets and create the miRNA-mRNA interaction network using the R program. Furthermore, free energy calculation of the miRNA-target duplex revealed that thermodynamic stability was optimal for miR838 and miR2673 (a and b). To the best of our knowledge, this was the first instance of miRNA being predicted from chilli transcriptome information that had not been reported in miRbase previously. Consequently, the anticipated biological results substantially assist in developing chilli plants resistant to ChiLCD.
Collapse
Affiliation(s)
- Vineeta Pandey
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, India
| | - Aarshi Srivastava
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, India
| | - Akhtar Ali
- Department of Biological Science, The University of Tulsa, Tulsa, OK, United States
| | - Ramwant Gupta
- Department of Botany, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, India
| | - Muhammad Shafiq Shahid
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-khoud, Oman
| | - Rajarshi Kumar Gaur
- Department of Biotechnology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur, Uttar Pradesh, India
| |
Collapse
|
2
|
Ma Z, Wang J, Li C. Research Progress on miRNAs and Artificial miRNAs in Insect and Disease Resistance and Breeding in Plants. Genes (Basel) 2024; 15:1200. [PMID: 39336791 PMCID: PMC11431169 DOI: 10.3390/genes15091200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that are expressed in a tissue- and temporal-specific manner during development. They have been found to be highly conserved during the evolution of different species. miRNAs regulate the expression of several genes in various organisms, with some regulating the expression of multiple genes with similar or completely unrelated functions. Frequent disease and insect pest infestations severely limit agricultural development. Thus, cultivating resistant crops via miRNA-directed gene regulation in plants, insects, and pathogens is an important aspect of modern breeding practices. To strengthen the application of miRNAs in sustainable agriculture, plant endogenous or exogenous miRNAs have been used for plant breeding. Consequently, the development of biological pesticides based on miRNAs has become an important avenue for future pest control methods. However, selecting the appropriate miRNA according to the desired target traits in the target organism is key to successfully using this technology for pest control. This review summarizes the progress in research on miRNAs in plants and other species involved in regulating plant disease and pest resistance pathways. We also discuss the molecular mechanisms of relevant target genes to provide new ideas for future research on pest and disease resistance and breeding in plants.
Collapse
Affiliation(s)
- Zengfeng Ma
- Rice Research Institute, Guangxi Academy of Agricultural Sciences, Guangxi Key Laboratory of Rice Genetics and Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Nanning 530007, China
| | - Jianyu Wang
- Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430070, China
- School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Changyan Li
- Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430070, China
| |
Collapse
|
3
|
Li SP, Chen ZX, Gao G, Bao YQ, Fang WY, Zhang YN, Liu WX, Lorenzen M, Wiegmann BM, Xuan JL. Development of an agroinfiltration-based transient hairpin RNA expression system in pak choi leaves (Brassica rapa ssp. chinensis) for RNA interference against Liriomyza sativae. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106091. [PMID: 39277418 DOI: 10.1016/j.pestbp.2024.106091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/05/2024] [Accepted: 08/16/2024] [Indexed: 09/17/2024]
Abstract
The vegetable leafminer (Liriomyza sativae) is a devastating invasive pest of many vegetable crops and horticultural plants worldwide, causing serious economic loss. Conventional control strategy against this pest mainly relies on the synthetic chemical pesticides, but widespread use of insecticides easily causes insecticide resistance development and is harmful to beneficial organisms and environment. In this context, a more environmentally friendly pest management strategy based on RNA interference (RNAi) has emerged as a powerful tool to control of insect pests. Here we report a successful oral RNAi in L. sativae after feeding on pak choi (Brassica rapa ssp. chinensis) that transiently express hairpin RNAs targeting vital genes in this pest. First, potentially lethal genes are identified by searching an L. sativae transcriptome for orthologs of the widely used V-ATPase A and actin genes, then expression levels are assessed during different life stages and in different adult tissues. Interestingly, the highest expression levels for V-ATPase A are observed in the adult heads (males and females) and for actin in the abdomens of adult females. We also assessed expression patterns of the target hairpin RNAs in pak choi leaves and found that they reach peak levels 72 h post agroinfiltration. RNAi-mediated knockdown of each target was then assessed by letting adult L. sativae feed on agroinfiltrated pak choi leaves. Relative transcript levels of each target gene exhibit significant reductions over the feeding time, and adversely affect survival of adult L. sativae at 24 h post infestation in genetically unmodified pak choi plants. These results demonstrate that the agroinfiltration-mediated RNAi system has potential for advancing innovative environmentally safe pest management strategies for the control of leaf-mining species.
Collapse
Affiliation(s)
- Shu-Peng Li
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China; Anhui Watermelon and Melon Biological Breeding Engineering Research Center, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Zi-Xu Chen
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Ge Gao
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Ya-Qi Bao
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Wen-Ying Fang
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Ya-Nan Zhang
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| | - Wan-Xue Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Marcé Lorenzen
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Brian M Wiegmann
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Jing-Li Xuan
- Anhui Engineering Research Center for Green Production Technology of Drought Grain Crops, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
4
|
Hung YL, Hong SF, Wei WL, Cheng S, Yu JZ, Tjita V, Yong QY, Nishihama R, Kohchi T, Bowman JL, Chien YC, Chiu YH, Yang HC, Lu MYJ, Pan ZJ, Wang CN, Lin SS. Dual Regulation of Cytochrome P450 Gene Expression by Two Distinct Small RNAs, a Novel tasiRNA and miRNA, in Marchantia polymorpha. PLANT & CELL PHYSIOLOGY 2024; 65:1115-1134. [PMID: 38545690 DOI: 10.1093/pcp/pcae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 03/18/2024] [Accepted: 03/20/2024] [Indexed: 07/31/2024]
Abstract
The miR390-derived TAS3 trans-acting short-interfering RNAs (tasiRNAs) module represents a conserved RNA silencing pathway in the plant kingdom; however, its characterization in the bryophyte Marchantia polymorpha is limited. This study elucidated that MpDCL4 processes MpTAS3 double-stranded RNA (dsRNA) to generate tasiRNAs, primarily from the 5'- and 3'-ends of dsRNA. Notably, we discovered a novel tasiRNA, tasi78A, which can negatively regulate a cytochrome P450 gene, MpCYP78A101. Additionally, tasi78A was abundant in MpAGO1, and transient expression assays underscored the role of tasi78A in repressing MpCYP78A101. A microRNA, miR11700, also regulates MpCYP78A101 expression. This coordinate regulation suggests a role in modulating auxin signaling at apical notches of gemma, influencing the growth and sexual organ development of M. polymorpha and emphasizing the significance of RNA silencing in MpCYP78A101 regulation. However, phylogenetic analysis identified another paralog of the CYP78 family, Mp1g14150, which may have a redundant role with MpCYP78A101, explaining the absence of noticeable morphological changes in loss-of-function plants. Taken together, our findings provide new insights into the combined regulatory roles of miR390/MpTAS3/miR11700 in controlling MpCYP78A101 and expand our knowledge about the biogenesis and regulation of tasiRNAs in M. polymorpha.
Collapse
Affiliation(s)
- Yu-Ling Hung
- Institute of Biotechnology, National Taiwan University, No.1, Sec. 4, Roosevelt Rd., Taipei 106319, Taiwan, R.O.C
- Institute of Plant Biology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106319, Taiwan, R.O.C
| | - Syuan-Fei Hong
- Institute of Biotechnology, National Taiwan University, No.1, Sec. 4, Roosevelt Rd., Taipei 106319, Taiwan, R.O.C
| | - Wei-Lun Wei
- Institute of Biotechnology, National Taiwan University, No.1, Sec. 4, Roosevelt Rd., Taipei 106319, Taiwan, R.O.C
| | - Shiuan Cheng
- Institute of Biotechnology, National Taiwan University, No.1, Sec. 4, Roosevelt Rd., Taipei 106319, Taiwan, R.O.C
| | - Jia-Zhen Yu
- Institute of Biotechnology, National Taiwan University, No.1, Sec. 4, Roosevelt Rd., Taipei 106319, Taiwan, R.O.C
| | - Veny Tjita
- Institute of Biotechnology, National Taiwan University, No.1, Sec. 4, Roosevelt Rd., Taipei 106319, Taiwan, R.O.C
| | - Qian-Yuan Yong
- Institute of Biotechnology, National Taiwan University, No.1, Sec. 4, Roosevelt Rd., Taipei 106319, Taiwan, R.O.C
| | - Ryuichi Nishihama
- Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto 606-8502, Japan
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo, Kyoto 606-8502, Japan
| | - John L Bowman
- School of Biological Sciences, Monash University, Clayton Campus, Melbourne, VIC 3800, Australia
| | - Yuan-Chi Chien
- Department of Biochemical Science and Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106319, Taiwan, R.O.C
| | - Yen-Hsin Chiu
- Institute of Biotechnology, National Taiwan University, No.1, Sec. 4, Roosevelt Rd., Taipei 106319, Taiwan, R.O.C
- Seed Improvement and Propagation Station, Council of Agriculture, No.46, Xingzhong St., Xinshe Dist., Taichung City 426015, Taiwan, R.O.C
| | - Ho-Chun Yang
- Biodiversity Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang, Taipei 11529, Taiwan, R.O.C
| | - Mei-Yeh Jade Lu
- Biodiversity Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang, Taipei 11529, Taiwan, R.O.C
| | - Zhao-Jun Pan
- Institute of Biotechnology, National Taiwan University, No.1, Sec. 4, Roosevelt Rd., Taipei 106319, Taiwan, R.O.C
| | - Chun-Neng Wang
- Institute of Ecology and Evolutionary Biology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106319, Taiwan, R.O.C
- Department of Life Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 106319, Taiwan, R.O.C
| | - Shih-Shun Lin
- Institute of Biotechnology, National Taiwan University, No.1, Sec. 4, Roosevelt Rd., Taipei 106319, Taiwan, R.O.C
- Agricultural Biotechnology Research Center, Academia Sinica, 128 Academia Road, Sec. 2, Nankang, Taipei 11529, Taiwan
- Center of Biotechnology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106319, Taiwan, R.O.C
| |
Collapse
|
5
|
Chaudhary V, Kumar M, Chauhan C, Sirohi U, Srivastav AL, Rani L. Strategies for mitigation of pesticides from the environment through alternative approaches: A review of recent developments and future prospects. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120326. [PMID: 38387349 DOI: 10.1016/j.jenvman.2024.120326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/14/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
Chemical-based peticides are having negative impacts on both the healths of human beings and plants as well. The World Health Organisation (WHO), reported that each year, >25 million individuals in poor nations are having acute pesticide poisoning cases along with 20,000 fatal injuries at global level. Normally, only ∼0.1% of the pesticide reaches to the intended targets, and rest amount is expected to come into the food chain/environment for a longer period of time. Therefore, it is crucial to reduce the amounts of pesticides present in the soil. Physical or chemical treatments are either expensive or incapable to do so. Hence, pesticide detoxification can be achieved through bioremediation/biotechnologies, including nano-based methodologies, integrated approaches etc. These are relatively affordable, efficient and environmentally sound methods. Therefore, alternate strategies like as advanced biotechnological tools like as CRISPR Cas system, RNAi and genetic engineering for development of insects and pest resistant plants which are directly involved in the development of disease- and pest-resistant plants and indirectly reduce the use of pesticides. Omics tools and multi omics approaches like metagenomics, genomics, transcriptomics, proteomics, and metabolomics for the efficient functional gene mining and their validation for bioremediation of pesticides also discussed from the literatures. Overall, the review focuses on the most recent advancements in bioremediation methods to lessen the effects of pesticides along with the role of microorganisms in pesticides elimination. Further, pesticide detection is also a big challenge which can be done by using HPLC, GC, SERS, and LSPR ELISA etc. which have also been described in this review.
Collapse
Affiliation(s)
- Veena Chaudhary
- Department of Chemistry, Meerut College, Meerut, Uttar-Pradesh, India
| | - Mukesh Kumar
- Department of Floriculture and Landscaping Architecture, College of Horticulture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh, India
| | - Chetan Chauhan
- Department of Floriculture and Landscaping Architecture, College of Horticulture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh, India
| | - Ujjwal Sirohi
- National Institute of Plant Genome Research, New Delhi, India
| | - Arun Lal Srivastav
- Chitkara University School of Engineering and Technology, Chitkara University, Himachal Pradesh, India.
| | - Lata Rani
- Chitkara School of Pharmacy, Chitkara University, Himachal Pradesh, India
| |
Collapse
|
6
|
Ding T, Li W, Li F, Ren M, Wang W. microRNAs: Key Regulators in Plant Responses to Abiotic and Biotic Stresses via Endogenous and Cross-Kingdom Mechanisms. Int J Mol Sci 2024; 25:1154. [PMID: 38256227 PMCID: PMC10816238 DOI: 10.3390/ijms25021154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Dramatic shifts in global climate have intensified abiotic and biotic stress faced by plants. Plant microRNAs (miRNAs)-20-24 nucleotide non-coding RNA molecules-form a key regulatory system of plant gene expression; playing crucial roles in plant growth; development; and defense against abiotic and biotic stress. Moreover, they participate in cross-kingdom communication. This communication encompasses interactions with other plants, microorganisms, and insect species, collectively exerting a profound influence on the agronomic traits of crops. This article comprehensively reviews the biosynthesis of plant miRNAs and explores their impact on plant growth, development, and stress resistance through endogenous, non-transboundary mechanisms. Furthermore, this review delves into the cross-kingdom regulatory effects of plant miRNAs on plants, microorganisms, and pests. It proceeds to specifically discuss the design and modification strategies for artificial miRNAs (amiRNAs), as well as the protection and transport of miRNAs by exosome-like nanovesicles (ELNVs), expanding the potential applications of plant miRNAs in crop breeding. Finally, the current limitations associated with harnessing plant miRNAs are addressed, and the utilization of synthetic biology is proposed to facilitate the heterologous expression and large-scale production of miRNAs. This novel approach suggests a plant-based solution to address future biosafety concerns in agriculture.
Collapse
Affiliation(s)
- Tianze Ding
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (T.D.); (W.L.); (F.L.)
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Wenkang Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (T.D.); (W.L.); (F.L.)
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Fuguang Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (T.D.); (W.L.); (F.L.)
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Maozhi Ren
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (T.D.); (W.L.); (F.L.)
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Wenjing Wang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (T.D.); (W.L.); (F.L.)
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| |
Collapse
|
7
|
Song H, Gao X, Song L, Jiao Y, Shen L, Yang J, Li C, Shang J, Wang H, Zhang S, Li Y. Unraveling the regulatory network of miRNA expression in Potato Y virus-infected of Nicotiana benthamiana using integrated small RNA and transcriptome sequencing. Front Genet 2024; 14:1290466. [PMID: 38259624 PMCID: PMC10800900 DOI: 10.3389/fgene.2023.1290466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Potato virus Y (PVY) disease is a global problem that causes significant damage to crop quality and yield. As traditional chemical control methods are ineffective against PVY, it is crucial to explore new control strategies. MicroRNAs (miRNAs) play a crucial role in plant and animal defense responses to biotic and abiotic stresses. These endogenous miRNAs act as a link between antiviral gene pathways and host immunity. Several miRNAs target plant immune genes and are involved in the virus infection process. In this study, we conducted small RNA sequencing and transcriptome sequencing on healthy and PVY-infected N. benthamiana tissues (roots, stems, and leaves). Through bioinformatics analysis, we predicted potential targets of differentially expressed miRNAs using the N. benthamiana reference genome and the PVY genome. We then compared the identified differentially expressed mRNAs with the predicted target genes to uncover the complex relationships between miRNAs and their targets. This study successfully constructed a miRNA-mRNA network through the joint analysis of Small RNA sequencing and transcriptome sequencing, which unveiled potential miRNA targets and identified potential binding sites of miRNAs on the PVY genome. This miRNA-mRNA regulatory network suggests the involvement of miRNAs in the virus infection process.
Collapse
Affiliation(s)
- Hongping Song
- Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou, Hubei, China
| | - Xinwen Gao
- Key Laboratory of Tobacco Pest Monitoring Controlling and Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Liyun Song
- Key Laboratory of Tobacco Pest Monitoring Controlling and Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Yubing Jiao
- Key Laboratory of Tobacco Pest Monitoring Controlling and Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Lili Shen
- Key Laboratory of Tobacco Pest Monitoring Controlling and Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Jinguang Yang
- Key Laboratory of Tobacco Pest Monitoring Controlling and Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Changquan Li
- Liupanshui City Company of Guizhou Tobacco Company, Guizhou, Guizhou, China
| | - Jun Shang
- Liupanshui City Company of Guizhou Tobacco Company, Guizhou, Guizhou, China
| | - Hui Wang
- Luoyang City Company of Henan Tobacco Company, Luoyang, Henan, China
| | - Songbai Zhang
- Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou, Hubei, China
| | - Ying Li
- Key Laboratory of Tobacco Pest Monitoring Controlling and Integrated Management, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
8
|
Chaudhary D, Jeena AS, Rohit, Gaur S, Raj R, Mishra S, Kajal, Gupta OP, Meena MR. Advances in RNA Interference for Plant Functional Genomics: Unveiling Traits, Mechanisms, and Future Directions. Appl Biochem Biotechnol 2024:10.1007/s12010-023-04850-x. [PMID: 38175411 DOI: 10.1007/s12010-023-04850-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
RNA interference (RNAi) is a conserved molecular mechanism that plays a critical role in post-transcriptional gene silencing across diverse organisms. This review delves into the role of RNAi in plant functional genomics and its applications in crop improvement, highlighting its mechanistic insights and practical implications. The review begins with the foundational discovery of RNAi's mechanism, tracing its origins from petunias to its widespread presence in various organisms. Various classes of regulatory non-coding small RNAs, including siRNAs, miRNAs, and phasiRNAs, have been uncovered, expanding the scope of RNAi-mediated gene regulation beyond conventional understanding. These RNA classes participate in intricate post-transcriptional and epigenetic processes that influence gene expression. In the context of crop enhancement, RNAi has emerged as a powerful tool for understanding gene functions. It has proven effective in deciphering gene roles related to stress resistance, metabolic pathways, and more. Additionally, RNAi-based approaches hold promise for integrated pest management and sustainable agriculture, contributing to global efforts in food security. This review discusses RNAi's diverse applications, such as modifying plant architecture, extending shelf life, and enhancing nutritional content in crops. The challenges and future prospects of RNAi technology, including delivery methods and biosafety concerns, are also explored. The global landscape of RNAi research is highlighted, with significant contributions from regions such as China, Europe, and North America. In conclusion, RNAi remains a versatile and pivotal tool in modern plant research, offering novel avenues for understanding gene functions and improving crop traits. Its integration with other biotechnological approaches such as gene editing holds the potential to shape the future of agriculture and sustainable food production.
Collapse
Affiliation(s)
- Divya Chaudhary
- Department of Genetics and Plant Breeding, College of Agriculture, G B Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India
| | - Anand Singh Jeena
- Department of Genetics and Plant Breeding, College of Agriculture, G B Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India.
| | - Rohit
- Department of Genetics and Plant Breeding, College of Agriculture, G B Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India
| | - Sonali Gaur
- Department of Genetics and Plant Breeding, College of Agriculture, G B Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India
| | - Rishi Raj
- ICAR- Sugarcane Breeding Institute-Regional Centre, Karnal, 132001, Haryana, India
| | | | - Kajal
- Department of Biotechnology, Chandigarh University, Chandigarh, 140143, India
| | - Om Prakash Gupta
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, 132001, Haryana, India.
| | | |
Collapse
|
9
|
de Souza Carneiro VC, Leon LAA, de Paula VS. miRNAs: Targets to Investigate Herpesvirus Infection Associated with Neurological Disorders. Int J Mol Sci 2023; 24:15876. [PMID: 37958855 PMCID: PMC10650863 DOI: 10.3390/ijms242115876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Herpesvirus is associated with various neurological disorders and a specific diagnosis is associated with a better prognosis. MicroRNAs (miRNAs) are potential diagnostic and prognostic biomarkers of neurological diseases triggered by herpetic infection. In this review, we discuss miRNAs that have been associated with neurological disorders related to the action of herpesviruses. Human miRNAs and herpesvirus-encoded miRNAs were listed and discussed. This review article will be valuable in stimulating the search for new diagnostic and prognosis alternatives and understanding the role of these miRNAs in neurological diseases triggered by herpesviruses.
Collapse
Affiliation(s)
- Vanessa Cristine de Souza Carneiro
- Laboratory of Molecular Virology and Parasitology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-360, Brazil; (V.C.d.S.C.); (V.S.d.P.)
- Laboratory of Technological Development in Virology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-360, Brazil
| | - Luciane Almeida Amado Leon
- Laboratory of Technological Development in Virology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-360, Brazil
| | - Vanessa Salete de Paula
- Laboratory of Molecular Virology and Parasitology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-360, Brazil; (V.C.d.S.C.); (V.S.d.P.)
| |
Collapse
|
10
|
Berbati M, Kaldis A, Voloudakis A. Efficient artificial microRNA-mediated resistance against zucchini yellow mosaic virus in zucchini via agroinfiltration. J Virol Methods 2023; 321:114805. [PMID: 37673287 DOI: 10.1016/j.jviromet.2023.114805] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/09/2023] [Accepted: 08/31/2023] [Indexed: 09/08/2023]
Abstract
Zucchini yellow mosaic virus (ZYMV) infects cucurbits causing yellow mosaic in leaves, malformations in fruits, and degradation of the product quality. RNA interference (RNAi) is a cellular mechanism in eukaryotes and it is exploited to protect them against viruses. The artificial micro RNA (amiRNA) mediated approach was employed to develop resistance against ZYMV. Four amiRNAs, amiZYMV_HC-115s and amiZYMV_HC-1162s (sense), amiZYMV_HC-182as and amiZYMV_HC-196as (antisense), were computationally designed and introduced into the AtMIR390a backbone. At four days post agroinfiltration (dpa) of zucchini cotyledons the corresponding pre- and the mature amiRNAs were identified in local tissue. Upon ZYMV inoculation of zucchini, ZYMV titer was significantly lower where amiZYMV_HCs were applied in relation to control starting at two days post inoculation (dpi). Control zucchini plants exhibited symptoms at 5-8 dpi, whereas the amiZYMV_HC-treated zucchini had symptoms at 14 dpi; at 21 dpi treated zucchini exhibited a 16 %, 19 %, 32 %, and 42.5 % protection, respectively. For luffa, we observed a lower protection (0 %, 17 %, 22.5 %, and 31 % at 21 dpi). Nicotiana benthamiana DCL4 knock-down mutants were infected by ZYMV, whereas when the amiZYMV_HC-196as was agroinfiltrated ZYMV was not detected by RT-PCR. These results indicate that amiRNA-mediated resistance could be applied against ZYMV in zucchini.
Collapse
Affiliation(s)
- Margarita Berbati
- Laboratory of Plant Breeding and Biometry, Faculty of Crop Science, Agricultural University of Athens, Athens 11855, Greece
| | - Athanasios Kaldis
- Laboratory of Plant Breeding and Biometry, Faculty of Crop Science, Agricultural University of Athens, Athens 11855, Greece
| | - Andreas Voloudakis
- Laboratory of Plant Breeding and Biometry, Faculty of Crop Science, Agricultural University of Athens, Athens 11855, Greece.
| |
Collapse
|
11
|
Jiang C, Li Z, Zheng L, Yu Y, Niu D. Small RNAs: Efficient and miraculous effectors that play key roles in plant-microbe interactions. MOLECULAR PLANT PATHOLOGY 2023; 24:999-1013. [PMID: 37026481 PMCID: PMC10346379 DOI: 10.1111/mpp.13329] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
Plants' response to pathogens is highly complex and involves changes at different levels, such as activation or repression of a vast array of genes. Recently, many studies have demonstrated that many RNAs, especially small RNAs (sRNAs), are involved in genetic expression and reprogramming affecting plant-pathogen interactions. The sRNAs, including short interfering RNAs and microRNAs, are noncoding RNA with 18-30 nucleotides, and are recognized as key genetic and epigenetic regulators. In this review, we summarize the new findings about defence-related sRNAs in the response to pathogens and our current understanding of their effects on plant-pathogen interactions. The main content of this review article includes the roles of sRNAs in plant-pathogen interactions, cross-kingdom sRNA trafficking between host and pathogen, and the application of RNA-based fungicides for plant disease control.
Collapse
Affiliation(s)
- Chun‐Hao Jiang
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture/Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
- Engineering Center of Bioresource Pesticide in Jiangsu ProvinceNanjingChina
| | - Zi‐Jie Li
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture/Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
- Engineering Center of Bioresource Pesticide in Jiangsu ProvinceNanjingChina
| | - Li‐Yu Zheng
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture/Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
- Engineering Center of Bioresource Pesticide in Jiangsu ProvinceNanjingChina
| | - Yi‐Yang Yu
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture/Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
- Engineering Center of Bioresource Pesticide in Jiangsu ProvinceNanjingChina
| | - Dong‐Dong Niu
- Department of Plant Pathology, College of Plant ProtectionNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/Key Laboratory of Integrated Pest Management on Crops in East China, Ministry of Agriculture/Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
- Engineering Center of Bioresource Pesticide in Jiangsu ProvinceNanjingChina
| |
Collapse
|
12
|
Goh R, Xie X, Lin Y, Cheng H, Raja JAJ, Yeh S. Rapid selection of potyviral cross-protection effective mutants from the local lesion host after nitrous acid mutagenesis. MOLECULAR PLANT PATHOLOGY 2023; 24:973-988. [PMID: 37158451 PMCID: PMC10346369 DOI: 10.1111/mpp.13346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/10/2023]
Abstract
Zucchini yellow mosaic virus (ZYMV) seriously damages cucurbits worldwide. Control of ZYMV by cross-protection has been practised for decades, but selecting useful mild viruses is time-consuming and laborious. Most attenuated potyviruses used for cross-protection do not induce hypersensitive reaction (HR) in Chenopodium quinoa, a local lesion host Chenopodium quinoa. Here, severe ZYMV TW-TN3 tagged with green fluorescent protein (GFP), designated ZG, was used for nitrous acid mutagenesis. From three trials, 11 mutants were identified from fluorescent spots without HR in inoculated C. quinoa leaves. Five mutants caused attenuated symptoms in squash plants. The genomic sequences of these five mutants revealed that most of the nonsynonymous changes were located in the HC-Pro gene. The replacement of individual mutated HC-Pros in the ZG backbone and an RNA silencing suppression (RSS) assay indicated that each mutated HC-Pro is defective in RSS function and responsible for reduced virulence. Four mutants provided high degrees of protection (84%-100%) against severe virus TW-TN3 in zucchini squash plants, with ZG 4-10 being selected for removal of the GFP tag. After removal of the GFP gene, Z 4-10 induced symptoms similar to ZG 4-10 and still provided 100% protection against TW-TN3 in squash, thus is considered not a genetically engineered mutant. Therefore, using a GFP reporter to select non-HR mutants of ZYMV from C. quinoa leaves is an efficient way to obtain beneficial mild viruses for cross-protection. This novel approach is being applied to other potyviruses.
Collapse
Affiliation(s)
- Reun‐Ping Goh
- Department of Plant PathologyNational Chung Hsing UniversityTaichungTaiwan
| | - Xing‐Yun Xie
- Department of Plant PathologyNational Chung Hsing UniversityTaichungTaiwan
| | - Ya‐Chi Lin
- Department of Plant PathologyNational Chung Hsing UniversityTaichungTaiwan
| | - Hao‐Wen Cheng
- Department of Plant PathologyNational Chung Hsing UniversityTaichungTaiwan
- Advanced Plant Biotechnology CenterNational Chung Hsing UniversityTaichungTaiwan
| | - Joseph A. J. Raja
- Department of Plant PathologyNational Chung Hsing UniversityTaichungTaiwan
- Advanced Plant Biotechnology CenterNational Chung Hsing UniversityTaichungTaiwan
| | - Shyi‐Dong Yeh
- Department of Plant PathologyNational Chung Hsing UniversityTaichungTaiwan
- Advanced Plant Biotechnology CenterNational Chung Hsing UniversityTaichungTaiwan
| |
Collapse
|
13
|
Do DH, Nguyen TBN, Ha VC, Raja JAJ, Yeh SD. Generation of Attenuated Passiflora Mottle Virus Through Modification of the Helper Component Protease for Cross Protection. PHYTOPATHOLOGY 2023; 113:1605-1614. [PMID: 37019906 DOI: 10.1094/phyto-01-23-0007-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Passiflora mottle virus (PaMoV), an aphid-borne potyvirus, is the primary causal virus of devastating passionfruit woodiness disease in Vietnam. Here we generated a nonpathogenic, attenuated PaMoV strain for disease control by cross protection. A full-length genomic cDNA of PaMoV strain DN4 from Vietnam was constructed to generate an infectious clone. The green fluorescent protein was tagged at the N-terminal region of the coat protein gene to monitor in planta the severe PaMoV-DN4. Two amino acids within the conserved motifs of helper component protease (HC-Pro) of PaMoV-DN4 were mutated individually or in combination as K53E or/and R181I. Mutants PaMoV-E53 and PaMoV-I181 induced local lesions in Chenopodium quinoa plants, while PaMoV-E53I181 caused infection without apparent symptoms. In passionfruit (Passiflora edulis) plants, PaMoV-E53 elicited severe leaf mosaic and PaMoV-I181 induced leaf mottling, while PaMoV-E53I181 caused transient mottling followed by symptomless recovery. PaMoV-E53I181 was stable after six serial passages in yellow passionfruit (Passiflora edulis f. flavicarpa) plants. Its temporal accumulation levels were lower than those of the wild type, with a zigzag accumulation pattern, typical of a beneficial protective virus. An RNA silencing suppression (RSS) assay revealed that all three mutated HC-Pros are defective in RSS. Triplicated cross-protection experiments with a total of 45 plants showed that the attenuated mutant PaMoV-E53I181 provided a high protection rate (91%) against the homologous wild-type virus in passionfruit plants. This work revealed that PaMoV-E53I181 can be used as a protective virus to control PaMoV by cross protection.
Collapse
Affiliation(s)
- Duy-Hung Do
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan, R.O.C
- Plant Pathology Division, Plant Protection Research Institute, Hanoi, Vietnam
| | | | | | - Joseph A J Raja
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan, R.O.C
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan, R.O.C
| | - Shyi-Dong Yeh
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan, R.O.C
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan, R.O.C
- Overseas Vietnam Agricultural Science and Technology Innovation Center, National Chung Hsing University, Taichung, Taiwan, R.O.C
| |
Collapse
|
14
|
Khalid A, Zhang X, Ji H, Yasir M, Farooq T, Dai X, Li F. Large Artificial microRNA Cluster Genes Confer Effective Resistance against Multiple Tomato Yellow Leaf Curl Viruses in Transgenic Tomato. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112179. [PMID: 37299158 DOI: 10.3390/plants12112179] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Tomato yellow leaf curl disease (TYLCD) has become the key limiting factor for the production of tomato in many areas because of the continuous infection and recombination of several tomato yellow leaf curl virus (TYLCV)-like species (TYLCLV) which produce novel and destructive viruses. Artificial microRNA (AMIR) is a recent and effective technology used to create viral resistance in major crops. This study applies AMIR technology in two ways, i.e., amiRNA in introns (AMINs) and amiRNA in exons (AMIEs), to express 14 amiRNAs targeting conserved regions in seven TYLCLV genes and their satellite DNA. The resulting pAMIN14 and pAMIE14 vectors can encode large AMIR clusters and their function in silencing reporter genes was validated with transient assays and stable transgenic N. tabacum plants. To assess the efficacy of conferring resistance against TYLCLV, pAMIE14 and pAMIN14 were transformed into tomato cultivar A57 and the resulting transgenic tomato plants were evaluated for their level of resistance to mixed TYLCLV infection. The results suggest that pAMIN14 transgenic lines have a more effective resistance than pAMIE14 transgenic lines, reaching a resistance level comparable to plants carrying the TY1 resistance gene.
Collapse
Affiliation(s)
- Annum Khalid
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Xi Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Huaijin Ji
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Muhammad Yasir
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Tariq Farooq
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinyi Dai
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Feng Li
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
15
|
Atabekova AK, Solovieva AD, Chergintsev DA, Solovyev AG, Morozov SY. Role of Plant Virus Movement Proteins in Suppression of Host RNAi Defense. Int J Mol Sci 2023; 24:ijms24109049. [PMID: 37240394 DOI: 10.3390/ijms24109049] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
One of the systems of plant defense against viral infection is RNA silencing, or RNA interference (RNAi), in which small RNAs derived from viral genomic RNAs and/or mRNAs serve as guides to target an Argonaute nuclease (AGO) to virus-specific RNAs. Complementary base pairing between the small interfering RNA incorporated into the AGO-based protein complex and viral RNA results in the target cleavage or translational repression. As a counter-defensive strategy, viruses have evolved to acquire viral silencing suppressors (VSRs) to inhibit the host plant RNAi pathway. Plant virus VSR proteins use multiple mechanisms to inhibit silencing. VSRs are often multifunctional proteins that perform additional functions in the virus infection cycle, particularly, cell-to-cell movement, genome encapsidation, or replication. This paper summarizes the available data on the proteins with dual VSR/movement protein activity used by plant viruses of nine orders to override the protective silencing response and reviews the different molecular mechanisms employed by these proteins to suppress RNAi.
Collapse
Affiliation(s)
- Anastasia K Atabekova
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
| | - Anna D Solovieva
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Denis A Chergintsev
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Andrey G Solovyev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Sergey Y Morozov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
16
|
Liu J, Yue J, Wang H, Xie L, Zhao Y, Zhao M, Zhou H. Strategies for Engineering Virus Resistance in Potato. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091736. [PMID: 37176794 PMCID: PMC10180755 DOI: 10.3390/plants12091736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023]
Abstract
Potato (Solanum tuberosum L.) is an important vegetable crop that plays a pivotal role in the world, especially given its potential to feed the world population and to act as the major staple food in many developing countries. Every year, significant crop loss is caused by viral diseases due to a lack of effective agrochemical treatments, since only transmission by insect vectors can be combated with the use of insecticides, and this has been an important factor hindering potato production. With the rapid development of molecular biology and plant genetic engineering technology, transgenic approaches and non-transgenic techniques (RNA interference and CRISPR-cas9) have been effectively employed to improve potato protection against devastating viruses. Moreover, the availability of viral sequences, potato genome sequences, and host immune mechanisms has remarkably facilitated potato genetic engineering. In this study, we summarize the progress of antiviral strategies applied in potato through engineering either virus-derived or plant-derived genes. These recent molecular insights into engineering approaches provide the necessary framework to develop viral resistance in potato in order to provide durable and broad-spectrum protection against important viral diseases of solanaceous crops.
Collapse
Affiliation(s)
- Jiecai Liu
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Jianying Yue
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Haijuan Wang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Lingtai Xie
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yuanzheng Zhao
- Inner Mongolia Academy of Agricultural and Animal Husbandry Sciences, Hohhot 010031, China
| | - Mingmin Zhao
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Hongyou Zhou
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
17
|
Al-Roshdi MR, Ammara U, Khan J, Al-Sadi AM, Shahid MS. Artificial microRNA-mediated resistance against Oman strain of tomato yellow leaf curl virus. FRONTIERS IN PLANT SCIENCE 2023; 14:1164921. [PMID: 37063229 PMCID: PMC10098008 DOI: 10.3389/fpls.2023.1164921] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
Tomato yellow leaf curl virus (TYLCV) is a global spreading begomovirus that is exerting a major restraint on global tomato production. In this transgenic approach, an RNA interference (RNAi)-based construct consisting of sequences of an artificial microRNA (amiRNA), a group of small RNA molecules necessary for plant cell development, signal transduction, and stimulus to biotic and abiotic disease was engineered targeting the AC1/Rep gene of the Oman strain of TYLCV-OM. The Rep-amiRNA constructs presented an effective approach in regulating the expression of the Rep gene against TYLCV as a silencing target to create transgenic Solanum lycopersicum L. plant tolerance against TYLCV infection. Molecular diagnosis by PCR followed by a Southern hybridization analysis were performed to confirm the effectiveness of agrobacterium-mediated transformation in T0/T1-transformed plants. A substantial decrease in virus replication was observed when T1 transgenic tomato plants were challenged with the TYLCV-OM infectious construct. Although natural resistance options against TYLCV infection are not accessible, the current study proposes that genetically transformed tomato plants expressing amiRNA could be a potential approach for engineering tolerance in plants against TYLCV infection and conceivably for the inhibition of viral diseases against different strains of whitefly-transmitted begomoviruses in Oman.
Collapse
|
18
|
Zhu T, Yang C, Xie Y, Huang S, Li L. Shade‐induced
lncRNA
PUAR
promotes shade response by repressing
PHYA
expression. EMBO Rep 2023; 24:e56105. [PMID: 36970931 PMCID: PMC10157314 DOI: 10.15252/embr.202256105] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/19/2023] [Accepted: 03/01/2023] [Indexed: 03/29/2023] Open
Abstract
Shade avoidance syndrome (SAS) commonly occurs in plants experiencing vegetative shade, triggering a series of morphological and physiological changes for the plants to reach more light. A number of positive regulators, such as PHYTOCHROME-INTERACTING 7 (PIF7), and negative regulators, such as PHYTOCHROMES, are known to ensure appropriate SAS. Here, we identify 211 shade-regulated long non-coding RNAs (lncRNAs) in Arabidopsis. We further characterize PUAR (PHYA UTR Antisense RNA), a lncRNA produced from the intron of the 5' UTR of the PHYTOCHROME A (PHYA) locus. PUAR is induced by shade and promotes shade-induced hypocotyl elongation. PUAR physically associates with PIF7 and represses the shade-mediated induction of PHYA by blocking the binding of PIF7 to the 5' UTR of PHYA. Our findings highlight a role for lncRNAs in SAS and provide insight into the mechanism of PUAR in regulating PHYA gene expression and SAS.
Collapse
Affiliation(s)
- Tongdan Zhu
- State Key Laboratory of Genetic Engineering, Institute of Plants Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Chuanwei Yang
- State Key Laboratory of Genetic Engineering, Institute of Plants Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yu Xie
- State Key Laboratory of Genetic Engineering, Institute of Plants Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Sha Huang
- State Key Laboratory of Genetic Engineering, Institute of Plants Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Lin Li
- State Key Laboratory of Genetic Engineering, Institute of Plants Biology, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
19
|
In Silico Identification of Cassava Genome-Encoded MicroRNAs with Predicted Potential for Targeting the ICMV-Kerala Begomoviral Pathogen of Cassava. Viruses 2023; 15:v15020486. [PMID: 36851701 PMCID: PMC9963618 DOI: 10.3390/v15020486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Cassava mosaic disease (CMD) is caused by several divergent species belonging to the genus Begomovirus (Geminiviridae) transmitted by the whitefly Bemisia tabaci cryptic species group. In India and other parts of Asia, the Indian cassava mosaic virus-Kerala (ICMV-Ker) is an emergent begomovirus of cassava causing damage that results in reduced yield loss and tuber quality. Double-stranded RNA-mediated interference (RNAi) is an evolutionary conserved mechanism in eukaryotes and highly effective, innate defense system to inhibit plant viral replication and/or translation. The objective of this study was to identify and characterize cassava genome-encoded microRNAs (mes-miRNA) that are predicted to target ICMV-Ker ssDNA-encoded mRNAs, based on four in silico algorithms: miRanda, RNA22, Tapirhybrid, and psRNA. The goal is to deploy the predicted miRNAs to trigger RNAi and develop cassava plants with resistance to ICMV-Ker. Experimentally validated mature cassava miRNA sequences (n = 175) were downloaded from the miRBase biological database and aligned with the ICMV-Ker genome. The miRNAs were evaluated for base-pairing with the cassava miRNA seed regions and to complementary binding sites within target viral mRNAs. Among the 175 locus-derived mes-miRNAs evaluated, one cassava miRNA homolog, mes-miR1446a, was identified to have a predicted miRNA target binding site, at position 2053 of the ICMV-Ker genome. To predict whether the cassava miRNA might bind predicted ICMV-Ker mRNA target(s) that could disrupt viral infection of cassava plants, a cassava locus-derived miRNA-mRNA regulatory network was constructed using Circos software. The in silico-predicted cassava locus-derived mes-miRNA-mRNA network corroborated interactions between cassava mature miRNAs and the ICMV-Ker genome that warrant in vivo analysis, which could lead to the development of ICMV-Ker resistant cassava plants.
Collapse
|
20
|
Halder K, Chaudhuri A, Abdin MZ, Datta A. Tweaking the Small Non-Coding RNAs to Improve Desirable Traits in Plant. Int J Mol Sci 2023; 24:ijms24043143. [PMID: 36834556 PMCID: PMC9966754 DOI: 10.3390/ijms24043143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/09/2023] Open
Abstract
Plant transcriptome contains an enormous amount of non-coding RNAs (ncRNAs) that do not code for proteins but take part in regulating gene expression. Since their discovery in the early 1990s, much research has been conducted to elucidate their function in the gene regulatory network and their involvement in plants' response to biotic/abiotic stresses. Typically, 20-30 nucleotide-long small ncRNAs are a potential target for plant molecular breeders because of their agricultural importance. This review summarizes the current understanding of three major classes of small ncRNAs: short-interfering RNAs (siRNAs), microRNA (miRNA), and transacting siRNAs (tasiRNAs). Furthermore, their biogenesis, mode of action, and how they have been utilized to improve crop productivity and disease resistance are discussed here.
Collapse
Affiliation(s)
- Koushik Halder
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Abira Chaudhuri
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
- Correspondence: (A.C.); (A.D.); Tel.: +91-1126742750 or +91-1126735119 (A.D.)
| | - Malik Z. Abdin
- Centre for Transgenic Plant Development, Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Asis Datta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
- Correspondence: (A.C.); (A.D.); Tel.: +91-1126742750 or +91-1126735119 (A.D.)
| |
Collapse
|
21
|
Mesel F, Zhao M, García B, Simón‐Mateo C, García J. Targeting of genomic and negative-sense strands of viral RNA contributes to antiviral resistance mediated by artificial miRNAs and promotes the emergence of complex viral populations. MOLECULAR PLANT PATHOLOGY 2022; 23:1640-1657. [PMID: 35989243 PMCID: PMC9562735 DOI: 10.1111/mpp.13258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/07/2022] [Accepted: 07/16/2022] [Indexed: 05/27/2023]
Abstract
Technology based on artificial small RNAs, including artificial microRNAs (amiRNAs), exploits natural RNA silencing mechanisms to achieve silencing of endogenous genes or pathogens. This technology has been successfully employed to generate resistance against different eukaryotic viruses. However, information about viral RNA molecules effectively targeted by these small RNAs is rather conflicting, and factors contributing to the selection of virus mutants escaping the antiviral activity of virus-specific small RNAs have not been studied in detail. In this work, we transformed Nicotiana benthamiana plants with amiRNA constructs designed against the potyvirus plum pox virus (PPV), a positive-sense RNA virus, and obtained lines highly resistant to PPV infection and others showing partial resistance. These lines have allowed us to verify that amiRNA directed against genomic RNA is more efficient than amiRNA targeting its complementary strand. However, we also provide evidence that the negative-sense RNA strand is cleaved by the amiRNA-guided RNA silencing machinery. Our results show that the selection pressure posed by the amiRNA action on both viral RNA strands causes an evolutionary explosion that results in the emergence of a broad range of virus variants, which can further expand in the presence, and even in the absence, of antiviral challenges.
Collapse
Affiliation(s)
- Frida Mesel
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB‐CSIC)Campus Universidad Autónoma de MadridMadridSpain
| | - Mingmin Zhao
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB‐CSIC)Campus Universidad Autónoma de MadridMadridSpain
- College of Horticulture and Plant ProtectionInner Mongolia Agricultural UniversityHohhotChina
| | - Beatriz García
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB‐CSIC)Campus Universidad Autónoma de MadridMadridSpain
| | - Carmen Simón‐Mateo
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB‐CSIC)Campus Universidad Autónoma de MadridMadridSpain
| | - Juan Antonio García
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB‐CSIC)Campus Universidad Autónoma de MadridMadridSpain
| |
Collapse
|
22
|
Gani U, Nautiyal AK, Kundan M, Rout B, Pandey A, Misra P. Two homeologous MATE transporter genes, NtMATE21 and NtMATE22, are involved in the modulation of plant growth and flavonol transport in Nicotiana tabacum. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6186-6206. [PMID: 35662335 DOI: 10.1093/jxb/erac249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
The multidrug and toxic compound extrusion (MATE) protein family has been implicated in the transport of a diverse range of molecules, including specialized metabolites. In tobacco (Nicotiana tabacum), only a limited number of MATE transporters have been functionally characterized, and no MATE transporter has been studied in the context of flavonoid transport in this plant species so far. In the present study, we characterize two homeologous tobacco MATE genes, NtMATE21 and NtMATE22, and demonstrate their role in flavonol transport and in plant growth and development. The expression of these two genes was reported to be up-regulated in trichomes as compared with the trichome-free leaf. The transcript levels of NtMATE21 and NtMATE22 were found to be higher in flavonol overproducing tobacco transgenic lines as compared with wild type tobacco. The two transporters were demonstrated to be localized to the plasma membrane. Genetic manipulation of NtMATE21 and NtMATE22 led to altered growth phenotypes and modulated flavonol contents in N. tabacum. The β-glucuronidase and green fluorescent protein fusion transgenic lines of promoter regions suggested that NtMATE21 and NtMATE22 are exclusively expressed in the trichome heads in the leaf tissue and petals. Moreover, in a transient transactivation assay, NtMYB12, a flavonol-specific MYB transcription factor, was found to transactivate the expression of NtMATE21 and NtMATE22 genes. Together, our results strongly suggest the involvement of NtMATE21 and NtMATE22 in flavonol transport as well as in the regulation of plant growth and development.
Collapse
Affiliation(s)
- Umar Gani
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Abhishek Kumar Nautiyal
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Maridul Kundan
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Biswaranjan Rout
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Ashutosh Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Prashant Misra
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
23
|
Voloudakis AE, Kaldis A, Patil BL. RNA-Based Vaccination of Plants for Control of Viruses. Annu Rev Virol 2022; 9:521-548. [PMID: 36173698 DOI: 10.1146/annurev-virology-091919-073708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plant viruses cause nearly half of the emerging plant diseases worldwide, contributing to 10-15% of crop yield losses. Control of plant viral diseases is mainly accomplished by extensive chemical applications targeting the vectors (i.e., insects, nematodes, fungi) transmitting these viruses. However, these chemicals have a significant negative effect on human health and the environment. RNA interference is an endogenous, cellular, sequence-specific RNA degradation mechanism in eukaryotes induced by double-stranded RNA molecules that has been exploited as an antiviral strategy through transgenesis. Because genetically modified crop plants are not accepted for cultivation in several countries globally, there is an urgent demand for alternative strategies. This has boosted research on exogenous application of the RNA-based biopesticides that are shown to exhibit significant protective effect against viral infections. Such environment-friendly and efficacious antiviral agents for crop protection will contribute to global food security, without adverse effects on human health.
Collapse
Affiliation(s)
- Andreas E Voloudakis
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Athens, Greece;
| | - Athanasios Kaldis
- Laboratory of Plant Breeding and Biometry, Department of Crop Science, Agricultural University of Athens, Athens, Greece;
| | - Basavaprabhu L Patil
- Division of Basic Sciences, ICAR-Indian Institute of Horticultural Research, Bengaluru, Karnataka State, India
| |
Collapse
|
24
|
Jiang L, Mu R, Wang Z, Liu S, Lu D. Silencing P25, HC-Pro and Brp1 of Potato Virus (Viroid) Using Artificial microRNA Confers Resistance to PVX, PVY and PSTVd in Transgenic Potato. POTATO RESEARCH 2022; 66:231-244. [PMID: 35996391 PMCID: PMC9385412 DOI: 10.1007/s11540-022-09580-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 08/02/2022] [Indexed: 06/01/2023]
Abstract
Virus infection is the key constraint to potato cultivation worldwide. Especially, coinfection by multiple viruses could exacerbate the yield loss. Transgenic plants expressing artificial microRNAs (amiRNAs) have been shown to confer specific resistance to viruses. In this study, three amiRNAs containing Arabidopsis miR159 as a backbone, expressing genes targeting P25, HC-Pro and Brp1 of potato virus X (PVX), potato virus Y (PVY) and potato spindle tuber viroid (PSTVd), were constructed. amiR-159P25, amiR-159HCPro and amiR-159Brp1 were cloned into the plant expression vector pCAMBIA1301 with a CaMV35S promoter, producing the p1301-pre-amiRP25-HCPro-Brp1 vector. Twenty-three transgenic plants (Solanum tuberosum cv. 'Youjin') were obtained by Agrobacterium tumefaciens-mediated transformation, and ten PCR-positive transplants were chosen for further analysis. Quantitative real-time PCR results indicated that 10 transgenic plants could express amiRNAs successfully. Southern blotting hybridization proved that amiR-159P25-HCPro-Brp1 had integrated into potato genome in transgenic lines. Viral (viroid) challenge assays revealed that these transgenic plants demonstrated resistance against PVX, PVY and PSTVd coinfection simultaneously, whereas the untransformed controls developed severe symptoms. This study demonstrates a novel amiRNA-based mechanism that may have the potential to develop multiple viral resistance strategies in potato.
Collapse
Affiliation(s)
- Lili Jiang
- College of Agriculture, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Development Zone, Daqing, 163319 People’s Republic of China
- Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Daqing, 163319 People’s Republic of China
| | - Rui Mu
- College of Agriculture, Heilongjiang Bayi Agricultural University, 5 Xinfeng Road, Development Zone, Daqing, 163319 People’s Republic of China
| | - Ziquan Wang
- Heilongjiang Academy of Agricultural Sciences, 368 Xuefu Road, Nangang District, Harbin, 150086 People’s Republic of China
| | - Shangwu Liu
- Heilongjiang Academy of Agricultural Sciences, 368 Xuefu Road, Nangang District, Harbin, 150086 People’s Republic of China
| | - Dianqiu Lu
- Heilongjiang Academy of Agricultural Sciences, 368 Xuefu Road, Nangang District, Harbin, 150086 People’s Republic of China
| |
Collapse
|
25
|
Simple Webserver-Facilitated Method to Design and Synthesize Artificial miRNA Gene and Its Application in Engineering Viral Resistance. PLANTS 2022; 11:plants11162125. [PMID: 36015429 PMCID: PMC9412884 DOI: 10.3390/plants11162125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/26/2022] [Accepted: 08/12/2022] [Indexed: 11/17/2022]
Abstract
Plant viruses impose serious threats on crop production. Artificial miRNAs can mediate specific and effective gene silencing in plants and are widely used in plant gene function studies and to engineer plant viral resistance. To facilitate the design of artificial miRNA genes, we developed a webserver, AMIRdesigner, which can be used to design oligos for artificial miRNA synthesis using wild-type and permutated MIR171 and MIR164 backbones. The artificial miRNA genes designed by AMIRdesigner can be easily assembled into miRNA clusters for multiple target sites. To validate the server functionality, we designed four artificial miRNA genes targeting four conserved regions in the potato leafroll virus genome using AMIRdesigner. These genes were synthesized with the server-designed oligos and further assembled into a quadruple miRNA cluster, which was cloned into an overexpression vector and transformed into potato plants. Small RNA Northern blot and virus inoculation analyses showed that a high level of artificial miRNA expression and good viral resistance were achieved in some of the transgenic lines. These results demonstrate the utility of our webserver AMIRdesigner for engineering crop viral resistance.
Collapse
|
26
|
Kuo Y, Falk BW. Artificial microRNA guide strand selection from duplexes with no mismatches shows a purine-rich preference for virus- and non-virus-based expression vectors in plants. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1069-1084. [PMID: 35113475 PMCID: PMC9129084 DOI: 10.1111/pbi.13786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Artificial microRNA (amiRNA) technology has allowed researchers to direct efficient silencing of specific transcripts using as few as 21 nucleotides (nt). However, not all the artificially designed amiRNA constructs result in selection of the intended ~21-nt guide strand amiRNA. Selection of the miRNA guide strand from the mature miRNA duplex has been studied in detail in human and insect systems, but not so much for plants. Here, we compared a nuclear-replicating DNA viral vector (tomato mottle virus, ToMoV, based), a cytoplasmic-replicating RNA viral vector (tobacco mosaic virus, TMV, based), and a non-viral binary vector to express amiRNAs in plants. We then used deep sequencing and mutational analysis and show that when the structural factors caused by base mismatches in the mature amiRNA duplex were excluded, the nucleotide composition of the mature amiRNA region determined the guide strand selection. We found that the strand with excess purines was preferentially selected as the guide strand and the artificial miRNAs that had no mismatches in the amiRNA duplex were predominantly loaded into AGO2 instead of loading into AGO1 like the majority of the plant endogenous miRNAs. By performing assays for target effects, we also showed that only when the intended strand was selected as the guide strand and showed AGO loading, the amiRNA could provide the expected RNAi effects. Thus, by removing mismatches in the mature amiRNA duplex and designing the intended guide strand to contain excess purines provide better control of the guide strand selection of amiRNAs for functional RNAi effects.
Collapse
Affiliation(s)
- Yen‐Wen Kuo
- Department of Plant PathologyUniversity of California DavisDavisCAUSA
| | - Bryce W. Falk
- Department of Plant PathologyUniversity of California DavisDavisCAUSA
| |
Collapse
|
27
|
Su Y, Peng Q, Ling H, You C, Wu Q, Xu L, Que Y. Systematic identification of miRNA-regulatory networks unveils their potential roles in sugarcane response to Sorghum mosaic virus infection. BMC PLANT BIOLOGY 2022; 22:247. [PMID: 35585486 PMCID: PMC9118776 DOI: 10.1186/s12870-022-03641-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/06/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND Sugarcane mosaic disease (SMD) is a major viral disease of sugarcane (Saccharum spp.) worldwide. Sorghum mosaic virus (SrMV) is the dominant pathogen of SMD in the sugarcane planting areas of China. There is no report on miRNAs and their regulatory networks in sugarcane response to SrMV infection. RESULTS In this study, small RNA sequencing (sRNA-seq) of samples from the leaves of SMD-susceptible variety ROC22 and -resistant variety FN39 infected by SrMV was performed. A total of 132 mature miRNAs (55 known miRNAs and 77 novel miRNAs) corresponding to 1,037 target genes were identified. After the SrMV attack, there were 30 differentially expressed miRNAs (17 up-regulated and 13 down-regulated) in FN39 and 19 in ROC22 (16 up-regulated and 3 down-regulated). Besides, there were 18 and 7 variety-specific differentially expressed miRNAs for FN39 and ROC22, respectively. KEGG enrichment analysis showed that the differentially expressed miRNAs targeted genes involved in several disease resistance-related pathways, such as mRNA surveillance, plant pathway interaction, sulfur metabolism, and regulation of autophagy. The reliability of sequencing data, and the expression patterns / regulation relationships between the selected differentially expressed miRNAs and their target genes in ROC22 and FN39 were confirmed by quantitative real-time PCR. A regulatory network diagram of differentially expressed miRNAs and their predicted target genes in sugarcane response to SrMV infection was sketched. In addition, precursor sequences of three candidate differentially expressed novel miRNAs (nov_3741, nov_22650 and nov_40875) were cloned from the ROC22 leaf infected by SrMV. Transient overexpression demonstrated that they could induce the accumulation of hydrogen peroxide and the expression level of hypersensitive response marker genes, salicylic acid-responsive genes and ethylene synthesis-depended genes in Nicotiana benthamiana. It is thus speculated that these three miRNAs may be involved in regulating the early immune response of sugarcane plants following SrMV infection. CONCLUSIONS This study lays a foundation for revealing the miRNA regulation mechanism in the interaction of sugarcane and SrMV, and also provides a resource for miRNAs and their predicted target genes for SrMV resistance improvement in sugarcane.
Collapse
Affiliation(s)
- Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Qiong Peng
- Fuzhou Institute of Agricultural Sciences, Fuzhou, 350018 Fujian China
| | - Hui Ling
- College of Agriculture, Yulin Normal University, Yulin, 537000 Guangxi, China
| | - Chuihuai You
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Qibin Wu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Liping Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| |
Collapse
|
28
|
Zhang BZ, Hu GL, Lu LY, Chen XL, Gao XW. Silencing of CYP6AS160 in Solenopsis invicta Buren by RNA interference enhances worker susceptibility to fipronil. BULLETIN OF ENTOMOLOGICAL RESEARCH 2022; 112:171-178. [PMID: 34365981 DOI: 10.1017/s0007485321000651] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cytochrome P450 monooxygenases play a key role in pest resistance to insecticides by detoxification. Four new P450 genes, CYP6AS160, CYP6AS161, CYP4AB73 and CYP4G232 were identified from Solenopsis invicta. CYP6AS160 was highly expressed in the abdomen and its expression could be induced significantly with exposure to fipronil, whereas CYP4AB73 was not highly expressed in the abdomen and its expression could not be significantly induced following exposure to fipronil. Expression levels of CYP6AS160 and CYP4AB73 in workers were significantly higher than that in queens. RNA interference-mediated gene silencing by feeding on double-stranded RNA (dsRNA) found that the levels of this transcript decreased (by maximum to 64.6%) when they fed on CYP6AS160-specific dsRNA. Workers fed dsCYP6AS160 had significantly higher mortality after 24 h of exposure to fipronil compared to controls. Workers fed dsCYP6AS160 had reduced total P450 activity of microsomal preparations toward model substrates p-nitroanisole. However, the knockdown of a non-overexpressed P450 gene, CYP4AB73 did not lead to an increase of mortality or a decrease of total P450 activity. The knockdown effects of CYP6AS160 on worker susceptibility to fipronil, combined with our other findings, indicate that CYP6AS160 is responsible for detoxification of fipronil. Feeding insects dsRNA may be a general strategy to trigger RNA interference and may find applications in entomological research and in the control of insect pests in the field.
Collapse
Affiliation(s)
- Bai-Zhong Zhang
- College of Resources and Environment, Henan Engineering Research Center of Biological Pesticide & Fertilizer Development and Synergistic Application, Henan Institute of Science and Technology, Xinxiang453003, P.R. China
- Department of Entomology, China Agricultural University, Beijing100193, P.R. China
| | - Gui-Lei Hu
- College of Resources and Environment, Henan Engineering Research Center of Biological Pesticide & Fertilizer Development and Synergistic Application, Henan Institute of Science and Technology, Xinxiang453003, P.R. China
| | - Liu-Yang Lu
- College of Resources and Environment, Henan Engineering Research Center of Biological Pesticide & Fertilizer Development and Synergistic Application, Henan Institute of Science and Technology, Xinxiang453003, P.R. China
| | - Xi-Ling Chen
- College of Resources and Environment, Henan Engineering Research Center of Biological Pesticide & Fertilizer Development and Synergistic Application, Henan Institute of Science and Technology, Xinxiang453003, P.R. China
| | - Xi-Wu Gao
- Department of Entomology, China Agricultural University, Beijing100193, P.R. China
| |
Collapse
|
29
|
Transgenic Rice Plants Expressing Artificial miRNA Targeting the Rice Stripe Virus MP Gene Are Highly Resistant to the Virus. BIOLOGY 2022; 11:biology11020332. [PMID: 35205198 PMCID: PMC8869529 DOI: 10.3390/biology11020332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 11/29/2022]
Abstract
Simple Summary Rice stripe virus is a disastrous viral disease that causes significant yield losses in rice production in South, Southeast, and East Asian countries. To decrease the use of chemical insecticides, genetic engineering has become a pivotal strategy to combat the virus. In this study, we constructed a dimeric artificial microRNA precursor expression vector that targets the viral MP gene based on the structure of the rice osa-MIR528 precursor. Marker-free transgenic plants successfully expressing the MP amiRNAs were obtained and were highly resistant to RSV infection. The novel rice germplasms generated are promising for RSV control. Abstract Rice stripe virus (RSV) causes one of the most serious viral diseases of rice. RNA interference is one of the most efficient ways to control viral disease. In this study, we constructed an amiRNA targeting the RSV MP gene (amiR MP) based on the backbone sequence of the osa-MIR528 precursor, and obtained marker-free transgenic rice plants constitutively expressing amiR MP by Agrobacterium tumefaciens-mediated transformation. A transient expression assay demonstrated that dimeric amiR MP could be effectively recognized and cleaved at the target MP gene in plants. Northern blot of miRNA indicated that amiR MP-mediated viral resistance could be stably inherited. The transgenic rice plants were highly resistant to RSV (73–90%). Our research provides novel rice germplasm for RSV control.
Collapse
|
30
|
Zhao JH, Guo HS. RNA silencing: From discovery and elucidation to application and perspectives. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:476-498. [PMID: 34964265 DOI: 10.1111/jipb.13213] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 12/26/2021] [Indexed: 06/14/2023]
Abstract
RNA silencing (or RNA interference, RNAi) is a conserved mechanism for regulating gene expression in eukaryotes. The discovery of natural trans-kingdom RNAi indicated that small RNAs act as signaling molecules and enable communication between organisms in different kingdoms. The phenomenon and potential mechanisms of trans-kingdom RNAi are among the most exciting research topics. To better understand trans-kingdom RNAi, we review the history of the discovery and elucidation of RNAi mechanisms. Based on canonical RNAi mechanisms, we summarize the major points of divergence around RNAi pathways in the main eukaryotes' kingdoms, including plants, animals, and fungi. We review the representative incidents associated with the mechanisms and applications of trans-kingdom RNAi in crop protection, and discuss the critical factors that should be considered to develop successful trans-kingdom RNAi-based crop protection strategies.
Collapse
Affiliation(s)
- Jian-Hua Zhao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, the Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui-Shan Guo
- State Key Laboratory of Plant Genomics, Institute of Microbiology, the Chinese Academy of Sciences, Beijing, 100101, China
- CAS Center for Excellence in Biotic Interactions, University of the Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
31
|
Ashraf MA, Feng X, Hu X, Ashraf F, Shen L, Iqbal MS, Zhang S. In silico identification of sugarcane (Saccharum officinarum L.) genome encoded microRNAs targeting sugarcane bacilliform virus. PLoS One 2022; 17:e0261807. [PMID: 35051194 PMCID: PMC8775236 DOI: 10.1371/journal.pone.0261807] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 12/10/2021] [Indexed: 12/12/2022] Open
Abstract
Sugarcane bacilliform virus (SCBV) is considered one of the most economically damaging pathogens for sugarcane production worldwide. Three open reading frames (ORFs) are characterized in the circular, ds-DNA genome of the SCBV; these encode for a hypothetical protein (ORF1), a DNA binding protein (ORF2), and a polyprotein (ORF3). A comprehensive evaluation of sugarcane (Saccharum officinarum L.) miRNAs for the silencing of the SCBV genome using in silico algorithms were carried out in the present study using mature sugarcane miRNAs. miRNAs of sugarcane are retrieved from the miRBase database and assessed in terms of hybridization with the SCBV genome. A total of 14 potential candidate miRNAs from sugarcane were screened out by all used algorithms used for the silencing of SCBV. The consensus of three algorithms predicted the hybridization site of sof-miR159e at common locus 5534. miRNA-mRNA interactions were estimated by computing the free-energy of the miRNA-mRNA duplex using the RNAcofold algorithm. A regulatory network of predicted candidate miRNAs of sugarcane with SCBV-ORFs, generated using Circos-is used to identify novel targets. The predicted data provide useful information for the development of SCBV-resistant sugarcane plants.
Collapse
Affiliation(s)
- Muhammad Aleem Ashraf
- Institute of Tropical Bioscience and Biotechnology, Sugarcane Research Centre of Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Department of Bioscience and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
- * E-mail: (MAA); (SZ)
| | - Xiaoyan Feng
- Institute of Tropical Bioscience and Biotechnology, Sugarcane Research Centre of Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Xiaowen Hu
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Fakiha Ashraf
- Institute of Tropical Bioscience and Biotechnology, Sugarcane Research Centre of Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Linbo Shen
- Institute of Tropical Bioscience and Biotechnology, Sugarcane Research Centre of Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | | | - Shuzhen Zhang
- Institute of Tropical Bioscience and Biotechnology, Sugarcane Research Centre of Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- * E-mail: (MAA); (SZ)
| |
Collapse
|
32
|
Small RNAs Participate in Plant-Virus Interaction and Their Application in Plant Viral Defense. Int J Mol Sci 2022; 23:ijms23020696. [PMID: 35054880 PMCID: PMC8775341 DOI: 10.3390/ijms23020696] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023] Open
Abstract
Small RNAs are significant regulators of gene expression, which play multiple roles in plant development, growth, reproductive and stress response. It is generally believed that the regulation of plants’ endogenous genes by small RNAs has evolved from a cellular defense mechanism for RNA viruses and transposons. Most small RNAs have well-established roles in the defense response, such as viral response. During viral infection, plant endogenous small RNAs can direct virus resistance by regulating the gene expression in the host defense pathway, while the small RNAs derived from viruses are the core of the conserved and effective RNAi resistance mechanism. As a counter strategy, viruses evolve suppressors of the RNAi pathway to disrupt host plant silencing against viruses. Currently, several studies have been published elucidating the mechanisms by which small RNAs regulate viral defense in different crops. This paper reviews the distinct pathways of small RNAs biogenesis and the molecular mechanisms of small RNAs mediating antiviral immunity in plants, as well as summarizes the coping strategies used by viruses to override this immune response. Finally, we discuss the current development state of the new applications in virus defense based on small RNA silencing.
Collapse
|
33
|
Abstract
With the increasing understanding of fundamentals of gene silencing pathways in plants, various tools and techniques for downregulating the expression of a target gene have been developed across multiple plant species. This chapter provides an insight into the molecular mechanisms of gene silencing and highlights the advancements in various gene silencing approaches. The prominent aspects of different gene silencing methods, their advantages and disadvantages have been discussed. A succinct discussion on the newly emerged microRNA-based technologies like microRNA-induced gene silencing (MIGS) and microRNA-mediated virus-induced gene silencing (MIR-VIGS) are also presented. We have also discussed the gene-editing system like CRISPR-Cas. The prominent bottlenecks in gene silencing methods are the off-target effects and lack of universal applicability. However, the tremendous growth in understanding of this field reflects the potentials for improvements in the currently available approaches and the development of new widely applicable methods for easy, fast, and efficient functional characterization of plant genes.
Collapse
Affiliation(s)
- Prachi Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Kirankumar S Mysore
- Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK, USA
| | | |
Collapse
|
34
|
Mwaka HS, Christiaens O, Bwesigye PN, Kubiriba J, Tushemereirwe WK, Gheysen G, Smagghe G. First Evidence of Feeding-Induced RNAi in Banana Weevil via Exogenous Application of dsRNA. INSECTS 2021; 13:40. [PMID: 35055882 PMCID: PMC8779063 DOI: 10.3390/insects13010040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/22/2021] [Accepted: 12/27/2021] [Indexed: 01/06/2023]
Abstract
Banana weevil (Cosmopolites sordidus) is the most devastating pest of banana and plantain worldwide, yet current control measures are neither effective, sustainable, nor environmentally sound, and no resistant farmer-preferred cultivars are known to date. In this paper, we examined the ability to induce RNA interference (RNAi) in the banana weevil via feeding. We first developed an agar- and banana corm (rhizome) flour-based artificial diet in a multi-well plate setup that allowed the banana weevils to complete their life cycle from egg through the larval instars to the pupal stage in an average period of 53 days. Adults emerged about 20 days later. The artificial diet allowed the tunneling and burrowing habits of the larvae and successful metamorphosis up to adult eclosion. Adding dsRNA for laccase2 to the artificial diet resulted in albino phenotypes, confirming gene-silencing. Finally, C. sordidus was fed with dsRNA against a selection of essential target genes: snf7, rps13, mad1, vha-a, vha-d, and lgl for a period of 45 days. 100% mortality within 9-16 days was realized with dssnf7, dsrps13, and dsmad1 at 200 ng/mL artificial diet, and this corresponded to a strong reduction in gene expression. Feeding the dsRNA targeting the two vha genes resulted in 100% mortality after about 3-4 weeks, while treatment with dslgl resulted in no mortality above the dsgfp-control and the water-control. Our results have implications for the development of RNAi approaches for managing important crop pests, in that banana weevils can be controlled based on the silencing of essential target genes as snf7, rps13, and mad1. They also highlight the need for research into the development of RNAi for banana protection, eventually the engineering of host-induced gene-silencing (HIGS) cultivars, given the high RNAi efficacy and its species-specific mode of action, adding the RNAi approach to the armory of integrated pest management (IPM).
Collapse
Affiliation(s)
- Henry Shaykins Mwaka
- Laboratory of Agrozoology, Department of Plants and Crops, Ghent University, 9000 Ghent, Belgium; (H.S.M.); (O.C.)
- Department of Biotechnology, Ghent University, 9000 Ghent, Belgium;
- National Agricultural Research Laboratories, Kawanda, Kampala P.O. Box 7065, Uganda; (P.N.B.); (J.K.); (W.K.T.)
| | - Olivier Christiaens
- Laboratory of Agrozoology, Department of Plants and Crops, Ghent University, 9000 Ghent, Belgium; (H.S.M.); (O.C.)
| | - Priver Namanya Bwesigye
- National Agricultural Research Laboratories, Kawanda, Kampala P.O. Box 7065, Uganda; (P.N.B.); (J.K.); (W.K.T.)
| | - Jerome Kubiriba
- National Agricultural Research Laboratories, Kawanda, Kampala P.O. Box 7065, Uganda; (P.N.B.); (J.K.); (W.K.T.)
| | | | | | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Ghent University, 9000 Ghent, Belgium; (H.S.M.); (O.C.)
| |
Collapse
|
35
|
Miao S, Liang C, Li J, Baker B, Luo L. Polycistronic Artificial microRNA-Mediated Resistance to Cucumber Green Mottle Mosaic Virus in Cucumber. Int J Mol Sci 2021; 22:ijms222212237. [PMID: 34830122 PMCID: PMC8620374 DOI: 10.3390/ijms222212237] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022] Open
Abstract
Cucumber green mottle mosaic virus (CGMMV), as a typical seed-borne virus, causes costly and devastating diseases in the vegetable trade worldwide. Genetic sources for resistance to CGMMV in cucurbits are limited, and environmentally safe approaches for curbing the accumulation and spread of seed-transmitted viruses and cultivating completely resistant plants are needed. Here, we describe the design and application of RNA interference-based technologies, containing artificial microRNA (amiRNA) and synthetic trans-acting small interfering RNA (syn-tasiRNA), against conserved regions of different strains of the CGMMV genome. We used a rapid transient sensor system to identify effective anti-CGMMV amiRNAs. A virus seed transmission assay was developed, showing that the externally added polycistronic amiRNA and syn-tasiRNA can successfully block the accumulation of CGMMV in cucumber, but different virulent strains exhibited distinct influences on the expression of amiRNA due to the activity of the RNA-silencing suppressor. We also established stable transgenic cucumber plants expressing polycistronic amiRNA, which conferred disease resistance against CGMMV, and no sequence mutation was observed in CGMMV. This study demonstrates that RNA interference-based technologies can effectively prevent the occurrence and accumulation of CGMMV. The results provide a basis to establish and fine-tune approaches to prevent and treat seed-based transmission viral infections.
Collapse
Affiliation(s)
- Shuo Miao
- College of Plant Protection, China Agricultural University, Beijing 100193, China; (S.M.); (J.L.)
- Beijing Key Laboratory of Seed Disease Testing and Control, China Agricultural University, Beijing 100193, China
| | | | - Jianqiang Li
- College of Plant Protection, China Agricultural University, Beijing 100193, China; (S.M.); (J.L.)
- Beijing Key Laboratory of Seed Disease Testing and Control, China Agricultural University, Beijing 100193, China
| | - Barbara Baker
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Plant Gene Expression Center, United States Department of Agriculture-Agricultural Research Service, Albany, CA 94710, USA
- Correspondence: (B.B.); (L.L.)
| | - Laixin Luo
- College of Plant Protection, China Agricultural University, Beijing 100193, China; (S.M.); (J.L.)
- Beijing Key Laboratory of Seed Disease Testing and Control, China Agricultural University, Beijing 100193, China
- Correspondence: (B.B.); (L.L.)
| |
Collapse
|
36
|
Kaur R, Choudhury A, Chauhan S, Ghosh A, Tiwari R, Rajam MV. RNA interference and crop protection against biotic stresses. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2357-2377. [PMID: 34744371 PMCID: PMC8526635 DOI: 10.1007/s12298-021-01064-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 08/14/2021] [Accepted: 09/07/2021] [Indexed: 05/26/2023]
Abstract
RNA interference (RNAi) is a universal phenomenon of RNA silencing or gene silencing with broader implications in important physiological and developmental processes of most eukaryotes, including plants. Small RNA (sRNA) are the critical drivers of the RNAi machinery that ensures down-regulation of the target genes in a homology-dependent manner and includes small-interfering RNAs (siRNAs) and micro RNAs (miRNAs). Plant researchers across the globe have exploited the powerful technique of RNAi to execute targeted suppression of desired genes in important crop plants, with an intent to improve crop protection against pathogens and pests for sustainable crop production. Biotic stresses cause severe losses to the agricultural productivity leading to food insecurity for future generations. RNAi has majorly contributed towards the development of designer crops that are resilient towards the various biotic stresses such as viruses, bacteria, fungi, insect pests, and nematodes. This review summarizes the recent progress made in the RNAi-mediated strategies against these biotic stresses, along with new insights on the future directions in research involving RNAi for crop protection.
Collapse
Affiliation(s)
- Ranjeet Kaur
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| | - Aparajita Choudhury
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| | - Sambhavana Chauhan
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| | - Arundhati Ghosh
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| | - Ruby Tiwari
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| | - Manchikatla Venkat Rajam
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021 India
| |
Collapse
|
37
|
Lacombe S, Bangratz M, Ta HA, Nguyen TD, Gantet P, Brugidou C. Optimized RNA-Silencing Strategies for Rice Ragged Stunt Virus Resistance in Rice. PLANTS 2021; 10:plants10102008. [PMID: 34685817 PMCID: PMC8540896 DOI: 10.3390/plants10102008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/31/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022]
Abstract
Rice ragged stunt virus (RRSV) is one of the most damaging viruses of the rice culture area in south and far-eastern Asia. To date, no genetic resistance has been identified and only expensive and non-environmentally friendly chemical treatments are deployed to fight this important disease. Non-chemical approaches based on RNA-silencing have been developed as resistance strategies against viruses. Here, we optimized classical miRNA and siRNA-based strategies to obtain efficient and durable resistance to RRSV. miRNA-based strategies are involved in producing artificial miRNA (amiR) targeting viral genomes in plants. Classically, only one amiR is produced from a single construct. We demonstrated for the first time that two amiRs targeting conserved regions of RRSV genomes could be transgenically produced in Nicotiana benthamiana and in rice for a single precursor. Transgenic rice plants producing either one or two amiR were produced. Despite efficient amiR accumulations, miRNA-based strategies with single or double amiRs failed to achieve efficient RRSV resistance in transformed rice plants. This suggests that this strategy may not be adapted to RRSV, which could rapidly evolve to counteract them. Another RNA-silencing-based method for viral resistance concerns producing several viral siRNAs targeting a viral fragment. These viral siRNAs are produced from an inverted repeat construct carrying the targeted viral fragment. Here, we optimized the inverted repeat construct using a chimeric fragment carrying conserved sequences of three different RRSV genes instead of one. Of the three selected homozygous transgenic plants, one failed to accumulate the expected siRNA. The two other ones accumulated siRNAs from either one or three fragments. A strong reduction of RRSV symptoms was observed only in transgenic plants expressing siRNAs. We consequently demonstrated, for the first time, an efficient and environmentally friendly resistance to RRSV in rice based on the siRNA-mediated strategy.
Collapse
Affiliation(s)
- Severine Lacombe
- PHIM Plant Health Institute, University Montpellier, IRD, CIRAD, INRAE, Institut Agro, 34090 Montpellier, France; (M.B.); (C.B.)
- Correspondence:
| | - Martine Bangratz
- PHIM Plant Health Institute, University Montpellier, IRD, CIRAD, INRAE, Institut Agro, 34090 Montpellier, France; (M.B.); (C.B.)
| | - Hoang Anh Ta
- Plant Protection Research Institute (PPRI), Bac Tu Liem District, Hanoi 10000, Vietnam;
| | - Thanh Duc Nguyen
- Agricultural Genetics Institute, Bac Tu Liem District, Hanoi 10000, Vietnam;
| | - Pascal Gantet
- UMR DIADE, Université de Montpellier, IRD, 34090 Montpellier, France;
| | - Christophe Brugidou
- PHIM Plant Health Institute, University Montpellier, IRD, CIRAD, INRAE, Institut Agro, 34090 Montpellier, France; (M.B.); (C.B.)
| |
Collapse
|
38
|
Jia P, Pan H, Cui K, Jia K, Yi M. MicroRNA expression profiling of sea perch brain cells reveals the roles of microRNAs in autophagy induced by RGNNV infection. JOURNAL OF FISH DISEASES 2021; 44:1305-1314. [PMID: 34048029 DOI: 10.1111/jfd.13389] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Nervous necrosis virus (NNV) is one of the most destructive fish viruses and affects more than 120 marine and freshwater teleost species. However, the pathogenesis of NNV has not been made clear. MicroRNAs (miRNAs) play important roles in the regulation of viral infection. To understand the roles and regulation patterns of miRNAs in NNV infection, high-throughput sequencing was carried out in Lateolabrax japonicus brain (LJB) cells with or without red-spotted grouper NNV (RGNNV) infection at 12 and 24 hr. Here, we identified 59 known and 61 novel differentially expressed miRNAs (DE miRNAs) between mock and RGNNV-infected LJB cells. KEGG pathway analysis showed that the target genes of DE miRNAs were significantly enriched in immune-related signalling pathways, such as autophagy, mitophagy and TGF-beta signalling pathways. The expression patterns of four DE miRNAs (lja-miR-145, lja-miR-182, lja-miR-183 and lja-miR-187) were verified by qRT-PCR both in vivo and in vitro. We found that lja-miR-145 promoted RGNNV proliferation, while lja-miR-183 suppressed RGNNV proliferation. Furthermore, lja-miR-145 facilitated RGNNV-induced autophagy activation, whereas lja-miR-183 repressed autophagy in LJB cells as measured by LC3B-II/I and p62 protein levels. All these results indicate the involvement of lja-miR-145 and lja-miR-183 in RGNNV-induced autophagy. In conclusion, this study provides evidence for the important roles of miRNAs in NNV infection and a basis for uncovering the molecular regulation mechanism of NNV-induced autophagy.
Collapse
Affiliation(s)
- Peng Jia
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Hongbo Pan
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Kuopeng Cui
- Estuarine Fisheries Research Institute of Doumen, Zhuhai, China
| | - Kuntong Jia
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Meisheng Yi
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| |
Collapse
|
39
|
Yang X, Li Y, Wang A. Research Advances in Potyviruses: From the Laboratory Bench to the Field. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:1-29. [PMID: 33891829 DOI: 10.1146/annurev-phyto-020620-114550] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Potyviruses (viruses in the genus Potyvirus, family Potyviridae) constitute the largest group of known plant-infecting RNA viruses and include many agriculturally important viruses that cause devastating epidemics and significant yield losses in many crops worldwide. Several potyviruses are recognized as the most economically important viral pathogens. Therefore, potyviruses are more studied than other groups of plant viruses. In the past decade, a large amount of knowledge has been generated to better understand potyviruses and their infection process. In this review, we list the top 10 economically important potyviruses and present a brief profile of each. We highlight recent exciting findings on the novel genome expression strategy and the biological functions of potyviral proteins and discuss recent advances in molecular plant-potyvirus interactions, particularly regarding the coevolutionary arms race. Finally, we summarize current disease control strategies, with a focus on biotechnology-based genetic resistance, and point out future research directions.
Collapse
Affiliation(s)
- Xiuling Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3, Canada;
| | - Yinzi Li
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3, Canada;
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, Ontario N5V 4T3, Canada;
| |
Collapse
|
40
|
Tang J, Gu X, Liu J, He Z. Roles of small RNAs in crop disease resistance. STRESS BIOLOGY 2021; 1:6. [PMID: 37676520 PMCID: PMC10429495 DOI: 10.1007/s44154-021-00005-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/19/2021] [Indexed: 09/08/2023]
Abstract
Small RNAs (sRNAs) are a class of short, non-coding regulatory RNAs that have emerged as critical components of defense regulatory networks across plant kingdoms. Many sRNA-based technologies, such as host-induced gene silencing (HIGS), spray-induced gene silencing (SIGS), virus-induced gene silencing (VIGS), artificial microRNA (amiRNA) and synthetic trans-acting siRNA (syn-tasiRNA)-mediated RNA interference (RNAi), have been developed as disease control strategies in both monocot and dicot plants, particularly in crops. This review aims to highlight our current understanding of the roles of sRNAs including miRNAs, heterochromatic siRNAs (hc-siRNAs), phased, secondary siRNAs (phasiRNAs) and natural antisense siRNAs (nat-siRNAs) in disease resistance, and sRNAs-mediated trade-offs between defense and growth in crops. In particular, we focus on the diverse functions of sRNAs in defense responses to bacterial and fungal pathogens, oomycete and virus in crops. Further, we highlight the application of sRNA-based technologies in protecting crops from pathogens. Further research perspectives are proposed to develop new sRNAs-based efficient strategies to breed non-genetically modified (GMO), disease-tolerant crops for sustainable agriculture.
Collapse
Affiliation(s)
- Jun Tang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xueting Gu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Junzhong Liu
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China.
| | - Zuhua He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
41
|
Mangukia N, Rao P, Patel K, Pandya H, Rawal RM. Identifying potential human and medicinal plant microRNAs against SARS-CoV-2 3'UTR region: A computational genomics assessment. Comput Biol Med 2021; 136:104662. [PMID: 34311261 PMCID: PMC8288231 DOI: 10.1016/j.compbiomed.2021.104662] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 11/28/2022]
Abstract
The coronavirus disease of 2019 (COVID-19) began as an outbreak and has taken a toll on human lives. The current pandemic requires scientific attention; hence we designed a systematic computational workflow to identify the cellular microRNAs (miRNAs) from human host possessing the capability to target and silence 3′UTR of SARS-CoV-2 genome. Based on this viewpoint, we extended our miRNA search to medicinal plants like Ocimum tenuiflorum, Zingiber officinale and Piper nigrum, which are well-known to possess antiviral properties, and are often consumed raw or as herbal decoctions. Such an approach, that makes use of miRNA of one species to interact and silence genes of another species including viruses is broadly categorized as cross-kingdom interactions. As a part of our genomics study on host-virus-plant interaction, we identified one unique 3′UTR conserved site ‘GGAAGAG’ amongst 5024 globally submitted SARS-CoV-2 complete genomes, which can be targeted by the human miRNA ‘hsa-miR-1236–3p’ and by Z. officinale miRNA ‘zof-miR2673b’. Additionally, we also predicted that the members of miR477 family commonly found in these three plant genomes possess an inherent potential to silence viral genome RNA and facilitate antiviral defense against SARS-CoV-2 infection. In conclusion, this study reveals a universal site in the SARS-CoV-2 genome that may be crucial for targeted therapeutics to cure COVID-19.
Collapse
Affiliation(s)
- Naman Mangukia
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India; BioInnovations, Bhayander (West), Mumbai, 401101, Maharashtra, India.
| | - Priyashi Rao
- Department of Biochemistry and Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India.
| | - Kamlesh Patel
- Advait Theragnostics, GUSEC, Gujarat University, Ahmedabad, 380009, Gujarat, India.
| | - Himanshu Pandya
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India.
| | - Rakesh M Rawal
- Department of Biochemistry and Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India.
| |
Collapse
|
42
|
Bao W, Li A, Zhang Y, Diao P, Zhao Q, Yan T, Zhou Z, Duan H, Li X, Wuriyanghan H. Improvement of host-induced gene silencing efficiency via polycistronic-tRNA-amiR expression for multiple target genes and characterization of RNAi mechanism in Mythimna separata. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1370-1385. [PMID: 33484609 PMCID: PMC8313139 DOI: 10.1111/pbi.13555] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 05/09/2023]
Abstract
Host-induced gene silencing (HIGS) emerged as a new strategy for pest control. However, RNAi efficiency is reported to be low in Lepidoptera, which are composed of many important crop pests. To address this, we generated transgenic plants to develop HIGS effects in a maize pest, Mythimna separata (Lepidoptera, Noctuidae), by targeting chitinase encoding genes. More importantly, we developed an artificial microRNA (amiR) based PTA (polycistronic-tRNA-amiR) system for silencing multiple target genes. Compared with hpRNA (hairpin RNA), transgenic expression of a PTA cassette including an amiR for the gut-specific dsRNA nuclease gene MsREase, resulted in improved knockdown efficiency and caused more pronounced developmental abnormalities in recipient insects. When target gene siRNAs were analysed after HIGS and direct dsRNA/siRNA feeding, common features such as sense polarity and siRNA hotspot regions were observed, however, they differed in siRNA transitivity and major 20-24nt siRNA species. Core RNAi genes were identified in M. separata, and biochemical activities of MsAGO2, MsSID1 and MsDcr2 were confirmed by EMSA (electrophoretic mobility shift assay) and dsRNA cleavage assays, respectively. Taken together, we provide compelling evidence for the existence of the RNAi mechanism in M. separata by analysis of both siRNA signatures and RNAi machinery components, and the PTA system could potentially be useful for future RNAi control of lepidopteran pests.
Collapse
Affiliation(s)
- Wenhua Bao
- Key Laboratory of Forage and Endemic Crop BiotechnologyMinistry of EducationSchool of Life SciencesInner Mongolia UniversityHohhotChina
| | - Aoga Li
- Key Laboratory of Forage and Endemic Crop BiotechnologyMinistry of EducationSchool of Life SciencesInner Mongolia UniversityHohhotChina
| | - Yanan Zhang
- Key Laboratory of Forage and Endemic Crop BiotechnologyMinistry of EducationSchool of Life SciencesInner Mongolia UniversityHohhotChina
| | - Pengfei Diao
- Key Laboratory of Forage and Endemic Crop BiotechnologyMinistry of EducationSchool of Life SciencesInner Mongolia UniversityHohhotChina
| | - Qiqi Zhao
- Key Laboratory of Forage and Endemic Crop BiotechnologyMinistry of EducationSchool of Life SciencesInner Mongolia UniversityHohhotChina
| | - Ting Yan
- Key Laboratory of Forage and Endemic Crop BiotechnologyMinistry of EducationSchool of Life SciencesInner Mongolia UniversityHohhotChina
| | - Zikai Zhou
- Key Laboratory of Forage and Endemic Crop BiotechnologyMinistry of EducationSchool of Life SciencesInner Mongolia UniversityHohhotChina
| | - Huimin Duan
- Key Laboratory of Forage and Endemic Crop BiotechnologyMinistry of EducationSchool of Life SciencesInner Mongolia UniversityHohhotChina
| | - Xugang Li
- Sino‐German Joint Research Center on Agricultural BiologyState Key Laboratory of Crop Biology, College of Life SciencesShandong Agricultural UniversityTai'anChina
| | - Hada Wuriyanghan
- Key Laboratory of Forage and Endemic Crop BiotechnologyMinistry of EducationSchool of Life SciencesInner Mongolia UniversityHohhotChina
| |
Collapse
|
43
|
Lunardon A, Kariuki SM, Axtell MJ. Expression and processing of polycistronic artificial microRNAs and trans-acting siRNAs from transiently introduced transgenes in Solanum lycopersicum and Nicotiana benthamiana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1087-1104. [PMID: 33655542 DOI: 10.1111/tpj.15221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Targeted gene silencing using small regulatory RNAs is a widely used technique for genetic studies in plants. Artificial microRNAs are one common approach, as they have the advantage of producing just a single functional small RNA, which can be designed for high target specificity and low off-target effects. Simultaneous silencing of multiple targets with artificial microRNAs can be achieved by producing polycistronic microRNA precursors. Alternatively, specialized trans-acting short interfering RNA (tasiRNA) precursors can be designed to produce several specific tasiRNAs at once. Here we tested several artificial microRNA- and tasiRNA-based methods for multiplexed gene silencing in Solanum lycopersicum (tomato) and Nicotiana benthamiana. All analyses used transiently expressed transgenes delivered by infiltration of leaves with Agrobacterium tumefacians. Small RNA sequencing analyses revealed that many previously described approaches resulted in poor small RNA processing. The 5'-most microRNA precursor hairpins on polycistronic artificial microRNA precursors were generally processed more accurately than precursors at the 3'-end. Polycistronic artificial microRNAs where the hairpin precursors were separated by transfer RNAs had the best processing precision. Strikingly, artificial tasiRNA precursors failed to be processed in the expected phased manner in our system. These results highlight the need for further development of multiplexed artificial microRNA and tasiRNA strategies. The importance of small RNA sequencing, as opposed to single-target assays such as RNA blots or real-time polymerase chain reaction, is also discussed.
Collapse
Affiliation(s)
- Alice Lunardon
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Samwel Muiruri Kariuki
- International Institute of Tropical Agriculture, Nairobi, PO Box 30709-00100, Kenya
- Department of Plant Sciences, Kenyatta University, Nairobi, PO Box 43844-00100, Kenya
| | - Michael J Axtell
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
44
|
Chaudhary S, Grover A, Sharma PC. MicroRNAs: Potential Targets for Developing Stress-Tolerant Crops. Life (Basel) 2021; 11:life11040289. [PMID: 33800690 PMCID: PMC8066829 DOI: 10.3390/life11040289] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/24/2022] Open
Abstract
Crop yield is challenged every year worldwide by changing climatic conditions. The forecasted climatic scenario urgently demands stress-tolerant crop varieties to feed the ever-increasing global population. Molecular breeding and genetic engineering approaches have been frequently exploited for developing crops with desired agronomic traits. Recently, microRNAs (miRNAs) have emerged as powerful molecules, which potentially serve as expression markers during stress conditions. The miRNAs are small non-coding endogenous RNAs, usually 20-24 nucleotides long, which mediate post-transcriptional gene silencing and fine-tune the regulation of many abiotic- and biotic-stress responsive genes in plants. The miRNAs usually function by specifically pairing with the target mRNAs, inducing their cleavage or repressing their translation. This review focuses on the exploration of the functional role of miRNAs in regulating plant responses to abiotic and biotic stresses. Moreover, a methodology is also discussed to mine stress-responsive miRNAs from the enormous amount of transcriptome data available in the public domain generated using next-generation sequencing (NGS). Considering the functional role of miRNAs in mediating stress responses, these molecules may be explored as novel targets for engineering stress-tolerant crop varieties.
Collapse
Affiliation(s)
- Saurabh Chaudhary
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AT, UK
- Correspondence: (S.C.); (P.C.S.)
| | - Atul Grover
- Defence Institute of Bio-Energy Research, Defence Research and Development Organisation (DRDO), Haldwani 263139, India;
| | - Prakash Chand Sharma
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi 110078, India
- Correspondence: (S.C.); (P.C.S.)
| |
Collapse
|
45
|
Girija A, Vijayanathan M, Sreekumar S, Basheer J, Menon TG, Krishnankutty RE, Soniya EV. Harnessing the natural pool of polyketide and non-ribosomal peptide family: A route map towards novel drug development. Curr Mol Pharmacol 2021; 15:265-291. [PMID: 33745440 DOI: 10.2174/1874467214666210319145816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/10/2020] [Accepted: 12/31/2020] [Indexed: 11/22/2022]
Abstract
Emergence of communicable and non-communicable diseases possess health challenge to millions of people worldwide and is a major threat to the economic and social development in the coming century. The occurrence of recent pandemic, SARS-CoV-2 caused by lethal severe acute respiratory syndrome coronavirus 2 is one such example. Rapid research and development of drugs for the treatment and management of these diseases has been an incredibly challenging task for the pharmaceutical industry. Although, substantial focus has been made in the discovery of therapeutic compounds from natural sources having significant medicinal potential, their synthesis has shown a slow progress. Hence, the discovery of new targets by the application of the latest biotechnological and synthetic biology approaches is very much the need of the hour. Polyketides (PKs) and non-ribosomal peptides (NRPs) found in bacteria, fungi and plants are a large diverse family of natural products synthesized by two classes of enzymes: polyketide synthases (PKS) and non-ribosomal peptide synthetases (NRPS). These enzymes possess immense biomedical potential due to their simple architecture, catalytic capacity, as well as diversity. With the advent of latest in-silico and in-vitro strategies, these enzymes and their related metabolic pathways, if targeted, can contribute highly towards the biosynthesis of an array of potentially natural drug leads that have antagonist effects on biopolymers associated with various human diseases. In the face of the rising threat from the multidrug-resistant pathogens, this will further open new avenues for the discovery of novel and improved drugs by combining the natural and the synthetic approaches. This review discusses the relevance of polyketides and non-ribosomal peptides and the improvement strategies for the development of their derivatives and scaffolds, and how they will be beneficial to the future bioprospecting and drug discovery.
Collapse
Affiliation(s)
- Aiswarya Girija
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India.,Institute of Biological Environmental Rural Sciences (IBERS), Aberystwyth University, United Kingdom
| | - Mallika Vijayanathan
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India.,Biology Centre - Institute of Plant Molecular Biology, Czech Academy of Sciences, České Budějovice, 370 05, Czech Republic
| | - Sweda Sreekumar
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India.,Research Centre, University of Kerala, India
| | - Jasim Basheer
- School of Biosciences, Mahatma Gandhi University, PD Hills, Kottayam, Kerala, India.,Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacky University, Olomouc, Czech Republic
| | - Tara G Menon
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India
| | | | - Eppurathu Vasudevan Soniya
- Transdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India
| |
Collapse
|
46
|
Gobert A, Quan Y, Arrivé M, Waltz F, Da Silva N, Jomat L, Cohen M, Jupin I, Giegé P. Towards plant resistance to viruses using protein-only RNase P. Nat Commun 2021; 12:1007. [PMID: 33579946 PMCID: PMC7881203 DOI: 10.1038/s41467-021-21338-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 01/22/2021] [Indexed: 11/30/2022] Open
Abstract
Plant viruses cause massive crop yield loss worldwide. Most plant viruses are RNA viruses, many of which contain a functional tRNA-like structure. RNase P has the enzymatic activity to catalyze the 5′ maturation of precursor tRNAs. It is also able to cleave tRNA-like structures. However, RNase P enzymes only accumulate in the nucleus, mitochondria, and chloroplasts rather than cytosol where virus replication takes place. Here, we report a biotechnology strategy based on the re-localization of plant protein-only RNase P to the cytosol (CytoRP) to target plant viruses tRNA-like structures and thus hamper virus replication. We demonstrate the cytosol localization of protein-only RNase P in Arabidopsis protoplasts. In addition, we provide in vitro evidences for CytoRP to cleave turnip yellow mosaic virus and oilseed rape mosaic virus. However, we observe varied in vivo results. The possible reasons have been discussed. Overall, the results provided here show the potential of using CytoRP for combating some plant viral diseases. New approaches to plant disease control are important for pathogens that are difficult to control by existing methods. Here, the authors report a potential strategy to combat plant viruses by cytosolic expressed protein-only RNase P and show its ability for in vitro cleavage of tRNA-like structures existing in many plant viruses.
Collapse
Affiliation(s)
- Anthony Gobert
- Institut de biologie moléculaire des plantes, UPR2357 du CNRS, Université de Strasbourg, Strasbourg, France.
| | - Yifat Quan
- Institut de biologie moléculaire des plantes, UPR2357 du CNRS, Université de Strasbourg, Strasbourg, France
| | - Mathilde Arrivé
- Institut de biologie moléculaire des plantes, UPR2357 du CNRS, Université de Strasbourg, Strasbourg, France
| | - Florent Waltz
- Institut de biologie moléculaire des plantes, UPR2357 du CNRS, Université de Strasbourg, Strasbourg, France
| | - Nathalie Da Silva
- Institut Jacques Monod, Laboratory of Molecular Virology, UMR7592 CNRS, Université de Paris, Paris, France
| | - Lucile Jomat
- Institut Jacques Monod, Laboratory of Molecular Virology, UMR7592 CNRS, Université de Paris, Paris, France
| | - Mathias Cohen
- Institut Jacques Monod, Laboratory of Molecular Virology, UMR7592 CNRS, Université de Paris, Paris, France
| | - Isabelle Jupin
- Institut Jacques Monod, Laboratory of Molecular Virology, UMR7592 CNRS, Université de Paris, Paris, France.
| | - Philippe Giegé
- Institut de biologie moléculaire des plantes, UPR2357 du CNRS, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
47
|
Palukaitis P, Kim S. Resistance to Turnip Mosaic Virus in the Family Brassicaceae. THE PLANT PATHOLOGY JOURNAL 2021; 37:1-23. [PMID: 33551693 PMCID: PMC7847761 DOI: 10.5423/ppj.rw.09.2020.0178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/30/2020] [Accepted: 11/30/2020] [Indexed: 05/21/2023]
Abstract
Resistance to diseases caused by turnip mosaic virus (TuMV) in crop species of the family Brassicaceae has been studied extensively, especially in members of the genus Brassica. The variation in response observed on resistant and susceptible plants inoculated with different isolates of TuMV is due to a combination of the variation in the plant resistome and the variation in the virus genome. Here, we review the breadth of this variation, both at the level of variation in TuMV sequences, with one eye towards the phylogeny and evolution of the virus, and another eye towards the nature of the various responses observed in susceptible vs. different types of resistance responses. The analyses of the viral genomes allowed comparisons of pathotyped viruses on particular indicator hosts to produce clusters of host types, while the inclusion of phylogeny data and geographic location allowed the formation of the host/geographic cluster groups, the derivation of both of which are presented here. Various studies on resistance determination in particular brassica crops sometimes led to further genetic studies, in many cases to include the mapping of genes, and in some cases to the actual identification of the genes. In addition to summarizing the results from such studies done in brassica crops, as well as in radish and Arabidopsis (the latter as a potential source of candidate genes for brassica and radish), we also summarize work done using nonconventional approaches to obtaining resistance to TuMV.
Collapse
Affiliation(s)
- Peter Palukaitis
- Department of Horticultural Sciences, Seoul Women’s University, Seoul 0797, Korea
- Co-corresponding authors P. Palukaitis, Phone) +82-2-970-5614, FAX) +82-2-970-5610, E-mail) , S. Kim, Phone) +82-31-5182-8112, FAX) +82-31-5182-8113, E-mail) , ORCID, Peter Palukaitis https://orcid.org/0000-0001-8735-1273
| | - Su Kim
- Institute of Plant Analysis Technology Development, The Saeron Co., Suwon 16648, Korea
- Co-corresponding authors P. Palukaitis, Phone) +82-2-970-5614, FAX) +82-2-970-5610, E-mail) , S. Kim, Phone) +82-31-5182-8112, FAX) +82-31-5182-8113, E-mail) , ORCID, Peter Palukaitis https://orcid.org/0000-0001-8735-1273
| |
Collapse
|
48
|
More P, Agarwal P, Anand A, Sanan-Mishra N, Agarwal PK. Artificial miRNA mediated resistance in tobacco against Jatropha leaf curl Gujarat virus by targeting RNA silencing suppressors. Sci Rep 2021; 11:890. [PMID: 33441589 PMCID: PMC7806619 DOI: 10.1038/s41598-020-79134-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/03/2020] [Indexed: 11/09/2022] Open
Abstract
The leaf curl disease of Jatropha caused by geminiviruses results in heavy economic losses. In the present study, we report the identification of a new strain of a Jatropha leaf curl Gujarat virus (JLCuGV), which encodes six ORFs with each one having RNA silencing suppressor activity. Therefore, three artificial microRNAs (amiRNAs; C1/C4, C2/C3 and V1/V2) were designed employing overlapping regions, each targeting two ORFs of JLCuGV genomic DNA and transformed in tobacco. The C1/C4 and C2/C3 amiRNA transgenics were resistant while V1/V2 amiRNA transgenics were tolerant against JLCuGV. The relative level of amiRNA inversely related to viral load indicating a correlation with disease resistance. The assessment of photosynthetic parameters suggests that the transgenics perform significantly better in response to JLCuGV infiltration as compared to wild type (WT). The metabolite contents were not altered remarkably in amiRNA transgenics, but sugar metabolism and tricarboxylic acid (TCA) cycle showed noticeable changes in WT on virus infiltration. The overall higher methylation and demethylation observed in amiRNA transgenics correlated with decreased JLCuGV accumulation. This study demonstrates that amiRNA transgenics showed enhanced resistance to JLCuGV while efficiently maintaining normalcy in their photosynthesis and metabolic pathways as well as homeostasis in the methylation patterns.
Collapse
Affiliation(s)
- Prashant More
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, 364 002, Bhavnagar, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Parinita Agarwal
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, 364 002, Bhavnagar, Gujarat, India.
| | - Abhishek Anand
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110 067, India
| | - Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110 067, India
| | - Pradeep K Agarwal
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, 364 002, Bhavnagar, Gujarat, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
49
|
Ashraf MA, Ashraf F, Feng X, Hu X, Shen L, Khan J, Zhang S. Potential targets for evaluation of sugarcane yellow leaf virus resistance in sugarcane cultivars: in silico sugarcane miRNA and target network prediction. BIOTECHNOL BIOTEC EQ 2021. [DOI: 10.1080/13102818.2022.2041483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Muhammad Aleem Ashraf
- Institute of Tropical Bioscience and Biotechnology, Sugarcane Research Centre of Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, PR China
- Department of Bioscience and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Fakiha Ashraf
- Institute of Tropical Bioscience and Biotechnology, Sugarcane Research Centre of Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, PR China
| | - Xiaoyan Feng
- Institute of Tropical Bioscience and Biotechnology, Sugarcane Research Centre of Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, PR China
- Hainan Academy of Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, PR China
| | - Xiaowen Hu
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, PR China
| | - Linbo Shen
- Institute of Tropical Bioscience and Biotechnology, Sugarcane Research Centre of Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, PR China
| | - Jallat Khan
- Department of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Shuzhen Zhang
- Institute of Tropical Bioscience and Biotechnology, Sugarcane Research Centre of Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Haikou, PR China
- Hainan Academy of Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, PR China
| |
Collapse
|
50
|
Dalio RJD, Litholdo CG, Arena G, Magalhães D, Machado MA. Contribution of Omics and Systems Biology to Plant Biotechnology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1346:171-188. [DOI: 10.1007/978-3-030-80352-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|