1
|
Ren X, Zheng L, Maliskova L, Tam TW, Sun Y, Liu H, Lee J, Takagi MA, Li B, Ren B, Wang W, Shen Y. CRISPR tiling deletion screens reveal functional enhancers of neuropsychiatric risk genes and allelic compensation effects (ACE) on transcription. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.08.616922. [PMID: 39416108 PMCID: PMC11483005 DOI: 10.1101/2024.10.08.616922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Precise transcriptional regulation is critical for cellular function and development, yet the mechanism of this process remains poorly understood for many genes. To gain a deeper understanding of the regulation of neuropsychiatric disease risk genes, we identified a total of 39 functional enhancers for four dosage-sensitive genes, APP, FMR1, MECP2, and SIN3A, using CRISPR tiling deletion screening in human induced pluripotent stem cell (iPSC)-induced excitatory neurons. We found that enhancer annotation provides potential pathological insights into disease-associated copy number variants. More importantly, we discovered that allelic enhancer deletions at SIN3A could be compensated by increased transcriptional activities from the other intact allele. Such allelic compensation effects (ACE) on transcription is stably maintained during differentiation and, once established, cannot be reversed by ectopic SIN3A expression. Further, ACE at SIN3A occurs through dosage sensing by the promoter. Together, our findings unravel a regulatory compensation mechanism that ensures stable and precise transcriptional output for SIN3A, and potentially other dosage-sensitive genes.
Collapse
Affiliation(s)
- Xingjie Ren
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Lina Zheng
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Lenka Maliskova
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Tsz Wai Tam
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Yifan Sun
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Hongjiang Liu
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Jerry Lee
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Maya Asami Takagi
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
| | - Bin Li
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Bing Ren
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Wei Wang
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Yin Shen
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
2
|
Zhao D, Qin J, An J, Zhang H, Li J, Wang H, Du R, He Y. Optimization of piggyBac Transposon System Electrotransfection in Sheep Fibroblasts. Mol Biotechnol 2023; 65:1585-1597. [PMID: 36705779 DOI: 10.1007/s12033-023-00659-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 01/08/2023] [Indexed: 01/28/2023]
Abstract
Electroporation is a non-viral mediated transfection technique, which has the advantages of being harmless, easy to operate, and less expensive. This transfection method can be used for almost all cell types and has gradually become the preferred transfection method for mammalian gene editing. However, further improvements are needed in electroporation efficiency. There is no universal standard electrotransfection step for different types of cells, and the inappropriate electroporation parameters will result in a low transfection efficiency and high cell mortality. Here, we systematically optimized the electrotransfection parameters of piggyBac transposon system into sheep fetal fibroblasts for the first time. We found that the cell transfection efficiency and cell viability could be improved by using traditional cell culture medium DMEM/F12 as an electroporation buffer, and simultaneously using the square-wave pulsing program of 200 V, 2 pulses, 20 ms length, and 20 μg DNA (3 μg/μL) in 4 mm cuvette, and the transfection efficiency and cell viability could eventually reach 78.0% and 40.9%, respectively. The purpose of this study is to provide a method reference and theoretical basis for the plasmid electrotransfection in mammal cells.
Collapse
Affiliation(s)
- Dipeng Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
- School of Life Science and Engineering, Foshan University, Foshan, 528000, Guangdong, China
| | - Jian Qin
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
- College of Life Science, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
- Center of Experiment Teaching, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Jie An
- College of Life Science, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Hao Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Junling Li
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Hejie Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Rong Du
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| | - Yongming He
- School of Life Science and Engineering, Foshan University, Foshan, 528000, Guangdong, China.
| |
Collapse
|
3
|
Bachhav B, de Rossi J, Llanos CD, Segatori L. Cell factory engineering: Challenges and opportunities for synthetic biology applications. Biotechnol Bioeng 2023; 120:2441-2459. [PMID: 36859509 PMCID: PMC10440303 DOI: 10.1002/bit.28365] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/14/2023] [Accepted: 02/27/2023] [Indexed: 03/03/2023]
Abstract
The production of high-quality recombinant proteins is critical to maintaining a continuous supply of biopharmaceuticals, such as therapeutic antibodies. Engineering mammalian cell factories presents a number of limitations typically associated with the proteotoxic stress induced upon aberrant accumulation of off-pathway protein folding intermediates, which eventually culminate in the induction of apoptosis. In this review, we will discuss advances in cell engineering and their applications at different hierarchical levels of control of the expression of recombinant proteins, from transcription and translational to posttranslational modifications and subcellular trafficking. We also highlight challenges and unique opportunities to apply modern synthetic biology tools to the design of programmable cell factories for improved biomanufacturing of therapeutic proteins.
Collapse
Affiliation(s)
- Bhagyashree Bachhav
- Department of Chemical and Biochemical Engineering, Rice University, Houston, United States
| | - Jacopo de Rossi
- Systems, Synthetic, and Physical Biology, Rice University, Houston, United States
| | - Carlos D. Llanos
- Systems, Synthetic, and Physical Biology, Rice University, Houston, United States
| | - Laura Segatori
- Department of Chemical and Biochemical Engineering, Rice University, Houston, United States
- Systems, Synthetic, and Physical Biology, Rice University, Houston, United States
- Department of Bioengineering, Rice University, Houston, United States
- Department of Biosciences, Rice University, Houston, United States
| |
Collapse
|
4
|
Grindes L, Florimond C, Ribault S, Raymond C, Dieryck W, Corbin C, Joucla G. Weak promoters to drive selection marker expression: improvement of cell line development process for therapeutic protein production in CHO-K1 cells. J Biotechnol 2023; 369:43-54. [PMID: 37149043 DOI: 10.1016/j.jbiotec.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/02/2023] [Indexed: 05/08/2023]
Abstract
Chinese Hamster Ovary cells have been widely used as host cells for production of recombinant therapeutic molecules. Cell line development is a decisive step, which must be carried out with an efficient process. In particular, degree of selection stringency is an important parameter for identification of rare, high-producing cell lines. In the CHOZN® CHO K1 platform, selection of top-producing clones is based on puromycin resistance, whose expression is driven by Simian Virus 40 Early (SV40E) promoter. In this study, novel promoters have been identified to drive expression of selection marker. Decrease of transcriptional activity compared to SV40E promoter was confirmed by RT-qPCR. Selection stringency was increased, as seen by decreased surviving rate of transfected mini-pools and longer recovery duration of transfected bulk pools. Several promoters led to a 1.5-fold increase of maximum titer and a 1.3-fold increase of mean specific productivity of the monoclonal antibody over the clone generation. Expression level was maintained stable over long term cultivation. Finally, productivity increase was confirmed on several monoclonal antibodies and fusion proteins. Lowering the strength of promoter for expression of selective pressure resistance is an efficient strategy to increase selection stringency, which can be applied on industrial CHO-based cell line development platforms.
Collapse
Affiliation(s)
- Lucie Grindes
- Process Development Department, Merck Biodevelopment, Martillac, France; Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Pessac, France.
| | - Camille Florimond
- Process Development Department, Merck Biodevelopment, Martillac, France
| | - Sébastien Ribault
- Process Development Department, Merck Biodevelopment, Martillac, France
| | - Céline Raymond
- Process Development Department, Merck Biodevelopment, Martillac, France
| | - Wilfrid Dieryck
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Pessac, France
| | - Cyrielle Corbin
- Process Development Department, Merck Biodevelopment, Martillac, France
| | - Gilles Joucla
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, Pessac, France
| |
Collapse
|
5
|
Use of ubiquitous chromatin opening elements (UCOE) as tools to maintain transgene expression in biotechnology. Comput Struct Biotechnol J 2022; 21:275-283. [PMID: 36582439 PMCID: PMC9764128 DOI: 10.1016/j.csbj.2022.11.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Amongst the most important outputs of the biopharmaceutical industry are recombinant proteins, many of which are produced by integrating transgenes into the genomes of mammalian cells. However, expression is highly variable and can be unstable during prolonged culture. This is often due to epigenetic mechanisms silencing the transgenes. To combat this problem, vectors have been engineered to include ubiquitous chromatin opening elements (UCOEs) that protect against silencing. Here, we recount the evidence that UCOEs can modify chromatin environments and benefit biomanufacturing.
Collapse
|
6
|
Li Q, Yan RF, Yang YX, Mi CL, Jia YL, Wang TY. Stabilizing and Anti-Repressor Elements Effectively Increases Transgene Expression in Transfected CHO Cells. Front Bioeng Biotechnol 2022; 10:840600. [PMID: 35721852 PMCID: PMC9199445 DOI: 10.3389/fbioe.2022.840600] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Chinese hamster ovary (CHO) cells are currently the most widely used host cells for recombinant therapeutic protein (RTP) production. Currently, the RTP yields need to increase further to meet the market needs and reduce costs. In this study, three stabilizing and anti-repressor (SAR) elements from the human genome were selected, including human SAR7, SAR40, and SAR44 elements. SAR elements were cloned upstream of the promoter in the eukaryotic vector, followed by transfection into CHO cells, and were screened under G418 pressure. Flow cytometry was used to detect enhanced green fluorescent protein (eGFP) expression levels. The gene copy numbers and mRNA expression levels were determined through quantitative real-time PCR. Furthermore, the effect of the stronger SAR elements on adalimumab was investigated. The results showed that transgene expression levels in the SAR-containing vectors were higher than that of the control vector, and SAR7 and SAR40 significantly increased and maintained the long-term expression of the transgene in CHO cells. In addition, the transgene expression level increase was related with gene copy numbers and mRNA expression levels. Collectively, SAR elements can enhance the transgene expression and maintain the long-term expression of a transgene in transfected CHO cells, which may be used to increase recombinant protein production in CHO cells.
Collapse
Affiliation(s)
- Qin Li
- School of Basic Medicine, Xinxiang Medical University, Xinxiang, China.,International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, China
| | - Rui-Fang Yan
- School of Basic Medicine, Xinxiang Medical University, Xinxiang, China
| | - Yong-Xiao Yang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, China
| | - Chun-Liu Mi
- School of Basic Medicine, Xinxiang Medical University, Xinxiang, China.,International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, China
| | - Yan-Long Jia
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, China
| | - Tian-Yun Wang
- School of Basic Medicine, Xinxiang Medical University, Xinxiang, China.,International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
7
|
Zhang JH, Shan LL, Liang F, Du CY, Li JJ. Strategies and Considerations for Improving Recombinant Antibody Production and Quality in Chinese Hamster Ovary Cells. Front Bioeng Biotechnol 2022; 10:856049. [PMID: 35316944 PMCID: PMC8934426 DOI: 10.3389/fbioe.2022.856049] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/16/2022] [Indexed: 11/30/2022] Open
Abstract
Recombinant antibodies are rapidly developing therapeutic agents; approximately 40 novel antibody molecules enter clinical trials each year, most of which are produced from Chinese hamster ovary (CHO) cells. However, one of the major bottlenecks restricting the development of antibody drugs is how to perform high-level expression and production of recombinant antibodies. The high-efficiency expression and quality of recombinant antibodies in CHO cells is determined by multiple factors. This review provides a comprehensive overview of several state-of-the-art approaches, such as optimization of gene sequence of antibody, construction and optimization of high-efficiency expression vector, using antibody expression system, transformation of host cell lines, and glycosylation modification. Finally, the authors discuss the potential of large-scale production of recombinant antibodies and development of culture processes for biopharmaceutical manufacturing in the future.
Collapse
Affiliation(s)
- Jun-He Zhang
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, China
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China
- Henan International Joint Laboratory of Recombinant Pharmaceutical Protein Expression System, Xinxiang Medical University, Xinxiang, China
- *Correspondence: Jun-He Zhang,
| | - Lin-Lin Shan
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China
| | - Fan Liang
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, China
| | - Chen-Yang Du
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, China
| | - Jing-Jing Li
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
8
|
Masuda K, Watanabe K, Ueno T, Nakazawa Y, Tanabe Y, Ushiki-Kaku Y, Ogawa-Goto K, Ehara Y, Saeki H, Okumura T, Nonaka K, Kamihira M. Novel cell line development strategy for monoclonal antibody manufacturing using translational enhancing technology. J Biosci Bioeng 2021; 133:273-280. [PMID: 34930670 DOI: 10.1016/j.jbiosc.2021.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/04/2021] [Accepted: 11/22/2021] [Indexed: 11/19/2022]
Abstract
Chinese hamster ovary (CHO) cells are widely used for constructing expression systems to produce therapeutic proteins. However, the establishment of high-producer clones remains a laborious and time-consuming process, despite various progresses having been made in cell line development. We previously developed a new strategy for screening high monoclonal antibody (mAb)-producing cells using flow cytometry (FCM). We also reported that p180 and SF3b4 play key roles in active translation on the endoplasmic reticulum, and that the productivity of secreted alkaline phosphatase was enhanced by the overexpression of p180 and SF3b4. Here, we attempted to apply the translational enhancing technology to high mAb-producing cells obtained after high-producer cell sorting. A high mAb-producing CHO clone, L003, which showed an mAb production level of >3 g/L in fed-batch culture, was established from a high mAb-producing cell pool fractionated by FCM. Clones generated by the overexpression of p180 and SF3b4 in L003 cells were evaluated by fed-batch culture. The specific productivity of clones overexpressing these two factors was ∼3.1-fold higher than that of parental L003 cells in the early phase of the culture period. Furthermore, the final mAb concentration was increased to 9.5 g/L during 17 days of fed-batch culture after optimizing the medium and culture process. These results indicate that the overexpression of p180 and SF3b4 would be promising for establishing high-producer cell lines applicable to industrial production.
Collapse
Affiliation(s)
- Kenji Masuda
- Biologics Division, Biologics Technology Research Laboratories, Daiichi Sankyo Co., Ltd., 2716-1 Kurakake, Akaiwa, Chiyoda-machi, Gunma 370-0503, Japan; Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Kazuhiko Watanabe
- Biologics Division, Biologics Technology Research Laboratories, Daiichi Sankyo Co., Ltd., 2716-1 Kurakake, Akaiwa, Chiyoda-machi, Gunma 370-0503, Japan
| | - Tomonori Ueno
- Nippi Research Institute of Biomatrix, 520-11, Kuwabara, Toride, Ibaraki 302-0017, Japan
| | - Yuto Nakazawa
- Biologics Division, Biologics Technology Research Laboratories, Daiichi Sankyo Co., Ltd., 2716-1 Kurakake, Akaiwa, Chiyoda-machi, Gunma 370-0503, Japan; Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Yumiko Tanabe
- Biologics Division, Biologics Technology Research Laboratories, Daiichi Sankyo Co., Ltd., 2716-1 Kurakake, Akaiwa, Chiyoda-machi, Gunma 370-0503, Japan
| | - Yuko Ushiki-Kaku
- Nippi Research Institute of Biomatrix, 520-11, Kuwabara, Toride, Ibaraki 302-0017, Japan
| | - Kiyoko Ogawa-Goto
- Nippi Research Institute of Biomatrix, 520-11, Kuwabara, Toride, Ibaraki 302-0017, Japan; Japan Institute of Leather Research, 1-1-1 Senju Midori-cho, Adachi-ku, Tokyo 120-8601, Japan
| | - Yukikazu Ehara
- FUJIFILM Wako Pure Chemical Corporation, 3-17-15 Niizo-Minami, Toda, Saitama 335-0026, Japan
| | - Hisashi Saeki
- FUJIFILM Wako Pure Chemical Corporation, 3-17-15 Niizo-Minami, Toda, Saitama 335-0026, Japan
| | - Takeshi Okumura
- Biologics Division, Biologics Technology Research Laboratories, Daiichi Sankyo Co., Ltd., 2716-1 Kurakake, Akaiwa, Chiyoda-machi, Gunma 370-0503, Japan
| | - Koichi Nonaka
- Biologics Division, Biologics Technology Research Laboratories, Daiichi Sankyo Co., Ltd., 2716-1 Kurakake, Akaiwa, Chiyoda-machi, Gunma 370-0503, Japan
| | - Masamichi Kamihira
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
9
|
A cell-based multiplex immunoassay platform using fluorescent protein-barcoded reporter cell lines. Commun Biol 2021; 4:1338. [PMID: 34824350 PMCID: PMC8617053 DOI: 10.1038/s42003-021-02881-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 11/09/2021] [Indexed: 11/08/2022] Open
Abstract
Multiplex immunoassays with acellular antigens are well-established based on solid-phase platforms such as the Luminex® technology. Cell barcoding by amine-reactive fluorescent dyes enables analogous cell-based multiplex assays, but requires multiple labeling reactions and quality checks prior to every assay. Here we describe generation of stable, fluorescent protein-barcoded reporter cell lines suitable for multiplex screening of antibody to membrane proteins. The utility of this cell-based system, with the potential of a 256-plex cell panel, is demonstrated by flow cytometry deconvolution of barcoded cell panels expressing influenza A hemagglutinin trimers, or native human CCR2 or CCR5 multi-span proteins and their epitope-defining mutants. This platform will prove useful for characterizing immunity and discovering antibodies to membrane-associated proteins.
Collapse
|
10
|
Mahboudi S, Moosavi-Nasab M, Kazemi B, Rahimpour A, Eskandari MH, Mohammadian O, Shams F. Utilization of the human gamma-satellite insulator for the enhancement of anti-PCSK9 monoclonal antibody expression in Chinese hamster ovary cells. Mol Biol Rep 2021; 48:4405-4412. [PMID: 34089466 DOI: 10.1007/s11033-021-06456-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/27/2021] [Indexed: 11/26/2022]
Abstract
Monoclonal antibodies (mAbs) are widely employed as invaluable therapeutics for a vast number of human disorders. Several approaches have been introduced for the improvement of mAb production in Chinese hamster ovary (CHO) cells due to the increasing demand for these products. In this regard, various chromatin-modifying elements such as insulators have been incorporated in the expression vectors to augment mAb expression. In this study, human gamma-satellite insulator containing vectors were utilized for the expression of an anti-proprotein convertase subtilisin/kexin type 9 (PCSK9) mAb in CHO-K1 cells. To this aim, dual expression vectors encoding the antibody light chain (LC) and heavy chain (HC) with or without the insulator element were constructed, and mAb expression was evaluated in transient and stable expression. Based on the results, mAb expression significantly increased in the stable cell pool, and clonal cells developed using the human gamma-satellite insulator. In contrast, transient antibody expression was not affected by the insulator element. Finally, the enhancement of LC and HC mRNA levels was found in the insulator containing stable cell pools using the quantitative real-time-polymerase chain reaction (qRT-PCR). Our findings showed the positive effect of the human gamma-satellite insulator on the stable expression of an anti-PCSK9 immunoglobulin G1 (IgG1) mAb in CHO-K1 cells using dual expression vectors.
Collapse
Affiliation(s)
- Somayeh Mahboudi
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Marzieh Moosavi-Nasab
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran.
| | - Bahram Kazemi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azam Rahimpour
- Medical Nano-Technology & Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Hadi Eskandari
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Omid Mohammadian
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Forough Shams
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Guo X, Wang C, Wang TY. Chromatin-modifying elements for recombinant protein production in mammalian cell systems. Crit Rev Biotechnol 2020; 40:1035-1043. [PMID: 32777953 DOI: 10.1080/07388551.2020.1805401] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mammalian cells are the preferred choice system for the production of complex molecules, such as recombinant therapeutic proteins. Although the technology for increasing the yield of proteins has improved rapidly, the process of selecting, identifying as well as maintaining high-yield cell clones is still troublesome, time-consuming and usually uncertain. Optimization of expression vectors is one of the most effective methods for enhancing protein expression levels. Several commonly used chromatin-modifying elements, including the matrix attachment region, ubiquitous chromatin opening elements, insulators, stabilizing anti-repressor elements can be used to increase the expression level and stability of recombinant proteins. In this review, these chromatin-modifying elements used for the expression vector optimization in mammalian cells are summarized, and future strategies for the utilization of expression cassettes are also discussed.
Collapse
Affiliation(s)
- Xiao Guo
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China.,Perildicals Publishing House, Xinxiang Medical University, Xinxiang, China
| | - Chong Wang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Tian-Yun Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China.,Perildicals Publishing House, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
12
|
Fusion with matrix attachment regions enhances expression of recombinant protein in human HT-1080 cells. J Biosci Bioeng 2020; 130:533-538. [PMID: 32773266 DOI: 10.1016/j.jbiosc.2020.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 11/23/2022]
Abstract
Like endogenous proteins, recombinant foreign proteins produced in human cell lines also need post-translational modifications. However, high and long-term expression of a gene of interest (GOI) presents significant challenges for recombinant protein production in human cells. In this work, the effect of human matrix attachment region elements (MARs), including the β-globin MAR (gMAR), chicken lysozyme MAR (cMAR), and a combination of these two, on the stable expression of GOI was assessed in human HT-1080 cells. After transfection with vectors containing the MAR elements and eGFP, stably HT-1080 cell pools were obtained under selective pressure. eGFP protein expression was analyzed by flow cytometry, while transgene copy number and eGFP mRNA expression levels were determined with qPCR and qRT-PCR technology. We found that MARs could not enhance transfection efficiency, but gMAR could significantly increase eGFP expression in stable HT-1080 cell pools by approximately 2.69-fold. Moreover, gMAR could also increase eGFP expression stability during long-term culture. Lastly, we showed that the effect of the MARs on transgenes was related to the gene copy number. In summary, this study found that MARs could both enhance the transgene expression and stability in HT-1080 cells.
Collapse
|
13
|
Effects of viral promoters, the Woodchuck hepatitis post-transcriptional regulatory element, and weakened antibiotic resistance markers on transgene expression in Chinese hamster ovary cells. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Harten IA, Kaber G, Agarwal KJ, Kang I, Ibarrientos SR, Workman G, Chan CK, Nivison MP, Nagy N, Braun KR, Kinsella MG, Merrilees MJ, Wight TN. The synthesis and secretion of versican isoform V3 by mammalian cells: A role for N-linked glycosylation. Matrix Biol 2020; 89:27-42. [PMID: 32001344 PMCID: PMC7282976 DOI: 10.1016/j.matbio.2020.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 02/02/2023]
Abstract
Versican is a large extracellular matrix (ECM) chondroitin sulfate (CS) proteoglycan found in most soft tissues, which is encoded by the VCAN gene. At least four major isoforms (V0, V1, V2, and V3) are generated via alternative splicing. The isoforms of versican are expressed and accumulate in various tissues during development and disease, where they contribute to ECM structure, cell growth and migration, and immune regulation, among their many functions. While several studies have identified the mRNA transcript for the V3 isoform in a number of tissues, little is known about the synthesis, secretion, and targeting of the V3 protein. In this study, we used lentiviral generation of doxycycline-inducible rat V3 with a C-terminal tag in stable NIH 3T3 cell lines and demonstrated that V3 is processed through the classical secretory pathway. We further show that N-linked glycosylation is required for efficient secretion and solubility of the protein. By site-directed mutagenesis, we identified amino acids 57 and 330 as the active N-linked glycosylation sites on V3 when expressed in this cell type. Furthermore, exon deletion constructs of V3 revealed that exons 11-13, which code for portions of the carboxy region of the protein (G3 domain), are essential for V3 processing and secretion. Once secreted, the V3 protein associates with hyaluronan along the cell surface and within the surrounding ECM. These results establish critical parameters for the processing, solubility, and targeting of the V3 isoform by mammalian cells and establishes a role for V3 in the organization of hyaluronan.
Collapse
Affiliation(s)
- Ingrid A. Harten
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| | - Gernot Kaber
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| | - Kiran J. Agarwal
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| | - Inkyung Kang
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| | | | - Gail Workman
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| | - Christina K. Chan
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| | - Mary P. Nivison
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| | - Nadine Nagy
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| | - Kathleen R. Braun
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| | | | - Mervyn J. Merrilees
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Thomas N. Wight
- Matrix Biology Program, Benaroya Research Institute, Seattle, WA, USA
| |
Collapse
|
15
|
Zhao B, Chaturvedi P, Zimmerman DL, Belmont AS. Efficient and Reproducible Multigene Expression after Single-Step Transfection Using Improved BAC Transgenesis and Engineering Toolkit. ACS Synth Biol 2020; 9:1100-1116. [PMID: 32216371 DOI: 10.1021/acssynbio.9b00457] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Achieving stable expression of a single transgene in mammalian cells remains challenging; even more challenging is obtaining simultaneous stable expression of multiple transgenes at reproducible, relative expression levels. Previously, we attained copy-number-dependent, chromosome-position-independent expression of reporter minigenes by embedding them within a BAC "scaffold" containing the mouse Msh3-Dhfr locus (DHFR BAC). Here, we extend this "BAC TG-EMBED" approach. First, we report a toolkit of endogenous promoters capable of driving transgene expression over a 0.01- to 5-fold expression range relative to the CMV promoter, allowing fine-tuning of relative expression levels of multiple reporter genes. Second, we demonstrate little variation in expression level and long-term expression stability of a reporter gene embedded in BACs containing either transcriptionally active or inactive genomic regions, making the choice of BAC scaffolds more flexible. Third, we present a novel BAC assembly scheme, "BAC-MAGIC", for inserting multiple transgenes into BAC scaffolds, which is much more time-efficient than traditional galK-based methods. As a proof-of-principle for our improved BAC TG-EMBED toolkit, we simultaneously fluorescently labeled three nuclear compartments at reproducible, relative intensity levels in 94% of stable clones after a single transfection using a DHFR BAC scaffold containing 4 transgenes assembled with BAC-MAGIC. Our extended BAC TG-EMBED toolkit and BAC-MAGIC method provide an efficient, versatile platform for stable simultaneous expression of multiple transgenes at reproducible, relative levels.
Collapse
Affiliation(s)
- Binhui Zhao
- Department of Cell and Developmental Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Pankaj Chaturvedi
- Department of Cell and Developmental Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - David L. Zimmerman
- Department of Cell and Developmental Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Andrew S. Belmont
- Department of Cell and Developmental Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
16
|
Gupta K, Parasnis M, Jain R, Dandekar P. Vector-related stratagems for enhanced monoclonal antibody production in mammalian cells. Biotechnol Adv 2019; 37:107415. [DOI: 10.1016/j.biotechadv.2019.107415] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 07/01/2019] [Accepted: 07/01/2019] [Indexed: 12/16/2022]
|
17
|
Xiang JS, Kaplan M, Dykstra P, Hinks M, McKeague M, Smolke CD. Massively parallel RNA device engineering in mammalian cells with RNA-Seq. Nat Commun 2019; 10:4327. [PMID: 31548547 PMCID: PMC6757056 DOI: 10.1038/s41467-019-12334-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 08/28/2019] [Indexed: 12/21/2022] Open
Abstract
Synthetic RNA-based genetic devices dynamically control a wide range of gene-regulatory processes across diverse cell types. However, the limited throughput of quantitative assays in mammalian cells has hindered fast iteration and interrogation of sequence space needed to identify new RNA devices. Here we report developing a quantitative, rapid and high-throughput mammalian cell-based RNA-Seq assay to efficiently engineer RNA devices. We identify new ribozyme-based RNA devices that respond to theophylline, hypoxanthine, cyclic-di-GMP, and folinic acid from libraries of ~22,700 sequences in total. The small molecule responsive devices exhibit low basal expression and high activation ratios, significantly expanding our toolset of highly functional ribozyme switches. The large datasets obtained further provide conserved sequence and structure motifs that may be used for rationally guided design. The RNA-Seq approach offers a generally applicable strategy for developing broad classes of RNA devices, thereby advancing the engineering of genetic devices for mammalian systems.
Collapse
Affiliation(s)
- Joy S Xiang
- Department of Bioengineering, 443 Via Ortega, MC 4245, Stanford University, Stanford, CA, 94305, USA
| | - Matias Kaplan
- Department of Bioengineering, 443 Via Ortega, MC 4245, Stanford University, Stanford, CA, 94305, USA
| | - Peter Dykstra
- Department of Bioengineering, 443 Via Ortega, MC 4245, Stanford University, Stanford, CA, 94305, USA
| | - Michaela Hinks
- Department of Bioengineering, 443 Via Ortega, MC 4245, Stanford University, Stanford, CA, 94305, USA
| | - Maureen McKeague
- Department of Pharmacology and Therapeutics, McGill University, 3655 Prom. Sir-William-Osler, Montreal, Quebec, H3G 1Y6, Canada
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, H3A 0B8, Canada
| | - Christina D Smolke
- Department of Bioengineering, 443 Via Ortega, MC 4245, Stanford University, Stanford, CA, 94305, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA.
| |
Collapse
|
18
|
Castillejo-Lopez C, Pjanic M, Pirona AC, Hetty S, Wabitsch M, Wadelius C, Quertermous T, Arner E, Ingelsson E. Detailed Functional Characterization of a Waist-Hip Ratio Locus in 7p15.2 Defines an Enhancer Controlling Adipocyte Differentiation. iScience 2019; 20:42-59. [PMID: 31557715 PMCID: PMC6817687 DOI: 10.1016/j.isci.2019.09.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 07/10/2019] [Accepted: 09/05/2019] [Indexed: 12/22/2022] Open
Abstract
We combined CAGE sequencing in human adipocytes during differentiation with data from genome-wide association studies to identify an enhancer in the SNX10 locus on chromosome 7, presumably involved in body fat distribution. Using reporter assays and CRISPR-Cas9 gene editing in human cell lines, we characterized the role of the enhancer in adipogenesis. The enhancer was active during adipogenesis and responded strongly to insulin and isoprenaline. The allele associated with increased waist-hip ratio in human genetic studies was associated with higher enhancer activity. Mutations of the enhancer resulted in less adipocyte differentiation. RNA sequencing of cells with disrupted enhancer showed reduced expression of established adipocyte markers, such as ADIPOQ and LPL, and identified CHI3L1 on chromosome 1 as a potential gene involved in adipocyte differentiation. In conclusion, we identified and characterized an enhancer in the SNX10 locus and outlined its plausible mechanisms of action and downstream targets. An enhancer active during adipogenesis is located in an obesity GWAS locus The enhancer responded strongly to insulin and isoprenaline Mutation of the enhancer by CRISPR-Cas9 decreased adipocyte differentiation Knockout of CHI3L1 decreased adipocyte differentiation
Collapse
Affiliation(s)
- Casimiro Castillejo-Lopez
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Milos Pjanic
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Anna Chiara Pirona
- Department of Medical Sciences and Science for Life Laboratory, Uppsala University, Uppsala, Sweden; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Susanne Hetty
- Department of Medical Sciences and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Martin Wabitsch
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Endocrinology and Diabetes, University of Ulm, Ulm, Germany
| | - Claes Wadelius
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Thomas Quertermous
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA
| | - Erik Arner
- Laboratory for Applied Regulatory Genomics Network Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045 Japan
| | - Erik Ingelsson
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medical Sciences and Science for Life Laboratory, Uppsala University, Uppsala, Sweden; Stanford Cardiovascular Institute, Stanford University, Stanford, CA 94305, USA; Stanford Diabetes Research Center, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
19
|
Rozov SM, Deineko EV. Strategies for Optimizing Recombinant Protein Synthesis in Plant Cells: Classical Approaches and New Directions. Mol Biol 2019. [DOI: 10.1134/s0026893319020146] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Naderi F, Hashemi M, Bayat H, Mohammadian O, Pourmaleki E, Etemadzadeh MH, Rahimpour A. The Augmenting Effects of the tDNA Insulator on Stable Expression of Monoclonal Antibody in Chinese Hamster Ovary Cells. Monoclon Antib Immunodiagn Immunother 2018; 37:200-206. [DOI: 10.1089/mab.2018.0015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Fatemeh Naderi
- Department of Genetics, Tehran Medical Branch, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Tehran Medical Branch, Islamic Azad University, Tehran, Iran
| | - Hadi Bayat
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Mohammadian
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Es'hagh Pourmaleki
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Azam Rahimpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Jia Y, Guo X, Lu J, Wang X, Qiu L, Wang T. CRISPR/Cas9-mediated gene knockout for DNA methyltransferase Dnmt3a in CHO cells displays enhanced transgenic expression and long-term stability. J Cell Mol Med 2018; 22:4106-4116. [PMID: 29851281 PMCID: PMC6111867 DOI: 10.1111/jcmm.13687] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/23/2018] [Indexed: 12/14/2022] Open
Abstract
CHO cells are the preferred host for the production of complex pharmaceutical proteins in the biopharmaceutical industry, and genome engineering of CHO cells would benefit product yield and stability. Here, we demonstrated the efficacy of a Dnmt3a-deficient CHO cell line created by CRISPR/Cas9 genome editing technology through gene disruptions in Dnmt3a, which encode the proteins involved in DNA methyltransferases. The transgenes, which were driven by the 2 commonly used CMV and EF1α promoters, were evaluated for their expression level and stability. The methylation levels of CpG sites in the promoter regions and the global DNA were compared in the transfected cells. The Dnmt3a-deficent CHO cell line based on Dnmt3a KO displayed an enhanced long-term stability of transgene expression under the control of the CMV promoter in transfected cells in over 60 passages. Under the CMV promoter, the Dnmt3a-deficent cell line with a high transgene expression displayed a low methylation rate in the promoter region and global DNA. Under the EF1α promoter, the Dnmt3a-deficient and normal cell lines with low transgene expression exhibited high DNA methylation rates. These findings provide insight into cell line modification and design for improved recombinant protein production in CHO and other mammalian cells.
Collapse
Affiliation(s)
- Yan‐Long Jia
- College of PharmacyXinxiang Medical UniversityXinxiangHenanChina
- International Joint Research Laboratory for Recombiant Pharmaceutical Protein Expression System of HenanXinxiang Medical UniversityXinxiangHenanChina
| | - Xiao Guo
- College of PharmacyXinxiang Medical UniversityXinxiangHenanChina
- International Joint Research Laboratory for Recombiant Pharmaceutical Protein Expression System of HenanXinxiang Medical UniversityXinxiangHenanChina
| | - Jiang‐Tao Lu
- College of PharmacyXinxiang Medical UniversityXinxiangHenanChina
- International Joint Research Laboratory for Recombiant Pharmaceutical Protein Expression System of HenanXinxiang Medical UniversityXinxiangHenanChina
| | - Xiao‐Yin Wang
- International Joint Research Laboratory for Recombiant Pharmaceutical Protein Expression System of HenanXinxiang Medical UniversityXinxiangHenanChina
- School of Basic MedicineXinxiang Medical UniversityXinxiangHenanChina
| | - Le‐Le Qiu
- School of Basic MedicineXinxiang Medical UniversityXinxiangHenanChina
| | - Tian‐Yun Wang
- International Joint Research Laboratory for Recombiant Pharmaceutical Protein Expression System of HenanXinxiang Medical UniversityXinxiangHenanChina
- School of Basic MedicineXinxiang Medical UniversityXinxiangHenanChina
| |
Collapse
|
22
|
Romanova N, Noll T. Engineered and Natural Promoters and Chromatin-Modifying Elements for Recombinant Protein Expression in CHO Cells. Biotechnol J 2017; 13:e1700232. [DOI: 10.1002/biot.201700232] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/07/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Nadiya Romanova
- Cell Culture Technology; Faculty of Technology; Bielefeld University; Germany
| | - Thomas Noll
- Cell Culture Technology; Faculty of Technology; Bielefeld University; Germany
- Bielefeld University; Center for Biotechnology (CeBiTec); Germany
| |
Collapse
|
23
|
Tian ZW, Xu DH, Wang TY, Wang XY, Xu HY, Zhao CP, Xu GH. Identification of a potent MAR element from the human genome and assessment of its activity in stably transfected CHO cells. J Cell Mol Med 2017; 22:1095-1102. [PMID: 29077269 PMCID: PMC5783848 DOI: 10.1111/jcmm.13361] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 07/25/2017] [Indexed: 01/23/2023] Open
Abstract
Low-level and unstable transgene expression are common issues using the CHO cell expression system. Matrix attachment regions (MARs) enhance transgene expression levels, but additional research is needed to improve their function and to determine their mechanism of action. MAR-6 from CHO chromosomes actively mediates high and consistent gene expression. In this study, we compared the effects of two new MARs and MAR-6 on transgene expression in recombinant CHO cells and found one potent MAR element that can significantly increase transgene expression. Two MARs, including the human CSP-B MAR element and DHFR intron MAR element from CHO cells, were cloned and inserted downstream of the poly(A) site in a eukaryotic vector. The constructs were transfected into CHO cells, and the expression levels and stability of eGFP were detected by flow cytometry. The three MAR sequences can be ranked in terms of overall eGFP expression, in decreasing order, as follows: human CSP-B, DHFR intron MAR element and MAR-6. Additionally, as expected, the three MAR-containing vectors showed higher transfection efficiencies and transient transgene expression in comparison with those of the non-MAR-containing vector. Bioinformatics analysis indicated that the NFAT and VIBP elements within MAR sequences may contribute to the enhancement of eGFP expression. In conclusion, the human CSP-B MAR element can improve transgene expression and its effects may be related to the NFAT and VIBP elements.
Collapse
Affiliation(s)
- Zheng-Wei Tian
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Dan-Hua Xu
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Tian-Yun Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiao-Yin Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Hong-Yan Xu
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Chun-Peng Zhao
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Guang-Hua Xu
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
24
|
Neville JJ, Orlando J, Mann K, McCloskey B, Antoniou MN. Ubiquitous Chromatin-opening Elements (UCOEs): Applications in biomanufacturing and gene therapy. Biotechnol Adv 2017; 35:557-564. [DOI: 10.1016/j.biotechadv.2017.05.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 05/11/2017] [Accepted: 05/15/2017] [Indexed: 12/31/2022]
|
25
|
Lalonde ME, Durocher Y. Therapeutic glycoprotein production in mammalian cells. J Biotechnol 2017; 251:128-140. [DOI: 10.1016/j.jbiotec.2017.04.028] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 04/12/2017] [Accepted: 04/23/2017] [Indexed: 12/12/2022]
|
26
|
Rocha-Pizaña MDR, Ascencio-Favela G, Soto-García BM, Martinez-Fierro MDLL, Alvarez MM. Evaluation of changes in promoters, use of UCOES and chain order to improve the antibody production in CHO cells. Protein Expr Purif 2017; 132:108-115. [DOI: 10.1016/j.pep.2017.01.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 01/30/2017] [Accepted: 01/31/2017] [Indexed: 11/26/2022]
|
27
|
Alves CS, Dobrowsky TM. Strategies and Considerations for Improving Expression of "Difficult to Express" Proteins in CHO Cells. Methods Mol Biol 2017; 1603:1-23. [PMID: 28493120 DOI: 10.1007/978-1-4939-6972-2_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Despite substantial advances in the field of mammalian expression, there are still proteins that are characterized as difficult to express. Determining the expression bottleneck requires troubleshooting techniques specific for the given molecule and host. The complex array of intracellular processes involved in protein expression includes transcription, protein folding, post-translation processing, and secretion. Challenges in any of these steps could result in low protein expression, while the inherent properties of the molecule itself may limit its production via mechanisms such as cytotoxicity or inherent instability. Strategies to identify the rate-limiting step and subsequently improve expression and production are discussed here.
Collapse
|
28
|
Inoue F, Kircher M, Martin B, Cooper GM, Witten DM, McManus MT, Ahituv N, Shendure J. A systematic comparison reveals substantial differences in chromosomal versus episomal encoding of enhancer activity. Genome Res 2016; 27:38-52. [PMID: 27831498 PMCID: PMC5204343 DOI: 10.1101/gr.212092.116] [Citation(s) in RCA: 182] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/08/2016] [Indexed: 11/24/2022]
Abstract
Candidate enhancers can be identified on the basis of chromatin modifications, the binding of chromatin modifiers and transcription factors and cofactors, or chromatin accessibility. However, validating such candidates as bona fide enhancers requires functional characterization, typically achieved through reporter assays that test whether a sequence can increase expression of a transcriptional reporter via a minimal promoter. A longstanding concern is that reporter assays are mainly implemented on episomes, which are thought to lack physiological chromatin. However, the magnitude and determinants of differences in cis-regulation for regulatory sequences residing in episomes versus chromosomes remain almost completely unknown. To address this systematically, we developed and applied a novel lentivirus-based massively parallel reporter assay (lentiMPRA) to directly compare the functional activities of 2236 candidate liver enhancers in an episomal versus a chromosomally integrated context. We find that the activities of chromosomally integrated sequences are substantially different from the activities of the identical sequences assayed on episomes, and furthermore are correlated with different subsets of ENCODE annotations. The results of chromosomally based reporter assays are also more reproducible and more strongly predictable by both ENCODE annotations and sequence-based models. With a linear model that combines chromatin annotations and sequence information, we achieve a Pearson's R2 of 0.362 for predicting the results of chromosomally integrated reporter assays. This level of prediction is better than with either chromatin annotations or sequence information alone and also outperforms predictive models of episomal assays. Our results have broad implications for how cis-regulatory elements are identified, prioritized and functionally validated.
Collapse
Affiliation(s)
- Fumitaka Inoue
- Department of Bioengineering and Therapeutic Sciences, Institute for Human Genetics, University of California San Francisco, San Francisco, California 94158, USA
| | - Martin Kircher
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Beth Martin
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Gregory M Cooper
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama 35806, USA
| | - Daniela M Witten
- Departments of Statistics and Biostatistics, University of Washington, Seattle, Washington 98195, USA
| | - Michael T McManus
- Department of Microbiology and Immunology, UCSF Diabetes Center, Keck Center for Noncoding RNA, University of California, San Francisco, San Francisco, California 94143, USA
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, Institute for Human Genetics, University of California San Francisco, San Francisco, California 94158, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA.,Howard Hughes Medical Institute, Seattle, Washington 98195, USA
| |
Collapse
|
29
|
Ho SCL, Koh EYC, Soo BPC, Mariati, Chao SH, Yang Y. Evaluating the use of a CpG free promoter for long-term recombinant protein expression stability in Chinese hamster ovary cells. BMC Biotechnol 2016; 16:71. [PMID: 27756290 PMCID: PMC5070371 DOI: 10.1186/s12896-016-0300-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 10/13/2016] [Indexed: 12/04/2022] Open
Abstract
Background Methylated CpG dinucleotides in promoters are associated with the loss of gene expression in recombinant Chinese hamster ovary (CHO) cells during large-scale commercial manufacturing. We evaluated a promoter devoid of CpG dinucleotides, CpGfree, in parallel with a similar CpG containing promoter, CpGrich, for their ability to maintain the expression of recombinant enhanced green fluorescent protein (EGFP) after 8 weeks of culturing. Results While the promoters gave similar transient expression levels, CpGfree clones had significantly higher average stable expression possibly due to increased resistance to early silencing during integration into the chromosome. A greater proportion of cells in clones generated using the CpGfree promoter were still expressing detectable levels of EGFP after 8 weeks but the relative expression levels measured at week 8 to those measured at week 0 did not improve compared to clones generated using the CpGrich promoter. Chromatin immunoprecipitation assays indicated that the repression of the CpGfree promoter was likely linked to histone deacetylation and methylation. Use of histone deacetylase inhibitors also managed to recover some of the lost expression. Conclusion Using a promoter without CpG dinucleotides could mitigate the early gene silencing but did not improve longer-term expression stability as silencing due to histone modifications could still take place. The results presented here would aid in promoter selection and design for improved protein production in CHO and other mammalian cells.
Collapse
Affiliation(s)
- Steven C L Ho
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Singapore
| | - Esther Y C Koh
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Singapore
| | - Benjamin P C Soo
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Singapore
| | - Mariati
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Singapore
| | - Sheng-Hao Chao
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Singapore.,Department of Microbiology, National University of Singapore, Block MD4, 5 Science Drive 2, Singapore, 117597, Singapore
| | - Yuansheng Yang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, #06-01 Centros, Singapore, 138668, Singapore.
| |
Collapse
|
30
|
Fukuma M, Ganmyo Y, Miura O, Ohyama T, Shimizu N. Cloning and Characterization of a Human Genomic Sequence that Alleviates Repeat-Induced Gene Silencing. PLoS One 2016; 11:e0153338. [PMID: 27078685 PMCID: PMC4831671 DOI: 10.1371/journal.pone.0153338] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/28/2016] [Indexed: 01/06/2023] Open
Abstract
Plasmids bearing a mammalian replication initiation region (IR) and a nuclear matrix attachment region (MAR) are spontaneously amplified in transfected mammalian cells, and such amplification generates chromosomal homogeneously staining regions (HSRs) or extrachromosomal double minutes (DMs). This method provides a novel, efficient, and rapid way to establish cells that stably produce high levels of recombinant proteins. However, because IR/MAR plasmids are amplified as repeats, they are frequently targeted by repeat-induced gene silencing (RIGS), which silences a variety of repeated sequences in transgenes and the genome. To address this problem, we developed a novel screening system using the IR/MAR plasmid to isolate human genome sequences that alleviate RIGS. The screen identified a 3,271 bp sequence (B-3-31) that elevated transgene expression without affecting the amplification process. Neither non-B structure (i.e., the inverted repeats or bending) nor known epigenetic modifier elements such as MARs, insulators, UCOEs, or STARs could explain the anti-silencing activity of B-3-31. Instead, the activity was distributed throughout the entire B-3-31 sequence, which was extremely A/T-rich and CpG-poor. Because B-3-31 effectively and reproducibly alleviated RIGS of repeated genes, it could be used to increase recombinant protein production.
Collapse
Affiliation(s)
- Miki Fukuma
- Graduate School of Biosphere Science, Hiroshima University, Higashi-hiroshima, Hiroshima, Japan
| | - Yuto Ganmyo
- Graduate School of Biosphere Science, Hiroshima University, Higashi-hiroshima, Hiroshima, Japan
| | - Osamu Miura
- Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Takashi Ohyama
- Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Noriaki Shimizu
- Graduate School of Biosphere Science, Hiroshima University, Higashi-hiroshima, Hiroshima, Japan
- * E-mail:
| |
Collapse
|
31
|
Kang SY, Kim YG, Kang S, Lee HW, Lee EG. A novel regulatory element (E77) isolated from CHO-K1 genomic DNA enhances stable gene expression in Chinese hamster ovary cells. Biotechnol J 2016; 11:633-41. [PMID: 26762773 PMCID: PMC5067685 DOI: 10.1002/biot.201500464] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/26/2015] [Accepted: 01/07/2016] [Indexed: 01/22/2023]
Abstract
Vectors flanked by regulatory DNA elements have been used to generate stable cell lines with high productivity and transgene stability; however, regulatory elements in Chinese hamster ovary (CHO) cells, which are the most widely used mammalian cells in biopharmaceutical production, are still poorly understood. We isolated a novel gene regulatory element from CHO‐K1 cells, designated E77, which was found to enhance the stable expression of a transgene. A genomic library was constructed by combining CHO‐K1 genomic DNA fragments with a CMV promoter‐driven GFP expression vector, and the E77 element was isolated by screening. The incorporation of the E77 regulatory element resulted in the generation of an increased number of clones with high expression, thereby enhancing the expression level of the transgene in the stable transfectant cell pool. Interestingly, the E77 element was found to consist of two distinct fragments derived from different locations in the CHO genome shotgun sequence. High and stable transgene expression was obtained in transfected CHO cells by combining these fragments. Additionally, the function of E77 was found to be dependent on its site of insertion and specific orientation in the vector construct. Our findings demonstrate that stable gene expression mediated by the CMV promoter in CHO cells may be improved by the isolated novel gene regulatory element E77 identified in the present study.
Collapse
Affiliation(s)
- Shin-Young Kang
- Department of Bioprocess Engineering, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Yeon-Gu Kim
- Department of Bioprocess Engineering, Korea University of Science and Technology (UST), Daejeon, Republic of Korea.,Biotechnology Process Engineering Center, KRIBB, Ochang, Republic of Korea
| | - Seunghee Kang
- Biotechnology Process Engineering Center, KRIBB, Ochang, Republic of Korea
| | - Hong Weon Lee
- Department of Bioprocess Engineering, Korea University of Science and Technology (UST), Daejeon, Republic of Korea.,Biotechnology Process Engineering Center, KRIBB, Ochang, Republic of Korea
| | - Eun Gyo Lee
- Department of Bioprocess Engineering, Korea University of Science and Technology (UST), Daejeon, Republic of Korea. .,Biotechnology Process Engineering Center, KRIBB, Ochang, Republic of Korea.
| |
Collapse
|
32
|
Environmental Epigenetics: Crossroad between Public Health, Lifestyle, and Cancer Prevention. BIOMED RESEARCH INTERNATIONAL 2015; 2015:587983. [PMID: 26339624 PMCID: PMC4538403 DOI: 10.1155/2015/587983] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/01/2015] [Indexed: 12/31/2022]
Abstract
Epigenetics provides the key to transform the genetic information into phenotype and because of its reversibility it is considered an ideal target for therapeutic interventions. This paper reviews the basic mechanisms of epigenetic control: DNA methylation, histone modifications, chromatin remodeling, and ncRNA expression and their role in disease development. We describe also the influence of the environment, lifestyle, nutritional habits, and the psychological influence on epigenetic marks and how these factors are related to cancer and other diseases development. Finally we discuss the potential use of natural epigenetic modifiers in the chemoprevention of cancer to link together public health, environment, and lifestyle.
Collapse
|
33
|
Harraghy N, Calabrese D, Fisch I, Girod PA, LeFourn V, Regamey A, Mermod N. Epigenetic regulatory elements: Recent advances in understanding their mode of action and use for recombinant protein production in mammalian cells. Biotechnol J 2015; 10:967-78. [DOI: 10.1002/biot.201400649] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/20/2015] [Accepted: 05/20/2015] [Indexed: 12/18/2022]
|
34
|
Mariati, Koh EYC, Yeo JHM, Ho SCL, Yang Y. Toward stable gene expression in CHO cells. Bioengineered 2015; 5:340-5. [PMID: 25482237 DOI: 10.4161/bioe.32111] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Maintaining high gene expression level during long-term culture is critical when producing therapeutic recombinant proteins using mammalian cells. Transcriptional silencing of promoters, most likely due to epigenetic events such as DNA methylation and histone modifications, is one of the major mechanisms causing production instability. Previous studies demonstrated that the core CpG island element (IE) from the hamster adenine phosphoribosyltransferase gene is effective to prevent DNA methylation. We generated one set of modified human cytomegalovirus (hCMV) promoters by insertion of one or two copies of IE in either forward or reverse orientations into different locations of the hCMV promoter. The modified hCMV with one copy of IE inserted between the hCMV enhancer and core promoter in reverse orientation (MR1) was most effective at enhancing expression stability in CHO cells without comprising expression level when compared with the wild type hCMV. We also found that insertion of IE into a chimeric murine CMV (mCMV) enhancer and human elongation factor-1α core (hEF) promoter in reverse orientation did not enhance expression stability, indicating that the effect of IE on expression stability is possibly promoter specific.
Collapse
Affiliation(s)
- Mariati
- a Bioprocessing Technology Institute; Agency for Science, Technology, and Research (A*STAR); Singapore, Republic of Singapore
| | | | | | | | | |
Collapse
|
35
|
Zboray K, Sommeregger W, Bogner E, Gili A, Sterovsky T, Fauland K, Grabner B, Stiedl P, Moll HP, Bauer A, Kunert R, Casanova E. Heterologous protein production using euchromatin-containing expression vectors in mammalian cells. Nucleic Acids Res 2015; 43:e102. [PMID: 25977298 PMCID: PMC4652741 DOI: 10.1093/nar/gkv475] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 04/29/2015] [Indexed: 01/10/2023] Open
Abstract
Upon stable cell line generation, chromosomal integration site of the vector DNA has a major impact on transgene expression. Here we apply an active gene environment, rather than specified genetic elements, in expression vectors used for random integration. We generated a set of Bacterial Artificial Chromosome (BAC) vectors with different open chromatin regions, promoters and gene regulatory elements and tested their impact on recombinant protein expression in CHO cells. We identified the Rosa26 BAC as the most efficient vector backbone showing a nine-fold increase in both polyclonal and clonal production of the human IgG-Fc. Clonal protein production was directly proportional to integrated vector copy numbers and remained stable during 10 weeks without selection pressure. Finally, we demonstrated the advantages of BAC-based vectors by producing two additional proteins, HIV-1 glycoprotein CN54gp140 and HIV-1 neutralizing PG9 antibody, in bioreactors and shake flasks reaching a production yield of 1 g/l.
Collapse
Affiliation(s)
- Katalin Zboray
- Ludwig Boltzmann Institute for Cancer Research (LBI-CR), Vienna, 1090, Austria
| | - Wolfgang Sommeregger
- Vienna Institute of BioTechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, 1190, Austria Polymun Scientific GmbH, Klosterneuburg, 3400, Austria
| | - Edith Bogner
- Ludwig Boltzmann Institute for Cancer Research (LBI-CR), Vienna, 1090, Austria
| | - Andreas Gili
- Polymun Scientific GmbH, Klosterneuburg, 3400, Austria
| | | | | | - Beatrice Grabner
- Ludwig Boltzmann Institute for Cancer Research (LBI-CR), Vienna, 1090, Austria
| | - Patricia Stiedl
- Ludwig Boltzmann Institute for Cancer Research (LBI-CR), Vienna, 1090, Austria
| | - Herwig P Moll
- Institute of Pharmacology, Center of Physiology and Pharmacology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, 1090, Austria
| | | | - Renate Kunert
- Vienna Institute of BioTechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, 1190, Austria
| | - Emilio Casanova
- Ludwig Boltzmann Institute for Cancer Research (LBI-CR), Vienna, 1090, Austria Institute of Pharmacology, Center of Physiology and Pharmacology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, 1090, Austria
| |
Collapse
|
36
|
Chromatin function modifying elements in an industrial antibody production platform--comparison of UCOE, MAR, STAR and cHS4 elements. PLoS One 2015; 10:e0120096. [PMID: 25849659 PMCID: PMC4388700 DOI: 10.1371/journal.pone.0120096] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 02/02/2015] [Indexed: 01/02/2023] Open
Abstract
The isolation of stably transfected cell lines suitable for the manufacture of biotherapeutic protein products can be an arduous process relying on the identification of a high expressing clone; this frequently involves transgene amplification and maintenance of the clones' expression over at least 60 generations. Maintenance of expression, or cell line stability, is highly dependent upon the nature of the genomic environment at the site of transgene integration, where epigenetic mechanisms lead to variable expression and silencing in the vast majority of cases. We have assessed four chromatin function modifying elements (A2UCOE, MAR X_S29, STAR40 and cHS4) for their ability to negate chromatin insertion site position effects and their ability to express and maintain monoclonal antibody expression. Each element was analysed by insertion into different positions within a vector, either flanking or between heavy chain (HC) and light chain (LC) antibody expression cassettes. Our results clearly show that the A2UCOE is the most beneficial element in this system, with stable cell pools and clones increasing antibody yields 6.5-fold and 6.75-fold respectively. Stability analysis demonstrated that the reduction in antibody expression, seen with cells transfected with the control vector over 120 generations, was mitigated in the clones containing A2UCOE-augmented transgenes. Analysis also showed that the A2UCOE reduced the amount of transgene promoter DNA methylation, which contributed to the maintenance of starting levels of expression.
Collapse
|
37
|
Role of epigenetics in expression of recombinant proteins from mammalian cells. ACTA ACUST UNITED AC 2014. [DOI: 10.4155/pbp.14.47] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
38
|
Mariati, Yeo JHM, Koh EYC, Ho SCL, Yang Y. Insertion of core CpG island element into human CMV promoter for enhancing recombinant protein expression stability in CHO cells. Biotechnol Prog 2014; 30:523-34. [DOI: 10.1002/btpr.1919] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 04/02/2014] [Indexed: 01/17/2023]
Affiliation(s)
- Mariati
- Bioprocessing Technology Inst., Agency for Science, Technology and Research (A*STAR); Singapore 138668 Singapore
| | - Jessna H. M. Yeo
- Bioprocessing Technology Inst., Agency for Science, Technology and Research (A*STAR); Singapore 138668 Singapore
| | - Esther Y. C. Koh
- Bioprocessing Technology Inst., Agency for Science, Technology and Research (A*STAR); Singapore 138668 Singapore
| | - Steven C. L. Ho
- Bioprocessing Technology Inst., Agency for Science, Technology and Research (A*STAR); Singapore 138668 Singapore
| | - Yuansheng Yang
- Bioprocessing Technology Inst., Agency for Science, Technology and Research (A*STAR); Singapore 138668 Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University; Singapore 637459 Singapore
| |
Collapse
|
39
|
Shi L, Chen X, Tang W, Li Z, Liu J, Gao F, Sang J. Combination of FACS and homologous recombination for the generation of stable and high-expression engineered cell lines. PLoS One 2014; 9:e91712. [PMID: 24646904 PMCID: PMC3960159 DOI: 10.1371/journal.pone.0091712] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Accepted: 02/14/2014] [Indexed: 11/30/2022] Open
Abstract
Traditionally, cell line generation requires several months and involves screening of over several hundred cell clones for high productivity before dozens are selected as candidate cell lines. Here, we have designed a new strategy for the generation of stable and high-expression cell lines by combining homologous recombination (HR) and fluorescence-activated cell sorting (FACS). High expression was indicated by the expression of secreted green fluorescent protein (SEGFP). Parental cell lines with the highest expression of SEGFP were then selected by FACS and identified by stability analysis. Consequently, HR vectors were constructed using the cassette for SEGFP as the HR region. After transfecting the HR vector, the cells with negative SEGFP expression were enriched by FACS. The complete exchange between SEGFP and target gene (TNFR-Fc) cassettes was demonstrated by DNA analysis. Compared with the traditional method, by integrating the cassette containing the gene of interest into the pre-selected site, the highest producing cells secreted a more than 8-fold higher titer of target protein. Hence, this new strategy can be applied to isolated stable cell lines with desirable expression of any gene of interest. The stable cell lines can rapidly produce proteins for researching protein structure and function and are even applicable in drug discovery.
Collapse
Affiliation(s)
- Lei Shi
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
- R&D Department, AutekBio, Inc., Beijing, China
| | - Xuesi Chen
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | | | - Zhenyi Li
- R&D Department, AutekBio, Inc., Beijing, China
| | - Jin Liu
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Feng Gao
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
- R&D Department, AutekBio, Inc., Beijing, China
- * E-mail: (JS); (FG)
| | - Jianli Sang
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
- * E-mail: (JS); (FG)
| |
Collapse
|
40
|
Minn I, Menezes ME, Sarkar S, Yarlagadda K, Das SK, Emdad L, Sarkar D, Fisher PB, Pomper MG. Molecular-genetic imaging of cancer. Adv Cancer Res 2014; 124:131-69. [PMID: 25287688 PMCID: PMC4339000 DOI: 10.1016/b978-0-12-411638-2.00004-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Molecular-genetic imaging of cancer using nonviral delivery systems has great potential for clinical application as a safe, efficient, noninvasive tool for visualization of various cellular processes including detection of cancer, and its attendant metastases. In recent years, significant effort has been expended in overcoming technical hurdles to enable clinical adoption of molecular-genetic imaging. This chapter will provide an introduction to the components of molecular-genetic imaging and recent advances on each component leading to safe, efficient clinical applications for detecting cancer. Combination with therapy, namely, generating molecular-genetic theranostic constructs, will provide further impetus for clinical translation of this promising technology.
Collapse
Affiliation(s)
- Il Minn
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Siddik Sarkar
- Department of Human and Molecular Genetics, Richmond, Virginia, USA
| | - Keerthi Yarlagadda
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland, USA
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Luni Emdad
- Department of Human and Molecular Genetics, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Richmond, Virginia, USA; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Martin G Pomper
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA.
| |
Collapse
|
41
|
Noh SM, Sathyamurthy M, Lee GM. Development of recombinant Chinese hamster ovary cell lines for therapeutic protein production. Curr Opin Chem Eng 2013. [DOI: 10.1016/j.coche.2013.08.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
42
|
Majocchi S, Aritonovska E, Mermod N. Epigenetic regulatory elements associate with specific histone modifications to prevent silencing of telomeric genes. Nucleic Acids Res 2013; 42:193-204. [PMID: 24071586 PMCID: PMC3874193 DOI: 10.1093/nar/gkt880] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
In eukaryotic cells, transgene expression levels may be limited by an unfavourable chromatin structure at the integration site. Epigenetic regulators are DNA sequences which may protect transgenes from such position effect. We evaluated different epigenetic regulators for their ability to protect transgene expression at telomeres, which are commonly associated to low or inconsistent expression because of their repressive chromatin environment. Although to variable extents, matrix attachment regions (MARs), ubiquitous chromatin opening element (UCOE) and the chicken cHS4 insulator acted as barrier elements, protecting a telomeric-distal transgene from silencing. MARs also increased the probability of silent gene reactivation in time-course experiments. Additionally, all MARs improved the level of expression in non-silenced cells, unlike other elements. MARs were associated to histone marks usually linked to actively expressed genes, especially acetylation of histone H3 and H4, suggesting that they may prevent the spread of silencing chromatin by imposing acetylation marks on nearby nucleosomes. Alternatively, an UCOE was found to act by preventing deposition of repressive chromatin marks. We conclude that epigenetic DNA elements used to enhance and stabilize transgene expression all have specific epigenetic signature that might be at the basis of their mode of action.
Collapse
Affiliation(s)
- Stefano Majocchi
- Laboratory of Molecular Biotechnology, Center for Biotechnology UNIL-EPFL, University of Lausanne, 1015 Lausanne, Switzerland
| | | | | |
Collapse
|
43
|
Frenzel A, Hust M, Schirrmann T. Expression of recombinant antibodies. Front Immunol 2013; 4:217. [PMID: 23908655 PMCID: PMC3725456 DOI: 10.3389/fimmu.2013.00217] [Citation(s) in RCA: 219] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 07/15/2013] [Indexed: 12/15/2022] Open
Abstract
Recombinant antibodies are highly specific detection probes in research, diagnostics, and have emerged over the last two decades as the fastest growing class of therapeutic proteins. Antibody generation has been dramatically accelerated by in vitro selection systems, particularly phage display. An increasing variety of recombinant production systems have been developed, ranging from Gram-negative and positive bacteria, yeasts and filamentous fungi, insect cell lines, mammalian cells to transgenic plants and animals. Currently, almost all therapeutic antibodies are still produced in mammalian cell lines in order to reduce the risk of immunogenicity due to altered, non-human glycosylation patterns. However, recent developments of glycosylation-engineered yeast, insect cell lines, and transgenic plants are promising to obtain antibodies with "human-like" post-translational modifications. Furthermore, smaller antibody fragments including bispecific antibodies without any glycosylation are successfully produced in bacteria and have advanced to clinical testing. The first therapeutic antibody products from a non-mammalian source can be expected in coming next years. In this review, we focus on current antibody production systems including their usability for different applications.
Collapse
Affiliation(s)
- André Frenzel
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Braunschweig, Germany
| | - Michael Hust
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Braunschweig, Germany
| | - Thomas Schirrmann
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
44
|
Kunert R, Casanova E. Recent advances in recombinant protein production: BAC-based expression vectors, the bigger the better. Bioengineered 2013; 4:258-61. [PMID: 23680894 PMCID: PMC3728198 DOI: 10.4161/bioe.24060] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Designing appropriate expression vectors is one of the critical steps in the generation of stable cell lines for recombinant protein production. Conventional expression vectors are severely affected by the chromatin environment surrounding their integration site into the host genome, resulting in low expression levels and transgene silencing. In the past, a new generation of expression vectors and different strategies was developed to overcome the chromatin effects. Bacterial artificial chromosomes (BACs) are cloning vectors capable of accommodating up to 350 Kb. Thus, BACs can carry a whole eukaryotic locus with all the elements controlling the expression of a gene; therefore, BACs harbor their own chromatin environment. Expression vectors based on BACs containing open/permissive chromatin loci are not affected by the chromatin surrounding their integration site in the host cell genome. Consequently, BAC-based expression vectors containing the appropriate loci confer predictable and high levels of expression over time. These properties make BAC-based expression vectors a very attractive tool applied to the recombinant protein production field.
Collapse
Affiliation(s)
- Renate Kunert
- Department of Biotechnology, Vienna Institute of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| | | |
Collapse
|
45
|
|
46
|
Simple piggyBac transposon-based mammalian cell expression system for inducible protein production. Proc Natl Acad Sci U S A 2013; 110:5004-9. [PMID: 23476064 DOI: 10.1073/pnas.1218620110] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Reported here is a piggyBac transposon-based expression system for the generation of doxycycline-inducible, stably transfected mammalian cell cultures for large-scale protein production. The system works with commonly used adherent and suspension-adapted mammalian cell lines and requires only a single transfection step. Moreover, the high uniform expression levels observed among clones allow for the use of stable bulk cell cultures, thereby eliminating time-consuming cloning steps. Under continuous doxycycline induction, protein expression levels have been shown to be stable for at least 2 mo in the absence of drug selection. The high efficiency of the system also allows for the generation of stable bulk cell cultures in 96-well format, a capability leading to the possibility of generating stable cell cultures for entire families of membrane or secreted proteins. Finally, we demonstrate the utility of the system through the large-scale production (140-750 mg scale) of an endoplasmic reticulum-resident fucosyltransferase and two potential anticancer protein therapeutic agents.
Collapse
|
47
|
Datta P, Linhardt RJ, Sharfstein ST. An 'omics approach towards CHO cell engineering. Biotechnol Bioeng 2013; 110:1255-71. [DOI: 10.1002/bit.24841] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 12/19/2012] [Accepted: 01/02/2013] [Indexed: 12/15/2022]
|
48
|
Mammalian Cell Line Developments in Speed and Efficiency. MAMMALIAN CELL CULTURES FOR BIOLOGICS MANUFACTURING 2013; 139:11-33. [DOI: 10.1007/10_2013_260] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
49
|
Noguchi C, Araki Y, Miki D, Shimizu N. Fusion of the Dhfr/Mtx and IR/MAR gene amplification methods produces a rapid and efficient method for stable recombinant protein production. PLoS One 2012; 7:e52990. [PMID: 23300841 PMCID: PMC3534112 DOI: 10.1371/journal.pone.0052990] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 11/22/2012] [Indexed: 11/19/2022] Open
Abstract
Amplification of the dihydrofolate reductase gene (Dhfr) by methotrexate (Mtx) exposure is commonly used for recombinant protein expression in Chinese hamster ovary (CHO) cells. However, this method is both time- and labor-intensive, and the high-producing cells that are generated are frequently unstable in culture. Another gene amplification method is based on using a plasmid bearing a mammalian replication initiation region (IR) and a matrix attachment region (MAR), which result in the spontaneous initiation of gene amplification in transfected cells. The IR/MAR and Dhfr/Mtx methods of gene amplification are based on entirely different principles. In this study, we combine these two methods to yield a novel method, termed the IR/MAR-Dhfr fusion method, which was used to express three proteins, the Fc receptor, GFP, and recombinant antibody. The fusion method resulted in a dramatic increase in expression of all three proteins in two CHO sub-lines, DXB-11, and DG44. The IR/MAR-Dhfr fusion amplified the genes rapidly and efficiently, and produced larger amounts of antibody than the Dhfr/Mtx or IR/MAR methods alone. While the amplified structure produced by the Dhfr/Mtx method was highly unstable, and the antibody production rate rapidly decreased with the culture time of the cells, the IR/MAR-Dhfr fusion method resulted in stable amplification and generated clonal cells that produced large amounts of antibody protein over a long period of time. In summary, the novel IR/MAR-Dhfr fusion method enables isolation of stable cells that produce larger amounts of a target recombinant protein more rapidly and easily than either the Dhfr/Mtx or IR/MAR methods alone.
Collapse
Affiliation(s)
- Chiemi Noguchi
- Graduate School of Biosphere Science, Hiroshima University, Higashi-hiroshima, Hiroshima, Japan
| | - Yoshio Araki
- Graduate School of Biosphere Science, Hiroshima University, Higashi-hiroshima, Hiroshima, Japan
| | | | - Noriaki Shimizu
- Graduate School of Biosphere Science, Hiroshima University, Higashi-hiroshima, Hiroshima, Japan
- * E-mail:
| |
Collapse
|
50
|
Efficient recombinant production in mammalian cells using a novel IR/MAR gene amplification method. PLoS One 2012; 7:e41787. [PMID: 22844523 PMCID: PMC3402416 DOI: 10.1371/journal.pone.0041787] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 06/25/2012] [Indexed: 01/21/2023] Open
Abstract
We previously found that plasmids bearing a mammalian replication initiation region (IR) and a nuclear matrix attachment region (MAR) efficiently initiate gene amplification and spontaneously increase their copy numbers in animal cells. In this study, this novel method was applied to the establishment of cells with high recombinant antibody production. The level of recombinant antibody expression was tightly correlated with the efficiency of plasmid amplification and the cytogenetic appearance of the amplified genes, and was strongly dependent on cell type. By using a widely used cell line for industrial protein production, CHO DG44, clones expressing very high levels of antibody were easily obtained. High-producer clones stably expressed the antibody over several months without eliciting changes in both the protein expression level and the cytogenetic appearance of the amplified genes. The integrity and reactivity of the protein produced by this method was fine. In serum-free suspension culture, the specific protein production rate in high-density cultures was 29.4 pg/cell/day. In conclusion, the IR/MAR gene amplification method is a novel and efficient platform for recombinant antibody production in mammalian cells, which rapidly and easily enables the establishment of stable high-producer cell clone.
Collapse
|