1
|
Naithani K, Das A, Ushare M, Nath S, Biswas R, Kundu A, Ahmed KT, Mohan U, Bhowmik S. Design, synthesis, and evaluation of 1,4-benzothiazine-3-one containing bisamide derivatives as dual inhibitors of Staphylococcus aureus with plausible application in a urinary catheter. Front Chem 2024; 12:1420593. [PMID: 38988728 PMCID: PMC11233542 DOI: 10.3389/fchem.2024.1420593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/03/2024] [Indexed: 07/12/2024] Open
Abstract
In this study, 1,4-benzothiazine-based bisamide derivatives, a new class of antibacterial agents targeting bacterial peptide deformylase (PDF), were designed and synthesized to combat Staphylococcus aureus infection. Molecular modeling of the designed molecules showed better docking scores compared to the natural product actinonin. Bioactivity assessment identified two derivatives with promising antibacterial activity in vitro. The stability of the most active molecule, 8bE, was assessed using molecular dynamics (MD) simulation. Significantly, compound 8bE could also inhibit the S. aureus biofilm at low concentrations. Furthermore, the capability of the synthesized molecule to inhibit S. aureus biofilm formation on medical devices like urinary catheters is also demonstrated.
Collapse
Affiliation(s)
- Kaushal Naithani
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, India
| | - Arka Das
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, India
| | - Mamta Ushare
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, India
| | - Subham Nath
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, India
- Microbiology Division, Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, India
| | - Rashmita Biswas
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, India
- Microbiology Division, Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, India
| | - Anirban Kundu
- Department of Natural Product, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, India
| | - Kazi Tawsif Ahmed
- Department of Botany, Visva Bharati University, Santiniketan, West Bengal, India
| | - Utpal Mohan
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, India
- Microbiology Division, Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, India
| | - Subhendu Bhowmik
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, India
| |
Collapse
|
2
|
Huang Y, Ning X, Ahrari S, Cai Q, Rajora N, Saxena R, Yu M, Zheng J. Physiological principles underlying the kidney targeting of renal nanomedicines. Nat Rev Nephrol 2024; 20:354-370. [PMID: 38409369 DOI: 10.1038/s41581-024-00819-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2024] [Indexed: 02/28/2024]
Abstract
Kidney disease affects more than 10% of the global population and is associated with considerable morbidity and mortality, highlighting a need for new therapeutic options. Engineered nanoparticles for the treatment of kidney diseases (renal nanomedicines) represent one such option, enabling the delivery of targeted therapeutics to specific regions of the kidney. Although they are underdeveloped compared with nanomedicines for diseases such as cancer, findings from preclinical studies suggest that renal nanomedicines may hold promise. However, the physiological principles that govern the in vivo transport and interactions of renal nanomedicines differ from those of cancer nanomedicines, and thus a comprehensive understanding of these principles is needed to design nanomedicines that effectively and specifically target the kidney while ensuring biosafety in their future clinical translation. Herein, we summarize the current understanding of factors that influence the glomerular filtration, tubular uptake, tubular secretion and extrusion of nanoparticles, including size and charge dependency, and the role of specific transporters and processes such as endocytosis. We also describe how the transport and uptake of nanoparticles is altered by kidney disease and discuss strategic approaches by which nanoparticles may be harnessed for the detection and treatment of a variety of kidney diseases.
Collapse
Affiliation(s)
- Yingyu Huang
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA
| | - Xuhui Ning
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA
| | - Samira Ahrari
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA
| | - Qi Cai
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nilum Rajora
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ramesh Saxena
- Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mengxiao Yu
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA.
| | - Jie Zheng
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, USA.
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
3
|
Sun T, Zhan D, Wang X, Guo Q, Wu M, Shen P, Wu M. Release and Degradation Mechanism of Modified Polyvinyl Alcohol-Based Double-Layer Coated Controlled-Release Phosphate Fertilizer. Polymers (Basel) 2024; 16:1041. [PMID: 38674960 PMCID: PMC11054636 DOI: 10.3390/polym16081041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
This study aims to improve the slow-release performance of a film material for a controlled-release fertilizer (CRF) while enhancing its biodegradability. A water-based biodegradable polymer material doped with biochar (BC) was prepared from modified polyvinyl alcohol (PVA) with polyvinylpyrrolidone (PVP) and chitosan (CTS), hereinafter referred to as PVA/PVP-CTSaBCb. An environmentally friendly novel controlled-release phosphate fertilizer (CRPF) was developed using PVA/PVP-CTS8%BC7% as the film. The effect of the PVA/PVP-CTS8%BC7% coating on the service life of the CRPF was investigated. The film was characterized via stress-strain testing, SEM, FTIR, XRD, and TGA analyses. The addition of the CTS modifier increased the stress of PVA/PVP-CTS8% by 7.6% compared with that of PVA/PVP owing to the decrease in the crystallinity of PVP/PVP-CTS8%. The hydrophilic -OH groups were reduced due to the mixing of CTS and PVA/PVP. Meanwhile, the water resistance of the PVA/PVP-CTS8%BC7% was improved. And the controlled-release service life of the CRPF was prolonged. Moreover, the addition of BC increased the crystallinity of the PVA/PVP-CTS8% by 10%, reduced the fracture elongation of the material, and further improved the biodegradability of the PVA/PVP-CTS8%BC7%. When the amount of BC added was 7%, the phosphorus release rate of the CRPF was 30% on the 28th day. Moreover, the degradation rate of the PVA/PVP-CTS8%BC7% polymer film was 35% after 120 days. This study provides basic data for applying water-based degradable polymer materials in CRFs.
Collapse
Affiliation(s)
- Teng Sun
- Laboratory of Green & Smart Chemical Engineering in Universities of Shandong, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; (T.S.); (D.Z.); (X.W.); (Q.G.)
| | - Dekang Zhan
- Laboratory of Green & Smart Chemical Engineering in Universities of Shandong, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; (T.S.); (D.Z.); (X.W.); (Q.G.)
| | - Xiangzhu Wang
- Laboratory of Green & Smart Chemical Engineering in Universities of Shandong, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; (T.S.); (D.Z.); (X.W.); (Q.G.)
| | - Qingjie Guo
- Laboratory of Green & Smart Chemical Engineering in Universities of Shandong, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; (T.S.); (D.Z.); (X.W.); (Q.G.)
| | - Mingzhou Wu
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China;
| | - Pu Shen
- Key Laboratory of Peanut Biology, Genetics & Breeding, Shandong Peanut Research Institute, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, 126 Wannianquan Road, Qingdao 266100, China
| | - Man Wu
- Laboratory of Green & Smart Chemical Engineering in Universities of Shandong, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; (T.S.); (D.Z.); (X.W.); (Q.G.)
| |
Collapse
|
4
|
Heck AG, Stickdorn J, Rosenberger LJ, Scherger M, Woller J, Eigen K, Bros M, Grabbe S, Nuhn L. Polymerizable 2-Propionic-3-methylmaleic Anhydrides as a Macromolecular Carrier Platform for pH-Responsive Immunodrug Delivery. J Am Chem Soc 2023; 145:27424-27436. [PMID: 38054646 DOI: 10.1021/jacs.3c08511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The design of functional polymers coupled with stimuli-triggered drug release mechanisms is a promising achievement to overcome various biological barriers. pH trigger methods yield significant potential for controlled targeting and release of therapeutics due to their simplicity and relevance, especially upon cell internalization. Here, we introduce reactive polymers that conjugate primary or secondary amines and release potential drugs under acidic conditions. For that purpose, we introduced methacrylamide-based monomers with pendant 2-propionic-3-methylmaleic anhydride groups. Such groups allow the conjugation of primary and secondary amines but are resistant to radical polymerization conditions. We, therefore, polymerized 2-propionic-3-methylmaleic anhydride amide-based methacrylates via reversible addition-fragmentation chain transfer (RAFT) polymerization. Their amine-reactive anhydrides could sequentially be derivatized by primary or secondary amines into hydrophilic polymers. Acidic pH-triggered drug release from the polymeric systems was fine-tuned by comparing different amines. Thereby, the conjugation of primary amines led to the formation of irreversible imide bonds in dimethyl sulfoxide, while secondary amines could quantitatively be released upon acidification. In vitro, this installed pH-responsiveness can contribute to an effective release of conjugated immune stimulatory drugs under endosomal pH conditions. Interestingly, the amine-modified polymers generally showed no toxicity and a high cellular uptake. Furthermore, secondary amine-modified immune stimulatory drugs conjugated to the polymers yielded better receptor activity and immune cell maturation than their primary amine derivatives due to their pH-sensitive drug release mechanism. Consequently, 2-propionic-3-methylmaleic anhydride-based polymers can be considered as a versatile platform for pH-triggered delivery of various (immuno)drugs, thus enabling new strategies in macromolecule-assisted immunotherapy.
Collapse
Affiliation(s)
- Alina G Heck
- Max Planck Institute for Polymer Research, Mainz 55128, Germany
| | | | - Laura J Rosenberger
- Department of Dermatology, University Medical Center (UMC) of the Johannes Gutenberg-University Mainz, Mainz 55131, Germany
| | | | - Jonas Woller
- Max Planck Institute for Polymer Research, Mainz 55128, Germany
| | - Katharina Eigen
- Institute of Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, Julius-Maximilians-Universität Würzburg, Würzburg 97070, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center (UMC) of the Johannes Gutenberg-University Mainz, Mainz 55131, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center (UMC) of the Johannes Gutenberg-University Mainz, Mainz 55131, Germany
| | - Lutz Nuhn
- Max Planck Institute for Polymer Research, Mainz 55128, Germany
- Institute of Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, Julius-Maximilians-Universität Würzburg, Würzburg 97070, Germany
| |
Collapse
|
5
|
Fu L, Zhang Y, Farokhzad RA, Mendes BB, Conde J, Shi J. 'Passive' nanoparticles for organ-selective systemic delivery: design, mechanism and perspective. Chem Soc Rev 2023; 52:7579-7601. [PMID: 37817741 PMCID: PMC10623545 DOI: 10.1039/d2cs00998f] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Nanotechnology has shown tremendous success in the drug delivery field for more effective and safer therapy, and has recently enabled the clinical approval of RNA medicine, a new class of therapeutics. Various nanoparticle strategies have been developed to improve the systemic delivery of therapeutics, among which surface modification of targeting ligands on nanoparticles has been widely explored for 'active' delivery to a specific organ or diseased tissue. Meanwhile, compelling evidence has recently been reported that organ-selective targeting may also be achievable by systemic administration of nanoparticles without surface ligand modification. In this Review, we highlight this unique set of 'passive' nanoparticles and their compositions and mechanisms for organ-selective delivery. In particular, the lipid-based, polymer-based, and biomimetic nanoparticles with tropism to different specific organs after intravenous administration are summarized. The underlying mechanisms (e.g., protein corona and size effect) of these nanosystems for organ selectivity are also extensively discussed. We further provide perspectives on the opportunities and challenges in this exciting area of organ-selective systemic nanoparticle delivery.
Collapse
Affiliation(s)
- Liyi Fu
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Yang Zhang
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Ryan A Farokhzad
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Bárbara B Mendes
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - João Conde
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Jinjun Shi
- Center for Nanomedicine and Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
6
|
Li Z, Fan X, Fan J, Zhang W, Liu J, Liu B, Zhang H. Delivering drugs to tubular cells and organelles: the application of nanodrugs in acute kidney injury. Nanomedicine (Lond) 2023; 18:1477-1493. [PMID: 37721160 DOI: 10.2217/nnm-2023-0200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023] Open
Abstract
Acute kidney injury (AKI) is a common clinical syndrome with limited treatment options and high mortality rates. Proximal tubular epithelial cells (PTECs) play a key role in AKI progression. Subcellular dysfunctions, including mitochondrial, nuclear, endoplasmic reticulum and lysosomal dysfunctions, are extensively studied in PTECs. These studies have led to the development of potential therapeutic drugs. However, clinical development of those drugs faces challenges such as low solubility, short circulation time and severe systemic side effects. Nanotechnology provides a promising solution by improving drug properties through nanocrystallization and enabling targeted delivery to specific sites. This review summarizes advancements and limitations of nanoparticle-based drug-delivery systems in targeting PTECs and subcellular organelles, particularly mitochondria, for AKI treatment.
Collapse
Affiliation(s)
- Zhi Li
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, 410013, China
| | - Xiao Fan
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, 410013, China
| | - Jialong Fan
- College of Biology, Hunan University, Changsha, 410082, China
| | - Wei Zhang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, 410013, China
| | - Jun Liu
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, 410013, China
| | - Bin Liu
- College of Biology, Hunan University, Changsha, 410082, China
- Department of Physiology & Pathophysiology, NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, 750004, China
| | - Hao Zhang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, 410013, China
| |
Collapse
|
7
|
Advanced Drug Delivery Systems for Renal Disorders. Gels 2023; 9:gels9020115. [PMID: 36826285 PMCID: PMC9956928 DOI: 10.3390/gels9020115] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
Kidney disease management and treatment are currently causing a substantial global burden. The kidneys are the most important organs in the human urinary system, selectively filtering blood and metabolic waste into urine via the renal glomerulus. Based on charge and/or molecule size, the glomerular filtration apparatus acts as a barrier to therapeutic substances. Therefore, drug distribution to the kidneys is challenging, resulting in therapy failure in a variety of renal illnesses. Hence, different approaches to improve drug delivery across the glomerulus filtration barrier are being investigated. Nanotechnology in medicine has the potential to have a significant impact on human health, from illness prevention to diagnosis and treatment. Nanomaterials with various physicochemical properties, including size, charge, surface and shape, with unique biological attributes, such as low cytotoxicity, high cellular internalization and controllable biodistribution and pharmacokinetics, have demonstrated promising potential in renal therapy. Different types of nanosystems have been employed to deliver drugs to the kidneys. This review highlights the features of the nanomaterials, including the nanoparticles and corresponding hydrogels, in overcoming various barriers of drug delivery to the kidneys. The most common delivery sites and strategies of kidney-targeted drug delivery systems are also discussed.
Collapse
|
8
|
Xu M, Zhao M, Zheng D. Effect of IGF-1C domain-modified nanoparticles on renal ischemia-reperfusion injury in mice. Ren Fail 2022; 44:1376-1387. [PMID: 35969012 PMCID: PMC9389927 DOI: 10.1080/0886022x.2022.2098773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Renal ischemia–reperfusion injury (IRI) is a common prerequisite of acute renal injury (AKI) that involves the entire system and induces critical illness. The C domain of insulin-like growth factor-1 (IGF-1C) plays an important role in promoting angiogenesis and enhancing the inflammatory response. However, given the shortcomings of its short half-life and poor stability, the application of IGF-1C is restricted. In the present study, IGF-1C nanoparticles (NP-IGF-1C) were constructed by combining 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[maleimide (polye thyleneglycol)](DSPE-PEG-MAL) and IGF-1C through a Michael addition reaction to evaluate the effects of NP-IGF-1C on preventing IRI. In vitro studies have shown that NP-IGF-1C is not cytotoxic and protects cells from oxidative damage. The renal enrichment and biocompatibility of NP-IGF-1C were determined in vivo by connecting fluorescent molecules to NP-IGF-1C for in vivo imaging and pathological staining of important organs. After IRI, renal function decreased, and inflammatory cell infiltration, oxidative stress and apoptosis increased. As expected, NP-IGF-1C reversed these changes, indicating that NP-IGF-1C played a protective role in the process of IRI, which may be mediated by its antioxidant, anti-inflammatory and antiapoptotic activities.
Collapse
Affiliation(s)
- Meng Xu
- Department of Nephrology, Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Mingyue Zhao
- Department of Nephrology, Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| | - Donghui Zheng
- Department of Nephrology, Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, China
| |
Collapse
|
9
|
Li H, Dai W, Liu Z, He L. Renal Proximal Tubular Cells: A New Site for Targeted Delivery Therapy of Diabetic Kidney Disease. Pharmaceuticals (Basel) 2022; 15:ph15121494. [PMID: 36558944 PMCID: PMC9786989 DOI: 10.3390/ph15121494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/04/2022] Open
Abstract
Diabetic kidney disease (DKD) is a major complication of diabetes mellitus (DM) and the leading cause of end-stage kidney disease (ESKD) worldwide. A significant number of drugs have been clinically investigated for the treatment of DKD. However, a large proportion of patients still develop end-stage kidney disease unstoppably. As a result, new effective therapies are urgently needed to slow down the progression of DKD. Recently, there is increasing evidence that targeted drug delivery strategies such as large molecule carriers, small molecule prodrugs, and nanoparticles can improve drug efficacy and reduce adverse side effects. There is no doubt that targeted drug delivery strategies have epoch-making significance and great application prospects for the treatment of DKD. In addition, the proximal tubule plays a very critical role in the progression of DKD. Consequently, the purpose of this paper is to summarize the current understanding of proximal tubule cell-targeted therapy, screen for optimal targeting strategies, and find new therapeutic approaches for the treatment of DKD.
Collapse
Affiliation(s)
| | | | | | - Liyu He
- Correspondence: ; Tel.: +86-731-8529-2064
| |
Collapse
|
10
|
Li H, Wu P, Li X, Pang J, Zhai S, Zhang T, Zheng M. Catalytic hydrogenation of maleic anhydride to γ-butyrolactone over a high-performance hierarchical Ni-Zr-MFI catalyst. J Catal 2022. [DOI: 10.1016/j.jcat.2022.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Tang W, Panja S, Jogdeo CM, Tang S, Yu A, Oupický D. Study of Renal Accumulation of Targeted Polycations in Acute Kidney Injury. Biomacromolecules 2022; 23:2064-2074. [PMID: 35394757 PMCID: PMC9150723 DOI: 10.1021/acs.biomac.2c00079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Acute kidney injury (AKI) is a global healthcare burden characterized by rapid loss of renal function and high morbidity and mortality. Chemokine receptor CXCR4 participates in the renal infiltration of immune cells following injury and in local inflammatory enhancement. Injured renal tubule cells overexpress CXCR4, which could be used as a target for improved drug delivery in AKI. Plerixafor is a small-molecule CXCR4 antagonist that has shown beneficial effects against AKI and has been previously developed into a polymeric analog (polymeric plerixafor, PP). With the goal of gaining a better understanding of how overall charge and hydrophilicity affect renal accumulation of PP, we have synthesized PP copolymers containing hydroxyl, carboxyl, primary amine, and alkyl moieties using Michael-type addition copolymerization. All synthesized copolymers showed excellent CXCR4-binding and inhibiting ability in vitro and improved cellular uptake in hypoxia-reoxygenation stimulated mouse tubule cells. Analysis of serum protein binding revealed that polymers with hydroxyl group modification showed the least amount of protein binding. Biodistribution of the polymers was tested in a unilateral ischemia reperfusion-induced AKI mouse model. The results showed significant differences in accumulation in the injured kidneys depending on the net charge and hydrophilicity of the polymers. The findings of this study will guide the development of polymeric drug carriers for targeted delivery to injured kidneys for better AKI therapy.
Collapse
Affiliation(s)
- Weimin Tang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Sudipta Panja
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Chinmay M. Jogdeo
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Siyuan Tang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ao Yu
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - David Oupický
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
12
|
Merlin JPJ, Li X. Role of Nanotechnology and Their Perspectives in the Treatment of Kidney Diseases. Front Genet 2022; 12:817974. [PMID: 35069707 PMCID: PMC8766413 DOI: 10.3389/fgene.2021.817974] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022] Open
Abstract
Nanoparticles (NPs) are differing in particle size, charge, shape, and compatibility of targeting ligands, which are linked to improved pharmacologic characteristics, targetability, and bioavailability. Researchers are now tasked with developing a solution for enhanced renal treatment that is free of side effects and delivers the medicine to the active spot. A growing number of nano-based medication delivery devices are being used to treat renal disorders. Kidney disease management and treatment are currently causing a substantial global burden. Renal problems are multistep processes involving the accumulation of a wide range of molecular and genetic alterations that have been related to a variety of kidney diseases. Renal filtration is a key channel for drug elimination in the kidney, as well as a burgeoning topic of nanomedicine. Although the use of nanotechnology in the treatment of renal illnesses is still in its early phases, it offers a lot of potentials. In this review, we summarized the properties of the kidney and characteristics of drug delivery systems, which affect a drug’s ability should focus on the kidney and highlight the possibilities, problems, and opportunities.
Collapse
Affiliation(s)
- J P Jose Merlin
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, United States.,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
13
|
Ren M, Li Y, Zhang H, Li L, He P, Ji P, Yang S. An oligopeptide/aptamer-conjugated dendrimer-based nanocarrier for dual-targeting delivery to bone. J Mater Chem B 2021; 9:2831-2844. [PMID: 33704322 DOI: 10.1039/d0tb02926b] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bone targeting is one of the most potentially valuable therapeutic methods for medically treating bone diseases, such as osteoarthritis, osteoporosis, nonunion bone defects, bone cancer, and myeloma-related bone disease, but its efficacy remains a challenge due to unfavorable bone biodistribution, off-target effects, and the lack of cell specificity. To address these problems, we synthesized a new dual-targeting nanocarrier for delivery to bone by covalently modifying the G4.0 PAMAM dendrimer with the C11 peptide and the CH6 aptamer (CH6-PAMAM-C11). The molecular structure was confirmed using 1H-NMR and FT-IR spectroscopy. CLSM results showed that the novel nanocarrier could successfully accumulate in the targeted cells, mineralized areas and tissues. DLS and TEM demonstrated that CH6-PAMAM-C11 was approximately 40-50 nm in diameter. In vitro targeting experiments confirmed that the C11 ligand had a high affinity for HAP, while the CH6 aptamer had a high affinity for osteoblasts. The in vivo biodistribution analysis showed that CH6-PAMAM-C11 could rapidly accumulate in bone within 4 h and 12 h and then deliver drugs to sites of osteoblast activity. The components of CH6-PAMAM-C11 were well excreted via the kidneys. The accumulation of many more CH6-PAMAM-C11 dual-targeting nanocarriers than single-targeting nanocarriers was observed in the periosteal layer of the rat skull, along with aggregation at sites of osteoblast activity. All of these results indicate that CH6-PAMAM-C11 may be a promising nanocarrier for the delivery of drugs to bone, particularly for the treatment of osteoporosis, and our research strategy may serve as a reference for research in targeted drug, small molecule drug and nucleic acid delivery.
Collapse
Affiliation(s)
- Mingxing Ren
- College of Stomatology, Chongqing Medical University, 426 Songshibei Road, Yubei District, Chongqing, 401147, China.
| | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Globally, diabetic nephropathy (DN) is the foremost cause of end-stage renal disease. With the incidence of diabetes increasing day by day, DN's occurrence is expected to surge to pandemic proportions. Current available therapeutic interventions associated with DN emphasize blood pressure, glycemia and lipid control while ignoring DN's progression mechanism at a molecular level. This review sheds light on the molecular insights involved in DN to help understand the initiation and progression pattern. Further, we summarize novel strategies with reported applications in developing a nanomedicine-based platform for DN-targeted drug delivery to improve drug efficacy and safety.
Collapse
|
15
|
Thai HB, Kim KR, Hong KT, Voitsitskyi T, Lee JS, Mao C, Ahn DR. Kidney-Targeted Cytosolic Delivery of siRNA Using a Small-Sized Mirror DNA Tetrahedron for Enhanced Potency. ACS CENTRAL SCIENCE 2020; 6:2250-2258. [PMID: 33376785 PMCID: PMC7760472 DOI: 10.1021/acscentsci.0c00763] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Indexed: 05/30/2023]
Abstract
A proper intracellular delivery method with target tissue specificity is critical to utilize the full potential of therapeutic molecules including siRNAs while minimizing their side effects. Herein, we prepare four small-sized DNA tetrahedrons (sTds) by self-assembly of different sugar backbone-modified oligonucleotides and screened them to develop a platform for kidney-targeted cytosolic delivery of siRNA. An in vivo biodistribution study revealed the kidney-specific accumulation of mirror DNA tetrahedron (L-sTd). Low opsonization of L-sTd in serum appeared to avoid liver clearance and keep its size small enough to be filtered through the glomerular basement membrane (GBM). After GBM filtration, L-sTd could be delivered into tubular cells by endocytosis. The kidney preference and the tubular cell uptake property of the mirror DNA nanostructure could be successfully harnessed for kidney-targeted intracellular delivery of p53 siRNA to treat acute kidney injury (AKI) in mice. Therefore, L-sTd could be a promising platform for kidney-targeted cytosolic delivery of siRNA to treat renal diseases.
Collapse
Affiliation(s)
- Hien Bao
Dieu Thai
- Center
for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Korea
| | - Kyoung-Ran Kim
- Center
for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Korea
| | - Kyung Tae Hong
- Division
of Biomedical Science and Technology, KIST School, Korea University of Science and Technology (UST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Korea
| | - Taras Voitsitskyi
- Division
of Biomedical Science and Technology, KIST School, Korea University of Science and Technology (UST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Korea
| | - Jun-Seok Lee
- Division
of Biomedical Science and Technology, KIST School, Korea University of Science and Technology (UST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Korea
- Molecular
Recognition Research Center, Korea Institute
of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Korea
| | - Chengde Mao
- Department
of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Dae-Ro Ahn
- Center
for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Korea
- Division
of Biomedical Science and Technology, KIST School, Korea University of Science and Technology (UST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Korea
| |
Collapse
|
16
|
van Asbeck AH, Dieker J, Boswinkel M, van der Vlag J, Brock R. Kidney-targeted therapies: A quantitative perspective. J Control Release 2020; 328:762-775. [DOI: 10.1016/j.jconrel.2020.09.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 01/23/2023]
|
17
|
Jiang D, Rosenkrans ZT, Ni D, Lin J, Huang P, Cai W. Nanomedicines for Renal Management: From Imaging to Treatment. Acc Chem Res 2020; 53:1869-1880. [PMID: 32786331 DOI: 10.1021/acs.accounts.0c00323] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nanomedicine has benefited from recent advances in chemistry and biomedical engineering to produce nanoscale materials as theranostic agents. Well-designed nanomaterials may present optimal biological properties, influencing circulation, retention, and excretion for imaging and treatment of various diseases. As the understanding of nanomedicine pharmacokinetics expands continuously, efficient renal clearance of nanomedicines can significantly increase the signal-to-background ratio for precision diagnosis and lower potential toxicity for improved treatment. Studies on nanomaterial-kidney interactions have led to many novel findings on the underlying principles of nanomaterial renal clearance, targeting, and accumulation. In return, the optimized nanomedicines confer significant benefits to the detection and treatment of kidney dysfunction.In this Account, we present an overview of recent progress in the development of nanomaterials for kidney theranostics, aiming to speed up translation and expand possible applications. We start by introducing biological structures of the kidney and their influence on renal targeting, retention, and clearance. Several key factors regarding renal accumulation and excretion, including nanomaterial types, sizes, and shapes, surface charges, and chemical modifications, are identified and discussed. Next, we highlight our recent efforts investigating kidney-interacting nanomaterials and introduce representative nanomedicines for imaging and treatment of kidney diseases. Multiple renal-clearable and renal-accumulating nanomedicines were devised for kidney function imaging. By employing renal-clearable nanomedicines, including gold nanoparticles, porphyrin polymers, DNA frameworks, and polyoxometalate clusters, we were able to noninvasively evaluate split renal function in healthy and diseased mice. Further engineering of renal-accumulating nanosystems has shifted attention from renal diagnosis to precision kidney protection. Many biocompatible nanomedicines, such as DNA origami, selenium-doped carbon quantum dots, melanin nanoparticles, and black phosphorus have all played essential roles in diminishing excessive reactive oxygen species for kidney treatment and protection. Finally, we discuss the challenges and perspectives of nanomaterials for renal care, their future clinical translation, and how they may affect the current landscape of clinical practices. We believe that this Account updates our current understanding of nanomaterial-kidney interactions for further design and control of nanomedicines for specific kidney diagnosis and treatment. This timely Account will generate broad interest in integrating nanotechnology and nanomaterial-biological interaction for state-of-the-art theranostics of renal diseases.
Collapse
Affiliation(s)
- Dawei Jiang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, Guangzhou 518060, China
- Hubei Province Key Laboratory of Molecular Imaging, Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Departments of Radiology and Medical Physics, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Zachary T. Rosenkrans
- Department of Pharmaceutical Sciences, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Dalong Ni
- Departments of Radiology and Medical Physics, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, Guangzhou 518060, China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, Guangzhou 518060, China
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
- Department of Pharmaceutical Sciences, University of Wisconsin—Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
18
|
Liu GW, Pippin JW, Eng DG, Lv S, Shankland SJ, Pun SH. Nanoparticles exhibit greater accumulation in kidney glomeruli during experimental glomerular kidney disease. Physiol Rep 2020; 8:e14545. [PMID: 32786069 PMCID: PMC7422806 DOI: 10.14814/phy2.14545] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 12/26/2022] Open
Abstract
Loss and dysfunction of glomerular podocytes result in increased macromolecule permeability through the glomerular filtration barrier and nephrotic syndrome. Current therapies can induce and maintain disease remission, but cause serious and chronic complications. Nanoparticle drug carriers could mitigate these side effects by delivering drugs to the kidneys more efficiently than free drug through tailoring of carrier properties. An important extrinsic factor of nanoparticle biodistribution is local pathophysiology, which may drive greater nanoparticle deposition in certain tissues. Here, we hypothesized that a "leakier" filtration barrier during glomerular kidney disease would increase nanoparticle distribution into the kidneys. We examined the effect of nanoparticle size and disease state on kidney accumulation in male BALB/c mice. The effect of size was tested using a panel of fluorescent polystyrene nanoparticles of size 20-200 nm, due to the relevance of this size range for drug delivery applications.Experimental focal segmental glomerulosclerosis was induced using an anti-podocyte antibody that causes abrupt podocyte depletion. Nanoparticles were modified with carboxymethyl-terminated poly(ethylene glycol) for stability and biocompatibility. After intravenous injection, fluorescence from nanoparticles of size 20 and 100 nm, but not 200 nm, was observed in kidney glomeruli and peritubular capillaries. During conditions of experimental focal segmental glomerulosclerosis, the number of fluorescent nanoparticle punctae in kidney glomeruli increased by 1.9-fold for 20 and 100 nm nanoparticles compared to normal conditions. These findings underscore the importance of understanding and leveraging kidney pathophysiology in engineering new, targeted drug carriers that accumulate more in diseased glomeruli to treat glomerular kidney disease.
Collapse
Affiliation(s)
- Gary W. Liu
- Department of Bioengineering and Molecular Engineering & Sciences InstituteUniversity of WashingtonSeattleWAUSA
| | - Jeffrey W. Pippin
- Department of MedicineDivision of NephrologyUniversity of Washington School of MedicineSeattleWAUSA
| | - Diana G. Eng
- Department of MedicineDivision of NephrologyUniversity of Washington School of MedicineSeattleWAUSA
| | - Shixian Lv
- Department of Bioengineering and Molecular Engineering & Sciences InstituteUniversity of WashingtonSeattleWAUSA
| | - Stuart J. Shankland
- Department of Bioengineering and Molecular Engineering & Sciences InstituteUniversity of WashingtonSeattleWAUSA
| | - Suzie H. Pun
- Department of Bioengineering and Molecular Engineering & Sciences InstituteUniversity of WashingtonSeattleWAUSA
| |
Collapse
|
19
|
Chen Z, Peng H, Zhang C. Advances in kidney-targeted drug delivery systems. Int J Pharm 2020; 587:119679. [PMID: 32717283 DOI: 10.1016/j.ijpharm.2020.119679] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/28/2020] [Accepted: 07/18/2020] [Indexed: 12/19/2022]
Abstract
The management and treatment of kidney diseases currently have caused a huge global burden. Although the application of nanotechnology for the therapy of kidney diseases is still at an early stages, it has profound potential of development. More and more nano-based drug delivery systems provide novel solutions for the treatment of kidney diseases. This article summarizes the physiological and anatomical properties of the kidney and the biological and physicochemical characters of drug delivery systems, which affects the ability of drug to target the kidney, and highlights the prospects, opportunities, and challenges of nanotechnology in the therapy of kidney diseases.
Collapse
Affiliation(s)
- Zhong Chen
- Department of Pharmaceutics, Daqing Campus of Harbin Medical University, 1 Xinyang Rd, Daqing 163319, China
| | - Haisheng Peng
- Department of Pharmaceutics, Daqing Campus of Harbin Medical University, 1 Xinyang Rd, Daqing 163319, China.
| | - Changmei Zhang
- Department of Pharmaceutics, Daqing Campus of Harbin Medical University, 1 Xinyang Rd, Daqing 163319, China.
| |
Collapse
|
20
|
He J, Chen H, Zhou W, Chen M, Yao Y, Zhang Z, Tan N. Kidney targeted delivery of asiatic acid using a FITC labeled renal tubular-targeting peptide modified PLGA-PEG system. Int J Pharm 2020; 584:119455. [PMID: 32464235 DOI: 10.1016/j.ijpharm.2020.119455] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/24/2020] [Accepted: 05/19/2020] [Indexed: 12/15/2022]
Abstract
Chronic kidney disease (CKD) is one of the leading public health problems worldwide and finally progresses to end-stage renal disease. The therapeutic options of CKD are very limited. Thus, development of drug delivery systems specific-targeting to kidney may offer more options. Here we developed an efficient kidney-targeted drug delivery system using a FITC labeled renal tubular-targeting peptide modified PLGA-PEG nanoparticles and investigated the intrarenal distribution and cell-type binding. We found that the modified nanoparticles with an approximate diameter of 200 nm exhibited the highest binding capacity with HK-2 cells and fluorescence and immunohistochemical analysis showed they mainly localized in renal proximal tubules by passing through the basolateral side. Furthermore, these kidney-specific nanoparticles could significantly enhance the therapeutic effects of asiatic acid, an insoluble triterpenoid compound as drug delivery carriers. In conclusion, these results suggest the potential of the peptide modified PLGA-PEG nanoparticles as kidneytargeted drug delivery system to proximal tubular cells in treatment of CKD.
Collapse
Affiliation(s)
- Junqiu He
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Huachao Chen
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Wei Zhou
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Minmin Chen
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yongrong Yao
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Zhihao Zhang
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| | - Ninghua Tan
- State Key Laboratory of Natural Medicines, Department of TCMs Pharmaceuticals, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
21
|
Oroojalian F, Charbgoo F, Hashemi M, Amani A, Yazdian-Robati R, Mokhtarzadeh A, Ramezani M, Hamblin MR. Recent advances in nanotechnology-based drug delivery systems for the kidney. J Control Release 2020; 321:442-462. [PMID: 32067996 DOI: 10.1016/j.jconrel.2020.02.027] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 12/24/2022]
Abstract
The application of nanotechnology in medicine has the potential to make a great impact on human health, ranging from prevention to diagnosis and treatment of disease. The kidneys are the main organ of the human urinary system, responsible for filtering the blood, and concentrating metabolic waste into urine by means of the renal glomerulus. The glomerular filtration apparatus presents a barrier against therapeutic agents based on charge and/or molecular size. Therefore, drug delivery to the kidneys faces significant difficulties resulting in treatment failure in several renal disorders. Accordingly, different strategies have recently being explored for enhancing the delivery of therapeutic agents across the filtration barrier of the glomerulus. Nanosystems with different physicochemical properties, including size, shape, surface, charge, and possessing biological features such as high cellular internalization, low cytotoxicity, controllable pharmacokinetics and biodistribution, have shown promising results for renal therapy. Different types of nanoparticles (NPs) have been used to deliver drugs to the kidney. In this review, we discuss nanotechnology-based drug delivery approaches for acute kidney injury, chronic kidney disease, renal fibrosis, renovascular hypertension and kidney cancer.
Collapse
Affiliation(s)
- Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Fahimeh Charbgoo
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056 Aachen, Germany
| | - Maryam Hashemi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Amani
- Department of Advanced Sciences and Technologies, North Khorasan University of Medical Sciences, Bojnurd, Iran; Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Rezvan Yazdian-Robati
- Molecular and Cell Biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Ramezani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA; Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa.
| |
Collapse
|
22
|
Córdoba-David G, Duro-Castano A, Castelo-Branco RC, González-Guerrero C, Cannata P, Sanz AB, Vicent MJ, Ortiz A, Ramos AM. Effective Nephroprotection Against Acute Kidney Injury with a Star-Shaped Polyglutamate-Curcuminoid Conjugate. Sci Rep 2020; 10:2056. [PMID: 32029842 PMCID: PMC7005021 DOI: 10.1038/s41598-020-58974-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 01/22/2020] [Indexed: 12/19/2022] Open
Abstract
The lack of effective pharmacological treatments for acute kidney injury (AKI) remains a significant public health problem. Given the involvement of apoptosis and regulated necrosis in the initiation and progression of AKI, the inhibition of cell death may contribute to AKI prevention/recovery. Curcuminoids are a family of plant polyphenols that exhibit attractive biological properties that make them potentially suitable for AKI treatment. Now, in cultured tubular cells, we demonstrated that a crosslinked self-assembled star-shaped polyglutamate (PGA) conjugate of bisdemethoxycurcumin (St-PGA-CL-BDMC) inhibits apoptosis and necroptosis induced by Tweak/TNFα/IFNγ alone or concomitant to caspase inhibition. St-PGA-CL-BDMC also reduced NF-κB activation and subsequent gene transcription. In vivo, St-PGA-CL-BDMC prevented renal cell loss and preserved renal function in mice with folic acid-induced AKI. Mechanistically, St-PGA-CL-BDMC inhibited AKI-induced apoptosis and expression of ferroptosis markers and also decreased the kidney expression of genes involved in tubular damage and inflammation, while preserving the kidney expression of the protective factor, Klotho. Thus, due to renal accumulation and attractive pharmacological properties, the application of PGA-based therapeutics may improve nephroprotective properties of current AKI treatments.
Collapse
Affiliation(s)
- Gina Córdoba-David
- Laboratory of Nephrology, IIS-Fundación Jiménez Díaz, School of Medicine, UAM, Madrid, Spain
| | - Aroa Duro-Castano
- Polymer Therapeutics Lab, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | | | | | - Pablo Cannata
- Pathology, IIS-Fundación Jiménez Díaz, School of Medicine, UAM, Madrid, Spain
| | - Ana B Sanz
- Laboratory of Nephrology, IIS-Fundación Jiménez Díaz, School of Medicine, UAM, Madrid, Spain.,Red de Investigación Renal (REDINREN), Madrid, Spain
| | - María J Vicent
- Polymer Therapeutics Lab, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Alberto Ortiz
- Laboratory of Nephrology, IIS-Fundación Jiménez Díaz, School of Medicine, UAM, Madrid, Spain.,Red de Investigación Renal (REDINREN), Madrid, Spain
| | - Adrián M Ramos
- Laboratory of Nephrology, IIS-Fundación Jiménez Díaz, School of Medicine, UAM, Madrid, Spain. .,Red de Investigación Renal (REDINREN), Madrid, Spain.
| |
Collapse
|
23
|
Ramos AM, Fernández-Fernández B, Pérez-Gómez MV, Carriazo Julio SM, Sanchez-Niño MD, Sanz A, Ruiz-Ortega M, Ortiz A. Design and optimization strategies for the development of new drugs that treat chronic kidney disease. Expert Opin Drug Discov 2019; 15:101-115. [PMID: 31736379 DOI: 10.1080/17460441.2020.1690450] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Chronic kidney disease (CKD) is characterized by increased risks of progression to end-stage kidney disease requiring dialysis and cardiovascular mortality, predicted to be among the five top causes of death by 2040. Only the design and optimization of novel strategies to develop new drugs to treat CKD will contain this trend. Current therapy for CKD includes nonspecific therapy targeting proteinuria and/or hypertension and cause-specific therapies for diabetic kidney disease, autosomal dominant polycystic kidney disease, glomerulonephritides, Fabry nephropathy, hemolytic uremic syndrome and others.Areas covered: Herein, the authors review the literature on new drugs under development for CKD as well as novel design and development strategies.Expert opinion: New therapies for CKD have become a healthcare priority. Emerging therapies undergoing clinical trials are testing expanded renin-angiotensin system blockade with double angiotensin receptor/endothelin receptor blockers, SGLT2 inhibition, and targeting inflammation, the immune response, fibrosis and the Nrf2 transcription factor. Emerging therapeutic targets include cell senescence, complement activation, Klotho expression preservation and microbiota. Novel approaches include novel model systems that can be personalized (e.g. organoids), unbiased systems biology-based identification of new therapeutic targets, drug databases that speed up drug identification and repurposing, nanomedicines that improve drug delivery and RNA targeting to expand the number of targetable proteins.
Collapse
Affiliation(s)
- Adrián M Ramos
- Laboratory of Nephrology and Hypertension, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.,Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain
| | - Beatriz Fernández-Fernández
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain.,Nephrology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - María Vanessa Pérez-Gómez
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Sol María Carriazo Julio
- Nephrology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - María Dolores Sanchez-Niño
- Laboratory of Nephrology and Hypertension, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.,Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Sanz
- Laboratory of Nephrology and Hypertension, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.,Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Ruiz-Ortega
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain.,Laboratory of Renal and Vascular Pathology and Diabetes, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), School of Medicine, Universidad Autónoma de Madrid and Cellular Biology in Renal Diseases Laboratory, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alberto Ortiz
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, Madrid, Spain.,Instituto de Investigación Sanitaria-Fundación Jiménez Díaz (IIS-FJD), School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain.,Fundación Renal Iñigo Álvarez de Toledo IRSIN C/José Abascal, Madrid, Spain
| |
Collapse
|
24
|
Chen Y, Tang W, Yu F, Xie Y, Jaramillo L, Jang HS, Li J, Padanilam BJ, Oupický D. Determinants of preferential renal accumulation of synthetic polymers in acute kidney injury. Int J Pharm 2019; 568:118555. [PMID: 31344445 PMCID: PMC6708481 DOI: 10.1016/j.ijpharm.2019.118555] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/17/2019] [Accepted: 07/21/2019] [Indexed: 12/17/2022]
Abstract
Acute kidney injury (AKI) is a major kidney disease associated with high mortality and morbidity. AKI may lead to chronic kidney disease and end-stage renal disease. Currently, the management of AKI is mainly focused on supportive treatments. Previous studies showed macromolecular delivery systems as a promising method to target AKI, but little is known about how physicochemical properties affect the renal accumulation of polymers in ischemia-reperfusion AKI. In this study, a panel of fluorescently labeled polymers with a range of molecular weights and net charge was synthesized by living radical polymerization. By testing biodistribution of the polymers in unilateral ischemia-reperfusion mouse model of AKI, the results showed that negatively charged and neutral polymers had the greatest potential for selectively accumulating in I/R kidneys. The polymers passed through glomerulus and were retained in proximal tubular cells for up to 24 h after injection. The results obtained in the unilateral model were validated in a bilateral ischemic-reperfusion model. This study demonstrates for the first time that polymers with specific physicochemical characteristics exhibit promising ability to accumulate in the injured AKI kidney, providing initial insights on their use as polymeric drug delivery systems in AKI.
Collapse
Affiliation(s)
- Yi Chen
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Weimin Tang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Fei Yu
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ying Xie
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Lee Jaramillo
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Hee-Seong Jang
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jing Li
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Babu J Padanilam
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Internal Medicine, Section of Nephrology, University of Nebraska Medical Center, Omaha, NE, USA
| | - David Oupický
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
25
|
Campeiro JD, Dam W, Monte GG, Porta LC, Oliveira LCGD, Nering MB, Viana GM, Carapeto FC, Oliveira EB, van den Born J, Hayashi MAF. Long term safety of targeted internalization of cell penetrating peptide crotamine into renal proximal tubular epithelial cells in vivo. Sci Rep 2019; 9:3312. [PMID: 30824773 PMCID: PMC6397221 DOI: 10.1038/s41598-019-39842-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 01/21/2019] [Indexed: 02/07/2023] Open
Abstract
Activated proximal tubular epithelial cells (PTECs) play a crucial role in progressive tubulo-interstitial fibrosis in native and transplanted kidneys. Targeting PTECs by non-viral delivery vectors might be useful to influence the expression of important genes and/or proteins in order to slow down renal function loss. However, no clinical therapies that specifically target PTECs are available at present. We earlier showed that a cationic cell penetrating peptide isolated from South American rattlesnake venom, named crotamine, recognizes cell surface heparan sulfate proteoglycans and accumulates in cells. In healthy mice, crotamine accumulates mainly in kidneys after intraperitoneal (ip) injection. Herein we demonstrate for the first time, the overall safety of acute or long-term treatment with daily ip administrated crotamine for kidneys functions. Accumulation of ip injected crotamine in the kidney brush border zone of PTECs, and its presence inside these cells were observed. In addition, significant lower in vitro crotamine binding, uptake and reporter gene transport and expression could be observed in syndecan-1 deficient HK-2 PTECs compared to wild-type cells, indicating that the absence of syndecan-1 impairs crotamine uptake into PTECs. Taken together, our present data show the safety of in vivo long-term treatment with crotamine, and its preferential uptake into PTECs, which are especially rich in HSPGs such as syndecan-1. In addition to the demonstrated in vitro gene delivery mediated by crotamine in HK-2 cells, the potential applicability of crotamine as prototypic non-viral (gene) delivery nanocarrier to modulate PTEC gene and/or protein expression was confirmed.
Collapse
Affiliation(s)
- Joana Darc Campeiro
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Wendy Dam
- Department Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Gabriela Guilherme Monte
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Lucas Carvalho Porta
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | | | - Marcela Bego Nering
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Gustavo Monteiro Viana
- Departamento de Bioquímica, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Fernando Cintra Carapeto
- Departamento de Patologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Eduardo Brandt Oliveira
- Departamento de Bioquímica e Imunologia, Universidade de São Paulo (USP-FMRP), Ribeirão Preto, Brazil
| | - Jacob van den Born
- Department Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - Mirian A F Hayashi
- Departamento de Farmacologia, Escola Paulista de Medicina (EPM), Universidade Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil.
| |
Collapse
|
26
|
l-Serine-modified polyamidoamine dendrimer as a highly potent renal targeting drug carrier. Proc Natl Acad Sci U S A 2018; 115:10511-10516. [PMID: 30249662 DOI: 10.1073/pnas.1808168115] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Effective delivery of drug carriers selectively to the kidney is challenging because of their uptake by the reticuloendothelial system in the liver and spleen, which limits effective treatment of kidney diseases and results in side effects. To address this issue, we synthesized l-serine (Ser)-modified polyamidoamine dendrimer (PAMAM) as a potent renal targeting drug carrier. Approximately 82% of the dose was accumulated in the kidney at 3 h after i.v. injection of 111In-labeled Ser-PAMAM in mice, while i.v. injection of 111In-labeled unmodified PAMAM, l-threonine modified PAMAM, and l-tyrosine modified PAMAM resulted in kidney accumulations of 28%, 35%, and 31%, respectively. Single-photon emission computed tomography/computed tomography (SPECT/CT) images also indicated that 111In-labeled Ser-PAMAM specifically accumulated in the kidneys. An intrakidney distribution study showed that fluorescein isothiocyanate-labeled Ser-PAMAM accumulated predominantly in renal proximal tubules. Results of a cellular uptake study of Ser-PAMAM in LLC-PK1 cells in the presence of inhibitors [genistein, 5-(N-ethyl-N-isopropyl)amiloride, and lysozyme] revealed that caveolae-mediated endocytosis, micropinocytosis, and megalin were associated with the renal accumulation of Ser-PAMAM. The efficient renal distribution and angiotensin-converting enzyme (ACE) inhibition effect of captopril (CAP), an ACE inhibitor, was observed after i.v. injection of the Ser-PAMAM-CAP conjugate. These findings indicate that Ser-PAMAM is a promising renal targeting drug carrier for the treatment of kidney diseases. Thus, the results of this study demonstrate efficient renal targeting of a drug carrier via Ser modification.
Collapse
|
27
|
Liu GW, Prossnitz AN, Eng DG, Cheng Y, Subrahmanyam N, Pippin JW, Lamm RJ, Ngambenjawong C, Ghandehari H, Shankland SJ, Pun SH. Glomerular disease augments kidney accumulation of synthetic anionic polymers. Biomaterials 2018; 178:317-325. [DOI: 10.1016/j.biomaterials.2018.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/31/2018] [Accepted: 06/02/2018] [Indexed: 12/22/2022]
|
28
|
Liu C, Hu Y, Lin J, Fu H, Lim LY, Yuan Z. Targeting strategies for drug delivery to the kidney: From renal glomeruli to tubules. Med Res Rev 2018; 39:561-578. [DOI: 10.1002/med.21532] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/10/2018] [Accepted: 07/18/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Chun‐Ping Liu
- Department of PharmacyCollege of Veterinary Medicine, Sichuan Agricultural UniversityChengdu China
- Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu China
| | - You Hu
- Department of PharmacyCollege of Veterinary Medicine, Sichuan Agricultural UniversityChengdu China
- Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu China
| | - Ju‐Chun Lin
- Department of PharmacyCollege of Veterinary Medicine, Sichuan Agricultural UniversityChengdu China
- Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu China
| | - Hua‐Lin Fu
- Department of PharmacyCollege of Veterinary Medicine, Sichuan Agricultural UniversityChengdu China
- Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu China
| | - Lee Yong Lim
- Pharmacy, Centre for Optimization of Medicines, School of Allied Health, The University of Western AustraliaCrawley Australia
| | - Zhi‐Xiang Yuan
- Department of PharmacyCollege of Veterinary Medicine, Sichuan Agricultural UniversityChengdu China
- Key Laboratory of Animal Disease and Human Health of Sichuan ProvinceChengdu China
| |
Collapse
|
29
|
Cellular and molecular mechanisms of kidney fibrosis. Mol Aspects Med 2018; 65:16-36. [PMID: 29909119 DOI: 10.1016/j.mam.2018.06.002] [Citation(s) in RCA: 294] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/12/2018] [Indexed: 12/14/2022]
Abstract
Renal fibrosis is the final pathological process common to any ongoing, chronic kidney injury or maladaptive repair. It is considered as the underlying pathological process of chronic kidney disease (CKD), which affects more than 10% of world population and for which treatment options are limited. Renal fibrosis is defined by excessive deposition of extracellular matrix, which disrupts and replaces the functional parenchyma that leads to organ failure. Kidney's histological structure can be divided into three main compartments, all of which can be affected by fibrosis, specifically termed glomerulosclerosis in glomeruli, interstitial fibrosis in tubulointerstitium and arteriosclerosis and perivascular fibrosis in vasculature. In this review, we summarized the different appearance, cellular origin and major emerging processes and mediators of fibrosis in each compartment. We also depicted and discussed the challenges in translation of anti-fibrotic treatment to clinical practice and discuss possible solutions and future directions.
Collapse
|
30
|
Chen S, Yang M, Ba C, Yu S, Jiang Y, Zou H, Zhang Y. Preparation and characterization of slow-release fertilizer encapsulated by biochar-based waterborne copolymers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 615:431-437. [PMID: 28988079 DOI: 10.1016/j.scitotenv.2017.09.209] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/19/2017] [Accepted: 09/19/2017] [Indexed: 05/22/2023]
Abstract
To enhance the effectiveness of polyvinyl alcohol (PVA) coated fertilizers, a novel slow-release fertilizer was developed using biochar and waterborne copolymer of PVA and polyvinylpyrrolidone (PVP) as coating materials. The effects of botanical origins and doses of biochar as well as copolymer concentrations on biochar-copolymer structures and properties were investigated. Our results indicated that the water absorbency of blend films differing in biochar origins showed different responses to these three factors. Generally, biochar decreased water absorbency of copolymer with an increased degradability, and contributed to improving the slow-release property of coated urea. In particular, rice biochar-based copolymer (S5 film) had less hydrophilic OH bonds and encapsulated urea granules more compactly and densely. The urea particles coated with rice biochar-based copolymer (S5 film) exhibited an excellent release behavior of 65.28% nutrient leaching on the 22th day. Therefore, this work has demonstrated the potential of biochar-based copolymer from different botanical biochar for improving the effectiveness of fertilizers.
Collapse
Affiliation(s)
- Songling Chen
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shenyang 110866, Liaoning, China; Key Laboratory of Arable Land Conservation (Northeast China), Ministry of Agriculture, Shenyang 110866, Liaoning, China
| | - Ming Yang
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shenyang 110866, Liaoning, China; Key Laboratory of Arable Land Conservation (Northeast China), Ministry of Agriculture, Shenyang 110866, Liaoning, China.
| | - Chuang Ba
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shenyang 110866, Liaoning, China; Key Laboratory of Arable Land Conservation (Northeast China), Ministry of Agriculture, Shenyang 110866, Liaoning, China
| | - Susu Yu
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shenyang 110866, Liaoning, China; Key Laboratory of Arable Land Conservation (Northeast China), Ministry of Agriculture, Shenyang 110866, Liaoning, China
| | - Yifei Jiang
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shenyang 110866, Liaoning, China; Key Laboratory of Arable Land Conservation (Northeast China), Ministry of Agriculture, Shenyang 110866, Liaoning, China
| | - Hongtao Zou
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shenyang 110866, Liaoning, China; Key Laboratory of Arable Land Conservation (Northeast China), Ministry of Agriculture, Shenyang 110866, Liaoning, China.
| | - Yulong Zhang
- College of Land and Environment, Shenyang Agricultural University, Shenyang 110866, Liaoning, China; National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shenyang 110866, Liaoning, China; Key Laboratory of Arable Land Conservation (Northeast China), Ministry of Agriculture, Shenyang 110866, Liaoning, China
| |
Collapse
|
31
|
Valentijn FA, Falke LL, Nguyen TQ, Goldschmeding R. Cellular senescence in the aging and diseased kidney. J Cell Commun Signal 2017; 12:69-82. [PMID: 29260442 PMCID: PMC5842195 DOI: 10.1007/s12079-017-0434-2] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 12/19/2022] Open
Abstract
The program of cellular senescence is involved in both the G1 and G2 phase of the cell cycle, limiting G1/S and G2/M progression respectively, and resulting in prolonged cell cycle arrest. Cellular senescence is involved in normal wound healing. However, multiple organs display increased senescent cell numbers both during natural aging and after injury, suggesting that senescent cells can have beneficial as well as detrimental effects in organismal aging and disease. Also in the kidney, senescent cells accumulate in various compartments with advancing age and renal disease. In experimental studies, forced apoptosis induction through the clearance of senescent cells leads to better preservation of kidney function during aging. Recent groundbreaking studies demonstrate that senescent cell depletion through INK-ATTAC transgene-mediated or cell-penetrating FOXO4-DRI peptide induced forced apoptosis, reduced age-associated damage and dysfunction in multiple organs, in particular the kidney, and increased performance and lifespan. Senescence is also involved in oncology and therapeutic depletion of senescent cells by senolytic drugs has been studied in experimental and human cancers. Although studies with senolytic drugs in models of kidney injury are lacking, their dose limiting side effects on other organs suggest that targeted delivery might be needed for successful application of senolytic drugs for treatment of kidney disease. In this review, we discuss (i) current understanding of the mechanisms and associated pathways of senescence, (ii) evidence of senescence occurrence and causality with organ injury, and (iii) therapeutic strategies for senescence depletion (senotherapy) including targeting, all in the context of renal aging and disease.
Collapse
Affiliation(s)
- F A Valentijn
- Department of Pathology, University Medical Center Utrecht, H04.312, Heidelberglaan 110, 3584, CX, Utrecht, The Netherlands
| | - L L Falke
- Department of Pathology, University Medical Center Utrecht, H04.312, Heidelberglaan 110, 3584, CX, Utrecht, The Netherlands
- Department of Internal Medicine, Diakonessenhuis, Utrecht, The Netherlands
| | - T Q Nguyen
- Department of Pathology, University Medical Center Utrecht, H04.312, Heidelberglaan 110, 3584, CX, Utrecht, The Netherlands
| | - Roel Goldschmeding
- Department of Pathology, University Medical Center Utrecht, H04.312, Heidelberglaan 110, 3584, CX, Utrecht, The Netherlands.
| |
Collapse
|
32
|
Yamashita S, Katsumi H, Hibino N, Isobe Y, Yagi Y, Kusamori K, Sakane T, Yamamoto A. Development of PEGylated carboxylic acid-modified polyamidoamine dendrimers as bone-targeting carriers for the treatment of bone diseases. J Control Release 2017; 262:10-17. [DOI: 10.1016/j.jconrel.2017.07.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 06/14/2017] [Accepted: 07/11/2017] [Indexed: 11/27/2022]
|
33
|
Yuan ZX, Jia L, Lim LY, Lin JC, Shu G, Zhao L, Ye G, Liang XX, Ji H, Fu HL. Renal-targeted delivery of triptolide by entrapment in pegylated TRX-20-modified liposomes. Int J Nanomedicine 2017; 12:5673-5686. [PMID: 28848346 PMCID: PMC5557620 DOI: 10.2147/ijn.s141095] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Previously, 3,5-dipentadecyloxybenzamidine hydrochloride (TRX-20)-modified liposomes were reported to specifically target mesangial cells (MCs) in glomeruli. To further gain a better understanding of the characteristics and potential application for glomerular diseases of TRX-20-modified liposomes, we synthesized TRX-20 and prepared TRX-20-modified liposomes (TRX-LPs) with different molar ratios - 6% (6%-TRX-LP), 11% (11%-TRX-LP), and 14% (14%-TRX-LP) - of TRX-20 to total lipid in the present study. All TRX-LPs exhibited concentration-dependent toxicity against the MCs at a lipid concentration ranging from 0.01 to 1.0 mg/mL with IC50 values of 3.45, 1.13, and 0.55 mg/mL, respectively. Comparison of the cell viability of TRX-LPs indicated that high levels of TRX-20 caused severe cell mortality, with 11%-TRX-LP showing the higher cytoplasmic accumulation in the MCs. Triptolide (TP) as a model drug was first loaded into 11%-TRX-LP and the liposomes were further modified with PEG5000 (PEG-TRX-TP-LP) in an attempt to prolong their circulation in blood and enhance TP-mediated immune suppression. Due to specific binding to MCs, PEG-TRX-TP-LP undoubtedly showed better anti-inflammatory action in vitro, evidenced by the inhibition of release of nitric oxide (NO) and tumor necrosis factor-α from lipopolysaccharide-stimulated MCs, compared with free TP at the same dose. In vivo, the PEG-TRX-TP-LP effectively attenuated the symptoms of membranous nephropathic (MN) rats and improved biochemical markers including proteinuria, serum cholesterol, and albumin. Therefore, it can be concluded that the TRX-modified liposome is an effective platform to target the delivery of TP to glomeruli for the treatment of MN.
Collapse
Affiliation(s)
- Zhi-xiang Yuan
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan
| | - Lu Jia
- Department of Neurosurgery, Shanxi Provincial People’ Hospital, Taiyuan, China
| | - Lee Yong Lim
- Pharmacy, Centre for Optimization of Medicines, School of Allied Health, The University of Western Australia, Crawley, Australia
| | - Ju-chun Lin
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan
| | - Gang Shu
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan
| | - Ling Zhao
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan
| | - Gang Ye
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan
| | - Xiao-xia Liang
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan
| | - Hongming Ji
- Department of Neurosurgery, Shanxi Provincial People’ Hospital, Taiyuan, China
| | - Hua-lin Fu
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan
| |
Collapse
|
34
|
Turina TG, Zarechnaya OM, Zaitseva VV, Zaitsev SY. Quantum-chemical study of the reaction of N-vinylpyrrolidone with maleic anhydride. RUSS J GEN CHEM+ 2017. [DOI: 10.1134/s1070363217030197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Chai HJ, Kiew LV, Chin Y, Norazit A, Mohd Noor S, Lo YL, Looi CY, Lau YS, Lim TM, Wong WF, Abdullah NA, Abdul Sattar MZ, Johns EJ, Chik Z, Chung LY. Renal targeting potential of a polymeric drug carrier, poly-l-glutamic acid, in normal and diabetic rats. Int J Nanomedicine 2017; 12:577-591. [PMID: 28144140 PMCID: PMC5245978 DOI: 10.2147/ijn.s111284] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND AND PURPOSE Poly-l-glutamic acid (PG) has been used widely as a carrier to deliver anticancer chemotherapeutics. This study evaluates PG as a selective renal drug carrier. EXPERIMENTAL APPROACH 3H-deoxycytidine-labeled PGs (17 or 41 kDa) and 3H-deoxycytidine were administered intravenously to normal rats and streptozotocin-induced diabetic rats. The biodistribution of these compounds was determined over 24 h. Accumulation of PG in normal kidneys was also tracked using 5-(aminoacetamido) fluorescein (fluoresceinyl glycine amide)-labeled PG (PG-AF). To evaluate the potential of PGs in ferrying renal protective anti-oxidative stress compounds, the model drug 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride (AEBSF) was conjugated to 41 kDa PG to form PG-AEBSF. PG-AEBSF was then characterized and evaluated for intracellular anti-oxidative stress efficacy (relative to free AEBSF). RESULTS In the normal rat kidneys, 17 kDa radiolabeled PG (PG-Tr) presents a 7-fold higher, while 41 kDa PG-Tr shows a 15-fold higher renal accumulation than the free radiolabel after 24 h post injection. The accumulation of PG-AF was primarily found in the renal tubular tissues at 2 and 6 h after an intravenous administration. In the diabetic (oxidative stress-induced) kidneys, 41 kDa PG-Tr showed the greatest renal accumulation of 8-fold higher than the free compound 24 h post dose. Meanwhile, the synthesized PG-AEBSF was found to inhibit intracellular nicotinamide adenine dinucleotide phosphate oxidase (a reactive oxygen species generator) at an efficiency that is comparable to that of free AEBSF. This indicates the preservation of the anti-oxidative stress properties of AEBSF in the conjugated state. CONCLUSION/IMPLICATIONS The favorable accumulation property of 41 kDa PG in normal and oxidative stress-induced kidneys, along with its capabilities in conserving the pharmacological properties of the conjugated renal protective drugs, supports its role as a potential renal targeting drug carrier.
Collapse
Affiliation(s)
| | | | | | | | | | - Yoke-Lin Lo
- Department of Pharmacy, Faculty of Medicine, University of Malaya
- School of Pharmacy, International Medical University, Kuala Lumpur
| | | | | | - Tuck-Meng Lim
- Department of Chemical Science, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar
| | - Won-Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur
| | | | | | - Edward J Johns
- Department of Physiology, University College Cork, Cork, Republic of Ireland
| | | | - Lip-Yong Chung
- Department of Pharmacy, Faculty of Medicine, University of Malaya
| |
Collapse
|
36
|
Sturmlechner I, Durik M, Sieben CJ, Baker DJ, van Deursen JM. Cellular senescence in renal ageing and disease. Nat Rev Nephrol 2016; 13:77-89. [DOI: 10.1038/nrneph.2016.183] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
37
|
Janzer M, Larbig G, Kübelbeck A, Wischnjow A, Haberkorn U, Mier W. Drug Conjugation Affects Pharmacokinetics and Specificity of Kidney-Targeted Peptide Carriers. Bioconjug Chem 2016; 27:2441-2449. [DOI: 10.1021/acs.bioconjchem.6b00397] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Maria Janzer
- Department
of Nuclear Medicine, Heidelberg University Hospital, INF 400, 69120 Heidelberg, Germany
- Merck KGaA, Frankfurter Strasse
250, 64293 Darmstadt, Germany
| | - Gregor Larbig
- Merck KGaA, Frankfurter Strasse
250, 64293 Darmstadt, Germany
| | - Armin Kübelbeck
- Merck KGaA, Frankfurter Strasse
250, 64293 Darmstadt, Germany
| | - Artjom Wischnjow
- Department
of Nuclear Medicine, Heidelberg University Hospital, INF 400, 69120 Heidelberg, Germany
| | - Uwe Haberkorn
- Department
of Nuclear Medicine, Heidelberg University Hospital, INF 400, 69120 Heidelberg, Germany
| | - Walter Mier
- Department
of Nuclear Medicine, Heidelberg University Hospital, INF 400, 69120 Heidelberg, Germany
| |
Collapse
|
38
|
Sarko D. Kidney-Specific Drug Delivery: Review of Opportunities, Achievements, and Challenges. ACTA ACUST UNITED AC 2016. [DOI: 10.15406/japlr.2016.02.00033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
39
|
Ulbrich K, Holá K, Šubr V, Bakandritsos A, Tuček J, Zbořil R. Targeted Drug Delivery with Polymers and Magnetic Nanoparticles: Covalent and Noncovalent Approaches, Release Control, and Clinical Studies. Chem Rev 2016; 116:5338-431. [DOI: 10.1021/acs.chemrev.5b00589] [Citation(s) in RCA: 1120] [Impact Index Per Article: 140.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Karel Ulbrich
- Institute
of Macromolecular Chemistry, The Czech Academy of Sciences, v.v.i., Heyrovsky Square 2, 162 06 Prague 6, Czech Republic
| | - Kateřina Holá
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, 17 Listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Vladimir Šubr
- Institute
of Macromolecular Chemistry, The Czech Academy of Sciences, v.v.i., Heyrovsky Square 2, 162 06 Prague 6, Czech Republic
| | - Aristides Bakandritsos
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, 17 Listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Jiří Tuček
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, 17 Listopadu 1192/12, 771 46 Olomouc, Czech Republic
| | - Radek Zbořil
- Regional
Centre of Advanced Technologies and Materials, Department of Physical
Chemistry, Faculty of Science, Palacky University, 17 Listopadu 1192/12, 771 46 Olomouc, Czech Republic
| |
Collapse
|
40
|
Wischnjow A, Sarko D, Janzer M, Kaufman C, Beijer B, Brings S, Haberkorn U, Larbig G, Kübelbeck A, Mier W. Renal Targeting: Peptide-Based Drug Delivery to Proximal Tubule Cells. Bioconjug Chem 2016; 27:1050-7. [DOI: 10.1021/acs.bioconjchem.6b00057] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Artjom Wischnjow
- Department of Nuclear Medicine, Heidelberg University Hospital, INF 400, 69120 Heidelberg, Germany
| | - Dikran Sarko
- Department of Nuclear Medicine, Heidelberg University Hospital, INF 400, 69120 Heidelberg, Germany
| | - Maria Janzer
- Department of Nuclear Medicine, Heidelberg University Hospital, INF 400, 69120 Heidelberg, Germany
- Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Christina Kaufman
- Department of Nuclear Medicine, Heidelberg University Hospital, INF 400, 69120 Heidelberg, Germany
| | - Barbro Beijer
- Department of Nuclear Medicine, Heidelberg University Hospital, INF 400, 69120 Heidelberg, Germany
| | - Sebastian Brings
- Department of Nuclear Medicine, Heidelberg University Hospital, INF 400, 69120 Heidelberg, Germany
| | - Uwe Haberkorn
- Department of Nuclear Medicine, Heidelberg University Hospital, INF 400, 69120 Heidelberg, Germany
| | - Gregor Larbig
- Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Armin Kübelbeck
- Merck KGaA, Frankfurter Strasse 250, 64293 Darmstadt, Germany
| | - Walter Mier
- Department of Nuclear Medicine, Heidelberg University Hospital, INF 400, 69120 Heidelberg, Germany
| |
Collapse
|
41
|
Xiang Y, Cong H, Li L, Zheng S. Poly(N
-vinyl pyrrolidone)-block
-Poly(N
-vinyl carbazole)-block
-poly(N
-vinyl pyrrolidone) triblock copolymers: Synthesis via RAFT/MADIX process, self-assembly behavior, and photophysical properties. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/pola.28047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yixin Xiang
- Department of Polymer Science and Engineering and the State Key Laboratory of Metal Matrix Composites; Shanghai Jiao Tong University; Shanghai 200240 People's Republic of China
| | - Houluo Cong
- Department of Polymer Science and Engineering and the State Key Laboratory of Metal Matrix Composites; Shanghai Jiao Tong University; Shanghai 200240 People's Republic of China
| | - Lei Li
- Department of Polymer Science and Engineering and the State Key Laboratory of Metal Matrix Composites; Shanghai Jiao Tong University; Shanghai 200240 People's Republic of China
| | - Sixun Zheng
- Department of Polymer Science and Engineering and the State Key Laboratory of Metal Matrix Composites; Shanghai Jiao Tong University; Shanghai 200240 People's Republic of China
| |
Collapse
|
42
|
Lim EK, Chung BH. Preparation of pyrenyl-based multifunctional nanocomposites for biomedical applications. Nat Protoc 2016; 11:236-51. [DOI: 10.1038/nprot.2015.135] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
43
|
Lee SH, Lee JB, Bae MS, Balikov DA, Hwang A, Boire TC, Kwon IK, Sung HJ, Yang JW. Current progress in nanotechnology applications for diagnosis and treatment of kidney diseases. Adv Healthc Mater 2015; 4:2037-45. [PMID: 26121684 PMCID: PMC4874338 DOI: 10.1002/adhm.201500177] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/27/2015] [Indexed: 12/26/2022]
Abstract
Significant progress has been made in nanomedicine, primarily in the form of nanoparticles, for theranostic applications to various diseases. A variety of materials, both organic and inorganic, have been used to develop nanoparticles with promise to achieve improved efficacy in medical applications as well as reduced systemic side effects compared to current standard of care medical practices. In particular, this article highlights the recent development and application of nanoparticles for diagnosing and treating nephropathologies.
Collapse
Affiliation(s)
- Sue Hyun Lee
- Department of Biomedical Engineering, School of Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Jung Bok Lee
- Department of Biomedical Engineering, School of Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Min Soo Bae
- Department of Bioengineering, College of Engineering, University of Washington, Seattle, WA 98195, USA
| | - Daniel A. Balikov
- Department of Biomedical Engineering, School of Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Amy Hwang
- Department of Biomedical Engineering, School of Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Timothy C. Boire
- Department of Biomedical Engineering, School of Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Il Keun Kwon
- Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, School of Dentistry, Kyung Hee University, Seoul 130–701, Republic of Korea
| | - Hak-Joon Sung
- Department of Biomedical Engineering, School of Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | - Jae Won Yang
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37235, USA
- Department of Internal Medicine, Yonsei University of Wonju College of Medicine, Wonju, Gangwon 220–701, Republic of Korea
| |
Collapse
|
44
|
Yuan ZX, Wu XJ, Mo J, Wang YL, Xu CQ, Lim LY. Renal targeted delivery of triptolide by conjugation to the fragment peptide of human serum albumin. Eur J Pharm Biopharm 2015; 94:363-71. [DOI: 10.1016/j.ejpb.2015.06.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/14/2015] [Accepted: 06/07/2015] [Indexed: 10/23/2022]
|
45
|
Yao X, Xie C, Chen W, Yang C, Wu W, Jiang X. Platinum-Incorporating Poly(N-vinylpyrrolidone)-poly(aspartic acid) Pseudoblock Copolymer Nanoparticles for Drug Delivery. Biomacromolecules 2015; 16:2059-71. [PMID: 26023705 DOI: 10.1021/acs.biomac.5b00479] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cisplatin-incorporating pseudoblock copolymer nanoparticles with high drug loading efficiency (ca. 50%) were prepared built on host-guest inclusion complexation between β-cyclodextrin end-capped poly(N-vinylpyrrolidone) block and admantyl end-capped poly(aspartic acid) block, followed by the coordination between cisplatin and carboxyl groups in poly(aspartic acid). The host-guest interaction between the two polymer blocks was examined by two-dimensional nuclear overhauser effect spectroscopy. The size and morphology of nanoparticles formed were characterized by dynamic light scattering, zeta potential, transmission electron microscopy, and atomic force microscopy. The size control of nanoparticles was carried out by varying the ratio of poly(N-vinylpyrrolidone) to poly(aspartic acid). The nanoparticles were stable in the aqueous medium with different pH values but disintegrated in the medium containing Cl(-) ions. The in vitro and in vivo antitumor effects of cisplatin-loaded nanoparticles were evaluated. The biodistribution of the nanoparticles in vivo was studied by noninvasive near-infrared fluorescence imaging and ion-coupled plasma mass spectrometry. It was found that cisplatin-loaded nanoparticles could effectively accumulate in the tumor site and exhibited significant superior in vivo antitumor activity to the commercially available free cisplatin by combining the tumor volume, body weight, and survival rate measurements.
Collapse
Affiliation(s)
- Xikuang Yao
- Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, and Jiangsu Provincial Laboratory for Nanotechnology, Nanjing University, Nanjing 210093, People's Republic of China
| | - Chen Xie
- Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, and Jiangsu Provincial Laboratory for Nanotechnology, Nanjing University, Nanjing 210093, People's Republic of China
| | - Weizhi Chen
- Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, and Jiangsu Provincial Laboratory for Nanotechnology, Nanjing University, Nanjing 210093, People's Republic of China
| | - Chenchen Yang
- Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, and Jiangsu Provincial Laboratory for Nanotechnology, Nanjing University, Nanjing 210093, People's Republic of China
| | - Wei Wu
- Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, and Jiangsu Provincial Laboratory for Nanotechnology, Nanjing University, Nanjing 210093, People's Republic of China
| | - Xiqun Jiang
- Department of Polymer Science and Engineering, College of Chemistry and Chemical Engineering, and Jiangsu Provincial Laboratory for Nanotechnology, Nanjing University, Nanjing 210093, People's Republic of China
| |
Collapse
|
46
|
Boor P, Floege J. Renal allograft fibrosis: biology and therapeutic targets. Am J Transplant 2015; 15:863-86. [PMID: 25691290 DOI: 10.1111/ajt.13180] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 11/30/2014] [Accepted: 12/19/2014] [Indexed: 01/25/2023]
Abstract
Renal tubulointerstitial fibrosis is the final common pathway of progressive renal diseases. In allografts, it is assessed with tubular atrophy as interstitial fibrosis/tubular atrophy (IF/TA). IF/TA occurs in about 40% of kidney allografts at 3-6 months after transplantation, increasing to 65% at 2 years. The origin of renal fibrosis in the allograft is complex and includes donor-related factors, in particular in case of expanded criteria donors, ischemia-reperfusion injury, immune-mediated damage, recurrence of underlying diseases, hypertensive damage, nephrotoxicity of immunosuppressants, recurrent graft infections, postrenal obstruction, etc. Based largely on studies in the non-transplant setting, there is a large body of literature on the role of different cell types, be it intrinsic to the kidney or bone marrow derived, in mediating renal fibrosis, and the number of mediator systems contributing to fibrotic changes is growing steadily. Here we review the most important cellular processes and mediators involved in the progress of renal fibrosis, with a focus on the allograft situation, and discuss some of the challenges in translating experimental insights into clinical trials, in particular fibrosis biomarkers or imaging modalities.
Collapse
Affiliation(s)
- P Boor
- Division of Nephrology and Clinical Immunology, RWTH University of Aachen, Aachen, Germany; Department of Pathology, RWTH University of Aachen, Aachen, Germany; Institute of Molecular Biomedicine, Bratislava, Slovakia
| | | |
Collapse
|
47
|
Cong H, Li J, Li L, Zheng S. Thermoresponsive gelation behavior of poly(N-isopropylacrylamide)-block-poly(N-vinylpyrrolidone)-block-poly(N-isopropylacrylamide) triblock copolymers. Eur Polym J 2014. [DOI: 10.1016/j.eurpolymj.2014.09.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Peptide fragments of human serum albumin as novel renal targeting carriers. Int J Pharm 2014; 460:196-204. [DOI: 10.1016/j.ijpharm.2013.10.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 10/08/2013] [Accepted: 10/17/2013] [Indexed: 11/16/2022]
|
49
|
Lim EK, Sajomsang W, Choi Y, Jang E, Lee H, Kang B, Kim E, Haam S, Suh JS, Chung SJ, Huh YM. Chitosan-based intelligent theragnosis nanocomposites enable pH-sensitive drug release with MR-guided imaging for cancer therapy. NANOSCALE RESEARCH LETTERS 2013; 8:467. [PMID: 24206754 PMCID: PMC4226245 DOI: 10.1186/1556-276x-8-467] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 10/27/2013] [Indexed: 05/04/2023]
Abstract
Smart drug delivery systems that are triggered by environmental conditions have been developed to enhance cancer therapeutic efficacy while limiting unwanted effects. Because cancer exhibits abnormally high local acidities compared to normal tissues (pH 7.4) due to Warburg effects, pH-sensitive systems have been researched for effective cancer therapy. Chitosan-based intelligent theragnosis nanocomposites, N-naphthyl-O-dimethymaleoyl chitosan-based drug-loaded magnetic nanoparticles (NChitosan-DMNPs), were developed in this study. NChitosan-DMNPs are capable of pH-sensitive drug release with MR-guided images because doxorubicin (DOX) and magnetic nanocrystals (MNCs) are encapsulated into the designed N-naphthyl-O-dimethymaleoyl chitosan (N-nap-O-MalCS). This system exhibits rapid DOX release as acidity increases, high stability under high pH conditions, and sufficient capacity for diagnosing and monitoring therapeutic responses. These results demonstrate that NChitosan-DMNPs have potential as theragnosis nanocomposites for effective cancer therapy.
Collapse
Affiliation(s)
- Eun-Kyung Lim
- Department of Radiology, College of Medicine, Yonsei University, Seoul 120-752, South Korea
- YUHS-KRIBB Medical Convergence Research Institute, Seoul 120-752, South Korea
| | - Warayuth Sajomsang
- Nanodelivery System Laboratory (NDS), National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathumthani 12120, Thailand
- BioNanotechnology Research Center, KRIBB, Yuseong, Daejeon 305-806, Republic of Korea
| | - Yuna Choi
- Department of Radiology, College of Medicine, Yonsei University, Seoul 120-752, South Korea
| | - Eunji Jang
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 120-749, South Korea
| | - Hwunjae Lee
- Department of Radiology, College of Medicine, Yonsei University, Seoul 120-752, South Korea
| | - Byunghoon Kang
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 120-749, South Korea
| | - Eunjung Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 120-749, South Korea
| | - Seungjoo Haam
- YUHS-KRIBB Medical Convergence Research Institute, Seoul 120-752, South Korea
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 120-749, South Korea
| | - Jin-Suck Suh
- Department of Radiology, College of Medicine, Yonsei University, Seoul 120-752, South Korea
- YUHS-KRIBB Medical Convergence Research Institute, Seoul 120-752, South Korea
| | - Sang Jeon Chung
- BioNanotechnology Research Center, KRIBB, Yuseong, Daejeon 305-806, Republic of Korea
- Department of Chemistry, Dongguk University, Seoul 100-715, South Korea
| | - Yong-Min Huh
- Department of Radiology, College of Medicine, Yonsei University, Seoul 120-752, South Korea
- YUHS-KRIBB Medical Convergence Research Institute, Seoul 120-752, South Korea
| |
Collapse
|
50
|
Yuan F, Nelson RK, Tabor DE, Zhang Y, Akhter MP, Gould KA, Wang D. Dexamethasone prodrug treatment prevents nephritis in lupus-prone (NZB × NZW)F1 mice without causing systemic side effects. ACTA ACUST UNITED AC 2013; 64:4029-39. [PMID: 22886616 DOI: 10.1002/art.34667] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 08/02/2012] [Indexed: 01/31/2023]
Abstract
OBJECTIVE To evaluate the potentially improved therapeutic efficacy and safety of nephrotropic macromolecular prodrugs of glucocorticoids (GCs) for the treatment of lupus nephritis. METHODS Lupus-prone female (NZB × NZW)F1 mice received monthly injections of N-(2-hydroxypropyl) methacrylamide copolymer-based dexamethasone prodrug (P-Dex) or daily injections of dexamethasone phosphate sodium (Dex; overall dose equivalent to that of P-Dex) for 2 months. During treatment, the mice were monitored for albuminuria, mean arterial pressure, and serum autoantibody levels. Nephritis, renal immune complex levels, and macrophage infiltration were evaluated histologically. Bone quality was analyzed using peripheral dual x-ray absorptiometry and micro-computed tomography. The in vivo distribution of P-Dex was investigated using optical imaging, immunohistochemistry, and fluorescence-activated cell sorting (FACS). The antiinflammatory effect of P-Dex was validated using lipopolysaccharide-activated human proximal tubule epithelial (HK-2) cells. RESULTS Monthly P-Dex injections completely abolished albuminuria in the (NZB × NZW)F1 mice; this approach was significantly more efficacious than daily Dex treatment. P-Dex treatment did not reduce serum levels of anti-double-stranded DNA antibodies or renal immune complexes but did decrease macrophage infiltration, which is a marker of chronic inflammation. Immunohistochemical and FACS analyses revealed that P-Dex was primarily sequestered by proximal tubule epithelial cells, and that it could attenuate the inflammatory response in HK-2 cell culture. In contrast to Dex treatment, P-Dex treatment did not lead to any significant deterioration of bone quality or reduction in the level of total serum IgG. CONCLUSION Macromolecularization of GCs renders them nephrotropic. Protracted retention, subcellular processing, and activation of GC prodrugs by kidney cells would potentiate nephritis resolution, with a reduced risk of systemic toxicities.
Collapse
Affiliation(s)
- Fang Yuan
- University of Nebraska Medical Center, NE 68198, USA
| | | | | | | | | | | | | |
Collapse
|