1
|
Izadi M, Sadri N, Abdi A, Serajian S, Jalalei D, Tahmasebi S. Epigenetic biomarkers in aging and longevity: Current and future application. Life Sci 2024; 351:122842. [PMID: 38879158 DOI: 10.1016/j.lfs.2024.122842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
The aging process has been one of the most necessary research fields in the current century, and knowing different theories of aging and the role of different genetic, epigenetic, molecular, and environmental modulating factors in increasing the knowledge of aging mechanisms and developing appropriate diagnostic, therapeutic, and preventive ways would be helpful. One of the most conserved signs of aging is epigenetic changes, including DNA methylation, histone modifications, chromatin remodeling, noncoding RNAs, and extracellular RNAs. Numerous biological processes and hallmarks are vital in aging development, but epigenomic alterations are especially notable because of their importance in gene regulation and cellular identity. The mounting evidence points to a possible interaction between age-related epigenomic alterations and other aging hallmarks, like genome instability. To extend a healthy lifespan and possibly reverse some facets of aging and aging-related diseases, it will be crucial to comprehend global and locus-specific epigenomic modifications and recognize corresponding regulators of health and longevity. In the current study, we will aim to discuss the role of epigenomic mechanisms in aging and the most recent developments in epigenetic diagnostic biomarkers, which have the potential to focus efforts on reversing the destructive signs of aging and extending the lifespan.
Collapse
Affiliation(s)
- Mehran Izadi
- Department of Infectious and Tropical Diseases, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran; Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran
| | - Nariman Sadri
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran; Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran; School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhossein Abdi
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran; Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran; Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
| | - Sahar Serajian
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran; Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran; Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
| | - Dorsa Jalalei
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran; Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran; School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Safa Tahmasebi
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran; Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran; Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Ma M, Zhu Y, Xiao C, Li R, Cao X, Kang R, Wang X, Li E. Novel insights into RB1 in prostate cancer lineage plasticity and drug resistance. TUMORI JOURNAL 2024; 110:252-263. [PMID: 38316605 DOI: 10.1177/03008916231225576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Prostate cancer is the second most common malignancy among men in the world, posing a serious threat to men's health and lives. RB1 is the first human tumor suppressor gene to be described, and it is closely associated with the development, progression, and suppression of a variety of tumors. It was found that the loss of RB1 is an early event in prostate cancer development and is closely related to prostate cancer development, progression and treatment resistance. This paper reviews the current status of research on the relationship between RB1 and prostate cancer from three aspects: RB1 and prostate cell lineage plasticity; biological behavior; and therapeutic resistance. Providing a novel perspective for developing new therapeutic strategies for RB1-loss prostate cancer.
Collapse
Affiliation(s)
- Min Ma
- Institute of Translational Medicine, School of Basic Medical, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yazhi Zhu
- Institute of Translational Medicine, School of Basic Medical, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Changkai Xiao
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Ruidong Li
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xingyu Cao
- Institute of Translational Medicine, School of Basic Medical, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Ran Kang
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiaolan Wang
- Department of Reproductive Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Ermao Li
- Institute of Translational Medicine, School of Basic Medical, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
3
|
Huang MF, Wang YX, Chou YT, Lee DF. Therapeutic Strategies for RB1-Deficient Cancers: Intersecting Gene Regulation and Targeted Therapy. Cancers (Basel) 2024; 16:1558. [PMID: 38672640 PMCID: PMC11049207 DOI: 10.3390/cancers16081558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
The retinoblastoma (RB) transcriptional corepressor 1 (RB1) is a critical tumor suppressor gene, governing diverse cellular processes implicated in cancer biology. Dysregulation or deletion in RB1 contributes to the development and progression of various cancers, making it a prime target for therapeutic intervention. RB1's canonical function in cell cycle control and DNA repair mechanisms underscores its significance in restraining aberrant cell growth and maintaining genomic stability. Understanding the complex interplay between RB1 and cellular pathways is beneficial to fully elucidate its tumor-suppressive role across different cancer types and for therapeutic development. As a result, investigating vulnerabilities arising from RB1 deletion-associated mechanisms offers promising avenues for targeted therapy. Recently, several findings highlighted multiple methods as a promising strategy for combating tumor growth driven by RB1 loss, offering potential clinical benefits in various cancer types. This review summarizes the multifaceted role of RB1 in cancer biology and its implications for targeted therapy.
Collapse
Affiliation(s)
- Mo-Fan Huang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA; (M.-F.H.); (Y.-X.W.)
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Yuan-Xin Wang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA; (M.-F.H.); (Y.-X.W.)
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 300044, Taiwan;
| | - Yu-Ting Chou
- Institute of Biotechnology, National Tsing Hua University, Hsinchu 300044, Taiwan;
| | - Dung-Fang Lee
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX 77030, USA; (M.-F.H.); (Y.-X.W.)
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
4
|
Zhao S, Mo G, Wang Q, Xu J, Yu S, Huang Z, Liu W, Zhang W. Role of RB1 in neurodegenerative diseases: inhibition of post-mitotic neuronal apoptosis via Kmt5b. Cell Death Discov 2024; 10:182. [PMID: 38637503 PMCID: PMC11026443 DOI: 10.1038/s41420-024-01955-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/04/2023] [Accepted: 04/10/2024] [Indexed: 04/20/2024] Open
Abstract
During the development of the vertebrate nervous system, 50% of the nerve cells undergo apoptosis shortly after formation. This process is important for sculpting tissue during morphogenesis and removing transiently functional cells that are no longer needed, ensuring the appropriate number of neurons in each region. Dysregulation of neuronal apoptosis can lead to neurodegenerative diseases. However, the molecular events involved in activating and regulating the neuronal apoptosis program are not fully understood. In this study, we identified several RB1 mutations in patients with neurodegenerative diseases. Then, we used a zebrafish model to investigate the role of Rb1 in neuronal apoptosis. We showed that Rb1-deficient mutants exhibit a significant hindbrain neuronal apoptosis, resulting in increased microglia infiltration. We further revealed that the apoptotic neurons in Rb1-deficient zebrafish were post-mitotic neurons, and Rb1 inhibits the apoptosis of these neurons by regulating bcl2/caspase through binding to Kmt5b. Moreover, using this zebrafish mutant, we verified the pathogenicity of the R621S and L819V mutations of human RB1 in neuronal apoptosis. Collectively, our data indicate that the Rb1-Kmt5b-caspase/bcl2 axis is crucial for protecting post-mitotic neurons from apoptosis and provides an explanation for the pathogenesis of clinically relevant mutations.
Collapse
Affiliation(s)
- Shuang Zhao
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Guiling Mo
- Guangzhou KingMed Diagnostics Group Co., Ltd., International Biotech Island, Guangzhou, 510005, China
| | - Qiang Wang
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Jin Xu
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Shihui Yu
- Guangzhou KingMed Diagnostics Group Co., Ltd., International Biotech Island, Guangzhou, 510005, China
| | - Zhibin Huang
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Wei Liu
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, 510006, China.
| | - Wenqing Zhang
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, 510006, China.
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, 518055, China.
| |
Collapse
|
5
|
Salvadores M, Supek F. Cell cycle gene alterations associate with a redistribution of mutation risk across chromosomal domains in human cancers. NATURE CANCER 2024; 5:330-346. [PMID: 38200245 DOI: 10.1038/s43018-023-00707-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 12/11/2023] [Indexed: 01/12/2024]
Abstract
Mutations in human cells exhibit increased burden in heterochromatic, late DNA replication time (RT) chromosomal domains, with variation in mutation rates between tissues mirroring variation in heterochromatin and RT. We observed that regional mutation risk further varies between individual tumors in a manner independent of cell type, identifying three signatures of domain-scale mutagenesis in >4,000 tumor genomes. The major signature reflects remodeling of heterochromatin and of the RT program domains seen across tumors, tissues and cultured cells, and is robustly linked with higher expression of cell proliferation genes. Regional mutagenesis is associated with loss of activity of the tumor-suppressor genes RB1 and TP53, consistent with their roles in cell cycle control, with distinct mutational patterns generated by the two genes. Loss of regional heterogeneity in mutagenesis is associated with deficiencies in various DNA repair pathways. These mutation risk redistribution processes modify the mutation supply towards important genes, diverting the course of somatic evolution.
Collapse
Affiliation(s)
- Marina Salvadores
- Genome Data Science, Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Fran Supek
- Genome Data Science, Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| |
Collapse
|
6
|
Zamalloa LG, Pruitt MM, Hermance NM, Gali H, Flynn RL, Manning AL. RB loss sensitizes cells to replication-associated DNA damage after PARP inhibition by trapping. Life Sci Alliance 2023; 6:e202302067. [PMID: 37704395 PMCID: PMC10500056 DOI: 10.26508/lsa.202302067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023] Open
Abstract
The retinoblastoma tumor suppressor protein (RB) interacts physically and functionally with a number of epigenetic modifying enzymes to control transcriptional regulation, respond to replication stress, promote DNA damage response and repair, and regulate genome stability. To better understand how disruption of RB function impacts epigenetic regulation of genome stability and determine whether such changes represent exploitable weaknesses of RB-deficient cancer cells, we performed an imaging-based screen to identify epigenetic inhibitors that promote DNA damage and compromise the viability of RB-deficient cells. We found that loss of RB alone leads to high levels of replication-dependent poly-ADP ribosylation (PARylation) and that preventing PARylation by trapping PARP enzymes on chromatin enables RB-deficient cells to progress to mitosis with unresolved replication stress. These defects contribute to high levels of DNA damage and compromised cell viability. We demonstrate this sensitivity is conserved across a panel of drugs that target both PARP1 and PARP2 and can be suppressed by reexpression of the RB protein. Together, these data indicate that drugs that target PARP1 and PARP2 may be clinically relevant for RB-deficient cancers.
Collapse
Affiliation(s)
- Luis Gregory Zamalloa
- https://ror.org/05ejpqr48 Worcester Polytechnic Institute, Department of Biology and Biotechnology, Worcester, MA, USA
| | - Margaret M Pruitt
- https://ror.org/05ejpqr48 Worcester Polytechnic Institute, Department of Biology and Biotechnology, Worcester, MA, USA
| | - Nicole M Hermance
- https://ror.org/05ejpqr48 Worcester Polytechnic Institute, Department of Biology and Biotechnology, Worcester, MA, USA
| | - Himabindu Gali
- Boston University School of Medicine, Pharmacology, Boston, MA, USA
| | - Rachel L Flynn
- Boston University School of Medicine, Pharmacology, Boston, MA, USA
| | - Amity L Manning
- https://ror.org/05ejpqr48 Worcester Polytechnic Institute, Department of Biology and Biotechnology, Worcester, MA, USA
| |
Collapse
|
7
|
Stylianakis E, Chan JPK, Law PP, Jiang Y, Khadayate S, Karimi MM, Festenstein R, Vannier JB. Mouse HP1γ regulates TRF1 expression and telomere stability. Life Sci 2023; 331:122030. [PMID: 37598977 DOI: 10.1016/j.lfs.2023.122030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
AIMS Telomeric repeat-containing RNAs are long non-coding RNAs generated from the telomeres. TERRAs are essential for the establishment of heterochromatin marks at telomeres, which serve for the binding of members of the heterochromatin protein 1 (HP1) protein family of epigenetic modifiers involved with chromatin compaction and gene silencing. While HP1γ is enriched on gene bodies of actively transcribed human and mouse genes, it is unclear if its transcriptional role is important for HP1γ function in telomere cohesion and telomere maintenance. We aimed to study the effect of mouse HP1γ on the transcription of telomere factors and molecules that can affect telomere maintenance. MAIN METHODS We investigated the telomere function of HP1γ by using HP1γ deficient mouse embryonic fibroblasts (MEFs). We used gene expression analysis of HP1γ deficient MEFs and validated the molecular and mechanistic consequences of HP1γ loss by telomere FISH, immunofluorescence, RT-qPCR and DNA-RNA immunoprecipitation (DRIP). KEY FINDINGS Loss of HP1γ in primary MEFs led to a downregulation of various telomere and telomere-accessory transcripts, including the shelterin protein TRF1. Its downregulation is associated with increased telomere replication stress and DNA damage (γH2AX), effects more profound in females. We suggest that the source for the impaired telomere maintenance is a consequence of increased telomeric DNA-RNA hybrids and TERRAs arising at and from mouse chromosomes 18 and X. SIGNIFICANCE Our results suggest an important transcriptional control by mouse HP1γ of various telomere factors including TRF1 protein and TERRAs that has profound consequences on telomere stability, with a potential sexually dimorphic nature.
Collapse
Affiliation(s)
- Emmanouil Stylianakis
- Telomere Replication & Stability group, Medical Research Council London Institute of Medical Sciences, London, United Kingdom; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom; Gene Control Mechanisms and Disease Group, Faculty of Medicine, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Jackson Ping Kei Chan
- Gene Control Mechanisms and Disease Group, Faculty of Medicine, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Pui Pik Law
- Gene Control Mechanisms and Disease Group, Faculty of Medicine, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Yi Jiang
- Gene Control Mechanisms and Disease Group, Faculty of Medicine, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Sanjay Khadayate
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Mohammad Mahdi Karimi
- Comprehensive Cancer Centre, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Richard Festenstein
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom; Gene Control Mechanisms and Disease Group, Faculty of Medicine, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Jean-Baptiste Vannier
- Telomere Replication & Stability group, Medical Research Council London Institute of Medical Sciences, London, United Kingdom; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom.
| |
Collapse
|
8
|
Agredo A, Kasinski AL. Histone 4 lysine 20 tri-methylation: a key epigenetic regulator in chromatin structure and disease. Front Genet 2023; 14:1243395. [PMID: 37671044 PMCID: PMC10475950 DOI: 10.3389/fgene.2023.1243395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/07/2023] [Indexed: 09/07/2023] Open
Abstract
Chromatin is a vital and dynamic structure that is carefully regulated to maintain proper cell homeostasis. A great deal of this regulation is dependent on histone proteins which have the ability to be dynamically modified on their tails via various post-translational modifications (PTMs). While multiple histone PTMs are studied and often work in concert to facilitate gene expression, here we focus on the tri-methylation of histone H4 on lysine 20 (H4K20me3) and its function in chromatin structure, cell cycle, DNA repair, and development. The recent studies evaluated in this review have shed light on how H4K20me3 is established and regulated by various interacting partners and how H4K20me3 and the proteins that interact with this PTM are involved in various diseases. Through analyzing the current literature on H4K20me3 function and regulation, we aim to summarize this knowledge and highlights gaps that remain in the field.
Collapse
Affiliation(s)
- Alejandra Agredo
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
- Purdue Life Sciences Interdisciplinary Program (PULSe), Purdue University, West Lafayette, IN, United States
| | - Andrea L. Kasinski
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
9
|
Venkadakrishnan VB, Yamada Y, Weng K, Idahor O, Beltran H. Significance of RB Loss in Unlocking Phenotypic Plasticity in Advanced Cancers. Mol Cancer Res 2023; 21:497-510. [PMID: 37052520 PMCID: PMC10239360 DOI: 10.1158/1541-7786.mcr-23-0045] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/27/2023] [Accepted: 03/09/2023] [Indexed: 04/14/2023]
Abstract
Cancer cells can undergo plasticity in response to environmental stimuli or under selective therapeutic pressures that result in changes in phenotype. This complex phenomenon of phenotypic plasticity is now recognized as a hallmark of cancer. Lineage plasticity is often associated with loss of dependence on the original oncogenic driver and is facilitated, in part, by underlying genomic and epigenetic alterations. Understanding the molecular drivers of cancer plasticity is critical for the development of novel therapeutic strategies. The retinoblastoma gene RB1 (encoding RB) is the first tumor suppressor gene to be discovered and has a well-described role in cell-cycle regulation. RB is also involved in diverse cellular functions beyond cell cycle including differentiation. Here, we describe the emerging role of RB loss in unlocking cancer phenotypic plasticity and driving therapy resistance across cancer types. We highlight parallels in cancer with the noncanonical role of RB that is critical for normal development and lineage specification, and the downstream consequences of RB loss including epigenetic reprogramming and chromatin reorganization that can lead to changes in lineage program. Finally, we discuss potential therapeutic approaches geared toward RB loss cancers undergoing lineage reprogramming.
Collapse
Affiliation(s)
| | - Yasutaka Yamada
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Kenny Weng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Boston College, Chestnut Hill, Massachusetts, USA
| | - Osasenaga Idahor
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard University, Cambridge, Massachusetts, USA
| | - Himisha Beltran
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Zamalloa LG, Pruitt MM, Hermance NM, Gali H, Flynn RL, Manning AL. RB loss sensitizes cells to replication-associated DNA damage by PARP inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.25.532215. [PMID: 36993348 PMCID: PMC10055402 DOI: 10.1101/2023.03.25.532215] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The retinoblastoma tumor suppressor protein (RB) interacts physically and functionally with a number of epigenetic modifying enzymes to control transcriptional regulation, respond to replication stress, promote DNA damage response and repair pathways, and regulate genome stability. To better understand how disruption of RB function impacts epigenetic regulation of genome stability and determine whether such changes may represent exploitable weaknesses of RB-deficient cancer cells, we performed an imaging-based screen to identify epigenetic inhibitors that promote DNA damage and compromise viability of RB-deficient cells. We found that loss of RB alone leads to high levels of replication-dependent poly-ADP ribosylation (PARylation) and that preventing PARylation through inhibition of PARP enzymes enables RB-deficient cells to progress to mitosis with unresolved replication stress and under-replicated DNA. These defects contribute to high levels of DNA damage, decreased proliferation, and compromised cell viability. We demonstrate this sensitivity is conserved across a panel of inhibitors that target both PARP1 and PARP2 and can be suppressed by re-expression of the RB protein. Together, these data indicate that inhibitors of PARP1 and PARP2 may be clinically relevant for RB-deficient cancers.
Collapse
|
11
|
Pahl MC, Grant SFA, Leibel RL, Stratigopoulos G. Technologies, strategies, and cautions when deconvoluting genome-wide association signals: FTO in focus. Obes Rev 2023; 24:e13558. [PMID: 36882962 DOI: 10.1111/obr.13558] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/08/2022] [Accepted: 01/31/2023] [Indexed: 03/09/2023]
Abstract
Genome-wide association studies have revealed a plethora of genetic variants that correlate with polygenic conditions. However, causal molecular mechanisms have proven challenging to fully define. Without such information, the associations are not physiologically useful or clinically actionable. By reviewing studies of the FTO locus in the genetic etiology of obesity, we wish to highlight advances in the field fueled by the evolution of technical and analytic strategies in assessing the molecular bases for genetic associations. Particular attention is drawn to extrapolating experimental findings from animal models and cell types to humans, as well as technical aspects used to identify long-range DNA interactions and their biological relevance with regard to the associated trait. A unifying model is proposed by which independent obesogenic pathways regulated by multiple FTO variants and genes are integrated at the primary cilium, a cellular antenna where signaling molecules that control energy balance convene.
Collapse
Affiliation(s)
- Matthew C Pahl
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Struan F A Grant
- Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Division of Diabetes and Endocrinology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Department of Pediatrics, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA.,Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rudolph L Leibel
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, New York, USA.,Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, New York, USA
| | - George Stratigopoulos
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, New York, USA.,Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
12
|
Urlacher SS, Kim EY, Luan T, Young LJ, Adjetey B. Minimally invasive biomarkers in human and non-human primate evolutionary biology: Tools for understanding variation and adaptation. Am J Hum Biol 2022; 34:e23811. [PMID: 36205445 PMCID: PMC9787651 DOI: 10.1002/ajhb.23811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/21/2022] [Accepted: 09/10/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The use of minimally invasive biomarkers (MIBs - physiological biomarkers obtained from minimally invasive sample types) has expanded rapidly in science and medicine over the past several decades. The MIB approach is a methodological strength in the field of human and non-human primate evolutionary biology (HEB). Among humans and our closest relatives, MIBs provide unique opportunities to document phenotypic variation and to operationalize evolutionary hypotheses. AIMS This paper overviews the use of MIBs in HEB. Our objectives are to (1) highlight key research topics which successfully implement MIBs, (2) identify promising yet under-investigated areas of MIB application, and (3) discuss current challenges in MIB research, with suggestions for advancing the field. DISCUSSION AND CONCLUSIONS A range of MIBs are used to investigate focal topics in HEB, including energetics and life history variation/evolution, developmental plasticity, and social status and dominance relationships. Nonetheless, we identify gaps in existing MIB research on traits such as physical growth and gut function that are central to the field. Several challenges remain for HEB research using MIBs, including the need for additional biomarkers and methods of assessment, robust validations, and approaches that are standardized across labs and research groups. Importantly, researchers must provide better support for adaptation and fitness effects in hypothesis testing (e.g., by obtaining complementary measures of energy expenditure, demonstrating redundancy of function, and performing lifetime/longitudinal analyses). We point to continued progress in the use of MIBs in HEB to better understand the past, present, and future of humans and our closest primate relatives.
Collapse
Affiliation(s)
- Samuel S. Urlacher
- Department of AnthropologyBaylor UniversityWacoTexasUSA
- Human Evolutionary Biology and Health LabBaylor UniversityWacoTexasUSA
- Child and Brain Development ProgramCIFARTorontoOntarioCanada
| | - Elizabeth Y. Kim
- Human Evolutionary Biology and Health LabBaylor UniversityWacoTexasUSA
- Department of BiologyBaylor UniversityWacoTexasUSA
| | - Tiffany Luan
- Human Evolutionary Biology and Health LabBaylor UniversityWacoTexasUSA
| | - Lauren J. Young
- Human Evolutionary Biology and Health LabBaylor UniversityWacoTexasUSA
| | - Brian Adjetey
- Human Evolutionary Biology and Health LabBaylor UniversityWacoTexasUSA
| |
Collapse
|
13
|
Zhu N, Geng X, Ji X, Gao R, Li D, Yue H, Li G, Sang N. Gestational exposure to NO 2 aggravates placental senescence. ENVIRONMENTAL RESEARCH 2022; 212:113263. [PMID: 35430275 DOI: 10.1016/j.envres.2022.113263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/27/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Placental senescence is a normal physiological process of placenta, while premature placental senescence has been confirmed to be associated with some adverse pregnancy complications. Epidemiological studies indicate that NO2 exposure can aggravate placental senescence which is represented by fibrosis and abnormal telomere homeostasis, etc. In this study, pregnant C57BL/6 mice were exposed to NO2 (2.5 ppm, 5 h/day) daily in a dynamic exposure chamber throughout the gestation period, and were sacrificed at embryonic day 13.5 (E13.5), E15.5 and E18.5. Placenta were harvested and conducted for histopathological examination and telomere evaluation. Our results showed that gestational NO2 exposure significantly aggravated placental fibrosis and calcification, and up-regulated the related bio-markers (connective tissue growth factor (Ctgf) and transforming growth factor-β1 (Tgf-β1)) at E18.5. In addition, gestational exposure to NO2 also activated senescence related pathway (p53/p21) at E18.5. Furthermore, gestational NO2 exposure significantly shortened telomere length at E18.5, and the expression of telomere homeostasis regulation genes telomeric repeat binding factor 1 (Trf1), protection of telomeres 1a (Pot1a) and Pot1b were significantly increased while telomerase reverse transcriptase (Tert) was suppressed after NO2 exposure at E13.5 or E18.5, respectively. Importantly, DNA methylation status of the 22nd at E13.5 and 32nd at E18.5 site in sub-telomeric region of chromosome 1 was significantly altered. Based on the above results, our present study indicated that gestational NO2 exposure could lead to premature placental senescence during the late trimester of pregnancy via aggravation of fibrosis and telomere length shortening regulated by telomere regulatory enzyme and DNA methylation.
Collapse
Affiliation(s)
- Na Zhu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Xilin Geng
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Xiaotong Ji
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Rui Gao
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Dan Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Huifeng Yue
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China.
| | - Guangke Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi, 030006, PR China.
| |
Collapse
|
14
|
Putta S, Alvarez L, Lüdtke S, Sehr P, Müller GA, Fernandez SM, Tripathi S, Lewis J, Gibson TJ, Chemes LB, Rubin SM. Structural basis for tunable affinity and specificity of LxCxE-dependent protein interactions with the retinoblastoma protein family. Structure 2022; 30:1340-1353.e3. [PMID: 35716663 PMCID: PMC9444907 DOI: 10.1016/j.str.2022.05.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/25/2022] [Accepted: 05/25/2022] [Indexed: 11/25/2022]
Abstract
The retinoblastoma protein (Rb) and its homologs p107 and p130 are critical regulators of gene expression during the cell cycle and are commonly inactivated in cancer. Rb proteins use their "pocket domain" to bind an LxCxE sequence motif in other proteins, many of which function with Rb proteins to co-regulate transcription. Here, we present binding data and crystal structures of the p107 pocket domain in complex with LxCxE peptides from the transcriptional co-repressor proteins HDAC1, ARID4A, and EID1. Our results explain why Rb and p107 have weaker affinity for cellular LxCxE proteins compared with the E7 protein from human papillomavirus, which has been used as the primary model for understanding LxCxE motif interactions. Our structural and mutagenesis data also identify and explain differences in Rb and p107 affinities for some LxCxE-containing sequences. Our study provides new insights into how Rb proteins bind their cell partners with varying affinity and specificity.
Collapse
Affiliation(s)
- Sivasankar Putta
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Lucia Alvarez
- Instituto de Investigaciones Biotecnológicas (IIBiO-CONICET), Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, Av. 25 de Mayo y Francia, Buenos Aires CP1650, Argentina
| | - Stephan Lüdtke
- Belyntic GmbH, Richard-Willstätter-Str. 11, 12489 Berlin, Germany
| | - Peter Sehr
- Chemical Biology Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Gerd A Müller
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Samantha M Fernandez
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Sarvind Tripathi
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Joe Lewis
- Chemical Biology Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Toby J Gibson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Lucia B Chemes
- Instituto de Investigaciones Biotecnológicas (IIBiO-CONICET), Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, Av. 25 de Mayo y Francia, Buenos Aires CP1650, Argentina.
| | - Seth M Rubin
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA.
| |
Collapse
|
15
|
Liquid-liquid phase separation in tumor biology. Signal Transduct Target Ther 2022; 7:221. [PMID: 35803926 PMCID: PMC9270353 DOI: 10.1038/s41392-022-01076-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 12/12/2022] Open
Abstract
Liquid–liquid phase separation (LLPS) is a novel principle for explaining the precise spatial and temporal regulation in living cells. LLPS compartmentalizes proteins and nucleic acids into micron-scale, liquid-like, membraneless bodies with specific functions, which were recently termed biomolecular condensates. Biomolecular condensates are executors underlying the intracellular spatiotemporal coordination of various biological activities, including chromatin organization, genomic stability, DNA damage response and repair, transcription, and signal transduction. Dysregulation of these cellular processes is a key event in the initiation and/or evolution of cancer, and emerging evidence has linked the formation and regulation of LLPS to malignant transformations in tumor biology. In this review, we comprehensively summarize the detailed mechanisms of biomolecular condensate formation and biophysical function and review the recent major advances toward elucidating the multiple mechanisms involved in cancer cell pathology driven by aberrant LLPS. In addition, we discuss the therapeutic perspectives of LLPS in cancer research and the most recently developed drug candidates targeting LLPS modulation that can be used to combat tumorigenesis.
Collapse
|
16
|
Sainz de la Maza D, Hof-Michel S, Phillimore L, Bökel C, Amoyel M. Cell-cycle exit and stem cell differentiation are coupled through regulation of mitochondrial activity in the Drosophila testis. Cell Rep 2022; 39:110774. [PMID: 35545055 PMCID: PMC9350557 DOI: 10.1016/j.celrep.2022.110774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 02/21/2022] [Accepted: 04/12/2022] [Indexed: 11/27/2022] Open
Abstract
Whereas stem and progenitor cells proliferate to maintain tissue homeostasis, fully differentiated cells exit the cell cycle. How cell identity and cell-cycle state are coordinated during differentiation is still poorly understood. The Drosophila testis niche supports germline stem cells and somatic cyst stem cells (CySCs). CySCs give rise to post-mitotic cyst cells, providing a tractable model to study the links between stem cell identity and proliferation. We show that, while cell-cycle progression is required for CySC self-renewal, the E2f1/Dp transcription factor is dispensable for self-renewal but instead must be silenced by the Drosophila retinoblastoma homolog, Rbf, to permit differentiation. Continued E2f1/Dp activity inhibits the expression of genes important for mitochondrial activity. Furthermore, promoting mitochondrial biogenesis rescues the differentiation of CySCs with ectopic E2f1/Dp activity but not their cell-cycle exit. In sum, E2f1/Dp coordinates cell-cycle progression with stem cell identity by regulating the metabolic state of CySCs. CycE is critical for CySC self-renewal E2f/Dp does not act in self-renewal but must be silenced for differentiation E2f/Dp inhibits increases in oxidative metabolism involved in normal differentiation Increased mitochondrial biogenesis rescues differentiation of E2f/Dp-active cells
Collapse
Affiliation(s)
- Diego Sainz de la Maza
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Silvana Hof-Michel
- Department of Developmental Genetics, Philipps University Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany
| | - Lee Phillimore
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Christian Bökel
- Department of Developmental Genetics, Philipps University Marburg, Karl-von-Frisch-Str. 8, 35043 Marburg, Germany.
| | - Marc Amoyel
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
17
|
Lee C, Kim J. Genome maintenance in retinoblastoma: Implications for therapeutic vulnerabilities (Review). Oncol Lett 2022; 23:192. [PMID: 35527780 PMCID: PMC9073582 DOI: 10.3892/ol.2022.13312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/08/2022] [Indexed: 11/19/2022] Open
Abstract
Retinoblastoma (RB) is a pediatric ocular malignancy that is initiated mostly by biallelic inactivation of the RB transcriptional corepressor 1 (RB1) tumor suppressor gene in the developing retina. Unlike the prevailing prediction based on multiple studies involving RB1 gene disruption in experimental models, human RB tumors have been demonstrated to possess a relatively stable genome, characterized by a low mutation rate and a few recurrent chromosomal alterations related to somatic copy number changes. This suggests that RB may harbor heightened genome maintenance mechanisms to counteract or compensate for the risk of massive genome instability, which can potentially be driven by the early RB1 loss as a tumor-initiating event. Although the genome maintenance mechanisms might have been evolved to promote RB cell survival by preventing lethal genomic defects, emerging evidence suggests that the dependency of RB cells on these mechanisms also exposes their unique vulnerability to chemotherapy, particularly when the genome maintenance machineries are tumor cell-specific. This review summarizes the genome maintenance mechanisms identified in RB, including findings on the roles of chromatin regulators in DNA damage response/repair and protein factors involved in maintaining chromosome stability and promoting survival in RB. In addition, advantages and challenges for exploiting these therapeutic vulnerabilities in RB are discussed.
Collapse
Affiliation(s)
- Chunsik Lee
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Jong Kim
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat‑sen University, Guangzhou, Guangdong 510060, P.R. China
| |
Collapse
|
18
|
Wong KM, King DA, Schwartz EK, Herrera RE, Morrison AJ. Retinoblastoma protein regulates carcinogen susceptibility at heterochromatic cancer driver loci. Life Sci Alliance 2022; 5:e202101134. [PMID: 34983823 PMCID: PMC8739494 DOI: 10.26508/lsa.202101134] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/11/2022] Open
Abstract
Carcinogenic insult, such as UV light exposure, creates DNA lesions that evolve into mutations if left unrepaired. These resulting mutations can contribute to carcinogenesis and drive malignant phenotypes. Susceptibility to carcinogens (i.e., the propensity to form a carcinogen-induced DNA lesion) is regulated by both genetic and epigenetic factors. Importantly, carcinogen susceptibility is a critical contributor to cancer mutagenesis. It is known that mutations can be prevented by tumor suppressor regulation of DNA damage response pathways; however, their roles carcinogen susceptibility have not yet been reported. In this study, we reveal that the retinoblastoma (RB1) tumor suppressor regulates UV susceptibility across broad regions of the genome. In particular, centromere and telomere-proximal regions exhibit significant increases in UV lesion susceptibility when RB1 is deleted. Several cancer-related genes are located within genomic regions of increased susceptibility, including telomerase reverse transcriptase, TERT, thereby accelerating mutagenic potential in cancers with RB1 pathway alterations. These findings reveal novel genome stability mechanisms of a tumor suppressor and uncover new pathways to accumulate mutations during cancer evolution.
Collapse
Affiliation(s)
- Ka Man Wong
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Devin A King
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Erin K Schwartz
- Department of Biology, Stanford University, Stanford, CA, USA
| | | | | |
Collapse
|
19
|
Fasano C, Lepore Signorile M, De Marco K, Forte G, Sanese P, Grossi V, Simone C. Identifying novel SMYD3 interactors on the trail of cancer hallmarks. Comput Struct Biotechnol J 2022; 20:1860-1875. [PMID: 35495117 PMCID: PMC9039736 DOI: 10.1016/j.csbj.2022.03.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 12/30/2022] Open
Abstract
SMYD3 overexpression in several human cancers highlights its crucial role in carcinogenesis. Nonetheless, SMYD3 specific activity in cancer development and progression is currently under debate. Taking advantage of a library of rare tripeptides, which we first tested for their in vitro binding affinity to SMYD3 and then used as in silico probes, we recently identified BRCA2, ATM, and CHK2 as direct SMYD3 interactors. To gain insight into novel SMYD3 cancer-related roles, here we performed a comprehensive in silico analysis to cluster all potential SMYD3-interacting proteins identified by screening the human proteome for the previously tested tripeptides, based on their involvement in cancer hallmarks. Remarkably, we identified mTOR, BLM, MET, AMPK, and p130 as new SMYD3 interactors implicated in cancer processes. Further studies are needed to characterize the functional mechanisms underlying these interactions. Still, these findings could be useful to devise novel therapeutic strategies based on the combined inhibition of SMYD3 and its newly identified molecular partners. Of note, our in silico methodology may be useful to search for unidentified interactors of other proteins of interest.
Collapse
Affiliation(s)
- Candida Fasano
- Medical Genetics, National Institute for Gastroenterology, IRCCS ‘S. de Bellis’ Research Hospital, Castellana Grotte (Ba), Italy
- Corresponding authors at: Medical Genetics, National Institute for Gastroenterology, IRCCS ‘S. de Bellis’ Research Hospital, Castellana Grotte (Ba), Italy (C.Fasano, C. Simone).
| | - Martina Lepore Signorile
- Medical Genetics, National Institute for Gastroenterology, IRCCS ‘S. de Bellis’ Research Hospital, Castellana Grotte (Ba), Italy
| | - Katia De Marco
- Medical Genetics, National Institute for Gastroenterology, IRCCS ‘S. de Bellis’ Research Hospital, Castellana Grotte (Ba), Italy
| | - Giovanna Forte
- Medical Genetics, National Institute for Gastroenterology, IRCCS ‘S. de Bellis’ Research Hospital, Castellana Grotte (Ba), Italy
| | - Paola Sanese
- Medical Genetics, National Institute for Gastroenterology, IRCCS ‘S. de Bellis’ Research Hospital, Castellana Grotte (Ba), Italy
| | - Valentina Grossi
- Medical Genetics, National Institute for Gastroenterology, IRCCS ‘S. de Bellis’ Research Hospital, Castellana Grotte (Ba), Italy
| | - Cristiano Simone
- Medical Genetics, National Institute for Gastroenterology, IRCCS ‘S. de Bellis’ Research Hospital, Castellana Grotte (Ba), Italy
- Medical Genetics, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari Aldo Moro, Bari, Italy
- Corresponding authors at: Medical Genetics, National Institute for Gastroenterology, IRCCS ‘S. de Bellis’ Research Hospital, Castellana Grotte (Ba), Italy (C.Fasano, C. Simone).
| |
Collapse
|
20
|
Genome-wide DNA methylation patterns reveal clinically relevant predictive and prognostic subtypes in human osteosarcoma. Commun Biol 2022; 5:213. [PMID: 35260776 PMCID: PMC8904843 DOI: 10.1038/s42003-022-03117-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 01/24/2022] [Indexed: 12/14/2022] Open
Abstract
Aberrant methylation of genomic DNA has been reported in many cancers. Specific DNA methylation patterns have been shown to provide clinically useful prognostic information and define molecular disease subtypes with different response to therapy and long-term outcome. Osteosarcoma is an aggressive malignancy for which approximately half of tumors recur following standard combined surgical resection and chemotherapy. No accepted prognostic factor save tumor necrosis in response to adjuvant therapy currently exists, and traditional genomic studies have thus far failed to identify meaningful clinical associations. We studied the genome-wide methylation state of primary tumors and tested how they predict patient outcomes. We discovered relative genomic hypomethylation to be strongly predictive of response to standard chemotherapy. Recurrence and survival were also associated with genomic methylation, but through more site-specific patterns. Furthermore, the methylation patterns were reproducible in three small independent clinical datasets. Downstream transcriptional, in vitro, and pharmacogenomic analysis provides insight into the clinical translation of the methylation patterns. Our findings suggest the assessment of genomic methylation may represent a strategy for stratifying patients for the application of alternative therapies.
Collapse
|
21
|
Janostiak R, Torres-Sanchez A, Posas F, de Nadal E. Understanding Retinoblastoma Post-Translational Regulation for the Design of Targeted Cancer Therapies. Cancers (Basel) 2022; 14:cancers14051265. [PMID: 35267571 PMCID: PMC8909233 DOI: 10.3390/cancers14051265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 01/05/2023] Open
Abstract
Simple Summary Rb1 is a regulator of cell cycle progression and genomic stability. This review focuses on post-translational modifications, their effect on Rb1 interactors, and their role in intracellular signaling in the context of cancer development. Finally, we highlight potential approaches to harness these post-translational modifications to design novel effective anticancer therapies. Abstract The retinoblastoma protein (Rb1) is a prototypical tumor suppressor protein whose role was described more than 40 years ago. Together with p107 (also known as RBL1) and p130 (also known as RBL2), the Rb1 belongs to a family of structurally and functionally similar proteins that inhibits cell cycle progression. Given the central role of Rb1 in regulating proliferation, its expression or function is altered in most types of cancer. One of the mechanisms underlying Rb-mediated cell cycle inhibition is the binding and repression of E2F transcription factors, and these processes are dependent on Rb1 phosphorylation status. However, recent work shows that Rb1 is a convergent point of many pathways and thus the regulation of its function through post-translational modifications is more complex than initially expected. Moreover, depending on the context, downstream signaling can be both E2F-dependent and -independent. This review seeks to summarize the most recent research on Rb1 function and regulation and discuss potential avenues for the design of novel cancer therapies.
Collapse
Affiliation(s)
- Radoslav Janostiak
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain; (R.J.); (A.T.-S.)
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Ariadna Torres-Sanchez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain; (R.J.); (A.T.-S.)
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Francesc Posas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain; (R.J.); (A.T.-S.)
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- Correspondence: (F.P.); (E.d.N.); Tel.: +34-93-403-4810 (F.P.); +34-93-403-9895 (E.d.N.)
| | - Eulàlia de Nadal
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain; (R.J.); (A.T.-S.)
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- Correspondence: (F.P.); (E.d.N.); Tel.: +34-93-403-4810 (F.P.); +34-93-403-9895 (E.d.N.)
| |
Collapse
|
22
|
Telomerase in Cancer: Function, Regulation, and Clinical Translation. Cancers (Basel) 2022; 14:cancers14030808. [PMID: 35159075 PMCID: PMC8834434 DOI: 10.3390/cancers14030808] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/29/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Cells undergoing malignant transformation must circumvent replicative senescence and eventual cell death associated with progressive telomere shortening that occurs through successive cell division. To do so, malignant cells reactivate telomerase to extend their telomeres and achieve cellular immortality, which is a “Hallmark of Cancer”. Here we review the telomere-dependent and -independent functions of telomerase in cancer, as well as its potential as a biomarker and therapeutic target to diagnose and treat cancer patients. Abstract During the process of malignant transformation, cells undergo a series of genetic, epigenetic, and phenotypic alterations, including the acquisition and propagation of genomic aberrations that impart survival and proliferative advantages. These changes are mediated in part by the induction of replicative immortality that is accompanied by active telomere elongation. Indeed, telomeres undergo dynamic changes to their lengths and higher-order structures throughout tumor formation and progression, processes overseen in most cancers by telomerase. Telomerase is a multimeric enzyme whose function is exquisitely regulated through diverse transcriptional, post-transcriptional, and post-translational mechanisms to facilitate telomere extension. In turn, telomerase function depends not only on its core components, but also on a suite of binding partners, transcription factors, and intra- and extracellular signaling effectors. Additionally, telomerase exhibits telomere-independent regulation of cancer cell growth by participating directly in cellular metabolism, signal transduction, and the regulation of gene expression in ways that are critical for tumorigenesis. In this review, we summarize the complex mechanisms underlying telomere maintenance, with a particular focus on both the telomeric and extratelomeric functions of telomerase. We also explore the clinical utility of telomeres and telomerase in the diagnosis, prognosis, and development of targeted therapies for primary, metastatic, and recurrent cancers.
Collapse
|
23
|
Hong L, Li N, Gasque V, Mehta S, Ye L, Wu Y, Li J, Gewies A, Ruland J, Hirschi KK, Eichmann A, Hendry C, van Dijk D, Mani A. Prdm6 controls heart development by regulating neural crest cell differentiation and migration. JCI Insight 2022; 7:156046. [PMID: 35108221 PMCID: PMC8876496 DOI: 10.1172/jci.insight.156046] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/13/2022] [Indexed: 11/22/2022] Open
Abstract
The molecular mechanisms that drive the acquisition of distinct neural crest cell (NCC) fates is still poorly understood. Here, we identified Prdm6 as an epigenetic modifier that temporally and spatially regulates the expression of NCC specifiers and determines the fate of a subset of migrating cardiac NCCs (CNCCs). Using transcriptomic analysis and genetic and fate mapping approaches in transgenic mice, we showed that disruption of Prdm6 was associated with impaired CNCC differentiation, delamination, and migration and led to patent ductus arteriosus (DA) and ventricular noncompaction. Bulk and single-cell RNA-Seq analyses of the DA and CNCCs identified Prdm6 as a regulator of a network of CNCC specification genes, including Wnt1, Tfap2b, and Sox9. Loss of Prdm6 in CNCCs diminished its expression in the pre-epithelial–mesenchymal transition (pre-EMT) cluster, resulting in the retention of NCCs in the dorsal neural tube. This defect was associated with diminished H4K20 monomethylation and G1-S progression and augmented Wnt1 transcript levels in pre-EMT and neural tube clusters, which we showed was the major driver of the impaired CNCC migration. Altogether, these findings revealed Prdm6 as a key regulator of CNCC differentiation and migration and identified Prdm6 and its regulated network as potential targets for the treatment of congenital heart diseases.
Collapse
Affiliation(s)
- Lingjuan Hong
- Cardiovascular Research Center, Yale University School of Medicine, New Haven, United States of America
| | - Na Li
- Cardiovascular Research Center, Yale University School of Medicine, New Haven, United States of America
| | - Victor Gasque
- Cardiovascular Research Center, Yale University School of Medicine, New Haven, United States of America
| | - Sameet Mehta
- Yale Center for Genome Analysis, Yale University School of Medicine, New Haven, United States of America
| | - Lupeng Ye
- Department of Genetics, Yale University School of Medicine, New Haven, United States of America
| | - Yinyu Wu
- Department of Genetics, Yale University School of Medicine, New Haven, United States of America
| | - Jinyu Li
- Cardiovascular Research Center, Yale University School of Medicine, New Haven, United States of America
| | | | | | - Karen K Hirschi
- University of Virginia School of Medicine, Charlottesville, United States of America
| | - Anne Eichmann
- Cardiovascular Research Center, Yale University School of Medicine, New Haven, United States of America
| | - Caroline Hendry
- Department of Genetics, Yale University School of Medicine, New Haven, United States of America
| | - David van Dijk
- Cardiovascular Research Center, Yale University School of Medicine, New Haven, United States of America
| | - Arya Mani
- Cardiovascular Research Center, Yale University School of Medicine, New Haven, United States of America
| |
Collapse
|
24
|
Mäkelä JA, Toppari J. Retinoblastoma-E2F Transcription Factor Interplay Is Essential for Testicular Development and Male Fertility. Front Endocrinol (Lausanne) 2022; 13:903684. [PMID: 35663332 PMCID: PMC9161260 DOI: 10.3389/fendo.2022.903684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/11/2022] [Indexed: 01/11/2023] Open
Abstract
The retinoblastoma (RB) protein family members (pRB, p107 and p130) are key regulators of cell cycle progression, but also play crucial roles in apoptosis, and stem cell self-renewal and differentiation. RB proteins exert their effects through binding to E2F transcription factors, which are essential developmental and physiological regulators of tissue and organ homeostasis. According to the canonical view, phosphorylation of RB results in release of E2Fs and induction of genes needed for progress of the cell cycle. However, there are eight members in the E2F transcription factor family with both activator (E2F1-3a) and repressor (E2F3b-E2F8) roles, highlighting the functional diversity of RB-E2F pathway. In this review article we summarize the data showing that RB-E2F interaction is a key cell-autonomous mechanism responsible for establishment and maintenance of lifelong male fertility. We also review the expression pattern of RB proteins and E2F transcription factors in the testis and male germ cells. The available evidence supports that RB and E2F family members are widely and dynamically expressed in the testis, and they are known to have versatile roles during spermatogenesis. Knowledge of the function and significance of RB-E2F interplay for testicular development and spermatogenesis comes primarily from gene knock-out (KO) studies. Several studies conducted in Sertoli cell-specific pRB-KO mice have demonstrated that pRB-mediated inhibition of E2F3 is essential for Sertoli cell functional maturation and cell cycle exit, highlighting that RB-E2F interaction in Sertoli cells is paramount to male fertility. Similarly, ablation of either pRB or E2F1 in the germline results in progressive testicular atrophy due to germline stem cell (GSC) depletion, emphasizing the importance of proper RB-E2F interplay for germline maintenance and lifelong sperm production. In summary, while balanced RB-E2F interplay is essential for cell-autonomous maintenance of GSCs and, the pRB-E2F3 system in Sertoli cells is critical for providing GSC niche thus laying the basis for spermatogenesis.
Collapse
Affiliation(s)
- Juho-Antti Mäkelä
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
| | - Jorma Toppari
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
- Department of Pediatrics, Turku University Hospital, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland
- *Correspondence: Jorma Toppari,
| |
Collapse
|
25
|
Rajasekaran S, Siddiqui J, Rakijas J, Nicolay B, Lin C, Khan E, Patel R, Morris R, Wyler E, Boukhali M, Balasubramanyam J, Ranjith Kumar R, Van Rechem C, Vogel C, Elchuri SV, Landthaler M, Obermayer B, Haas W, Dyson N, Miles W. Integrated multi-omics analysis of RB-loss identifies widespread cellular programming and synthetic weaknesses. Commun Biol 2021; 4:977. [PMID: 34404904 PMCID: PMC8371045 DOI: 10.1038/s42003-021-02495-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 07/26/2021] [Indexed: 11/09/2022] Open
Abstract
Inactivation of RB is one of the hallmarks of cancer, however gaps remain in our understanding of how RB-loss changes human cells. Here we show that pRB-depletion results in cellular reprogramming, we quantitatively measured how RB-depletion altered the transcriptional, proteomic and metabolic output of non-tumorigenic RPE1 human cells. These profiles identified widespread changes in metabolic and cell stress response factors previously linked to E2F function. In addition, we find a number of additional pathways that are sensitive to RB-depletion that are not E2F-regulated that may represent compensatory mechanisms to support the growth of RB-depleted cells. To determine whether these molecular changes are also present in RB1-/- tumors, we compared these results to Retinoblastoma and Small Cell Lung Cancer data, and identified widespread conservation of alterations found in RPE1 cells. To define which of these changes contribute to the growth of cells with de-regulated E2F activity, we assayed how inhibiting or depleting these proteins affected the growth of RB1-/- cells and of Drosophila E2f1-RNAi models in vivo. From this analysis, we identify key metabolic pathways that are essential for the growth of pRB-deleted human cells.
Collapse
Affiliation(s)
- Swetha Rajasekaran
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA.,The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Jalal Siddiqui
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA.,The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Jessica Rakijas
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA.,The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Brandon Nicolay
- Massachusetts General Hospital Cancer Center, Charlestown, MA, USA.,Harvard Medical School, Boston, MA, USA.,Agios Pharmaceutical, Cambridge, MA, USA
| | - Chenyu Lin
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA.,The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Eshan Khan
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA.,The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Rahi Patel
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA.,The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Robert Morris
- Massachusetts General Hospital Cancer Center, Charlestown, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Emanuel Wyler
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Myriam Boukhali
- Massachusetts General Hospital Cancer Center, Charlestown, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Jayashree Balasubramanyam
- Department of Nanobiotechnology, Vision Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu, India
| | - R Ranjith Kumar
- Department of Nanobiotechnology, Vision Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu, India
| | | | - Christine Vogel
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, USA
| | - Sailaja V Elchuri
- Department of Nanobiotechnology, Vision Research Foundation, Sankara Nethralaya, Chennai, Tamil Nadu, India
| | - Markus Landthaler
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Benedikt Obermayer
- Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,IRI Life Sciences, Institute für Biologie, Humboldt Universität zu Berlin, Berlin, Germany.,Core Unit Bioinformatics, Berlin Institute of Health (BIH), Berlin, Germany
| | - Wilhelm Haas
- Massachusetts General Hospital Cancer Center, Charlestown, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Nicholas Dyson
- Massachusetts General Hospital Cancer Center, Charlestown, MA, USA. .,Harvard Medical School, Boston, MA, USA.
| | - Wayne Miles
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, USA. .,The Ohio State University Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
26
|
Novo CL. A Tale of Two States: Pluripotency Regulation of Telomeres. Front Cell Dev Biol 2021; 9:703466. [PMID: 34307383 PMCID: PMC8300013 DOI: 10.3389/fcell.2021.703466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/08/2021] [Indexed: 01/01/2023] Open
Abstract
Inside the nucleus, chromatin is functionally organized and maintained as a complex three-dimensional network of structures with different accessibility such as compartments, lamina associated domains, and membraneless bodies. Chromatin is epigenetically and transcriptionally regulated by an intricate and dynamic interplay of molecular processes to ensure genome stability. Phase separation, a process that involves the spontaneous organization of a solution into separate phases, has been proposed as a mechanism for the timely coordination of several cellular processes, including replication, transcription and DNA repair. Telomeres, the repetitive structures at the end of chromosomes, are epigenetically maintained in a repressed heterochromatic state that prevents their recognition as double-strand breaks (DSB), avoiding DNA damage repair and ensuring cell proliferation. In pluripotent embryonic stem cells, telomeres adopt a non-canonical, relaxed epigenetic state, which is characterized by a low density of histone methylation and expression of telomere non-coding transcripts (TERRA). Intriguingly, this telomere non-canonical conformation is usually associated with chromosome instability and aneuploidy in somatic cells, raising the question of how genome stability is maintained in a pluripotent background. In this review, we will explore how emerging technological and conceptual developments in 3D genome architecture can provide novel mechanistic perspectives for the pluripotent epigenetic paradox at telomeres. In particular, as RNA drives the formation of LLPS, we will consider how pluripotency-associated high levels of TERRA could drive and coordinate phase separation of several nuclear processes to ensure genome stability. These conceptual advances will provide a better understanding of telomere regulation and genome stability within the highly dynamic pluripotent background.
Collapse
Affiliation(s)
- Clara Lopes Novo
- The Francis Crick Institute, London, United Kingdom
- Imperial College London, London, United Kingdom
| |
Collapse
|
27
|
Yang J, Gong C, Ke Q, Fang Z, Chen X, Ye M, Xu X. Insights Into the Function and Clinical Application of HDAC5 in Cancer Management. Front Oncol 2021; 11:661620. [PMID: 34178647 PMCID: PMC8222663 DOI: 10.3389/fonc.2021.661620] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/18/2021] [Indexed: 12/20/2022] Open
Abstract
Histone deacetylase 5 (HDAC5) is a class II HDAC. Aberrant expression of HDAC5 has been observed in multiple cancer types, and its functions in cell proliferation and invasion, the immune response, and maintenance of stemness have been widely studied. HDAC5 is considered as a reliable therapeutic target for anticancer drugs. In light of recent findings regarding the role of epigenetic reprogramming in tumorigenesis, in this review, we provide an overview of the expression, biological functions, regulatory mechanisms, and clinical significance of HDAC5 in cancer.
Collapse
Affiliation(s)
- Jun Yang
- Department of Orthopedic Surgery, Sanmen People's Hospital of Zhejiang Province, Sanmenwan Branch of the First Affiliated Hospital, College of Medicine, Zhejiang University, Sanmen, China
| | - Chaoju Gong
- Central Laboratory, The Municipal Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Qinjian Ke
- Central Laboratory, Sanmen People's Hospital of Zhejiang Province, Sanmenwan Branch of the First Affiliated Hospital, College of Medicine, Zhejiang University, Sanmen, China
| | - Zejun Fang
- Central Laboratory, Sanmen People's Hospital of Zhejiang Province, Sanmenwan Branch of the First Affiliated Hospital, College of Medicine, Zhejiang University, Sanmen, China
| | - Xiaowen Chen
- Department of Pathophysiology, Zunyi Medical University, Zunyi, China
| | - Ming Ye
- Department of General Surgery, Sanmen People's Hospital of Zhejiang Province, Sanmenwan Branch of the First Affiliated Hospital, College of Medicine, Zhejiang University, Sanmen, China
| | - Xi Xu
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
28
|
Samra N, Toubiana S, Yttervik H, Tzur-Gilat A, Morani I, Itzkovich C, Giladi L, Abu Jabal K, Cao JZ, Godley LA, Mory A, Baris Feldman H, Tveten K, Selig S, Weiss K. RBL2 bi-allelic truncating variants cause severe motor and cognitive impairment without evidence for abnormalities in DNA methylation or telomeric function. J Hum Genet 2021; 66:1101-1112. [PMID: 33980986 DOI: 10.1038/s10038-021-00931-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/14/2021] [Accepted: 04/14/2021] [Indexed: 02/01/2023]
Abstract
RBL2/p130, a member of the retinoblastoma family of proteins, is a key regulator of cell division and propagates irreversible senescence. RBL2/p130 is also involved in neuronal differentiation and survival, and eliminating Rbl2 in certain mouse strains leads to embryonic lethality accompanied by an abnormal central nervous system (CNS) phenotype. Conflicting reports exist regarding a role of RBL2/p130 in transcriptional regulation of DNA methyltransferases (DNMTs), as well as the control of telomere length. Here we describe the phenotype of three patients carrying bi-allelic RBL2-truncating variants. All presented with infantile hypotonia, severe developmental delay and microcephaly. Malignancies were not reported in carriers or patients. Previous studies carried out on mice and human cultured cells, associated RBL2 loss to DNA methylation and telomere length dysregulation. Here, we investigated whether patient cells lacking RBL2 display related abnormalities. The study of primary patient fibroblasts did not detect abnormalities in expression of DNMTs. Furthermore, methylation levels of whole genome DNA, and specifically of pericentromeric repeats and subtelomeric regions, were unperturbed. RBL2-null fibroblasts show no evidence for abnormal elongation by telomeric recombination. Finally, gradual telomere shortening, and normal onset of senescence were observed following continuous culturing of RBL2-mutated fibroblasts. Thus, this study resolves uncertainties regarding a potential non-redundant role for RBL2 in DNA methylation and telomere length regulation, and indicates that loss of function variants in RBL2 cause a severe autosomal recessive neurodevelopmental disorder in humans.
Collapse
Affiliation(s)
- Nadra Samra
- Genetic Unit, Ziv Medical Center, Tzfat, Israel.,Faculty of Medicine, Bar Ilan University, Tzfat, Israel
| | - Shir Toubiana
- Department of Genetics and Developmental Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Hilde Yttervik
- Department of Medical Genetics, University Hospital of North Norway, Tromsø, Norway
| | - Aya Tzur-Gilat
- Department of Genetics and Developmental Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | - Chen Itzkovich
- The Clinical Research Institute at Rambam Health Care Campus, Haifa, Israel
| | - Liran Giladi
- Department of Genetics and Developmental Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | - John Z Cao
- Section of Hematology Oncology, Departments of Medicine and Human Genetics, The University of Chicago, Chicago, IL, USA
| | - Lucy A Godley
- Section of Hematology Oncology, Departments of Medicine and Human Genetics, The University of Chicago, Chicago, IL, USA
| | - Adi Mory
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel.,The Genetics Institute, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Hagit Baris Feldman
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.,The Genetics Institute, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Kristian Tveten
- Department of Medical Genetics, Telemark Hospital Trust, Skien, Norway
| | - Sara Selig
- Department of Genetics and Developmental Biology, The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel. .,Laboratory of Molecular Medicine, Rambam Health Care Campus, Haifa, Israel.
| | - Karin Weiss
- The Genetics Institute, Rambam Health Care Campus, Haifa, Israel.,The Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
29
|
The Multiple Facets of ATRX Protein. Cancers (Basel) 2021; 13:cancers13092211. [PMID: 34062956 PMCID: PMC8124985 DOI: 10.3390/cancers13092211] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/30/2021] [Accepted: 05/02/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary The gene encoding for the epigenetic regulator ATRX is gaining a prominent position among the most important oncosuppressive genes of the human genome. ATRX gene somatic mutations are found across a number of diverse cancer types, suggesting its relevance in tumor induction and progression. In the present review, the multiple activities of ATRX protein are described in the light of the most recent literature available highlighting its multifaceted role in the caretaking of the human genome. Abstract ATRX gene codifies for a protein member of the SWI-SNF family and was cloned for the first time over 25 years ago as the gene responsible for a rare developmental disorder characterized by α-thalassemia and intellectual disability called Alpha Thalassemia/mental Retardation syndrome X-linked (ATRX) syndrome. Since its discovery as a helicase involved in alpha-globin gene transcriptional regulation, our understanding of the multiple roles played by the ATRX protein increased continuously, leading to the recognition of this multifaceted protein as a central “caretaker” of the human genome involved in cancer suppression. In this review, we report recent advances in the comprehension of the ATRX manifold functions that encompass heterochromatin epigenetic regulation and maintenance, telomere function, replicative stress response, genome stability, and the suppression of endogenous transposable elements and exogenous viral genomes.
Collapse
|
30
|
Thakur J, Packiaraj J, Henikoff S. Sequence, Chromatin and Evolution of Satellite DNA. Int J Mol Sci 2021; 22:ijms22094309. [PMID: 33919233 PMCID: PMC8122249 DOI: 10.3390/ijms22094309] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 12/15/2022] Open
Abstract
Satellite DNA consists of abundant tandem repeats that play important roles in cellular processes, including chromosome segregation, genome organization and chromosome end protection. Most satellite DNA repeat units are either of nucleosomal length or 5–10 bp long and occupy centromeric, pericentromeric or telomeric regions. Due to high repetitiveness, satellite DNA sequences have largely been absent from genome assemblies. Although few conserved satellite-specific sequence motifs have been identified, DNA curvature, dyad symmetries and inverted repeats are features of various satellite DNAs in several organisms. Satellite DNA sequences are either embedded in highly compact gene-poor heterochromatin or specialized chromatin that is distinct from euchromatin. Nevertheless, some satellite DNAs are transcribed into non-coding RNAs that may play important roles in satellite DNA function. Intriguingly, satellite DNAs are among the most rapidly evolving genomic elements, such that a large fraction is species-specific in most organisms. Here we describe the different classes of satellite DNA sequences, their satellite-specific chromatin features, and how these features may contribute to satellite DNA biology and evolution. We also discuss how the evolution of functional satellite DNA classes may contribute to speciation in plants and animals.
Collapse
Affiliation(s)
- Jitendra Thakur
- Department of Biology, Emory University, Atlanta, GA 30322, USA;
- Correspondence:
| | - Jenika Packiaraj
- Department of Biology, Emory University, Atlanta, GA 30322, USA;
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA;
- Fred Hutchinson Cancer Research Center, Howard Hughes Medical Institute, Seattle, WA 98109, USA
| |
Collapse
|
31
|
Direct Regulation of DNA Repair by E2F and RB in Mammals and Plants: Core Function or Convergent Evolution? Cancers (Basel) 2021; 13:cancers13050934. [PMID: 33668093 PMCID: PMC7956360 DOI: 10.3390/cancers13050934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/10/2021] [Accepted: 02/19/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Retinoblastoma (RB) proteins and E2F transcription factors partner together to regulate the cell cycle in many eukaryotic organisms. In organisms that lack one or both of these proteins, other proteins have taken on the essential function of cell cycle regulation. RB and E2F also have important functions outside of the cell cycle, including DNA repair. This review summarizes the non-canonical functions of RB and E2F in maintaining genome integrity and raises the question of whether such functions have always been present or have evolved more recently. Abstract Members of the E2F transcription factor family regulate the expression of genes important for DNA replication and mitotic cell division in most eukaryotes. Homologs of the retinoblastoma (RB) tumor suppressor inhibit the activity of E2F factors, thus controlling cell cycle progression. Organisms such as budding and fission yeast have lost genes encoding E2F and RB, but have gained genes encoding other proteins that take on E2F and RB cell cycle-related functions. In addition to regulating cell proliferation, E2F and RB homologs have non-canonical functions outside the mitotic cell cycle in a variety of eukaryotes. For example, in both mammals and plants, E2F and RB homologs localize to DNA double-strand breaks (DSBs) and directly promote repair by homologous recombination (HR). Here, we discuss the parallels between mammalian E2F1 and RB and their Arabidopsis homologs, E2FA and RB-related (RBR), with respect to their recruitment to sites of DNA damage and how they help recruit repair factors important for DNA end resection. We also explore the question of whether this role in DNA repair is a conserved ancient function of the E2F and RB homologs in the last eukaryotic common ancestor or whether this function evolved independently in mammals and plants.
Collapse
|
32
|
Bhat KP, Ümit Kaniskan H, Jin J, Gozani O. Epigenetics and beyond: targeting writers of protein lysine methylation to treat disease. Nat Rev Drug Discov 2021; 20:265-286. [PMID: 33469207 DOI: 10.1038/s41573-020-00108-x] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2020] [Indexed: 02/07/2023]
Abstract
Protein lysine methylation is a crucial post-translational modification that regulates the functions of both histone and non-histone proteins. Deregulation of the enzymes or 'writers' of protein lysine methylation, lysine methyltransferases (KMTs), is implicated in the cause of many diseases, including cancer, mental health disorders and developmental disorders. Over the past decade, significant advances have been made in developing drugs to target KMTs that are involved in histone methylation and epigenetic regulation. The first of these inhibitors, tazemetostat, was recently approved for the treatment of epithelioid sarcoma and follicular lymphoma, and several more are in clinical and preclinical evaluation. Beyond chromatin, the many KMTs that regulate protein synthesis and other fundamental biological processes are emerging as promising new targets for drug development to treat diverse diseases.
Collapse
Affiliation(s)
- Kamakoti P Bhat
- Department of Biology, Stanford University, Stanford, CA, USA
| | - H Ümit Kaniskan
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Or Gozani
- Department of Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
33
|
Gala K, Khattar E. Long non-coding RNAs at work on telomeres: Functions and implications in cancer therapy. Cancer Lett 2021; 502:120-132. [PMID: 33450357 DOI: 10.1016/j.canlet.2020.12.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/13/2020] [Accepted: 12/29/2020] [Indexed: 12/27/2022]
Abstract
Long non-coding RNAs (lncRNAs) are known to regulate various biological processes including cancer. Cancer cells possess limitless replicative potential which is attained by telomere length maintenance while normal somatic cells have a limited lifespan because their telomeres shorten with every cell division ultimately triggering replicative senescence. Two lncRNAs have been observed to play a key role in telomere length maintenance. First is the lncRNA TERC (telomerase RNA component) which functions as a template for telomeric DNA synthesis in association with telomerase reverse transcriptase (TERT) which serves as the catalytic component. Together they constitute the telomerase complex which functions as a reverse transcriptase to elongate telomeres. Second lncRNA that helps in regulating telomere length is the telomeric repeat-containing RNA (TERRA) which is transcribed from the subtelomeric region and extends to the telomeric region. TERC and TERRA exhibit important functions in cancer with implications in precision oncology. In this review, we discuss various aspects of these important lncRNAs in humans and their role in cancer along with recent advancements in their anticancer therapeutic application.
Collapse
Affiliation(s)
- Kavita Gala
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be) University, Mumbai, 400056, Maharashtra, India
| | - Ekta Khattar
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be) University, Mumbai, 400056, Maharashtra, India.
| |
Collapse
|
34
|
Alternative paths to telomere elongation. Semin Cell Dev Biol 2020; 113:88-96. [PMID: 33293233 DOI: 10.1016/j.semcdb.2020.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 10/31/2020] [Accepted: 11/09/2020] [Indexed: 11/24/2022]
Abstract
Overcoming cellular senescence that is induced by telomere shortening is critical in tumorigenesis. A majority of cancers achieve telomere maintenance through telomerase expression. However, a subset of cancers takes an alternate route for elongating telomeres: recombination-based alternative lengthening of telomeres (ALT). Current evidence suggests that break-induced replication (BIR), independent of RAD51, underlies ALT telomere synthesis. However, RAD51-dependent homologous recombination is required for homology search and inter-chromosomal telomere recombination in human ALT cancer cell maintenance. Accumulating evidence suggests that the breakdown of stalled replication forks, the replication stress, induces BIR at telomeres. Nevertheless, ALT research is still in its early stage and a comprehensive view is still unclear. Here, we review the current findings regarding the genesis of ALT, how this recombinant pathway is chosen, the epigenetic regulation of telomeres in ALT, and perspectives for clinical applications with the hope that this overview will generate new questions.
Collapse
|
35
|
Atkins A, Xu MJ, Li M, Rogers NP, Pryzhkova MV, Jordan PW. SMC5/6 is required for replication fork stability and faithful chromosome segregation during neurogenesis. eLife 2020; 9:e61171. [PMID: 33200984 PMCID: PMC7723410 DOI: 10.7554/elife.61171] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 11/16/2020] [Indexed: 12/21/2022] Open
Abstract
Mutations of SMC5/6 components cause developmental defects, including primary microcephaly. To model neurodevelopmental defects, we engineered a mouse wherein Smc5 is conditionally knocked out (cKO) in the developing neocortex. Smc5 cKO mice exhibited neurodevelopmental defects due to neural progenitor cell (NPC) apoptosis, which led to reduction in cortical layer neurons. Smc5 cKO NPCs formed DNA bridges during mitosis and underwent chromosome missegregation. SMC5/6 depletion triggers a CHEK2-p53 DNA damage response, as concomitant deletion of the Trp53 tumor suppressor or Chek2 DNA damage checkpoint kinase rescued Smc5 cKO neurodevelopmental defects. Further assessment using Smc5 cKO and auxin-inducible degron systems demonstrated that absence of SMC5/6 leads to DNA replication stress at late-replicating regions such as pericentromeric heterochromatin. In summary, SMC5/6 is important for completion of DNA replication prior to entering mitosis, which ensures accurate chromosome segregation. Thus, SMC5/6 functions are critical in highly proliferative stem cells during organism development.
Collapse
Affiliation(s)
- Alisa Atkins
- Biochemistry and Molecular Biology Department, Johns Hopkins University Bloomberg School of Public HealthBaltimoreUnited States
| | - Michelle J Xu
- Biochemistry and Molecular Biology Department, Johns Hopkins University Bloomberg School of Public HealthBaltimoreUnited States
| | - Maggie Li
- Biochemistry and Molecular Biology Department, Johns Hopkins University Bloomberg School of Public HealthBaltimoreUnited States
| | - Nathaniel P Rogers
- Biochemistry and Molecular Biology Department, Johns Hopkins University Bloomberg School of Public HealthBaltimoreUnited States
| | - Marina V Pryzhkova
- Biochemistry and Molecular Biology Department, Johns Hopkins University Bloomberg School of Public HealthBaltimoreUnited States
| | - Philip W Jordan
- Biochemistry and Molecular Biology Department, Johns Hopkins University Bloomberg School of Public HealthBaltimoreUnited States
| |
Collapse
|
36
|
Corvalan AZ, Coller HA. Methylation of histone 4's lysine 20: a critical analysis of the state of the field. Physiol Genomics 2020; 53:22-32. [PMID: 33197229 DOI: 10.1152/physiolgenomics.00128.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chromatin is a highly dynamic structure whose plasticity is achieved through multiple processes including the posttranslational modification of histone tails. Histone modifications function through the recruitment of nonhistone proteins to chromatin and thus have the potential to influence many fundamental biological processes. Here, we focus on the function and regulation of lysine 20 of histone H4 (H4K20) methylation in multiple biological processes including DNA repair, cell cycle regulation, and DNA replication. The purpose of this review is to highlight recent studies that elucidate the functions associated with each of the methylation states of H4K20, their modifying enzymes, and their protein readers. Based on our current knowledge of H4K20 methylation, we critically analyze the data supporting these functions and outline questions for future research.
Collapse
Affiliation(s)
- Adriana Z Corvalan
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, California.,Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California.,Department of Biological Chemistry, University of California, Los Angeles, California
| | - Hilary A Coller
- Molecular Biology Interdepartmental Program, University of California, Los Angeles, California.,Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, California.,Department of Biological Chemistry, University of California, Los Angeles, California
| |
Collapse
|
37
|
Retinoblastoma Tumor Suppressor Protein Roles in Epigenetic Regulation. Cancers (Basel) 2020; 12:cancers12102807. [PMID: 33003565 PMCID: PMC7600434 DOI: 10.3390/cancers12102807] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/19/2020] [Accepted: 09/27/2020] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Loss of function of the retinoblastoma gene (RB1) is the rate-limiting step in the initiation of both the hereditary and sporadic forms of retinoblastoma tumor. Furthermore, loss of function of the retinoblastoma tumor suppressor protein (pRB) is frequently found in most human cancers. In retinoblastoma, tumor progression is driven by epigenetic changes following pRB loss. This review focuses on the diverse functions of pRB in epigenetic regulation. Abstract Mutations that result in the loss of function of pRB were first identified in retinoblastoma and since then have been associated with the propagation of various forms of cancer. pRB is best known for its key role as a transcriptional regulator during cell cycle exit. Beyond the ability of pRB to regulate transcription of cell cycle progression genes, pRB can remodel chromatin to exert several of its other biological roles. In this review, we discuss the diverse functions of pRB in epigenetic regulation including nucleosome mobilization, histone modifications, DNA methylation and non-coding RNAs.
Collapse
|
38
|
Schneider L, Kehl T, Thedinga K, Grammes NL, Backes C, Mohr C, Schubert B, Lenhof K, Gerstner N, Hartkopf AD, Wallwiener M, Kohlbacher O, Keller A, Meese E, Graf N, Lenhof HP. ClinOmicsTrailbc: a visual analytics tool for breast cancer treatment stratification. Bioinformatics 2020; 35:5171-5181. [PMID: 31038669 PMCID: PMC6954665 DOI: 10.1093/bioinformatics/btz302] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/02/2019] [Accepted: 04/26/2019] [Indexed: 01/10/2023] Open
Abstract
Motivation Breast cancer is the second leading cause of cancer death among women. Tumors, even of the same histopathological subtype, exhibit a high genotypic diversity that impedes therapy stratification and that hence must be accounted for in the treatment decision-making process. Results Here, we present ClinOmicsTrailbc, a comprehensive visual analytics tool for breast cancer decision support that provides a holistic assessment of standard-of-care targeted drugs, candidates for drug repositioning and immunotherapeutic approaches. To this end, our tool analyzes and visualizes clinical markers and (epi-)genomics and transcriptomics datasets to identify and evaluate the tumor’s main driver mutations, the tumor mutational burden, activity patterns of core cancer-relevant pathways, drug-specific biomarkers, the status of molecular drug targets and pharmacogenomic influences. In order to demonstrate ClinOmicsTrailbc’s rich functionality, we present three case studies highlighting various ways in which ClinOmicsTrailbc can support breast cancer precision medicine. ClinOmicsTrailbc is a powerful integrated visual analytics tool for breast cancer research in general and for therapy stratification in particular, assisting oncologists to find the best possible treatment options for their breast cancer patients based on actionable, evidence-based results. Availability and implementation ClinOmicsTrailbc can be freely accessed at https://clinomicstrail.bioinf.uni-sb.de. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Lara Schneider
- Center for Bioinformatics, Saarbrücken, Germany.,Saarbrücken Graduate School of Computer Science, Saarbrücken, Germany
| | - Tim Kehl
- Center for Bioinformatics, Saarbrücken, Germany.,Saarbrücken Graduate School of Computer Science, Saarbrücken, Germany
| | | | | | - Christina Backes
- Center for Bioinformatics, Saarbrücken, Germany.,Chair for Clinical Bioinformatics, Saarland Informatics Campus, Saarland University, Saarbrücken, Germany
| | - Christopher Mohr
- Quantitative Biology Center (QBiC), Tübingen, Germany.,Institute for Translational Bioinformatics, University Hospital Tübingen, Tübingen, Germany
| | - Benjamin Schubert
- Department of Systems Biology, Boston, MA, USA.,Department of Cell Biology, Harvard Medical School, Boston, MA, USA.,cBio Center, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Kerstin Lenhof
- Center for Bioinformatics, Saarbrücken, Germany.,Saarbrücken Graduate School of Computer Science, Saarbrücken, Germany
| | - Nico Gerstner
- Center for Bioinformatics, Saarbrücken, Germany.,Saarbrücken Graduate School of Computer Science, Saarbrücken, Germany
| | | | - Markus Wallwiener
- Department of Obstetrics and Gynecology, University of Heidelberg, Heidelberg, Germany.,National Center for Tumor Diseases, University of Heidelberg, Heidelberg, Germany
| | - Oliver Kohlbacher
- Quantitative Biology Center (QBiC), Tübingen, Germany.,Institute for Translational Bioinformatics, University Hospital Tübingen, Tübingen, Germany.,Center for Bioinformatics, University of Tübingen, Tübingen, Germany.,Applied Bioinformatics, Department of Computer Science, University of Tübingen, Tübingen, Germany.,Biomolecular Interactions, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Andreas Keller
- Center for Bioinformatics, Saarbrücken, Germany.,Chair for Clinical Bioinformatics, Saarland Informatics Campus, Saarland University, Saarbrücken, Germany
| | - Eckart Meese
- Center for Bioinformatics, Saarbrücken, Germany.,Human Genetics, Saarland University, Homburg, Germany
| | - Norbert Graf
- Center for Bioinformatics, Saarbrücken, Germany.,Department of Pediatric Oncology and Hematology, Medical School, Saarland University, Homburg, Germany
| | | |
Collapse
|
39
|
Lamin A/C Mechanotransduction in Laminopathies. Cells 2020; 9:cells9051306. [PMID: 32456328 PMCID: PMC7291067 DOI: 10.3390/cells9051306] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/20/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022] Open
Abstract
Mechanotransduction translates forces into biological responses and regulates cell functionalities. It is implicated in several diseases, including laminopathies which are pathologies associated with mutations in lamins and lamin-associated proteins. These pathologies affect muscle, adipose, bone, nerve, and skin cells and range from muscular dystrophies to accelerated aging. Although the exact mechanisms governing laminopathies and gene expression are still not clear, a strong correlation has been found between cell functionality and nuclear behavior. New theories base on the direct effect of external force on the genome, which is indeed sensitive to the force transduced by the nuclear lamina. Nuclear lamina performs two essential functions in mechanotransduction pathway modulating the nuclear stiffness and governing the chromatin remodeling. Indeed, A-type lamin mutation and deregulation has been found to affect the nuclear response, altering several downstream cellular processes such as mitosis, chromatin organization, DNA replication-transcription, and nuclear structural integrity. In this review, we summarize the recent findings on the molecular composition and architecture of the nuclear lamina, its role in healthy cells and disease regulation. We focus on A-type lamins since this protein family is the most involved in mechanotransduction and laminopathies.
Collapse
|
40
|
Adamusová K, Khosravi S, Fujimoto S, Houben A, Matsunaga S, Fajkus J, Fojtová M. Two combinatorial patterns of telomere histone marks in plants with canonical and non-canonical telomere repeats. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:678-687. [PMID: 31834959 DOI: 10.1111/tpj.14653] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/21/2019] [Accepted: 11/28/2019] [Indexed: 05/24/2023]
Abstract
Telomeres, nucleoprotein structures at the ends of linear eukaryotic chromosomes, are crucial for the maintenance of genome integrity. In most plants, telomeres consist of conserved tandem repeat units comprising the TTTAGGG motif. Recently, non-canonical telomeres were described in several plants and plant taxons, including the carnivorous plant Genlisea hispidula (TTCAGG/TTTCAGG), the genus Cestrum (Solanaceae; TTTTTTAGGG), and plants from the Asparagales order with either a vertebrate-type telomere repeat TTAGGG or Allium genus-specific CTCGGTTATGGG repeat. We analyzed epigenetic modifications of telomeric histones in plants with canonical and non-canonical telomeres, and further in telomeric chromatin captured from leaves of Nicotiana benthamiana transiently transformed by telomere CRISPR-dCas9-eGFP, and of Arabidopsis thaliana stably transformed with TALE_telo C-3×GFP. Two combinatorial patterns of telomeric histone modifications were identified: (i) an Arabidopsis-like pattern (A. thaliana, G. hispidula, Genlisea nigrocaulis, Allium cepa, Narcissus pseudonarcissus, Petunia hybrida, Solanum tuberosum, Solanum lycopersicum) with telomeric histones decorated predominantly by H3K9me2; (ii) a tobacco-like pattern (Nicotiana tabacum, N. benthamiana, C. elegans) with a strong H3K27me3 signal. Our data suggest that epigenetic modifications of plant telomere-associated histones are related neither to the sequence of the telomere motif nor to the lengths of the telomeres. Nor the phylogenetic position of the species plays the role; representatives of the Solanaceae family are included in both groups. As both patterns of histone marks are compatible with fully functional telomeres in respective plants, we conclude that the described specific differences in histone marks are not critical for telomere functions.
Collapse
Affiliation(s)
- Kateřina Adamusová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, 625 00, Brno, Czech Republic
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 611 37, Brno, Czech Republic
| | - Solmaz Khosravi
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466, Seeland, Germany
| | - Satoru Fujimoto
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, 06466, Seeland, Germany
| | - Sachihiro Matsunaga
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Jiří Fajkus
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, 625 00, Brno, Czech Republic
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 611 37, Brno, Czech Republic
| | - Miloslava Fojtová
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, 625 00, Brno, Czech Republic
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 611 37, Brno, Czech Republic
| |
Collapse
|
41
|
Dutta P, Zhang L, Zhang H, Peng Q, Montgrain PR, Wang Y, Song Y, Li J, Li WX. Unphosphorylated STAT3 in heterochromatin formation and tumor suppression in lung cancer. BMC Cancer 2020; 20:145. [PMID: 32087696 PMCID: PMC7036253 DOI: 10.1186/s12885-020-6649-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 02/17/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Aberrant JAK/STAT activation has been detected in many types of human cancers. The role of JAK/STAT activation in cancer has been mostly attributed to direct transcriptional regulation of target genes by phosphorylated STAT (pSTAT), while the unphosphorylated STAT (uSTAT) is believed to be dormant and reside in the cytoplasm. However, several studies have shown that uSTATs can be found in the nucleus. In addition, it has been shown that tissue-specific loss of STAT3 or STAT5 in mice promotes cancer growth in certain tissues, and thus these STAT proteins can act as tumor suppressors. However, no unifying mechanism has been shown for the tumor suppressor function of STATs to date. We have previously demonstrated a non-canonical mode of JAK/STAT signaling for Drosophila STAT and human STAT5A, where a fraction of uSTAT is in the nucleus and associated with Heterochromatin Protein 1 (HP1); STAT activation (by phosphorylation) causes its dispersal, leading to HP1 delocalization and heterochromatin loss. METHODS We used a combination of imaging, cell biological assays, and mouse xenografts to investigate the role of STAT3 in lung cancer development. RESULTS We found that uSTAT3 has a function in promoting heterochromatin formation in lung cancer cells, suppressing cell proliferation in vitro, and suppressing tumor growth in mouse xenografts. CONCLUSIONS Thus, uSTAT3 possesses noncanonical function in promoting heterochromatin formation, and the tumor suppressor function of STAT3 is likely attributable to the heterochromatin-promoting activity of uSTAT3 in the non-canonical JAK/STAT pathway.
Collapse
Affiliation(s)
- Pranabananda Dutta
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Lin Zhang
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Huijun Zhang
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Pulmonary Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qin Peng
- Department of Bioengineering, Institute of Engineering in Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Phillippe R Montgrain
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- Veterans Affairs San Diego Healthcare System, San Diego, CA, CA92037, USA
| | - Yingxiao Wang
- Department of Bioengineering, Institute of Engineering in Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yuanlin Song
- Department of Pulmonary Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jinghong Li
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Willis X Li
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
42
|
Bhattacharjee P, Das A, Giri AK, Bhattacharjee P. Epigenetic regulations in alternative telomere lengthening: Understanding the mechanistic insight in arsenic-induced skin cancer patients. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135388. [PMID: 31837846 DOI: 10.1016/j.scitotenv.2019.135388] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/01/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
Telomere integrity is considered to be one of the primary mechanisms during malignant transformation. Arsenic, a group 1 carcinogenic metalloid, has been reported to cause telomere lengthening in a telomerase-independent manner. Recent studies suggest a significant role for epigenetic modifications in regulating telomeric length and integrity. Here, we have explored the role of epigenetic deregulation in alternative lengthening of telomeres (ALT) in arsenic-exposed skin cancer tissues and corresponding non-tumor tissues. The relative telomere length (RTL) was analyzed by qRT-PCR using 2-ΔΔCt method. The subtelomeric methylation pattern of the four chromosomes (7q, 18p, 21q and XpYp) were analysed by Methylation Specific PCR (MSP) in 40 pairs of arsenic exposed skin cancer tissues and its corresponding control. The role of constitutive heterochromatin histone marks in the regulation of telomere length (TL) was analyzed by targeted ELISA. A 2-fold increase of relative telomere length in 85% of the arsenic-induced skin cancer tissues was observed. Among the four chromosomes, subtelomere of XpYp was found to be hypermethylated (p < 0.001) whereas 18p was hypomethylated (p < 0.01). Additionally, the level of H4K20me3, a heterochromatic mark was found to be significantly down-regulated (p < 0.0003), and inversely correlated with telomere length indicating loss of heterochromatinization of telomeric DNA. These observations highlight the novel role of epigenetic regulation in the maintenance of constitutive heterochromatin structure at telomere. Alteration in subtelomeric DNA methylation patterns and depletion of H4K20me3 might lead to loss of heterochromatinization resulting in arsenic-induced telomeric elongation. We provide novel data indicating possible alternative determinants of telomere elongation through epigenetic modifications during arsenic-induced skin carcinogenesis which could be used as early 'epimarkers' in the near future. The findings provide new insights about the mechanism of arsenic-induced carcinogenesis.
Collapse
Affiliation(s)
- Pritha Bhattacharjee
- Department of Zoology, University of Calcutta, Kolkata 700019, India; Department of Environmental Science, University of Calcutta, Kolkata 700019, India
| | - Ankita Das
- Department of Environmental Science, University of Calcutta, Kolkata 700019, India
| | - Ashok K Giri
- Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Pritha Bhattacharjee
- Department of Environmental Science, University of Calcutta, Kolkata 700019, India.
| |
Collapse
|
43
|
Singh PB, Newman AG. On the relations of phase separation and Hi-C maps to epigenetics. ROYAL SOCIETY OPEN SCIENCE 2020; 7:191976. [PMID: 32257349 PMCID: PMC7062049 DOI: 10.1098/rsos.191976] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/03/2020] [Indexed: 05/10/2023]
Abstract
The relationship between compartmentalization of the genome and epigenetics is long and hoary. In 1928, Heitz defined heterochromatin as the largest differentiated chromatin compartment in eukaryotic nuclei. Müller's discovery of position-effect variegation in 1930 went on to show that heterochromatin is a cytologically visible state of heritable (epigenetic) gene repression. Current insights into compartmentalization have come from a high-throughput top-down approach where contact frequency (Hi-C) maps revealed the presence of compartmental domains that segregate the genome into heterochromatin and euchromatin. It has been argued that the compartmentalization seen in Hi-C maps is owing to the physiochemical process of phase separation. Oddly, the insights provided by these experimental and conceptual advances have remained largely silent on how Hi-C maps and phase separation relate to epigenetics. Addressing this issue directly in mammals, we have made use of a bottom-up approach starting with the hallmarks of constitutive heterochromatin, heterochromatin protein 1 (HP1) and its binding partner the H3K9me2/3 determinant of the histone code. They are key epigenetic regulators in eukaryotes. Both hallmarks are also found outside mammalian constitutive heterochromatin as constituents of larger (0.1-5 Mb) heterochromatin-like domains and smaller (less than 100 kb) complexes. The well-documented ability of HP1 proteins to function as bridges between H3K9me2/3-marked nucleosomes contributes to polymer-polymer phase separation that packages epigenetically heritable chromatin states during interphase. Contacts mediated by HP1 'bridging' are likely to have been detected in Hi-C maps, as evidenced by the B4 heterochromatic subcompartment that emerges from contacts between large KRAB-ZNF heterochromatin-like domains. Further, mutational analyses have revealed a finer, innate, compartmentalization in Hi-C experiments that probably reflect contacts involving smaller domains/complexes. Proteins that bridge (modified) DNA and histones in nucleosomal fibres-where the HP1-H3K9me2/3 interaction represents the most evolutionarily conserved paradigm-could drive and generate the fundamental compartmentalization of the interphase nucleus. This has implications for the mechanism(s) that maintains cellular identity, be it a terminally differentiated fibroblast or a pluripotent embryonic stem cell.
Collapse
Affiliation(s)
- Prim B. Singh
- Nazarbayev University School of Medicine, 5/1 Kerei, Zhanibek Khandar Street, Nur-Sultan Z05K4F4, Kazakhstan
- Epigenetics Laboratory, Department of Natural Sciences, Novosibirsk State University, Pirogov Street 2, Novosibirsk 630090, Russian Federation
| | - Andrew G. Newman
- Institute of Cell and Neurobiology, Charité—Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
44
|
Hu H, Chen C, Shi S, Li B, Duan S. The gene mutations and subtelomeric DNA methylation in immunodeficiency, centromeric instability and facial anomalies syndrome. Autoimmunity 2019; 52:192-198. [PMID: 31476899 DOI: 10.1080/08916934.2019.1657846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Immunodeficiency, centromeric instability and facial anomalies syndrome (ICF) is a rare autosomal recessive disorder, which is characteristic of a severe impairment of immunity. In the genetic aspect, ICF is featured with mutations primarily located in the specific genes (DNMT3B for ICF1, ZBTB24 for ICF2, CDCA7 for ICF3, and HELLS for ICF4). The subtelomeric region is defined as 500 kb at the terminal of each autosomal arm. And subtelomeric DNA fragments can partially regulate key biological activities, including chromosome movement and localization in the nucleus. In this review, we updated and summarized gene mutations in ICF based on the previous review. In addition, we focused on the correlation between subtelomeric DNA methylation and ICF. The relationship between subtelomeric methylation and telomere length in ICF was also summarized.
Collapse
Affiliation(s)
- Haochang Hu
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Chujia Chen
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Shanping Shi
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Bin Li
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Shiwei Duan
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
45
|
Marión RM, Montero JJ, López de Silanes I, Graña-Castro O, Martínez P, Schoeftner S, Palacios-Fábrega JA, Blasco MA. TERRA regulate the transcriptional landscape of pluripotent cells through TRF1-dependent recruitment of PRC2. eLife 2019; 8:44656. [PMID: 31426913 PMCID: PMC6701927 DOI: 10.7554/elife.44656] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 07/26/2019] [Indexed: 12/12/2022] Open
Abstract
The mechanisms that regulate pluripotency are still largely unknown. Here, we show that Telomere Repeat Binding Factor 1 (TRF1), a component of the shelterin complex, regulates the genome-wide binding of polycomb and polycomb H3K27me3 repressive marks to pluripotency genes, thereby exerting vast epigenetic changes that contribute to the maintenance of mouse ES cells in a naïve state. We further show that TRF1 mediates these effects by regulating TERRA, the lncRNAs transcribed from telomeres. We find that TERRAs are enriched at polycomb and stem cell genes in pluripotent cells and that TRF1 abrogation results in increased TERRA levels and in higher TERRA binding to those genes, coincidental with the induction of cell-fate programs and the loss of the naïve state. These results are consistent with a model in which TRF1-dependent changes in TERRA levels modulate polycomb recruitment to pluripotency and differentiation genes. These unprecedented findings explain why TRF1 is essential for the induction and maintenance of pluripotency.
Collapse
Affiliation(s)
- Rosa María Marión
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Juan J Montero
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Isabel López de Silanes
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Osvaldo Graña-Castro
- Bioinformatics Unit, Structural Biology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Paula Martínez
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | - Stefan Schoeftner
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| | | | - Maria A Blasco
- Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid, Spain
| |
Collapse
|
46
|
Identification of methotrexate as a heterochromatin-promoting drug. Sci Rep 2019; 9:11673. [PMID: 31406262 PMCID: PMC6690983 DOI: 10.1038/s41598-019-48137-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 07/18/2019] [Indexed: 12/14/2022] Open
Abstract
Heterochromatin is a tightly packed form of DNA involved in gene silencing, chromosome segregation, and protection of genome stability. Heterochromatin is becoming more recognized in tumor suppression and may thus serve as a potential target for cancer therapy. However, to date there are no drugs that are well established to specifically promote heterochromatin formation. Here, we describe a screening method using Drosophila to identify small molecule compounds that promote heterochromatin formation, with the purpose of developing epigenetic cancer therapeutics. We took advantage of a Drosophila strain with a variegated eye color phenotype that is sensitive to heterochromatin levels, and screened a library of 97 FDA approved oncology drugs. This screen identified methotrexate as the most potent small molecule drug, among the 97 oncology drugs screened, in promoting heterochromatin formation. Interestingly, methotrexate has been identified as a JAK/STAT inhibitor in a functional screen, causing reduced phosphorylation of STAT proteins. These findings are in line with our previous observation that unphosphorylated STAT (uSTAT) promotes heterochromatin formation in both Drosophila and human cells and suppresses tumor growth in mouse xenografts. Thus, Drosophila with variegated eye color phenotypes could be an effective tool for screening heterochromatin-promoting compounds that could be candidates as cancer therapeutics.
Collapse
|
47
|
Mazzolini R, Gonzàlez N, Garcia-Garijo A, Millanes-Romero A, Peiró S, Smith S, García de Herreros A, Canudas S. Snail1 transcription factor controls telomere transcription and integrity. Nucleic Acids Res 2019; 46:146-158. [PMID: 29059385 PMCID: PMC5758914 DOI: 10.1093/nar/gkx958] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 10/16/2017] [Indexed: 02/06/2023] Open
Abstract
Besides controlling epithelial-to-mesenchymal transition (EMT) and cell invasion, the Snail1 transcriptional factor also provides cells with cancer stem cell features. Since telomere maintenance is essential for stemness, we have examined the control of telomere integrity by Snail1. Fluorescence in situ hybridization (FISH) analysis indicates that Snail1-depleted mouse mesenchymal stem cells (MSC) have both a dramatic increase of telomere alterations and shorter telomeres. Remarkably, Snail1-deficient MSC present higher levels of both telomerase activity and the long non-coding RNA called telomeric repeat-containing RNA (TERRA), an RNA that controls telomere integrity. Accordingly, Snail1 expression downregulates expression of the telomerase gene (TERT) as well as of TERRA 2q, 11q and 18q. TERRA and TERT are transiently downregulated during TGFβ-induced EMT in NMuMG cells, correlating with Snail1 expression. Global transcriptome analysis indicates that ectopic expression of TERRA affects the transcription of some genes induced during EMT, such as fibronectin, whereas that of TERT does not modify those genes. We propose that Snail1 repression of TERRA is required not only for telomere maintenance but also for the expression of a subset of mesenchymal genes.
Collapse
Affiliation(s)
- Rocco Mazzolini
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Núria Gonzàlez
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Andrea Garcia-Garijo
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Alba Millanes-Romero
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Sandra Peiró
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain
| | - Susan Smith
- Kimmel Center for Biology and Medicine at the Skirball Institute, Department of Pathology, New York University School of Medicine, New York University, USA
| | - Antonio García de Herreros
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain.,Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Sílvia Canudas
- Programa de Recerca en Càncer, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Barcelona, Spain.,Unitat de Nutrició Humana, Facultat de Medicina i Ciències de la Salut, Institut d'Investigació Sanitaria Pere Virgili (IISPV), Reus, Spain.,CIBER Fisiología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
48
|
Bröhm A, Elsawy H, Rathert P, Kudithipudi S, Schoch T, Schuhmacher MK, Weirich S, Jeltsch A. Somatic Cancer Mutations in the SUV420H1 Protein Lysine Methyltransferase Modulate Its Catalytic Activity. J Mol Biol 2019; 431:3068-3080. [PMID: 31255706 DOI: 10.1016/j.jmb.2019.06.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 01/16/2023]
Abstract
SUV420H1 is a protein lysine methyltransferase that introduces di- and trimethylation of H4K20 and is frequently mutated in human cancers. We investigated the functional effects of eight somatic cancer mutations on SUV420H1 activity in vitro and in cells. One group of mutations (S255F, K258E, A269V) caused a reduction of the catalytic activity on peptide and nucleosome substrates. The mutated amino acids have putative roles in AdoMet binding and recognition of H4 residue D24. Group 2 mutations (E238V, D249N, E320K) caused a reduction of activity on peptide substrates, which was partially recovered when using nucleosomal substrates. The corresponding residues could have direct or indirect roles in peptide and AdoMet binding, but the effects of the mutations can be overcome by additional interactions between SUV420H1 and the nucleosome substrate. The third group of mutations (S283L, S304Y) showed enhanced activity with peptide substrates when compared with nucleosomal substrates, suggesting that these residues are involved in nucleosomal interaction or allosteric activation of SUV420H1 after nucleosome binding. Group 2 and 3 mutants highlight the role of nucleosomal contacts for SUV420H1 regulation in agreement with the high activity of this enzyme on nucleosomal substrates. Strikingly, seven of the somatic cancer mutations studied here led to a reduction of the catalytic activity of SUV420H1 in cells, suggesting that SUV420H1 activity might have a tumor suppressive function. This could be explained by the role of H4K20me2/3 in DNA repair, suggesting that loss or reduction of SUV420H1 activity could contribute to a mutator phenotype in cancer cells.
Collapse
Affiliation(s)
- Alexander Bröhm
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569 Stuttgart, Germany
| | - Hany Elsawy
- Department of Chemistry, Faculty of Science, Tanta University, 31527 Tanta, El-Gharbia, Egypt
| | - Philipp Rathert
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569 Stuttgart, Germany
| | - Srikanth Kudithipudi
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569 Stuttgart, Germany
| | - Tabea Schoch
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569 Stuttgart, Germany
| | - Maren Kirstin Schuhmacher
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569 Stuttgart, Germany
| | - Sara Weirich
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569 Stuttgart, Germany
| | - Albert Jeltsch
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569 Stuttgart, Germany.
| |
Collapse
|
49
|
Role of arsenic, lead and cadmium on telomere length and the risk of carcinogenesis: a mechanistic insight. THE NUCLEUS 2019. [DOI: 10.1007/s13237-019-00280-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
50
|
Knudsen ES, Pruitt SC, Hershberger PA, Witkiewicz AK, Goodrich DW. Cell Cycle and Beyond: Exploiting New RB1 Controlled Mechanisms for Cancer Therapy. Trends Cancer 2019; 5:308-324. [PMID: 31174843 DOI: 10.1016/j.trecan.2019.03.005] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/25/2019] [Accepted: 03/28/2019] [Indexed: 12/14/2022]
Abstract
Recent studies highlight the importance of the RB1 tumor suppressor as a target for cancer therapy. Canonically, RB1 regulates cell cycle progression and represents the downstream target for cyclin-dependent kinase (CDK) 4/6 inhibitors that are in clinical use. However, newly discovered features of the RB1 pathway suggest new therapeutic strategies to counter resistance and improve precision medicine. These therapeutic strategies include deepening cell cycle exit with CDK4/6 inhibitor combinations, selectively targeting tumors that have lost RB1, and expanding therapeutic index by mitigating therapy-associated adverse effects. In addition, RB1 impacts immunological features of tumors and the microenvironment that can enhance sensitivity to immunotherapy. Lastly, RB1 specifies epigenetically determined cell lineage states that are disrupted during therapy resistance and could be re-installed through the direct use of epigenetic therapies. Thus, new opportunities are emerging to improve cancer therapy by exploiting the RB1 pathway.
Collapse
Affiliation(s)
- Erik S Knudsen
- Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; Center for Personalized Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA.
| | - Steven C Pruitt
- Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Pamela A Hershberger
- Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA; Department of Oral Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Agnieszka K Witkiewicz
- Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; Center for Personalized Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA; Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - David W Goodrich
- Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| |
Collapse
|