1
|
Kar SS, Dhar AK, Palei NN, Bhatt S. Small-molecule oligonucleotides as smart modality for antiviral therapy: a medicinal chemistry perspective. Future Med Chem 2023; 15:1091-1110. [PMID: 37584172 DOI: 10.4155/fmc-2023-0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023] Open
Abstract
Small-molecule oligonucleotides could be exploited therapeutically to silence the expression of viral infection-causing genes, and a few of them are now in clinical trials for the management of viral infections. The most challenging aspect of these oligonucleotides' therapeutic success involves their delivery. Thus medicinal chemistry strategies are inevitable to avoid degradation by serum nucleases, avoid kidney clearance and improve cellular uptake. Recently small-molecule oligonucleotide design has opened up new avenues to improve the treatment of drug-resistant viral infections, along with the development of COVID-19 medicines. This review is directed toward the recent advances in rational design, mechanism of action, structure-activity relationships and future perspective of the small-molecule oligonucleotides targeting viral infections, including COVID-19.
Collapse
Affiliation(s)
- Sidhartha S Kar
- Institute of Pharmacy & Technology, Salipur, Cuttack, Odisha, 754202, India
| | - Arghya Kusum Dhar
- School of Pharmacy, The Neotia University, Sarisa, D.H. Road, 24 Pgs (South) West Bengal, 743368, India
| | - Narahari N Palei
- Amity Institute of Pharmacy, Amity University Lucknow Campus, Uttar Pradesh, 226010, India
| | - Shvetank Bhatt
- School of Health Sciences and Technology, Dr Vishwanath Karad MIT World Peace University, Pune, Maharashtra, 411038, India
| |
Collapse
|
2
|
Xeno-Nucleic Acid (XNA) 2'-Fluoro-Arabino Nucleic Acid (FANA) Aptamers to the Receptor-Binding Domain of SARS-CoV-2 S Protein Block ACE2 Binding. Viruses 2021; 13:v13101983. [PMID: 34696413 PMCID: PMC8539646 DOI: 10.3390/v13101983] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 01/03/2023] Open
Abstract
The causative agent of COVID-19, SARS-CoV-2, gains access to cells through interactions of the receptor-binding domain (RBD) on the viral S protein with angiotensin-converting enzyme 2 (ACE2) on the surface of human host cells. Systematic evolution of ligands by exponential enrichment (SELEX) was used to generate aptamers (nucleic acids selected for high binding affinity to a target) to the RBD made from 2ʹ-fluoro-arabinonucleic acid (FANA). The best selected ~79 nucleotide aptamers bound the RBD (Arg319-Phe541) and the larger S1 domain (Val16-Arg685) of the 1272 amino acid S protein with equilibrium dissociation constants (KD,app) of ~10–20 nM, and binding half-life for the RBD, S1 domain, and full trimeric S protein of 53 ± 18, 76 ± 5, and 127 ± 7 min, respectively. Aptamers inhibited the binding of the RBD to ACE2 in an ELISA assay. Inhibition, on a per weight basis, was similar to neutralizing antibodies that were specific for RBD. Aptamers demonstrated high specificity, binding with about 10-fold lower affinity to the related S1 domain from the original SARS virus, which also binds to ACE2. Overall, FANA aptamers show affinities comparable to previous DNA aptamers to RBD and S1 protein and directly block receptor interactions while using an alternative Xeno-nucleic acid (XNA) platform.
Collapse
|
3
|
Ferreira-Bravo IA, DeStefano JJ. Xeno-nucleic Acid (XNA) 2'-Fluoro-Arabino Nucleic Acid (FANA) Aptamers to the Receptor Binding Domain of SARS-CoV-2 S Protein Block ACE2 Binding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34282416 DOI: 10.1101/2021.07.13.452259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The causative agent of COVID-19, SARS-CoV-2, gains access to cells through interactions of the receptor binding domain (RBD) on the viral S protein with angiotensin converting enzyme 2 (ACE2) on the surface of human host cells. Systematic Evolution of Ligands by Exponential Enrichment (SELEX) was used to generate aptamers (nucleic acids selected for high binding affinity to a target) to the RBD made from 2'-fluoroarabinonucleic acid (FANA). The best selected ~ 79 nucleotide aptamers bound the RBD (Arg319-Phe541) and the larger S1 domain (Val16-Arg685) of the 1272 amino acid S protein with equilibrium dissociation constants ( K D,app ) of ~ 10-20 nM and a binding half-life for the RBD of 53 ± 18 minutes. Aptamers inhibited the binding of the RBD to ACE2 in an ELISA assay. Inhibition, on a per weight basis, was similar to neutralizing antibodies that were specific for RBD. Aptamers demonstrated high specificity, binding with about 10-fold lower affinity to the related S1 domain from the original SARS virus, which also binds to ACE2. Overall, FANA aptamers show affinities comparable to previous DNA aptamers to RBD and S protein and directly block receptor interactions while using an alternative Xeno-nucleic acid (XNA) platform.
Collapse
|
4
|
Rose KM, Alves Ferreira-Bravo I, Li M, Craigie R, Ditzler MA, Holliger P, DeStefano JJ. Selection of 2'-Deoxy-2'-Fluoroarabino Nucleic Acid (FANA) Aptamers That Bind HIV-1 Integrase with Picomolar Affinity. ACS Chem Biol 2019; 14:2166-2175. [PMID: 31560515 PMCID: PMC7005942 DOI: 10.1021/acschembio.9b00237] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
![]()
Systematic Evolution
of Ligands by Exponential Enrichment (SELEX)
is the iterative process by which nucleic acids that can bind with
high affinity and specificity (termed aptamers) to specific protein
targets are selected. Using a SELEX protocol adapted for Xeno-Nucleic
Acid (XNA) as a suitable substrate for aptamer generation, 2′-fluoroarabinonucleic
acid (FANA) was used to select several related aptamers to HIV-1 integrase
(IN). IN bound FANA aptamers with equilibrium dissociation constants
(KD,app) of ∼50–100 pM in
a buffer with 200 mM NaCl and 6 mM MgCl2. Comparisons to
published HIV-1 IN RNA and DNA aptamers as well as IN genomic binding
partners indicated that FANA aptamers bound more than 2 orders of
magnitude more tightly to IN. Using a combination of RNA folding algorithms
and covariation analysis, all strong binding aptamers demonstrated
a common four-way junction structure, despite significant sequence
variation. IN aptamers were selected from the same starting library
as FA1, a FANA aptamer that binds with pM affinity to HIV-1 Reverse
Transcriptase (RT). It contains a 20-nucleotide 5′ DNA sequence
followed by 59 FANA nucleotides. IN-1.1 (one of the selected aptamers)
potently inhibited IN activity and intasome formation in vitro. Replacing
the FANA nucleotides of IN-1.1 with 2′-fluororibonucleic acid
(F-RNA), which has the same chemical formula but with a ribose rather
than arabinose sugar conformation, dramatically reduced binding, suggesting
that FANA adopts unique structural conformations that promote binding
to HIV-1 IN.
Collapse
|
5
|
Voges M, Schneider C, Sinn M, Hartig JS, Reimer R, Hauber J, Moelling K. Abolishing HIV-1 infectivity using a polypurine tract-specific G-quadruplex-forming oligonucleotide. BMC Infect Dis 2016; 16:358. [PMID: 27450669 PMCID: PMC4957839 DOI: 10.1186/s12879-016-1713-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 07/12/2016] [Indexed: 02/04/2023] Open
Abstract
Background HIV is primarily transmitted by sexual intercourse and predominantly infects people in Third World countries. Here an important medical need is self-protection for women, particularly in societies where condoms are not widely accepted. Therefore, availability of antiviral microbicides may significantly reduce sexual HIV transmission in such environments. Methods Here, we investigated structural characteristics and the antiviral activity of the polypurine tract (PPT)-specific ODN A, a 54-mer oligodeoxynucleotide (ODN) that has been previously shown to trigger the destruction of viral RNA genomes by prematurely activating the retroviral RNase H. The stability of ODN A and mutants thereof was tested at various storage conditions. Furthermore, antiviral effects of ODN A were analyzed in various tissue culture HIV-1 infection models. Finally, circular dichroism spectroscopy was employed to gain insight into the structure of ODN A. Results We show here that ODN A is a powerful tool to abolish HIV-1 particle infectivity, as required for a candidate compound in vaginal microbicide applications. We demonstrate that ODN A is not only capable to prematurely activate the retroviral RNase H, but also prevents HIV-1 from entering host cells. ODN A also exhibited extraordinary stability lasting several weeks. Notably, ODN A is biologically active under various storage conditions, as well as in the presence of carboxymethylcellulose CMC (K-Y Jelly), a potential carrier for application as a vaginal microbicide. ODN A’s remarkable thermostability is apparently due to its specific, guanosine-rich sequence. Interestingly, these residues can form G-quadruplexes and may lead to G-based DNA hyperstructures. Importantly, the pronounced antiviral activity of ODN A is maintained in the presence of human semen or semen-derived enhancer of virus infection (SEVI; i.e. amyloid fibrils), both known to enhance HIV infectivity and reduce the efficacy of some antiviral microbicides. Conclusions Since ODN A efficiently inactivates HIV-1 and also displays high stability and resistance against semen, it combines unique and promising features for its further development as a vaginal microbicide against HIV.
Collapse
Affiliation(s)
- Maike Voges
- Heinrich Pette Institute-Leibniz Institute for Experimental Virology, Martinistrasse 52, 20251, Hamburg, Germany
| | - Carola Schneider
- Heinrich Pette Institute-Leibniz Institute for Experimental Virology, Martinistrasse 52, 20251, Hamburg, Germany
| | - Malte Sinn
- Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| | - Jörg S Hartig
- Department of Chemistry and Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstrasse 10, 78457, Konstanz, Germany
| | - Rudolph Reimer
- Heinrich Pette Institute-Leibniz Institute for Experimental Virology, Martinistrasse 52, 20251, Hamburg, Germany
| | - Joachim Hauber
- Heinrich Pette Institute-Leibniz Institute for Experimental Virology, Martinistrasse 52, 20251, Hamburg, Germany. .,German Center for Infection Research (DZIF), partner site, Hamburg, Germany.
| | - Karin Moelling
- Heinrich Pette Institute-Leibniz Institute for Experimental Virology, Martinistrasse 52, 20251, Hamburg, Germany.,Institute of Medical Virology, University of Zurich, Gloriastrasse 32, 8006, Zurich, Switzerland.,Max Planck Institute for Molecular Genetics, Ihnestrasse 63-73, 14195, Berlin, Germany
| |
Collapse
|
6
|
Alves Ferreira-Bravo I, Cozens C, Holliger P, DeStefano JJ. Selection of 2'-deoxy-2'-fluoroarabinonucleotide (FANA) aptamers that bind HIV-1 reverse transcriptase with picomolar affinity. Nucleic Acids Res 2015; 43:9587-99. [PMID: 26476448 PMCID: PMC4751925 DOI: 10.1093/nar/gkv1057] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 10/02/2015] [Indexed: 11/17/2022] Open
Abstract
Using a Systematic Evolution of Ligands by Exponential Enrichment (SELEX) protocol capable of selecting xeno-nucleic acid (XNA) aptamers, a 2′-deoxy-2′-fluoroarabinonucleotide (FANA) aptamer (referred to as FA1) to HIV-1 reverse transcriptase (HIV-1 RT) was selected. FA1 bound HIV-1 RT with KD,app values in the low pM range under different ionic conditions. Comparisons to published HIV-1 RT RNA and DNA aptamers indicated that FA1 bound at least as well as these aptamers. FA1 contained a 20 nucleotide 5′ DNA sequence followed by a 57 nucleotide region of FANA nucleotides. Removal of the fourteen 5′ DNA nucleotides did not affect binding. FA1's predicted structure was composed of four stems and four loops. All stem nucleotides could be modified to G-C base pairs (14 total changes) with a small effect on binding. Eliminating or altering most loop sequences reduced or abolished tight binding. Overall, results suggested that the structure and the sequence of FA1 were important for binding. FA1 showed strong inhibition of HIV-1 RT in extension assays while no specific binding to avian myeloblastosis or Moloney murine leukemia RTs was detected. A complete DNA version of FA1 showed low binding to HIV-1 RT, emphasizing the unique properties of FANA in HIV-1 RT binding.
Collapse
Affiliation(s)
- Irani Alves Ferreira-Bravo
- Cell Biology and Molecular Genetics, Bioscience Research Building, University of Maryland, College Park, MD 20742, USA Maryland Pathogen Research Institute, College Park, MD 20742, USA
| | - Christopher Cozens
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Philipp Holliger
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | - Jeffrey J DeStefano
- Cell Biology and Molecular Genetics, Bioscience Research Building, University of Maryland, College Park, MD 20742, USA Maryland Pathogen Research Institute, College Park, MD 20742, USA
| |
Collapse
|
7
|
Moelling K, Broecker F. The reverse transcriptase-RNase H: from viruses to antiviral defense. Ann N Y Acad Sci 2015; 1341:126-35. [PMID: 25703292 DOI: 10.1111/nyas.12668] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ubiquitous, reverse transcriptase may have contributed to the transition from the RNA to the DNA world, a transition that also involved RNase H-like activities. Both enzymes shaped various genomes and antiviral defense systems as endogenous retroviruses (ERVs) and transposable elements (TEs). A close relationship between a dozen components of retroviruses and the small interfering RNA (siRNA) antiviral-defense machinery has been characterized. Most antiviral-defense systems involve RNase H-like enzymes destroying invading nucleic acids, RNA, or DNA. Such enzymes include RNases H, Argonaute, Dicer, Cas9, transposases, integrases, and enzymes for immunoglobulin rearrangement and splicing. Even in mammalian cells, where protein-based defense dominates, the siRNA machinery remains active, demonstrated by increased virus production and apoptosis after Dicer knockdown. We have noticed a surprising homology between the siRNA silencing system and the interferon response, as well as to siDNA and the CRISPR system. Further, ERVs serve in defense, in addition to having roles in gene regulation and cancer.
Collapse
Affiliation(s)
- Karin Moelling
- Max Planck Institute for Molecular Genetics, Berlin, Germany; Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland; Heinrich Pette Institute, Hamburg, Germany
| | | |
Collapse
|
8
|
Moelling K, Broecker F, Kerrigan JE. RNase H: specificity, mechanisms of action, and antiviral target. Methods Mol Biol 2014; 1087:71-84. [PMID: 24158815 DOI: 10.1007/978-1-62703-670-2_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The Ribonuclease (RNase) H is one of the four enzymes encoded by all retroviruses, including HIV. Its main activity is the hydrolysis of the RNA moiety in RNA-DNA hybrids. The RNase H ribonuclease is essential in the retroviral life cycle, since it generates and removes primers needed by the Reverse Transcriptase (RT) for initiation of DNA synthesis. Retroviruses lacking RNase H activity are noninfectious. Despite its importance, RNase H is the only enzyme of HIV not yet targeted by antiretroviral therapy. Here, we describe functions and mechanisms of RNase H during the HIV life cycle and describe a cleavage assay, which is suitable to determine RNase H activity in samples of various kinds. In this assay, an artificial, fluorescence-labeled RNA-DNA hybrid is cleaved in vitro by an RT/RNase H enzyme. Cleavage products are analyzed by denaturing polyacrylamide gel electrophoresis (PAGE). This assay may be used to detect the RNase H, assess the effect of inhibitors, or even activators, of the RNase H, as we have described, as candidates for novel antiretroviral agents.
Collapse
Affiliation(s)
- Karin Moelling
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
9
|
Broecker F, Andrae K, Moelling K. Premature activation of the HIV RNase H drives the virus into suicide: a novel microbicide? AIDS Res Hum Retroviruses 2012; 28:1397-403. [PMID: 22931114 DOI: 10.1089/aid.2012.0067] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Sexual transmission of HIV is the major cause of spread of HIV in Africa and the Third World and is an unmet medical need. Recently, microbicides have attracted attention because they allow females to protect themselves and their offspring. We are exploiting one of the four retroviral enzymes, the ribonuclease H, RNase H, as a novel approach for a microbicide. It is the only enzyme of HIV not yet targeted by antiretroviral therapy. The enzyme is linked to the reverse transcriptase (RT) and hydrolyzes the RNA moiety of RNA-DNA hybrids. The RNase H is located inside virus particles and normally functions during viral replication inside cells. Here we show that activating the RNase H prematurely inside the virus particles destroys the viral genome and abrogates viral infectivity. The antiviral compound consists of a synthetic oligodeoxynucleotide (ODN), which creates an artificial RNA-DNA hybrid substrate for the RNase H inside the particle. The compound was analyzed in mouse models including humanized SCID mice and the vagina of mice. Infection was reduced up to 1000-fold or could be completely prevented. The compound is suitable as microbicide or to prevent mother-to-child transmission.
Collapse
Affiliation(s)
- Felix Broecker
- University of Zurich, Zurich, Switzerland
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | - Karin Moelling
- University of Zurich, Zurich, Switzerland
- Max Planck Institute for Molecular Genetics, Berlin, Germany
- Heinrich Pette Institute, Hamburg, Germany
| |
Collapse
|
10
|
Abstract
Ribonucleases H or RNases H are conserved and exist in almost every organism. They generate and remove RNA primers, which are required for DNA replication. RNases H hydrolyze RNA in RNA-DNA hybrids. RNases H and related enzymes contribute to reduction of gene expression in antisense and small-interfering RNA mechanisms for gene silencing. Retroviruses code for RNases H, which are required for DNA provirus synthesis. Their RNase H is fused to the reverse transcriptase and essential for virus replication inside the cell. Retroviruses code for four enzymes, three of which have been targeted by antiretroviral therapies. A drug against the fourth one, the retroviral RNase H, does not yet exist. The viral but not cellular RNases H should be targeted by drug design. Some details will be discussed here. Furthermore, a compound is described, which enables the RNase H to kill cell-free HIV particles by driving the virus into suicide - with potential use as a microbicide.
Collapse
|
11
|
Broecker F, Moelling K. Short hairpin-looped oligodeoxynucleotides reduce hepatitis C virus replication. Virol J 2012; 9:134. [PMID: 22823899 PMCID: PMC3508801 DOI: 10.1186/1743-422x-9-134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 07/23/2012] [Indexed: 11/10/2022] Open
Abstract
Background Persistent infection with hepatitis C virus (HCV) is a leading cause of chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. Standard therapy consists of a combination of interferon-alpha and ribavirin, but many patients respond poorly, especially those infected with HCV genotypes 1 and 4. Furthermore, standard therapy is associated with severe side-effects. Thus, alternative therapeutic approaches against HCV are needed. Findings Here, we studied the effect of a new class of antiviral agents against HCV, short, partially double-stranded oligodeoxynucleotides (ODNs), on viral replication. We targeted the 5’ nontranslated region (5’ NTR) of the HCV genome that has previously been shown as effective target for small interfering RNAs (siRNAs) in vitro. One of the investigated ODNs, ODN 320, significantly and efficiently reduced replication of HCV replicons in a sequence-, time- and dose-dependent manner. ODN 320 targets a genomic region highly conserved among different HCV genotypes and might thus be able to inhibit a broad range of genotypes and subtypes. Conclusions ODNs provide an additional approach for inhibition of HCV, might be superior to siRNAs in terms of stability and cellular delivery, and suitable against HCV resistant to standard therapy. This study underlines the potential of partially double-stranded ODNs as antiviral agents.
Collapse
|
12
|
Heinrich J, Schols D, Moelling K. A short hairpin loop-structured oligodeoxynucleotide targeting the virion-associated RNase H of HIV inhibits HIV production in cell culture and in huPBL-SCID mice. Intervirology 2011; 55:242-6. [PMID: 21576910 DOI: 10.1159/000324544] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 01/17/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND We have recently demonstrated that an oligodeoxynucleotide (ODN) can enter HIV particles and form a local hybrid at the highly conserved polypurine tract (PPT), the target site of the ODN. This hybrid is recognized by the retrovirus-specific RNase H, which is a virion-associated enzyme. It cleaves the RNA at local hybrids and thereby destroys viral infectivity. This mechanism has been described previously in a mouse model using an oncogenic retrovirus and was commented as driving HIV into suicide. The RNase H is one of four retrovirus-specific enzymes and not yet targeted by antiviral drugs. AIMS We wanted to analyze the tendency of ODNs to induce mutations in cell culture and its efficacy to inhibit HIV in humanized SCID mice. METHOD We used cultures of CD4+ T cells infected with HIV-1 after serial passage in the presence of ODNs in the supernatant for up to 3 months, using Foscarnet as positive control, and treated HIV-infected huPBL-SCID mice repeatedly with ODN. RESULTS Treatment with ODN did not induce mutations of the PPT or the reverse transcriptase polymerase domain in vitro, whereas Foscarnet did. We furthermore demonstrate that ODNs inhibit HIV-1 replication in humanized HIV-infected SCID mice.
Collapse
|
13
|
Oligomeric nucleic acids as antivirals. Molecules 2011; 16:1271-96. [PMID: 21278679 PMCID: PMC6259927 DOI: 10.3390/molecules16021271] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 01/12/2011] [Accepted: 01/25/2011] [Indexed: 02/07/2023] Open
Abstract
Based on the natural functions and chemical characteristics of nucleic acids, a variety of novel synthetic drugs and tools to explore biological systems have become available in recent years. To date, a great number of antisense oligonucleotides, RNA interference-based tools, CpG-containing oligonucleotides, catalytic oligonucleotides, decoys and aptamers has been produced synthetically and applied successfully for understanding and manipulating biological processes and in clinical trials to treat a variety of diseases. Their versatility and potency make them equally suited candidates for fighting viral infections. Here, we describe the different types of nucleic acid-based antivirals, their mechanism of action, their advantages and limitations, and their future prospects.
Collapse
|
14
|
Broder S. The development of antiretroviral therapy and its impact on the HIV-1/AIDS pandemic. Antiviral Res 2010; 85:1-18. [PMID: 20018391 PMCID: PMC2815149 DOI: 10.1016/j.antiviral.2009.10.002] [Citation(s) in RCA: 306] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 07/31/2009] [Accepted: 10/10/2009] [Indexed: 12/21/2022]
Abstract
In the last 25 years, HIV-1, the retrovirus responsible for the acquired immunodeficiency syndrome (AIDS), has gone from being an "inherently untreatable" infectious agent to one eminently susceptible to a range of approved therapies. During a five-year period, starting in the mid-1980s, my group at the National Cancer Institute played a role in the discovery and development of the first generation of antiretroviral agents, starting in 1985 with Retrovir (zidovudine, AZT) in a collaboration with scientists at the Burroughs-Wellcome Company (now GlaxoSmithKline). We focused on AZT and related congeners in the dideoxynucleoside family of nucleoside reverse transcriptase inhibitors (NRTIs), taking them from the laboratory to the clinic in response to the pandemic of AIDS, then a terrifying and lethal disease. These drugs proved, above all else, that HIV-1 infection is treatable, and such proof provided momentum for new therapies from many sources, directed at a range of viral targets, at a pace that has rarely if ever been matched in modern drug development. Antiretroviral therapy has brought about a substantial decrease in the death rate due to HIV-1 infection, changing it from a rapidly lethal disease into a chronic manageable condition, compatible with very long survival. This has special implications within the classic boundaries of public health around the world, but at the same time in certain regions may also affect a cycle of economic and civil instability in which HIV-1/AIDS is both cause and consequence. Many challenges remain, including (1) the life-long duration of therapy; (2) the ultimate role of pre-exposure prophylaxis (PrEP); (3) the cardiometabolic side-effects or other toxicities of long-term therapy; (4) the emergence of drug-resistance and viral genetic diversity (non-B subtypes); (5) the specter of new cross-species transmissions from established retroviral reservoirs in apes and Old World monkeys; and (6) the continued pace of new HIV-1 infections in many parts of the world. All of these factors make refining current therapies and developing new therapeutic paradigms essential priorities, topics covered in articles within this special issue of Antiviral Research. Fortunately, there are exciting new insights into the biology of HIV-1, its interaction with cellular resistance factors, and novel points of attack for future therapies. Moreover, it is a short journey from basic research to public health benefit around the world. The current science will lead to new therapeutic strategies with far-reaching implications in the HIV-1/AIDS pandemic. This article forms part of a special issue of Antiviral Research marking the 25th anniversary of antiretroviral drug discovery and development, Vol. 85, issue 1, 2010.
Collapse
Affiliation(s)
- Samuel Broder
- Celera Corporation, 1401 Harbor Bay Pkwy, Alameda, CA 94502-7070, USA.
| |
Collapse
|
15
|
Hofmann MH, Heinrich J, Radziwill G, Radziwil G, Moelling K. A short hairpin DNA analogous to miR-125b inhibits C-Raf expression, proliferation, and survival of breast cancer cells. Mol Cancer Res 2009; 7:1635-44. [PMID: 19825990 DOI: 10.1158/1541-7786.mcr-09-0043] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The noncoding RNA miR-125b has been described to reduce ErbB2 protein expression as well as proliferation and migration of cancer cell lines. As additional target of miR-125b, we identified the c-raf-1 mRNA by sequence analysis. We designed a short hairpin-looped oligodeoxynucleotide (ODN) targeted to the same 3' untranslated region of c-raf-1 mRNA as miR-125b. The fully complementary ODN antisense strand is linked to a second strand constituting a partially double-stranded structure of the ODN. Transfection of the c-raf-1-specific ODN (ODN-Raf) in a breast cancer cell line reduced the protein levels of C-Raf, ErbB2, and their downstream effector cyclin D1 similar to miR-125b. MiR-125b as well as ODN-Raf showed no effect on the c-raf-1 mRNA level in contrast to small interfering RNA. Unlike miR-125b, ODN-Raf induced a cytopathic effect. This may be explained by the structural properties of ODN-Raf, which can form G-tetrads. Thus, the short hairpin-looped ODN-Raf, targeting the same region of c-raf-1 as miR-125b, is a multifunctional molecule reducing the expression of oncoproteins and stimulating cell death. Both features may be useful to interfere with tumor growth.
Collapse
|
16
|
|
17
|
Moelling K, Heinrich J, Matskevich A, Wittmer-Elzaouk L, Kwok T. Silencing of viral RNAs by small double-stranded siDNA. Retrovirology 2009. [PMCID: PMC2767043 DOI: 10.1186/1742-4690-6-s2-p58] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
18
|
Noreen F, Heinrich J, Moelling K. Antitumor activity of small double-stranded oligodeoxynucleotides targeting telomerase RNA in malignant melanoma cells. Oligonucleotides 2009; 19:169-78. [PMID: 19441892 DOI: 10.1089/oli.2008.0170] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Human telomerase RNA (hTR) is an intrinsic component of telomerase enzyme. Small interfering RNAs (siRNAs) and single-stranded antisense oligonucleotides have been used previously for silencing of the hTR. The objective of this study was to investigate the effect of partially double-stranded oligodeoxynucleotides (ODNs), in vitro and in vivo in comparison to single-stranded antisense ODNs and siRNAs. ODNs were designed on the basis of structural properties of an ODN from previous studies on HIV, to target the hTR in the human cervical carcinoma HeLa cell line and mouse telomerase RNA (mTR) in the murine metastatic melanoma B16-F10 cell line, respectively. Our results indicate that ODNs were able to inhibit the hTR by 68% and the mTR by 81% in the respective cell lines. This correlated with ODN-mediated rapid inhibition of cell proliferation and induction of apoptosis excluding slow effects on telomerase function. The inhibition of the hTR was decreased by knock-down of the cellular RNases H suggesting their contribution. Furthermore, we showed a reduction in numbers of metastases by 70% after intravenous administration of ODN-transfected B16-F10 cells in C57BL/6 mice. Our study demonstrates the potential utility of these hairpin-loop-structured ODNs as a different group of nucleic acids for telomerase-based antiproliferative strategies.
Collapse
Affiliation(s)
- Faiza Noreen
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | | | | |
Collapse
|
19
|
Nowak M, Wyszko E, Fedoruk-Wyszomirska A, Pospieszny H, Barciszewska MZ, Barciszewski J. A new and efficient method for inhibition of RNA viruses by DNA interference. FEBS J 2009; 276:4372-80. [PMID: 19614744 DOI: 10.1111/j.1742-4658.2009.07145.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We report here a new method for inhibition of RNA viruses induced by dsDNA. We demonstrated that both long dsDNA molecules and short interfering DNA with a sequence complementary to that of viral RNA inhibited tobacco mosaic virus expression and prevented virus spread. Also, the expression of the HIV-1 gp41 gene in HeLa cells was inhibited by complementary short interfering DNA. We showed that Dicer processed dsDNA, which suggests activation of the cellular machinery involved in silencing of RNA. For the silencing of viral RNA effected with dsDNA, we coined the term DNA interference technology.
Collapse
Affiliation(s)
- Monika Nowak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | | | | | | | | | | |
Collapse
|
20
|
Kwok T, Heinrich J, Jung-Shiu J, Meier MG, Mathur S, Moelling K. Reduction of gene expression by a hairpin-loop structured oligodeoxynucleotide: alternative to siRNA and antisense. Biochim Biophys Acta Gen Subj 2009; 1790:1170-8. [PMID: 19505533 DOI: 10.1016/j.bbagen.2009.05.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 04/29/2009] [Accepted: 05/22/2009] [Indexed: 10/20/2022]
Abstract
BACKGROUND We previously described the inhibition of HIV-1 replication by a 54-mer hairpin-loop structured oligodeoxynucleotide (ODN) A, which binds the polypurine tract (PPT) on HIV-1 RNA. ODN A was shown to lead to reduced viral RNA in virions or early during infection. METHODS AND RESULTS Here we demonstrated that ODN A was able to cause hydrolysis of viral RNA not only by retroviral RT-associated RNase H but also cellular RNase H1 and RNase H2 in vitro. Furthermore, ODN A reduced gene expression in a dose-dependent manner in a cell-based reporter assay where a PPT sequence was inserted in the 5' untranslated region of the reporter gene. The efficacy of ODN A was higher than that of its siRNA and antisense counterparts. By knocking down cellular RNases H, we showed that RNase H1 contributed to the gene silencing by ODN A but the possibility of a partial contribution of RNase H-independent mechanisms could not be ruled out. GENERAL SIGNIFICANCE Our findings highlight the potential application of hairpin-loop structured ODNs for reduction of gene expression in mammalian cells and underscore the possibility of using ODN A to trigger the hydrolysis of HIV RNA in infected cells by cellular RNases H.
Collapse
Affiliation(s)
- Terry Kwok
- Institute of Medical Virology, University of Zurich, Gloriastrasse 30, CH 8006 Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
21
|
Falkenhagen A, Heinrich J, Moelling K. Short hairpin-loop-structured oligodeoxynucleotides reduce HSV-1 replication. Virol J 2009; 6:43. [PMID: 19397793 PMCID: PMC2681447 DOI: 10.1186/1743-422x-6-43] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 04/27/2009] [Indexed: 11/23/2022] Open
Abstract
The Herpes simplex virus (HSV) is known as an infectious agent and widespread in the human population. The symptoms of HSV infections can range from mild to life threatening, especially in immune-compromised individuals. HSV infections are commonly treated with the guanosine analogue Aciclovir, but reports of resistance are increasing. Efforts are made to establish single-stranded antisense oligodeoxynucleotides (as) and small interfering ribonucleic acids (siRNAs) for antiviral treatment. Recently, another class of short interfering nucleic acids, partially double-stranded hairpin loop-structured 54 mer oligodeoxynucleotides (ODNs), was shown to allow hydrolysis of HIV RNA by binding to the viral RNA. This leads to a substrate for the viral RNase H. To assess the potential of such ODNs for inhibition of HSV-1 replication, five partially double-stranded ODNs were designed based on the sequences of known siRNAs against HSV-1 with antiviral activity. Three of them are directed against early and two against leaky late genes. Primary human lung fibroblasts, MRC-5, and African green monkey kidney cells, Vero, were transfected with ODNs and subsequently infected. The effect on HSV-1 replication was determined by analyzing the virus titer in cell culture supernatants by quantitative PCR and plaque assays. An inhibitory effect was observed with all five selected ODNs, with two cases showing statistical significance in both cell types. The observed effect was sequence-specific and dose dependent. In one case the ODN was more efficient than a previously described siRNA directed against the same target site in the mRNA of UL5, a component of the helicase/primase complex. HSV-1 virions and ODNs can be applied simultaneously without transfection reagent, but at a 50-fold higher concentration to Vero cells with similar efficiencies. The results underline the potential of partially double-stranded hairpin loop-structured ODNs as antiviral agents.
Collapse
|
22
|
Wittmer-Elzaouk L, Jung-Shiu J, Heinrich J, Moelling K. Retroviral self-inactivation in the mouse vagina induced by short DNA. Antiviral Res 2009; 82:22-8. [PMID: 19189851 DOI: 10.1016/j.antiviral.2009.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 12/22/2008] [Accepted: 01/13/2009] [Indexed: 11/25/2022]
Abstract
Human immunodeficiency virus (HIV) has been shown to undergo self-destruction upon treatment of cell-free virions with partially double-stranded oligodeoxynucleotides targeting the polypurine tract (PPT) of the viral RNA in the virus particle. The ODN forms a local hybrid with the PPT activating the viral RNase H to prematurely cleave the genomic RNA. Here we are describing the self-destruction of a recombinant lentivirus harboring the PPT of HIV in a mouse vagina model. We showed a decrease in viral RNA levels in cell-free virus particles and a reduction reverse transcribed complementary DNA (cDNA) in virus-infected human and primary murine cells by incubation with ODNs. In the vagina simultaneous, prophylactic or therapeutic ODN treatments led to a significant reduction in viral RNA levels. Our finding may have some relevance for the design of other viral self-destruction approaches. It may lead to a microbicide for reduction of sexual and mother-to-child transmission.
Collapse
Affiliation(s)
- Lina Wittmer-Elzaouk
- Institute of Medical Virology, University of Zurich, Gloriastrasse 30/32, CH-8006 Zurich, Switzerland
| | | | | | | |
Collapse
|
23
|
Oligonucleotide-mediated retroviral RNase H activation leads to reduced HIV-1 titer in patient-derived plasma. AIDS 2009; 23:213-21. [PMID: 19098491 DOI: 10.1097/qad.0b013e32831c5480] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The retroviral RNase H is essential for viral replication. This component has not yet been extensively studied for antiviral therapy. It can be activated by an oligodeoxynucleotide (ODN) resulting in self-destruction of the virions. OBJECTIVE To examine antiviral potential of ODN in clinical samples using plasma of HIV-1-infected patients. DESIGN Plasma of 19 HIV-1-infected patients from Zurich and 10 HIV-1 isolates from Africa and drug-resistant strains were processed for ex-vivo treatment. METHODS Cell-free virions were treated with ODN in the plasma and HIV RNA was measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Furthermore, infectivity of the treated virions was tested on primary human peripheral blood mononuclear cells. RESULTS Cell-free virions in plasma contained significantly less intact HIV RNA upon treatment with ODN (P = 0.0004), and their infectivity was decreased 52-fold (P = 0.0004). In 39% of the Zurich samples, infectivity was reduced more than 10-fold, in 33% more than 100-fold, and in 28% more than 1000-fold. Also, the isolates from Africa exhibited a 63-fold reduction in infectivity (P = 0.0069) with 80% of the isolates responding more than 10-fold, 40% more than 100-fold, and 10% more than 1000-fold. CONCLUSION Significant reduction of plasma HIV RNA levels and infectivity of treated virions was achieved on the basis of induced self-destruction of HIV observed with clinical samples. Reduction of viral load ex vivo was designed as model for potential effects in vivo. Premature activation rather than inhibition of a viral enzyme could be a model strategy for future antiretroviral control.
Collapse
|
24
|
Abstract
Viruses are obligatory intracellular parasites, whose replication depends on pathways and functions of the host cell. Consequently, it is difficult to define virus-specific functions as suitable targets for anti-infective therapy. However, significant progress has been made in the past 50 years towards the development of effective and specific antivirals. In particular, human immunodeficiency virus, hepatitis C virus, and hepatitis B virus, which cause chronic infections affecting millions of individuals world-wide, are a major focus of antiviral research. Initially, antivirals were mainly directed against virus-specific enzymes; more recently, drugs inhibiting the steps of virus entry or release have been developed. Rational approaches towards drug development, based on information about structure and function of viral proteins and molecular mechanisms of virus-host interactions, have become increasingly successful. Novel strategies currently explored in basic research or preclinical studies include approaches targeting host factors important for virus replication, the exploitation of the innate immune response system as well as the use of gene silencing strategies aimed at interfering with viral gene expression. Today, a number of effective virostatics targeting various viral replication steps are approved for treatment of important viral diseases. However, the use of these drugs is limited by the rapid development of antiviral resistance, which represents a central problem of current antiviral therapy.
Collapse
Affiliation(s)
- Hans-Georg Kräusslich
- Hygiene Institute Department of Virology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, Heidelberg, 69120 Germany
| | - Ralf Bartenschlager
- Hygiene Institute Department of Virology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, Heidelberg, 69120 Germany
| |
Collapse
|
25
|
Kwok T, Helfer H, Alam MI, Heinrich J, Pavlovic J, Moelling K. Inhibition of influenza A virus replication by short double-stranded oligodeoxynucleotides. Arch Virol 2008; 154:109-14. [PMID: 19034603 DOI: 10.1007/s00705-008-0262-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Accepted: 10/28/2008] [Indexed: 12/24/2022]
Abstract
Influenza A virus causes prevalent respiratory tract infections in humans. Small interfering RNA (siRNA) and antisense oligonucleotides (asODNs) have been used previously for silencing the RNA genome of influenza virus. Here, we explored the use of partially double-stranded oligodeoxynucleotides (dsODNs) to suppress the production of influenza A virus in cell cultures and animal models. We were able to inhibit influenza A virus replication in cultured human lung cells as well as in the lungs of infected C57BL/6 mice by treatment with dsODN 3-h post-infection. In about 20% of the cases (15/77) the titer was reduced by 10- to 100-fold and in 10% up to 1,000-fold. The antiviral effects of dsODNs were dose-dependent, sequence-dependent and comparable to those of its antisense and siRNA analogues. Thus, dsODNs may be developed as an additional class of nucleic acids for the inhibition of influenza virus replication.
Collapse
Affiliation(s)
- Terry Kwok
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
26
|
DeStefano JJ, Nair GR. Novel aptamer inhibitors of human immunodeficiency virus reverse transcriptase. Oligonucleotides 2008; 18:133-44. [PMID: 18637731 DOI: 10.1089/oli.2008.0103] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Primer-template-based double-stranded nucleic acids capable of binding human immunodeficiency virus reverse transcriptase (HIV-RT) with high affinity were used as starting material to develop small single-stranded loop-back DNA aptamers. The original primer-templates were selected using a SELEX (Systematic Evolution of Ligands by EXponential enrichment) approach and consisted of 46- and 50-nt primer and template strands, respectively. The major determinant of the approximately 10-fold tighter binding in selected sequences relative to control primer-templates was a run of 6.8 G residues at the 3' primer end. Sixty, thirty-seven, twenty-seven, and twenty-two nucleotide loop-back single-stranded versions that retained the base pairs near the 3' primer terminus were constructed. Both the 60- and 37-nt versions retained high affinity for RT with K(d) values of approximately 0.44 nM and 0.66 nM, respectively. Random sequence primer-templates of the same length had K(d)s of approximately 20 nM and approximately 161 nM. The shorter 27- and 22-nt aptamers bound with reduced affinity. Several modifications of the 37-nt aptamer were also tested including changes to the terminal 3' G nucleotide and internal bases in the G run, replacement of specific nucleotides with phosphothioates, and alterations to the 5' overhang. Optimal binding required a 4- to 5-nt overhang, and internal changes within the G run had a pronounced negative effect on binding. Phosphothioate nucleotides or the presence of a 3' dideoxy G residue did not alter affinity. The 37-nt aptamer was a potent inhibitor of HIV-RT in vitro and functioned by blocking binding of other primer-templates.
Collapse
Affiliation(s)
- Jeffrey J DeStefano
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA.
| | | |
Collapse
|
27
|
Hackanson B, Becker H, Berg T, Binder M, Dierks C, Duque-Afonso J, Lairmore MD, Schäfer HS, Schnitzler M, Zeiser R, Martens U, Mertelsmann R, Lübbert M. XXIII International Association for Comparative Research on Leukemia and Related Diseases Symposium: from molecular pathogenesis to targeted therapy in leukemia and solid tumors. Cancer Res 2008; 68:5512-8. [PMID: 18632600 DOI: 10.1158/0008-5472.can-07-6859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Björn Hackanson
- Department of Veterinary Biosciences, The Ohio State University, Columbus, Ohio, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
RNA interference (RNAi) is a conserved sequence-specific, gene-silencing mechanism that is induced by double-stranded RNA. RNAi holds great promise as a novel nucleic acid-based therapeutic against a wide variety of diseases, including cancer, infectious diseases and genetic disorders. Antiviral RNAi strategies have received much attention and several compounds are currently being tested in clinical trials. Although induced RNAi is able to trigger profound and specific inhibition of virus replication, it is becoming clear that RNAi therapeutics are not as straightforward as we had initially hoped. Difficulties concerning toxicity and delivery to the right cells that earlier hampered the development of antisense-based therapeutics may also apply to RNAi. In addition, there are indications that viruses have evolved ways to escape from RNAi. Proper consideration of all of these issues will be necessary in the design of RNAi-based therapeutics for successful clinical intervention of human pathogenic viruses.
Collapse
Affiliation(s)
- Joost Haasnoot
- Department of Medical Microbiology, Laboratory of Experimental Virology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam, Meibergdreef 15, Amsterdam, 1105 AZ The Netherlands
| | - Ellen M Westerhout
- Department of Medical Microbiology, Laboratory of Experimental Virology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam, Meibergdreef 15, Amsterdam, 1105 AZ The Netherlands
| | - Ben Berkhout
- Department of Medical Microbiology, Laboratory of Experimental Virology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam, Meibergdreef 15, Amsterdam, 1105 AZ The Netherlands
| |
Collapse
|
29
|
|