1
|
Paul S, McCourt PM, Le LTM, Ryu J, Czaja W, Bode AM, Contreras-Galindo R, Dong Z. Fyn-mediated phosphorylation of Menin disrupts telomere maintenance in stem cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.04.560876. [PMID: 37873235 PMCID: PMC10592958 DOI: 10.1101/2023.10.04.560876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Telomeres protect chromosome ends and determine the replication potential of dividing cells. The canonical telomere sequence TTAGGG is synthesized by telomerase holoenzyme, which maintains telomere length in proliferative stem cells. Although the core components of telomerase are well-defined, mechanisms of telomerase regulation are still under investigation. We report a novel role for the Src family kinase Fyn, which disrupts telomere maintenance in stem cells by phosphorylating the scaffold protein Menin. We found that Fyn knockdown prevented telomere erosion in human and mouse stem cells, validating the results with four telomere measurement techniques. We show that Fyn phosphorylates Menin at tyrosine 603 (Y603), which increases Menin's SUMO1 modification, C-terminal stability, and importantly, its association with the telomerase RNA component (TR). Using mass spectrometry, immunoprecipitation, and immunofluorescence experiments we found that SUMO1-Menin decreases TR's association with telomerase subunit Dyskerin, suggesting that Fyn's phosphorylation of Menin induces telomerase subunit mislocalization and may compromise telomerase function at telomeres. Importantly, we find that Fyn inhibition reduces accelerated telomere shortening in human iPSCs harboring mutations for dyskeratosis congenita.
Collapse
Affiliation(s)
- Souren Paul
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912, USA
| | - Preston M. McCourt
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912, USA
| | - Le Thi My Le
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912, USA
| | - Joohyun Ryu
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota School of Medicine, Minneapolis, MN, USA
| | - Wioletta Czaja
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912, USA
- Department of Genetics, University of Alabama, Birmingham, AL 35294, USA
| | - Ann M. Bode
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912, USA
| | - Rafael Contreras-Galindo
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN 55912, USA
- Department of Genetics, University of Alabama, Birmingham, AL 35294, USA
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Henan, China 450001
| |
Collapse
|
2
|
Zhao Y, Chen J, Zheng H, Luo Y, An M, Lin Y, Pang M, Li Y, Kong Y, He W, Lin T, Chen C. SUMOylation-Driven mRNA Circularization Enhances Translation and Promotes Lymphatic Metastasis of Bladder Cancer. Cancer Res 2024; 84:434-448. [PMID: 37991737 PMCID: PMC10831341 DOI: 10.1158/0008-5472.can-23-2278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/10/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023]
Abstract
Aberrant gene expression is a prominent feature of metastatic cancer. Translational initiation is a vital step in fine-tuning gene expression. Thus, exploring translation initiation regulators may identify therapeutic targets for preventing and treating metastasis. Herein, we identified that DHCR24 was overexpressed in lymph node (LN) metastatic bladder cancer and correlated with poor prognosis of patients. DHCR24 promoted lymphangiogenesis and LN metastasis of bladder cancer in vitro and in vivo. Mechanistically, DHCR24 mediated and recognized the SUMO2 modification at lysine 108 of hnRNPA2B1 to foster TBK1 mRNA circularization and eIF4F initiation complex assembly by enhancing hnRNPA2B1-eIF4G1 interaction. Moreover, DHCR24 directly anchored to TBK1 mRNA 3'-untranslated region to increase its stability, thus forming a feed forward loop to elevate TBK1 expression. TBK1 activated PI3K/Akt signaling to promote VEGFC secretion, resulting in lymphangiogenesis and LN metastasis. DHCR24 silencing significantly impeded bladder cancer lymphangiogenesis and lymphatic metastasis in a patient-derived xenograft model. Collectively, these findings elucidate DHCR24-mediated translation machinery that promotes lymphatic metastasis of bladder cancer and supports the potential application of DHCR24-targeted therapy for LN-metastatic bladder cancer. SIGNIFICANCE DHCR24 is a SUMOylation regulator that controls translation initiation complex assembly and orchestrates TBK1 mRNA circularization to activate Akt/VEGFC signaling, which stimulates lymphangiogenesis and promotes lymph node metastasis in bladder cancer.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Interventional Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Jiancheng Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P. R. China
| | - Hanhao Zheng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P. R. China
| | - Yuming Luo
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, P. R. China
| | - Mingjie An
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P. R. China
| | - Yan Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P. R. China
| | - Mingrui Pang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P. R. China
| | - Yuanlong Li
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P. R. China
| | - Yao Kong
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, P. R. China
| | - Wang He
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P. R. China
| | - Tianxin Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P. R. China
| | - Changhao Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, P. R. China
| |
Collapse
|
3
|
Shepelev N, Dontsova O, Rubtsova M. Post-Transcriptional and Post-Translational Modifications in Telomerase Biogenesis and Recruitment to Telomeres. Int J Mol Sci 2023; 24:5027. [PMID: 36902458 PMCID: PMC10003056 DOI: 10.3390/ijms24055027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Telomere length is associated with the proliferative potential of cells. Telomerase is an enzyme that elongates telomeres throughout the entire lifespan of an organism in stem cells, germ cells, and cells of constantly renewed tissues. It is activated during cellular division, including regeneration and immune responses. The biogenesis of telomerase components and their assembly and functional localization to the telomere is a complex system regulated at multiple levels, where each step must be tuned to the cellular requirements. Any defect in the function or localization of the components of the telomerase biogenesis and functional system will affect the maintenance of telomere length, which is critical to the processes of regeneration, immune response, embryonic development, and cancer progression. An understanding of the regulatory mechanisms of telomerase biogenesis and activity is necessary for the development of approaches toward manipulating telomerase to influence these processes. The present review focuses on the molecular mechanisms involved in the major steps of telomerase regulation and the role of post-transcriptional and post-translational modifications in telomerase biogenesis and function in yeast and vertebrates.
Collapse
Affiliation(s)
- Nikita Shepelev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117437, Russia
- Chemistry Department and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Olga Dontsova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117437, Russia
- Chemistry Department and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Maria Rubtsova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117437, Russia
- Chemistry Department and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| |
Collapse
|
4
|
GLI1, a novel target of the ER stress regulator p97/VCP, promotes ATF6f-mediated activation of XBP1. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194924. [PMID: 36842643 DOI: 10.1016/j.bbagrm.2023.194924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/31/2023] [Accepted: 02/19/2023] [Indexed: 02/28/2023]
Abstract
Upon accumulation of improperly folded proteins in the Endoplasmic Reticulum (ER), the Unfolded Protein Response (UPR) is triggered to restore ER homeostasis. The induction of stress genes is a sine qua non condition for effective adaptive UPR. Although this requirement has been extensively described, the mechanisms underlying this process remain in part uncharacterized. Here, we show that p97/VCP, an AAA+ ATPase known to contribute to ER stress-induced gene expression, regulates the transcription factor GLI1, a primary effector of Hedgehog (Hh) signaling. Under basal (non-ER stress) conditions, GLI1 is repressed by a p97/VCP-HDAC1 complex while upon ER stress GLI1 is induced through a mechanism requiring both USF2 binding and increase histone acetylation at its promoter. Interestingly, the induction of GLI1 was independent of ligand-regulated Hh signaling. Further analysis showed that GLI1 cooperates with ATF6f to induce promoter activity and expression of XBP1, a key transcription factor driving UPR. Overall, our work demonstrates a novel role for GLI1 in the regulation of ER stress gene expression and defines the interplay between p97/VCP, HDAC1 and USF2 as essential players in this process.
Collapse
|
5
|
Williard AC, Switzer HJ, Howard CA, Yin R, Russell BL, Sanyal R, Yu S, Myers TM, Flood BM, Kerscher O, Young DD. Protein Modification Employing Non-Canonical Amino Acids to Prepare SUMOylation Detecting Bioconjugates. Pharmaceutics 2022; 14:pharmaceutics14122826. [PMID: 36559319 PMCID: PMC9784311 DOI: 10.3390/pharmaceutics14122826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Protein modification with non-canonical amino acids (ncAAs) represents a useful technology to afford homogenous samples of bioconjugates with site-specific modification. This technique can be directly applied to the detection of aberrant SUMOylation patterns, which are often indicative of disease states. Modified SUMO-trapping proteins, consisting of a catalytically inactive ULP1 fragment (UTAG) fused to the maltose-binding protein MBP, are useful reagents for the binding and labeling of SUMOylated proteins. Mutation of this UTAG fusion protein to facilitate amber suppression technologies for the genetic incorporation of ncAAs was assessed to provide a functional handle for modification. Ultimately, two sites in the maltose-binding protein (MBP) fusion were identified as ideal for incorporation and bioconjugation without perturbation to the SUMO-trapping ability of the UTAG protein. This functionality was then employed to label SUMOylated proteins in HeLa cells and demonstrate their enrichment in the nucleus. This modified UTAG-MBP-ncAA protein has far-reaching applications for both diagnostics and therapeutics.
Collapse
Affiliation(s)
| | - Hannah J. Switzer
- Department of Chemistry, William & Mary, Williamsburg, VA 23185, USA
| | | | - Rui Yin
- Department of Chemistry, William & Mary, Williamsburg, VA 23185, USA
| | - Brent L. Russell
- Department of Chemistry, William & Mary, Williamsburg, VA 23185, USA
| | - Ritwik Sanyal
- Department of Chemistry, William & Mary, Williamsburg, VA 23185, USA
| | - Shaun Yu
- Department of Chemistry, William & Mary, Williamsburg, VA 23185, USA
| | - Trinity M. Myers
- Department of Chemistry, William & Mary, Williamsburg, VA 23185, USA
| | - Brian M. Flood
- Department of Chemistry, William & Mary, Williamsburg, VA 23185, USA
| | - Oliver Kerscher
- Department of Biology, William & Mary, Williamsburg, VA 23185, USA
| | - Douglas D. Young
- Department of Chemistry, William & Mary, Williamsburg, VA 23185, USA
- Correspondence:
| |
Collapse
|
6
|
Wang H, Yang L, Liu M, Luo J. Protein post-translational modifications in the regulation of cancer hallmarks. Cancer Gene Ther 2022; 30:529-547. [PMID: 35393571 DOI: 10.1038/s41417-022-00464-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/28/2022] [Accepted: 03/18/2022] [Indexed: 12/12/2022]
Abstract
Posttranslational modifications (PTMs) of proteins, the major mechanism of protein function regulation, play important roles in regulating a variety of cellular physiological and pathological processes. Although the classical PTMs, such as phosphorylation, acetylation, ubiquitination and methylation, have been well studied, the emergence of many new modifications, such as succinylation, hydroxybutyrylation, and lactylation, introduces a new layer to protein regulation, leaving much more to be explored and wide application prospects. In this review, we will provide a broad overview of the significant roles of PTMs in regulating human cancer hallmarks through selecting a diverse set of examples, and update the current advances in the therapeutic implications of these PTMs in human cancer.
Collapse
Affiliation(s)
- Haiying Wang
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China.
| | - Liqian Yang
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Minghui Liu
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, 100191, Beijing, China
| | - Jianyuan Luo
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China. .,Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, 100191, Beijing, China.
| |
Collapse
|
7
|
Gomarasca M, Lombardi G, Maroni P. SUMOylation and NEDDylation in Primary and Metastatic Cancers to Bone. Front Cell Dev Biol 2022; 10:889002. [PMID: 35465332 PMCID: PMC9020829 DOI: 10.3389/fcell.2022.889002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/25/2022] [Indexed: 12/22/2022] Open
Abstract
Post-translational modifications comprise series of enzymatically-driven chemical modifications, virtually involving the entire cell proteome, that affect the fate of a target protein and, in turn, cell activity. Different classes of modifications can be established ranging from phosphorylation, glycosylation, ubiquitination, acetylation, methylation, lipidation and their inverse reactions. Among these, SUMOylation and NEDDylation are ubiquitin-like multi-enzymatic processes that determine the bound of SUMOs and NEDD8 labels, respectively, on defined amino acidic residues of a specific protein and regulate protein function. As fate-determinants of several effectors and mediators, SUMOylation and NEDDylation play relevant roles in many aspects of tumor cell biology. Bone represents a preferential site of metastasis for solid tumors (e.g., breast and prostate cancers) and the primary site of primitive tumors (e.g., osteosarcoma, chondrosarcoma). Deregulation of SUMOylation and NEDDylation affects different aspects of neoplastic transformation and evolution such as epithelial-mesenchymal transition, adaptation to hypoxia, expression and action of tumor suppressors and oncogenic mediators, and drug resistance. Thereby, they represent potential therapeutic targets. This narrative review aims at describing the involvement and regulation of SUMOylation and NEDDylation in tumor biology, with a specific focus on primary and secondary bone tumors, and to summarize and highlight their potentiality in diagnostics and therapeutic strategies.
Collapse
Affiliation(s)
- Marta Gomarasca
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Poznań, Polska
- *Correspondence: Giovanni Lombardi,
| | - Paola Maroni
- Laboratory of Experimental Biochemistry and Molecular Biology, IRCCS Istituto Ortopedico Galeazzi, Milano, Italy
| |
Collapse
|
8
|
Du L, Liu W, Pichiorri F, Rosen ST. SUMOylation inhibition enhances multiple myeloma sensitivity to lenalidomide. Cancer Gene Ther 2022; 30:567-574. [PMID: 35338347 PMCID: PMC10104776 DOI: 10.1038/s41417-022-00450-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 01/18/2022] [Accepted: 02/24/2022] [Indexed: 11/09/2022]
Abstract
Despite the potent effect of lenalidomide (Len) in multiple myeloma (MM) treatment, patients develop Len resistance leading to progressive disease, demanding an urgent need to investigate the mechanisms mediating Len resistance. Our study identified SUMOylation as a potential mechanism regulating Len resistance in MM. Len-resistant MM cell line MMR10R presented much higher SUMO E1 (SAE2) expression and more global SUMOylation than Len-sensitive MM1S cell line. SUMOylation inhibition by using TAK-981, a novel and specific SUMO E1 inhibitor, significantly enhances myeloma sensitivity to Len in MM cell lines. Moreover, the enhanced anti-MM activity by TAK-981 and Len combination has been validated using primary relapsing MM patient samples. Overexpression of IRF4 and c-Myc is a major mechanism of Len resistance. Len showed limited effect on IRF4 and c-Myc level in Len-resistance cell line, but TAK-981 treatment reduced IRF4 and c-Myc expression in Len-resistant line and caused further decrease when combined with Len. We found SUMOylation inhibition decreases IRF4 at transcriptional and post-translational level. SUMOylation inhibition reduced DOT1L with decreased methylation of histone H3 lysine 79, to suppress IRF4 gene transcription. SUMOylation inhibition also reduced IRF4 protein level by enhancing degradation. Overall, our data revealed SUMOylation inhibition enhances Len sensitivity through downregulating IRF4.
Collapse
Affiliation(s)
- Li Du
- Toni Stephenson Lymphoma Center, Beckman Research Institute of City of Hope, Duarte, CA, USA. .,Judy and Bernard Briskin Center for Multiple Myeloma Research, Beckman Research Institute of City of Hope, Duarte, CA, USA. .,Department of Hematology and Stem Cell Transplant, Beckman Research Institute of City of Hope, Duarte, CA, USA.
| | - Wei Liu
- Toni Stephenson Lymphoma Center, Beckman Research Institute of City of Hope, Duarte, CA, USA.,Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Flavia Pichiorri
- Judy and Bernard Briskin Center for Multiple Myeloma Research, Beckman Research Institute of City of Hope, Duarte, CA, USA.,Department of Hematology and Stem Cell Transplant, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Steven T Rosen
- Toni Stephenson Lymphoma Center, Beckman Research Institute of City of Hope, Duarte, CA, USA. .,Judy and Bernard Briskin Center for Multiple Myeloma Research, Beckman Research Institute of City of Hope, Duarte, CA, USA. .,Department of Hematology and Stem Cell Transplant, Beckman Research Institute of City of Hope, Duarte, CA, USA. .,City of Hope Comprehensive Cancer Center, City of Hope National Medical Center, Duarte, CA, USA.
| |
Collapse
|
9
|
Du L, Liu W, Aldana-Masangkay G, Pozhitkov A, Pichiorri F, Chen Y, Rosen ST. SUMOylation inhibition enhances dexamethasone sensitivity in multiple myeloma. J Exp Clin Cancer Res 2022; 41:8. [PMID: 34983615 PMCID: PMC8725350 DOI: 10.1186/s13046-021-02226-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/16/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Multiple myeloma (MM) is an incurable plasma cell malignancy. Although Dexamethasone (Dex) is the most widely used therapeutic drug in MM treatment, patients develop Dex resistance leading to progressive disease, demanding an urgent need to investigate the mechanisms driving Dex resistance and develop new reagents to address this problem. We propose SUMOylation as a potential mechanism regulating Dex resistance and SUMOylation inhibition can enhance Dex sensitivity in MM. METHODS Using MM cell lines and primary MM samples from relapsing MM patients, we evaluated the effects of knockdown of SUMO E1 (SAE2) or using TAK-981, a novel and specific SUMO E1 inhibitor, on Dex sensitivity. Xenograft mouse models were generated to determine the in vivo anti-MM effects of TAK-981 as a single agent and in combination with Dex. miRNA-seq, RNA-seq and GSEA analysis were utilized for evaluating key factors mediating Dex resistance. Chromatin immunoprecipitation (ChIP) assay was performed to determine the binding occupancy of c-Myc on promoter region of miRs. RESULTS We observed a significant negative correlation between SUMO E1 (SAE2) expression and Dex sensitivity in primary MM samples. Knockdown of SAE2 or using TAK-981 significantly enhances myeloma sensitivity to Dex in MM cell lines. Moreover, the enhanced anti-MM activity by TAK-981 and Dex combination has been validated using primary relapsing MM patient samples and xenograft mouse models. SUMOylation inhibition increased glucocorticoid receptor (GR) expression via downregulation miR-130b. Using RNA and microRNA sequencing, we identified miR-551b and miR-25 as important miRs mediating Dex resistance in MM. Overexpression of miR-551b and miR-25 caused resistance to Dex, however, knockdown of miR-551b and miR-25 significantly enhanced Dex sensitivity in MM. SAE2 knockdown or TAK-981 treatment downregulated the expression of miR-551b and miR-25, leading to induction of miR targets ZFP36, ULK1 and p27, resulting in apoptosis and autophagy. We demonstrated c-Myc as a major transcriptional activator of miR-130b, miR-551b and miR-25 and SUMOylation inhibition downregulates these miRs level by decreasing c-Myc level. CONCLUSION Our study proves SUMOylation plays a crucial role in Dex resistance in MM and SUMOylation inhibition appears to be an attractive strategy to advance to the clinic for MM patients.
Collapse
Affiliation(s)
- Li Du
- Toni Stephenson Lymphoma Center, Beckman Research Institute of City of Hope, Duarte, CA, USA.
- Judy and Bernard Briskin Center for Multiple Myeloma Research, Beckman Research Institute of City of Hope, Duarte, CA, USA.
- Department of Hematology and Stem Cell Transplant, Beckman Research Institute of City of Hope, Duarte, CA, USA.
| | - Wei Liu
- Toni Stephenson Lymphoma Center, Beckman Research Institute of City of Hope, Duarte, CA, USA
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Grace Aldana-Masangkay
- Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA, USA
- Present address: Fulgent Genetics, City, Temple City, CA, 91780, USA
| | - Alex Pozhitkov
- Department of Informatics, City of Hope National Medical Center, Duarte, CA, USA
| | - Flavia Pichiorri
- Judy and Bernard Briskin Center for Multiple Myeloma Research, Beckman Research Institute of City of Hope, Duarte, CA, USA
- Department of Hematology and Stem Cell Transplant, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Yuan Chen
- Department of Surgery and Moores Cancer Center, UC San Diego Health, San Diego, CA, USA
| | - Steven T Rosen
- Toni Stephenson Lymphoma Center, Beckman Research Institute of City of Hope, Duarte, CA, USA.
- Judy and Bernard Briskin Center for Multiple Myeloma Research, Beckman Research Institute of City of Hope, Duarte, CA, USA.
- Department of Hematology and Stem Cell Transplant, Beckman Research Institute of City of Hope, Duarte, CA, USA.
- City of Hope Comprehensive Cancer Center, City of Hope National Medical Center, Duarte, CA, USA.
| |
Collapse
|
10
|
Bellail AC, Jin HR, Lo HY, Jung SH, Hamdouchi C, Kim D, Higgins RK, Blanck M, le Sage C, Cross BCS, Li J, Mosley AL, Wijeratne AB, Jiang W, Ghosh M, Zhao YQ, Hauck PM, Shekhar A, Hao C. Ubiquitination and degradation of SUMO1 by small-molecule degraders extends survival of mice with patient-derived tumors. Sci Transl Med 2021; 13:eabh1486. [PMID: 34644148 DOI: 10.1126/scitranslmed.abh1486] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Anita C Bellail
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA.,HB Therapeutics Inc., Indianapolis, IN 46202, USA
| | - Hong Ri Jin
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Ho-Yin Lo
- Synovel Laboratory LLC, Danbury, CT 06811, USA
| | - Sung Han Jung
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Chafiq Hamdouchi
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Daeho Kim
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Ryan K Higgins
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | - Jing Li
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Amber L Mosley
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA.,Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Aruna B Wijeratne
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Wen Jiang
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Manali Ghosh
- Department of Biological Sciences, Markey Center for Structural Biology, Purdue University, West Lafayette, IN 47907, USA
| | - Yin Quan Zhao
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Paula M Hauck
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Anantha Shekhar
- Department of Psychiatry and Indiana Clinical and Translational Sciences Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Chunhai Hao
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN 46202, USA.,Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW In the article, we focus on the role of SUMOylation in tumorigenesis and cancer-related processes, including Epithelial-mesenchymal transition (EMT), metastasis, resistance to cancer therapies, and antitumor immunity. Clinical perspective on small ubiquitin-like modifier (SUMO) inhibitors will be discussed. RECENT FINDINGS SUMOylation regulates multiple important biologic functions including gene transcription, DNA damage repair, cell cycle, and innate immunity. The SUMO pathway enzymes are usually elevated in various cancers and linked with cancer progression and poor clinical outcomes for patients. Recent studies have revealed the role of SUMOylation in EMT and metastasis through regulating E-Cadherin and Snail expression. Multiple studies demonstrate SUMOylation is involved with chemoresistance and hormone treatment resistance. Oncogene Myc and SUMOylation machinery regulation has been revealed in pancreatic cancer. SUMOylation is involved in regulating antitumor immune response through dendritic cells and T cells. A breakthrough has been made in targeting SUMOylation in cancer as first-in-class SUMO E1 inhibitor TAK-981 enters clinical trials. SUMMARY SUMOylation plays an important role in tumor EMT, metastasis, therapy resistance, and antitumor immune response. Pharmaceutical inhibition of SUMOylation has become promising clinical therapy to improve the outcome of the existing chemo and immune therapies.
Collapse
Affiliation(s)
- Li Du
- Toni Stephenson Lymphoma Center
| | - Wei Liu
- Toni Stephenson Lymphoma Center
| | - Steven T Rosen
- Judy and Bernard Briskin Center for Multiple Myeloma Research, Beckman Research Institute and Comprehensive Cancer Center, City of Hope National Medical Center, Duarte, California, USA
| |
Collapse
|
12
|
Kukkula A, Ojala VK, Mendez LM, Sistonen L, Elenius K, Sundvall M. Therapeutic Potential of Targeting the SUMO Pathway in Cancer. Cancers (Basel) 2021; 13:4402. [PMID: 34503213 PMCID: PMC8431684 DOI: 10.3390/cancers13174402] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 02/07/2023] Open
Abstract
SUMOylation is a dynamic and reversible post-translational modification, characterized more than 20 years ago, that regulates protein function at multiple levels. Key oncoproteins and tumor suppressors are SUMO substrates. In addition to alterations in SUMO pathway activity due to conditions typically present in cancer, such as hypoxia, the SUMO machinery components are deregulated at the genomic level in cancer. The delicate balance between SUMOylation and deSUMOylation is regulated by SENP enzymes possessing SUMO-deconjugation activity. Dysregulation of SUMO machinery components can disrupt the balance of SUMOylation, contributing to the tumorigenesis and drug resistance of various cancers in a context-dependent manner. Many molecular mechanisms relevant to the pathogenesis of specific cancers involve SUMO, highlighting the potential relevance of SUMO machinery components as therapeutic targets. Recent advances in the development of inhibitors targeting SUMOylation and deSUMOylation permit evaluation of the therapeutic potential of targeting the SUMO pathway in cancer. Finally, the first drug inhibiting SUMO pathway, TAK-981, is currently also being evaluated in clinical trials in cancer patients. Intriguingly, the inhibition of SUMOylation may also have the potential to activate the anti-tumor immune response. Here, we comprehensively and systematically review the recent developments in understanding the role of SUMOylation in cancer and specifically focus on elaborating the scientific rationale of targeting the SUMO pathway in different cancers.
Collapse
Affiliation(s)
- Antti Kukkula
- Cancer Research Unit, FICAN West Cancer Center Laboratory, Institute of Biomedicine, Turku University Hospital, University of Turku, FI-20520 Turku, Finland; (A.K.); (V.K.O.); (K.E.)
| | - Veera K. Ojala
- Cancer Research Unit, FICAN West Cancer Center Laboratory, Institute of Biomedicine, Turku University Hospital, University of Turku, FI-20520 Turku, Finland; (A.K.); (V.K.O.); (K.E.)
- Turku Doctoral Programme of Molecular Medicine, University of Turku, FI-20520 Turku, Finland
- Medicity Research Laboratories, University of Turku, FI-20520 Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland;
| | - Lourdes M. Mendez
- Beth Israel Deaconess Cancer Center, Beth Israel Deaconess Medical Center, Department of Medicine and Pathology, Cancer Research Institute, Harvard Medical School, Boston, MA 02115, USA;
| | - Lea Sistonen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland;
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, FI-20520 Turku, Finland
| | - Klaus Elenius
- Cancer Research Unit, FICAN West Cancer Center Laboratory, Institute of Biomedicine, Turku University Hospital, University of Turku, FI-20520 Turku, Finland; (A.K.); (V.K.O.); (K.E.)
- Medicity Research Laboratories, University of Turku, FI-20520 Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland;
- Department of Oncology, Turku University Hospital, FI-20521 Turku, Finland
| | - Maria Sundvall
- Cancer Research Unit, FICAN West Cancer Center Laboratory, Institute of Biomedicine, Turku University Hospital, University of Turku, FI-20520 Turku, Finland; (A.K.); (V.K.O.); (K.E.)
- Department of Oncology, Turku University Hospital, FI-20521 Turku, Finland
| |
Collapse
|
13
|
Roupakia E, Chavdoula E, Karpathiou G, Vatsellas G, Chatzopoulos D, Mela A, Gillette JM, Kriegsmann K, Kriegsmann M, Batistatou A, Goussia A, Marcu KB, Karteris E, Klinakis A, Kolettas E. Canonical NF-κB Promotes Lung Epithelial Cell Tumour Growth by Downregulating the Metastasis Suppressor CD82 and Enhancing Epithelial-to-Mesenchymal Cell Transition. Cancers (Basel) 2021; 13:cancers13174302. [PMID: 34503110 PMCID: PMC8428346 DOI: 10.3390/cancers13174302] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/17/2021] [Accepted: 08/24/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Canonical NF-κB signalling pathway acts as a tumour promoter in several types of cancer including non-small cell lung cancer (NSCLC), but the mechanism(s) by which it contributes to NSCLC is still under investigation. We show here that NF-κB RelA/p65 is required for the tumour growth of human NSCLC cells grown in vivo as xenografts in immune-compromised mice. RNA-seq transcriptome profile analysis identified the metastasis suppressor CD82/KAI1/TSPAN27 as a canonical NF-κB target. Loss of CD82 correlated with malignancy. RelA/p65 stimulates cell migration and epithelial-to-mesenchymal cell transition (EMT), mediated, in part, by CD82/KAI1, through integrin-mediated signalling, thus, identifying a mechanism mediating NF-κB RelA/p65 lung tumour promoting function. Abstract Background: The development of non-small cell lung cancer (NSCLC) involves the progressive accumulation of genetic and epigenetic changes. These include somatic oncogenic KRAS and EGFR mutations and inactivating TP53 tumour suppressor mutations, leading to activation of canonical NF-κB. However, the mechanism(s) by which canonical NF-κB contributes to NSCLC is still under investigation. Methods: Human NSCLC cells were used to knock-down RelA/p65 (RelA/p65KD) and investigate its impact on cell growth, and its mechanism of action by employing RNA-seq analysis, qPCR, immunoblotting, immunohistochemistry, immunofluorescence and functional assays. Results: RelA/p65KD reduced the proliferation and tumour growth of human NSCLC cells grown in vivo as xenografts in immune-compromised mice. RNA-seq analysis identified canonical NF-κB targets mediating its tumour promoting function. RelA/p65KD resulted in the upregulation of the metastasis suppressor CD82/KAI1/TSPAN27 and downregulation of the proto-oncogene ROS1, and LGR6 involved in Wnt/β-catenin signalling. Immunohistochemical and bioinformatics analysis of human NSCLC samples showed that CD82 loss correlated with malignancy. RelA/p65KD suppressed cell migration and epithelial-to-mesenchymal cell transition (EMT), mediated, in part, by CD82/KAI1, through integrin-mediated signalling involving the mitogenic ERK, Akt1 and Rac1 proteins. Conclusions: Canonical NF-κB signalling promotes NSCLC, in part, by downregulating the metastasis suppressor CD82/KAI1 which inhibits cell migration, EMT and tumour growth.
Collapse
Affiliation(s)
- Eugenia Roupakia
- Laboratory of Biology, School of Medicine, Faculty of Health Sciences, Institute of Biosciences, University Research Centre, University of Ioannina, University Campus, 45110 Ioannina, Greece;
- Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, University of Ioannina Campus, 45115 Ioannina, Greece;
| | - Evangelia Chavdoula
- Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, University of Ioannina Campus, 45115 Ioannina, Greece;
- Biomedical Research Foundation, Academy of Athens (BRFAA), 4 Soranou Ephessiou Street, 11527 Athens, Greece; (G.V.); (D.C.); (K.B.M.); (A.K.)
| | - Georgia Karpathiou
- Laboratory of Pathology, School of Medicine, Faculty of Health Sciences, University of Ioannina, 45500 Ioannina, Greece; (G.K.); (A.B.); (A.G.)
| | - Giannis Vatsellas
- Biomedical Research Foundation, Academy of Athens (BRFAA), 4 Soranou Ephessiou Street, 11527 Athens, Greece; (G.V.); (D.C.); (K.B.M.); (A.K.)
| | - Dimitrios Chatzopoulos
- Biomedical Research Foundation, Academy of Athens (BRFAA), 4 Soranou Ephessiou Street, 11527 Athens, Greece; (G.V.); (D.C.); (K.B.M.); (A.K.)
| | - Angeliki Mela
- Department of Pathology and Cell Biology Columbia University Medical Center, Irving Comprehensive Cancer Research Center, Columbia University, New York, NY 10032, USA;
| | - Jennifer M. Gillette
- Department of Pathology, School of Medicine, University of New Mexico, Albuquerque, NM 87131, USA;
| | - Katharina Kriegsmann
- Department of Internal Medicine V, University Hospital Heidelberg, 69120 Heidelberg, Germany;
| | - Mark Kriegsmann
- Institute of Pathology, University Hospital Heidelberg, 69120 Heidelberg, Germany;
| | - Anna Batistatou
- Laboratory of Pathology, School of Medicine, Faculty of Health Sciences, University of Ioannina, 45500 Ioannina, Greece; (G.K.); (A.B.); (A.G.)
| | - Anna Goussia
- Laboratory of Pathology, School of Medicine, Faculty of Health Sciences, University of Ioannina, 45500 Ioannina, Greece; (G.K.); (A.B.); (A.G.)
| | - Kenneth B. Marcu
- Biomedical Research Foundation, Academy of Athens (BRFAA), 4 Soranou Ephessiou Street, 11527 Athens, Greece; (G.V.); (D.C.); (K.B.M.); (A.K.)
- Department of Biochemistry and Cell Biology, Microbiology and Pathology, Stony Brook University, New York, NY 11794, USA
| | - Emmanouil Karteris
- Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, Middlesex, London UB8 PH, UK;
| | - Apostolos Klinakis
- Biomedical Research Foundation, Academy of Athens (BRFAA), 4 Soranou Ephessiou Street, 11527 Athens, Greece; (G.V.); (D.C.); (K.B.M.); (A.K.)
| | - Evangelos Kolettas
- Laboratory of Biology, School of Medicine, Faculty of Health Sciences, Institute of Biosciences, University Research Centre, University of Ioannina, University Campus, 45110 Ioannina, Greece;
- Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, University of Ioannina Campus, 45115 Ioannina, Greece;
- Correspondence: ; Tel.: +30-26510-07578; Fax: +30-26510-07863
| |
Collapse
|
14
|
Nie Q, Chen H, Zou M, Wang L, Hou M, Xiang JW, Luo Z, Gong XD, Fu JL, Wang Y, Zheng SY, Xiao Y, Gan YW, Gao Q, Bai YY, Wang JM, Zhang L, Tang XC, Hu X, Gong L, Liu Y, Li DWC. The E3 Ligase PIAS1 Regulates p53 Sumoylation to Control Stress-Induced Apoptosis of Lens Epithelial Cells Through the Proapoptotic Regulator Bax. Front Cell Dev Biol 2021; 9:660494. [PMID: 34195189 PMCID: PMC8237824 DOI: 10.3389/fcell.2021.660494] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/20/2021] [Indexed: 01/31/2023] Open
Abstract
Protein sumoylation is one of the most important post-translational modifications regulating many biological processes (Flotho A & Melchior F. 2013. Ann Rev. Biochem. 82:357–85). Our previous studies have shown that sumoylation plays a fundamental role in regulating lens differentiation (Yan et al., 2010. PNAS, 107(49):21034-9.; Gong et al., 2014. PNAS. 111(15):5574–9). Whether sumoylation is implicated in lens pathogenesis remains elusive. Here, we present evidence to show that the protein inhibitor of activated STAT-1 (PIAS1), a E3 ligase for sumoylation, is implicated in regulating stress-induced lens pathogenesis. During oxidative stress-induced cataractogenesis, expression of PIAS1 is significantly altered at both mRNA and protein levels. Upregulation and overexpression of exogenous PIAS1 significantly enhances stress-induced apoptosis. In contrast, silence of PIAS1 with CRISPR/Cas9 technology attenuates stress-induced apoptosis. Mechanistically, different from other cells, PIAS1 has little effect to activate JNK but upregulates Bax, a major proapoptotic regulator. Moreover, Bax upregulation is derived from the enhanced transcription activity of the upstream transcription factor, p53. As revealed previously in other cells by different laboratories, our data also demonstrate that PIAS1 promotes SUMO1 conjugation of p53 at K386 residue in lens epithelial cells and thus enhances p53 transcription activity to promote Bax upregulation. Silence of Bax expression largely abrogates PIAS1-mediated enhancement of stress-induced apoptosis. Thus, our results demonstrated that PIAS1 promotes oxidative stress-induced apoptosis through positive control of p53, which specifically upregulates expression of the downstream proapoptotic regulator Bax. As a result, PIAS1-promoted apoptosis induced by oxidative stress is implicated in lens pathogenesis.
Collapse
Affiliation(s)
- Qian Nie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Huimin Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Ming Zou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Ling Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Min Hou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jia-Wen Xiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Zhongwen Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiao-Dong Gong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jia-Ling Fu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yan Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Shu-Yu Zheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yuan Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yu-Wen Gan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Qian Gao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yue-Yue Bai
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jing-Miao Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Lan Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xiang-Cheng Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xuebin Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Lili Gong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - David Wan-Cheng Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
15
|
Epigenetic Regulation in Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 33983575 DOI: 10.1007/978-981-32-9620-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Aberrant epigenetic alteration has been associated with development of various cancers, including breast cancer. Since epigenetic modifications such as DNA methylation and histone modification are reversible, epigenetic enzymes, including histone modifying enzymes and DNA methyltransferases, emerge as attractive targets for cancer therapy. Although epi-drugs targeting histone deacetylation or DNA methylation have received FDA approval for cancer therapy, a very modest anti-tumor activity has been observed with monotherapy in clinical studies of breast cancer. To improve efficacy of epi-drugs in breast cancer, combination of epi-drugs with other therapies currently has been investigated. Additionally, basic researches to elucidate molecular causes of cancer should be extensively and intensively conducted in order to find novel epigenetic druggable targets. In this chapter, we summarize how epigenetic regulation affects the development of breast cancer and how to control cancer phenotype by modulating abnormal epigenetic modifications, and then suggest future research directions in epigenetics for breast cancer treatment.
Collapse
|
16
|
Chen C, Zheng H, Luo Y, Kong Y, An M, Li Y, He W, Gao B, Zhao Y, Huang H, Huang J, Lin T. SUMOylation promotes extracellular vesicle-mediated transmission of lncRNA ELNAT1 and lymph node metastasis in bladder cancer. J Clin Invest 2021; 131:146431. [PMID: 33661764 DOI: 10.1172/jci146431] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/25/2021] [Indexed: 12/29/2022] Open
Abstract
Small ubiquitin-like modifier (SUMO) binding (termed SUMOylation) emerged as the inducer for the sorting of bioactive molecules into extracellular vesicles (EVs), triggering lymphangiogenesis and further driving tumor lymph node (LN) metastasis, but the precise mechanisms remain largely unclear. Here, we show that bladder cancer (BCa) cell-secreted EVs mediated intercellular communication with human lymphatic endothelial cells (HLECs) through transmission of the long noncoding RNA ELNAT1 and promoted lymphangiogenesis and LN metastasis in a SUMOylation-dependent manner in both cultured BCa cell lines and mouse models. Mechanistically, ELNAT1 induced UBC9 overexpression to catalyze the SUMOylation of hnRNPA1 at the lysine 113 residue, which mediated recognition of ELNAT1 by the endosomal sorting complex required for transport (ESCRT) and facilitated its packaging into EVs. EV-mediated ELNAT1 was specifically transmitted into HLECs and epigenetically activated SOX18 transcription to induce lymphangiogenesis. Importantly, blocking the SUMOylation of tumor cells by downregulating UBC9 expression markedly reduced lymphatic metastasis in EV-mediated, ELNAT1-treated BCa in vivo. Clinically, EV-mediated ELNAT1 was correlated with LN metastasis and a poor prognosis for patients with BCa. These findings highlight a molecular mechanism whereby the EV-mediated ELNAT1/UBC9/SOX18 regulatory axis promotes lymphangiogenesis and LN metastasis in BCa in a SUMOylation-dependent manner and implicate ELNAT1 as an attractive therapeutic target for LN metastatic BCa.
Collapse
Affiliation(s)
- Changhao Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, China
| | - Hanhao Zheng
- Department of Urology, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, China
| | - Yuming Luo
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Yao Kong
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Mingjie An
- Department of Urology, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, China
| | - Yuting Li
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Wang He
- Department of Urology, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, China
| | - Bowen Gao
- Department of Pancreatobiliary Surgery, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, China
| | - Yue Zhao
- Department of Tumor Intervention, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Hao Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, China
| | - Jian Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, China
| | - Tianxin Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, State Key Laboratory of Oncology in South China, Guangzhou, Guangdong, China
| |
Collapse
|
17
|
Boulanger M, Chakraborty M, Tempé D, Piechaczyk M, Bossis G. SUMO and Transcriptional Regulation: The Lessons of Large-Scale Proteomic, Modifomic and Genomic Studies. Molecules 2021; 26:molecules26040828. [PMID: 33562565 PMCID: PMC7915335 DOI: 10.3390/molecules26040828] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
One major role of the eukaryotic peptidic post-translational modifier SUMO in the cell is transcriptional control. This occurs via modification of virtually all classes of transcriptional actors, which include transcription factors, transcriptional coregulators, diverse chromatin components, as well as Pol I-, Pol II- and Pol III transcriptional machineries and their regulators. For many years, the role of SUMOylation has essentially been studied on individual proteins, or small groups of proteins, principally dealing with Pol II-mediated transcription. This provided only a fragmentary view of how SUMOylation controls transcription. The recent advent of large-scale proteomic, modifomic and genomic studies has however considerably refined our perception of the part played by SUMO in gene expression control. We review here these developments and the new concepts they are at the origin of, together with the limitations of our knowledge. How they illuminate the SUMO-dependent transcriptional mechanisms that have been characterized thus far and how they impact our view of SUMO-dependent chromatin organization are also considered.
Collapse
Affiliation(s)
- Mathias Boulanger
- Institut de Génétique Moléculaire de Montpellier (IGMM), University of Montpellier, CNRS, Montpellier, France; (M.B.); (M.C.); (D.T.)
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Mehuli Chakraborty
- Institut de Génétique Moléculaire de Montpellier (IGMM), University of Montpellier, CNRS, Montpellier, France; (M.B.); (M.C.); (D.T.)
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Denis Tempé
- Institut de Génétique Moléculaire de Montpellier (IGMM), University of Montpellier, CNRS, Montpellier, France; (M.B.); (M.C.); (D.T.)
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
| | - Marc Piechaczyk
- Institut de Génétique Moléculaire de Montpellier (IGMM), University of Montpellier, CNRS, Montpellier, France; (M.B.); (M.C.); (D.T.)
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
- Correspondence: (M.P.); (G.B.)
| | - Guillaume Bossis
- Institut de Génétique Moléculaire de Montpellier (IGMM), University of Montpellier, CNRS, Montpellier, France; (M.B.); (M.C.); (D.T.)
- Equipe Labellisée Ligue Contre le Cancer, Paris, France
- Correspondence: (M.P.); (G.B.)
| |
Collapse
|
18
|
Chopra A, Adhikary H, Willmore WG, Biggar KK. Insights into The Function and Regulation of Jumonji C Lysine Demethylases as Hypoxic Responsive Enzymes. Curr Protein Pept Sci 2021; 21:642-654. [PMID: 31889485 DOI: 10.2174/1389203721666191231104225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/14/2019] [Accepted: 10/22/2019] [Indexed: 12/30/2022]
Abstract
Cellular responses to hypoxia (low oxygen) are governed by oxygen sensitive signaling pathways. Such pathways, in part, are controlled by enzymes with oxygen-dependent catalytic activity, of which the role of prolyl 4-hydroxylases has been widely reviewed. These enzymes inhibit hypoxic response by inducing the oxygen-dependent degradation of hypoxia-inducible factor 1α, the master regulator of the transcriptional hypoxic response. Jumonji C domain-containing lysine demethylases are similar enzymes which share the same oxygen-dependent catalytic mechanism as prolyl 4- hydroxylases. Traditionally, the role of lysine demethylases has been studied in relation to demethylation activity against histone substrates, however, within the past decade an increasing number of nonhistone protein targets have been revealed, some of which have a key role in survival in the hypoxic tumor microenvironment. Within this review, we highlight the involvement of methyllysine in the hypoxic response with a focus on the HIF signaling pathway, the regulation of demethylase activity by oxygen, and provide insights into notable areas of future hypoxic demethylase research.
Collapse
Affiliation(s)
- Anand Chopra
- Department of Biology, Carleton University, 1125 Colonel By Dr, Ottawa, ON, K1S 5B6, Canada
| | - Hemanta Adhikary
- Department of Biology, Carleton University, 1125 Colonel By Dr, Ottawa, ON, K1S 5B6, Canada
| | - William G Willmore
- Department of Biology, Carleton University, 1125 Colonel By Dr, Ottawa, ON, K1S 5B6, Canada
| | - Kyle K Biggar
- Department of Biology, Carleton University, 1125 Colonel By Dr, Ottawa, ON, K1S 5B6, Canada
| |
Collapse
|
19
|
Liu F, Fu J, Wang L, Nie Q, Luo Z, Hou M, Yang Y, Gong X, Wang Y, Xiao Y, Xiang J, Hu X, Zhang L, Wu M, Chen W, Cheng B, Luo L, Zhang X, Liu X, Zheng D, Huang S, Liu Y, Li DW. Molecular signature for senile and complicated cataracts derived from analysis of sumoylation enzymes and their substrates in human cataract lenses. Aging Cell 2020; 19:e13222. [PMID: 32827359 PMCID: PMC7576240 DOI: 10.1111/acel.13222] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 07/14/2020] [Accepted: 07/26/2020] [Indexed: 11/30/2022] Open
Abstract
Sumoylation is one of the key regulatory mechanisms in eukaryotes. Our previous studies reveal that sumoylation plays indispensable roles during lens differentiation (Yan et al. 2010. Proc Natl Acad Sci USA. 107:21034-21039; Gong et al. 2014. Proc Natl Acad Sci USA. 111:5574-5579). Whether sumoylation is implicated in cataractogenesis, a disease largely derived from aging, remains elusive. In the present study, we have examined the changing patterns of the sumoylation ligases and de-sumoylation enzymes (SENPs) and their substrates including Pax6 and other proteins in cataractous lenses of different age groups from 50 to 90 years old. It is found that compared with normal lenses, sumoylation ligases 1 and 3, de-sumoylation enzymes SENP3/7/8, and p46 Pax6 are clearly increased. In contrast, Ubc9 is significantly decreased. Among different cataract patients from 50s to 70s, male patients express more sumoylation enzymes and p46 Pax6. Ubc9 and SENP6 display age-dependent increase. The p46 Pax6 displays age-dependent decrease in normal lens, remains relatively stable in senile cataracts but becomes di-sumoylated in complicated cataracts. In contrast, sumoylation of p32 Pax6 is observed in senile cataracts and increases its stability. Treatment of rat lenses with oxidative stress increases Pax6 expression without sumoylation but promotes apoptosis. Thus, our results show that the changing patterns in Ubc9, SENP6, and Pax6 levels can act as molecular markers for senile cataract and the di-sumoylated p46 Pax6 for complicated cataract. Together, our results reveal the presence of molecular signature for both senile and complicated cataracts. Moreover, our study indicates that sumoylation is implicated in control of aging and cataractogenesis.
Collapse
Affiliation(s)
- Fang‐Yuan Liu
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Jia‐Ling Fu
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Ling Wang
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Qian Nie
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Zhongwen Luo
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Min Hou
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Yuan Yang
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Xiao‐Dong Gong
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Yan Wang
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Yuan Xiao
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Jiawen Xiang
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Xuebin Hu
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Lan Zhang
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Mingxing Wu
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Weirong Chen
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Bing Cheng
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Lixia Luo
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Xinyu Zhang
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Xialin Liu
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Danying Zheng
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Shengsong Huang
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - Yizhi Liu
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| | - David Wan‐Cheng Li
- State Key Laboratory of Ophthalmology Zhongshan Ophthalmic CenterSun Yat‐Sen University Guangzhou China
| |
Collapse
|
20
|
Du L, Fakih MG, Rosen ST, Chen Y. SUMOylation of E2F1 Regulates Expression of EZH2. Cancer Res 2020; 80:4212-4223. [PMID: 32816857 DOI: 10.1158/0008-5472.can-20-1259] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/19/2020] [Accepted: 07/28/2020] [Indexed: 11/16/2022]
Abstract
Elevated expression of EZH2, the enzymatic subunit of polycomb repressive complex 2 (PRC2), often occurs in cancer. EZH2 expression results in the silencing of genes that suppress tumor formation and metastasis through trimethylation of histone H3 at lysine 27 (H3K27me3) at their promoters. However, inhibitors of EZH2 enzymatic activity have not shown the expected efficacy against cancer in clinical trials, suggesting a need for other strategies to address EZH2 overexpression. Here, we show that SUMOylation, a posttranslational modification characterized by covalent attachment of small ubiquitin-like modifier (SUMO) proteins to a lysine (Lys) residue on target proteins, enhances EZH2 transcription. Either knockdown of the SUMO-activating enzyme SAE2 or pharmacologic inhibition of SUMOylation resulted in decreased levels of EZH2 mRNA and protein as well as reduced H3K27me3 levels. SUMOylation regulated EZH2 expression by enhancing binding of the E2F1 transcriptional activator to the EZH2 promoter. Inhibition of SUMOylation not only resulted in reduced EZH2 mRNA and protein levels but also increased expression of genes silenced by EZH2, such as E-cadherin, which suppresses epithelial-mesenchymal transition and metastasis. In more than 6,500 patient tumor samples across different cancer types, expression of UBA2 and EZH2 was positively correlated. Taken together, our findings suggest that inhibition of SUMOylation may serve as a potential strategy to address EZH2 overexpression and improve current cancer therapeutic approaches. SIGNIFICANCE: These findings provide important biological insights into the mechanism of EZH2 overexpression in cancers and suggest that inhibiting SUMOylation may improve current cancer therapeutic approaches.
Collapse
Affiliation(s)
- Li Du
- Department of Molecular Medicine, City of Hope, Duarte, California.,Toni Stephenson Lymphoma Center, Beckman Research Institute of City of Hope, Duarte, California
| | - Marwan G Fakih
- Department of Medical Oncology & Therapeutics Research, City of Hope, Duarte, California
| | - Steven T Rosen
- Beckman Research Institute and Comprehensive Cancer Center, City of Hope, Duarte, California.
| | - Yuan Chen
- Department of Surgery and Moores Cancer Center, UC San Diego Health, La Jolla, California.
| |
Collapse
|
21
|
Isoform-Specific Lysine Methylation of RORα2 by SETD7 Is Required for Association of the TIP60 Coactivator Complex in Prostate Cancer Progression. Int J Mol Sci 2020; 21:ijms21051622. [PMID: 32120841 PMCID: PMC7084544 DOI: 10.3390/ijms21051622] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 12/16/2022] Open
Abstract
The retinoid acid-related orphan receptor α (RORα), a member of the orphan nuclear receptor superfamily, functions as an unknown ligand-dependent transcription factor. RORα was shown to regulate a broad array of physiological processes such as Purkinje cell development in the cerebellum, circadian rhythm, lipid and bone metabolism, inhibition of inflammation, and anti-apoptosis. The human RORα gene encodes at least four distinct isoforms (RORα1, -2, -3, -4), which differ only in their N-terminal domain (NTD). Two isoforms, RORα2 and 3, are not expressed in mice, whereas RORα1 and 4 are expressed both in mice and humans. In the present study, we identified the specific NTD of RORα2 that enhances prostate tumor progression and proliferation via lysine methylation-mediated recruitment of coactivator complex pontin/Tip60. Upregulation of the RORα2 isoform in prostate cancers putatively promotes tumor formation and progression. Furthermore, binding between coactivator complex and RORα2 is increased by lysine methylation of RORα2 because methylation permits subsequent interaction with binding partners. This methylation-dependent activation is performed by SET domain containing 7 (SETD7) methyltransferase, inducing the oncogenic potential of RORα2. Thus, post-translational lysine methylation of RORα2 modulates oncogenic function of RORα2 in prostate cancer. Exploration of the post-translational modifications of RORα2 provides new avenues for the development of tumor-suppressive therapeutic agents through modulating the human isoform-specific tumorigenic role of RORα2.
Collapse
|
22
|
Delom F, Mohtar MA, Hupp T, Fessart D. The anterior gradient-2 interactome. Am J Physiol Cell Physiol 2020; 318:C40-C47. [DOI: 10.1152/ajpcell.00532.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The anterior gradient-2 (AGR2) is an endoplasmic reticulum (ER)-resident protein belonging to the protein disulfide isomerase family that mediates the formation of disulfide bonds and assists the protein quality control in the ER. In addition to its role in proteostasis, extracellular AGR2 is responsible for various cellular effects in many types of cancer, including cell proliferation, survival, and metastasis. Various OMICs approaches have been used to identify AGR2 binding partners and to investigate the functions of AGR2 in the ER and outside the cell. Emerging data showed that AGR2 exists not only as monomer, but it can also form homodimeric structure and thus interact with different partners, yielding different biological outcomes. In this review, we summarize the AGR2 “interactome” and discuss the pathological and physiological role of such AGR2 interactions.
Collapse
Affiliation(s)
- Frederic Delom
- University of Bordeaux, ACTION, Bordeaux, France
- Institut National de la Santé et de la Recherche Médicale, Bordeaux, France
- Institut Bergonié, Bordeaux, France
| | - M. Aiman Mohtar
- University Kebangsaan Malaysia, Medical Molecular Biology Institute (UMBI), The National University of Malaysia, Kuala Lumpur, Malaysia
| | - Ted Hupp
- University of Edinburgh, Institute of Genetics and Molecular Medicine, Edinburgh, Scotland, United Kingdom
- University of Gdansk, International Centre for Cancer Vaccine Science, Gdansk, Poland
| | - Delphine Fessart
- University of Bordeaux, ACTION, Bordeaux, France
- Institut National de la Santé et de la Recherche Médicale, Bordeaux, France
- Institut Bergonié, Bordeaux, France
| |
Collapse
|
23
|
Xiang JW, Zhang L, Tang X, Xiao Y, Liu Y, Wang L, Liu F, Gong XD, Fu JL, Yang L, Luo Z, Li DWC. Differential Expression of Seven De-sumoylation Enzymes (SENPs) in Major Ocular Tissues of Mouse Eye. Curr Mol Med 2019; 18:533-541. [PMID: 30636607 DOI: 10.2174/1566524019666190112132103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/07/2019] [Accepted: 01/07/2019] [Indexed: 11/22/2022]
Abstract
PURPOSE Protein Sumoylation is one of the most important and prevalent posttranscriptional modification. Increasing evidence have shown that the SENPs (sentrin/SUMOspecific proteases) are critical for steady-state levels of SUMO modification of target proteins, and protein de-sumoylation modulates a great diversity of biological processes including transcription, development, differentiation, neuroprotection, as well as pathogenesis. In the vertebrate eye, we and others have previously shown that sumoylation participated in the differentiation of major ocular tissues including retina and lens. However, the biological significance of seven SENP enzymes: SENP1 to 3 and SENP5 to 8 have not be fully investigated in the ocular tissues. METHODS The 5 major ocular cell lines were cultured in Dulbecco's modified Eagle's medium (DMEM) containing fetal bovine serum (FBS) or rabbit serum (RBS) and 1% Penicillin- Streptomycin. The mRNA levels were analysed with qRT-PCR. The protein levels were determined with western blot analysis and quantitated with Image J. RESULTS At the mRNA level, all SENPs were highly expressed in retina, and much reduced expression patterns in cornea, lens epithelium and lens fiber. At the protein level, SENP1 to -3, and SENP6 were highly abundant in cornea, while SENP5, SENP7 and SENP8 were enriched in retina, and these SENPs were relatively less abundant in lens tissues. CONCLUSION Our results for the first time established the differentiation expression patterns of the 7 de-sumoylation enzymes (SENPs), which provides a basis for further investigation of protein desumoylation functions in vertebrate eye.
Collapse
Affiliation(s)
- Jia-Wen Xiang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Lan Zhang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Xiangcheng Tang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Yuan Xiao
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Yunfei Liu
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Ling Wang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Fangyuan Liu
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Xiao-Dong Gong
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Jia-Ling Fu
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Lan Yang
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - Zhongwen Luo
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| | - David Wan-Cheng Li
- The State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Guangzhou, Guangdong 510230, China
| |
Collapse
|
24
|
Nomura Y, Thuaud F, Sekine D, Ito A, Maeda S, Koshino H, Hashizume D, Muranaka A, Cruchter T, Uchiyama M, Ichikawa S, Matsuda A, Yoshida M, Hirai G, Sodeoka M. Synthesis of All Stereoisomers of Monomeric Spectomycin A1/A2 and Evaluation of Their Protein SUMOylation‐Inhibitory Activity. Chemistry 2019; 25:8387-8392. [DOI: 10.1002/chem.201901093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Yusaku Nomura
- RIKEN Cluster for Pioneering Research 2-1 Hirosawa Wako-shi, Saitama 351-0198 Japan
- Faculty of Pharmaceutical ScienceHokkaido University Kita-12, Nishi-6 Kita-ku, Sapporo 060-0812 Japan
| | - Frédéric Thuaud
- RIKEN Cluster for Pioneering Research 2-1 Hirosawa Wako-shi, Saitama 351-0198 Japan
| | - Daisuke Sekine
- RIKEN Cluster for Pioneering Research 2-1 Hirosawa Wako-shi, Saitama 351-0198 Japan
| | - Akihiro Ito
- RIKEN Center for Sustainable Resource Science 2-1 Hirosawa Wako-shi, Saitama 351-0198 Japan
- School of Life SciencesTokyo University of Pharmacy and Life Sciences 1432-1 Horinouchi Hachioji, Tokyo 192-0392 Japan
| | - Satoko Maeda
- RIKEN Center for Sustainable Resource Science 2-1 Hirosawa Wako-shi, Saitama 351-0198 Japan
| | - Hiroyuki Koshino
- RIKEN Center for Sustainable Resource Science 2-1 Hirosawa Wako-shi, Saitama 351-0198 Japan
| | - Daisuke Hashizume
- RIKEN Center for Emergent Matter Science 2-1 Hirosawa Wako-shi, Saitama 351-0198 Japan
| | - Atsuya Muranaka
- RIKEN Cluster for Pioneering Research 2-1 Hirosawa Wako-shi, Saitama 351-0198 Japan
| | - Thomas Cruchter
- RIKEN Cluster for Pioneering Research 2-1 Hirosawa Wako-shi, Saitama 351-0198 Japan
| | - Masanobu Uchiyama
- RIKEN Cluster for Pioneering Research 2-1 Hirosawa Wako-shi, Saitama 351-0198 Japan
| | - Satoshi Ichikawa
- Faculty of Pharmaceutical ScienceHokkaido University Kita-12, Nishi-6 Kita-ku, Sapporo 060-0812 Japan
| | - Akira Matsuda
- Faculty of Pharmaceutical ScienceHokkaido University Kita-12, Nishi-6 Kita-ku, Sapporo 060-0812 Japan
| | - Minoru Yoshida
- RIKEN Center for Sustainable Resource Science 2-1 Hirosawa Wako-shi, Saitama 351-0198 Japan
| | - Go Hirai
- RIKEN Cluster for Pioneering Research 2-1 Hirosawa Wako-shi, Saitama 351-0198 Japan
- RIKEN Center for Sustainable Resource Science 2-1 Hirosawa Wako-shi, Saitama 351-0198 Japan
- Graduate School of Pharmaceutical SciencesKyushu University 3-1-1, Maidashi Higashi-ku, Fukuoka 812-8582 Japan
| | - Mikiko Sodeoka
- RIKEN Cluster for Pioneering Research 2-1 Hirosawa Wako-shi, Saitama 351-0198 Japan
- RIKEN Center for Sustainable Resource Science 2-1 Hirosawa Wako-shi, Saitama 351-0198 Japan
| |
Collapse
|
25
|
Identification of RUVBL1 and RUVBL2 as Novel Cellular Interactors of the Ebola Virus Nucleoprotein. Viruses 2019; 11:v11040372. [PMID: 31018511 PMCID: PMC6521077 DOI: 10.3390/v11040372] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/15/2019] [Accepted: 04/19/2019] [Indexed: 12/25/2022] Open
Abstract
Ebola virus (EBOV) is a filovirus that has become a global public health threat in recent years. EBOV is the causative agent of a severe, often fatal hemorrhagic fever. A productive viral infection relies on the successful recruitment of host factors for various stages of the viral life cycle. To date, several investigations have discovered specific host-pathogen interactions for various EBOV proteins. However, relatively little is known about the EBOV nucleoprotein (NP) with regard to host interactions. In the present study, we aimed to elucidate NP-host protein-protein interactions (PPIs). Affinity purification-mass spectrometry (AP-MS) was used to identify candidate NP cellular interactors. Candidate interactors RUVBL1 and RUVBL2, partner proteins belonging to the AAA+ (ATPases Associated with various cellular Activities) superfamily, were confirmed to interact with NP in co-immunoprecipitation (co-IP) and immunofluorescence (IF) experiments. Functional studies using a minigenome system revealed that the siRNA-mediated knockdown of RUVBL1 but not RUVBL2 moderately decreased EBOV minigenome activity. Super resolution structured illumination microscopy (SIM) was used to identify an association between NP and components of the R2TP complex, which includes RUVBL1, RUVBL2, RPAP3, and PIH1D1, suggesting a potential role for the R2TP complex in capsid formation. Moreover, the siRNA-mediated knockdown of RPAP3 and subsequent downregulation of PIH1D1 was shown to have no effect on minigenome activity, further suggesting a role in capsid formation. Overall, we identify RUVBL1 and RUVBL2 as novel interactors of EBOV NP and for the first time report EBOV NP recruitment of the R2TP complex, which may provide novel targets for broad-acting anti-EBOV therapeutics.
Collapse
|
26
|
Fox BM, Janssen A, Estevez-Ordonez D, Gessler F, Vicario N, Chagoya G, Elsayed G, Sotoudeh H, Stetler W, Friedman GK, Bernstock JD. SUMOylation in Glioblastoma: A Novel Therapeutic Target. Int J Mol Sci 2019; 20:ijms20081853. [PMID: 30991648 PMCID: PMC6514907 DOI: 10.3390/ijms20081853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 12/22/2022] Open
Abstract
Protein SUMOylation is a dynamic post-translational modification which is involved in a diverse set of physiologic processes throughout the cell. Of note, SUMOylation also plays a role in the pathobiology of a myriad of cancers, one of which is glioblastoma (GBM). Accordingly, herein, we review core aspects of SUMOylation as it relates to GBM and in so doing highlight putative methods/modalities capable of therapeutically engaging the pathway for treatment of this deadly neoplasm.
Collapse
Affiliation(s)
- Brandon M Fox
- Department of Neurosurgery, University of Alabama at Birmingham, 1060 Faculty Office Tower, 510 20th Street South, Birmingham, AL 35223, USA.
- Medical Scientist Training Program, University of Alabama at Birmingham, 1825 University Boulevard, SHEL 121, Birmingham, AL 35294, USA.
| | - Andrew Janssen
- Department of Neurosurgery, University of Alabama at Birmingham, 1060 Faculty Office Tower, 510 20th Street South, Birmingham, AL 35223, USA.
| | - Dagoberto Estevez-Ordonez
- Department of Neurosurgery, University of Alabama at Birmingham, 1060 Faculty Office Tower, 510 20th Street South, Birmingham, AL 35223, USA.
| | - Florian Gessler
- Department of Neurosurgery, University Hospital Frankfurt, Goethe-University, Schleusenweg 2-16, 60528 Frankfurt, Germany.
| | - Nunzio Vicario
- Department of Biomedical and Biotechnological Sciences, Physiology Section, University of Catania, Via S. Sofia n. 97, Torre Biologica, 95123 Catania, Italy.
| | - Gustavo Chagoya
- Department of Neurosurgery, University of Alabama at Birmingham, 1060 Faculty Office Tower, 510 20th Street South, Birmingham, AL 35223, USA.
| | - Galal Elsayed
- Department of Neurosurgery, University of Alabama at Birmingham, 1060 Faculty Office Tower, 510 20th Street South, Birmingham, AL 35223, USA.
| | - Houman Sotoudeh
- Division of Neuroradiology, Department of Radiology, University of Alabama at Birmingham, Jefferson Tower N419-619 19th Street South, Birmingham, AL 35223, USA.
| | - William Stetler
- Department of Neurosurgery, University of Alabama at Birmingham, 1060 Faculty Office Tower, 510 20th Street South, Birmingham, AL 35223, USA.
| | - Gregory K Friedman
- Department of Neurosurgery, University of Alabama at Birmingham, 1060 Faculty Office Tower, 510 20th Street South, Birmingham, AL 35223, USA.
- Division of Neuroradiology, Department of Radiology, University of Alabama at Birmingham, Jefferson Tower N419-619 19th Street South, Birmingham, AL 35223, USA.
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, University of Alabama at Birmingham, Lowder 512, 1600 7th Avenue South, Birmingham, AL 35223, USA.
| | - Joshua D Bernstock
- Department of Neurosurgery, University of Alabama at Birmingham, 1060 Faculty Office Tower, 510 20th Street South, Birmingham, AL 35223, USA.
- Medical Scientist Training Program, University of Alabama at Birmingham, 1825 University Boulevard, SHEL 121, Birmingham, AL 35294, USA.
| |
Collapse
|
27
|
Park SC, Park IG, Kim H, Lee JM. N-Terminal Domain Mediated Regulation of RORα1 Inhibits Invasive Growth in Prostate Cancer. Int J Mol Sci 2019; 20:ijms20071684. [PMID: 30987323 PMCID: PMC6479703 DOI: 10.3390/ijms20071684] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/01/2019] [Accepted: 04/01/2019] [Indexed: 12/28/2022] Open
Abstract
Four members of the retinoic acid-related orphan receptor α (RORα) family (RORα1, RORα2, RORα3 and RORα4) are transcription factors that regulate several processes including circadian rhythm, lipid metabolism, cerebellar development, immune function, and cancer. Only two isoforms, RORα1 and 4, are specifically co-expressed in the murine and human. In the present study, we identified a specific N-terminal domain (NTD) of RORα1 that potentiated the downregulation of target genes involved in tumor progression and proliferation, based on results from RORα-deficient mouse embryonic fibroblasts and prostate carcinoma tissues. The hyperactivation of proliferative target genes were observed in RORα-deficient embryonic fibroblasts, and reconstitution of RORα1 inhibited this activation by a NTD dependent manner. Downregulation of RORα1 and upregulation of Wnt/β-catenin target genes were correlated in prostate cancer patients. These findings revealed the control of invasive growth by NTD-mediated RORα1 signaling, suggesting advanced approaches for the development of therapeutic drugs.
Collapse
Affiliation(s)
- Su Chan Park
- Department of Molecular Bioscience, College of Biomedical Sciences, Kangwon National University, Chuncheon 24341, Korea.
| | - Il-Geun Park
- Department of Molecular Bioscience, College of Biomedical Sciences, Kangwon National University, Chuncheon 24341, Korea.
| | - Hyunkyung Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, Seoul 02792, Korea.
| | - Ji Min Lee
- Department of Molecular Bioscience, College of Biomedical Sciences, Kangwon National University, Chuncheon 24341, Korea.
| |
Collapse
|
28
|
Delom F, Nazaraliyev A, Fessart D. The role of protein disulphide isomerase AGR2 in the tumour niche. Biol Cell 2018; 110:271-282. [DOI: 10.1111/boc.201800024] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/21/2018] [Accepted: 09/06/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Frederic Delom
- University of Bordeaux; INSERM U1218; Bordeaux F-33000 France
- Institut Bergonié, Comprehensive Cancer Centre; Bordeaux F-33076 France
| | - Amal Nazaraliyev
- University of Bordeaux; INSERM U1218; Bordeaux F-33000 France
- Institut Bergonié, Comprehensive Cancer Centre; Bordeaux F-33076 France
| | - Delphine Fessart
- INSERM U1242; “Chemistry, Oncogenesis, Stress, Signaling”; Université; de Rennes 1; Rennes France
- Centre de Lutte Contre le Cancer Eugène Marquis; Rennes France
| |
Collapse
|
29
|
Silva STN, Brito JA, Arranz R, Sorzano CÓS, Ebel C, Doutch J, Tully MD, Carazo JM, Carrascosa JL, Matias PM, Bandeiras TM. X-ray structure of full-length human RuvB-Like 2 - mechanistic insights into coupling between ATP binding and mechanical action. Sci Rep 2018; 8:13726. [PMID: 30213962 PMCID: PMC6137109 DOI: 10.1038/s41598-018-31997-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 08/30/2018] [Indexed: 01/27/2023] Open
Abstract
RuvB-Like transcription factors function in cell cycle regulation, development and human disease, such as cancer and heart hyperplasia. The mechanisms that regulate adenosine triphosphate (ATP)-dependent activity, oligomerization and post-translational modifications in this family of enzymes are yet unknown. We present the first crystallographic structure of full-length human RuvBL2 which provides novel insights into its mechanistic action and biology. The ring-shaped hexameric RuvBL2 structure presented here resolves for the first time the mobile domain II of the human protein, which is responsible for protein-protein interactions and ATPase activity regulation. Structural analysis suggests how ATP binding may lead to domain II motion through interactions with conserved N-terminal loop histidine residues. Furthermore, a comparison between hsRuvBL1 and 2 shows differences in surface charge distribution that may account for previously described differences in regulation. Analytical ultracentrifugation and cryo electron microscopy analyses performed on hsRuvBL2 highlight an oligomer plasticity that possibly reflects different physiological conformations of the protein in the cell, as well as that single-stranded DNA (ssDNA) can promote the oligomerization of monomeric hsRuvBL2. Based on these findings, we propose a mechanism for ATP binding and domain II conformational change coupling.
Collapse
Affiliation(s)
- Sara T N Silva
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal.,iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal
| | - José A Brito
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Rocío Arranz
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Campus Cantoblanco, 28049, Madrid, Spain
| | - Carlos Óscar S Sorzano
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Campus Cantoblanco, 28049, Madrid, Spain
| | - Christine Ebel
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CNRS, CEA, 71 avenue des Martyrs CS 10090, 38044, Grenoble, France
| | - James Doutch
- ISIS Pulsed Neutron and Muon Source, STFC, Harwell Science and Innovation Campus, Didcot, OX11 0QX, UK
| | - Mark D Tully
- European Synchrotron Radiation Facility (ESRF), Grenoble, France
| | - José-María Carazo
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Campus Cantoblanco, 28049, Madrid, Spain
| | - José L Carrascosa
- Department of Structure of Macromolecules, Centro Nacional de Biotecnología (CNB-CSIC), Campus Cantoblanco, 28049, Madrid, Spain
| | - Pedro M Matias
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal.,iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal
| | - Tiago M Bandeiras
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal.
| |
Collapse
|
30
|
Morrison AJ. Genome maintenance functions of the INO80 chromatin remodeller. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0289. [PMID: 28847826 DOI: 10.1098/rstb.2016.0289] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2017] [Indexed: 12/15/2022] Open
Abstract
Chromatin modification is conserved in all eukaryotes and is required to facilitate and regulate DNA-templated processes. For example, chromatin manipulation, such as histone post-translational modification and nucleosome positioning, play critical roles in genome stability pathways. The INO80 chromatin-remodelling complex, which regulates the abundance and positioning of nucleosomes, is particularly important for proper execution of inducible responses to DNA damage. This review discusses the participation and activity of the INO80 complex in DNA repair and cell cycle checkpoint pathways, with emphasis on the Saccharomyces cerevisiae model system. Furthermore, the role of ATM/ATR kinases, central regulators of DNA damage signalling, in the regulation of INO80 function will be reviewed. In addition, emerging themes of chromatin remodelling in mitotic stability pathways and chromosome segregation will be introduced. These studies are critical to understanding the dynamic chromatin landscape that is rapidly and reversibly modified to maintain the integrity of the genome.This article is part of the themed issue 'Chromatin modifiers and remodellers in DNA repair and signalling'.
Collapse
Affiliation(s)
- Ashby J Morrison
- Department of Biology, Stanford University, 371 Serra Mall, Stanford, CA 94305, USA
| |
Collapse
|
31
|
Breig O, Yates M, Neaud V, Couchy G, Grigoletto A, Lucchesi C, Prox J, Zucman-Rossi J, Becker-Pauly C, Rosenbaum J. Metalloproteinase meprin α regulates migration and invasion of human hepatocarcinoma cells and is a mediator of the oncoprotein Reptin. Oncotarget 2018; 8:7839-7851. [PMID: 27999200 PMCID: PMC5352365 DOI: 10.18632/oncotarget.13975] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 11/30/2016] [Indexed: 01/13/2023] Open
Abstract
Hepatocellular carcinoma is associated with a high rate of intra-hepatic invasion that carries a poor prognosis. Meprin alpha (Mep1A) is a secreted metalloproteinase with many substrates relevant to cancer invasion. We found that Mep1A was a target of Reptin, a protein that is oncogenic in HCC. We studied Mep1A regulation by Reptin, its role in HCC, and whether it mediates Reptin oncogenic effects. MepA and Reptin expression was measured in human HCC by qRT-PCR and in cultured cells by PCR, western blot and enzymatic activity measurements. Cell growth was assessed by counting and MTS assay. Cell migration was measured in Boyden chambers and wound healing assays, and cell invasion in Boyden chambers. Silencing Reptin decreased Mep1A expression and activity, without affecting meprin β. Mep1A, but not meprin β, was overexpressed in a series of 242 human HCC (2.04 fold, p < 0.0001), and a high expression correlated with a poor prognosis. Mep1A and Reptin expressions were positively correlated (r = 0.39, p < 0.0001). Silencing Mep1A had little effect on cell proliferation, but decreased cell migration and invasion of HuH7 and Hep3B cells. Conversely, overexpression of Mep1A or addition of recombinant Mep1A increased migration and invasion. Finally, overexpression of Mep1A restored a normal cell migration in cells where Reptin was depleted. Mep1A is overexpressed in most HCC and induces HCC cell migration and invasion. Mep1A expression is regulated by Reptin, and Mep1A mediates Reptin-induced migration. Overall, we suggest that Mep1A may be a useful target in HCC.
Collapse
Affiliation(s)
- Osman Breig
- University Bordeaux, INSERM, U1053, BordeAux Research in Translational Oncology, BaRITOn, Bordeaux, France
| | - Maïlyn Yates
- University Bordeaux, INSERM, U1053, BordeAux Research in Translational Oncology, BaRITOn, Bordeaux, France
| | - Véronique Neaud
- University Bordeaux, INSERM, U1053, BordeAux Research in Translational Oncology, BaRITOn, Bordeaux, France
| | - Gabrielle Couchy
- Inserm, U1162, Génomique Fonctionnelle des Tumeurs Solides, Université Paris Diderot, Université Paris Descartes, Université Paris 13, Paris, France
| | - Aude Grigoletto
- University Bordeaux, INSERM, U1053, BordeAux Research in Translational Oncology, BaRITOn, Bordeaux, France
| | | | - Johannes Prox
- Unit for Degradomics of the Protease Web, University of Kiel, Germany
| | - Jessica Zucman-Rossi
- Inserm, U1162, Génomique Fonctionnelle des Tumeurs Solides, Université Paris Diderot, Université Paris Descartes, Université Paris 13, Paris, France
| | | | - Jean Rosenbaum
- University Bordeaux, INSERM, U1053, BordeAux Research in Translational Oncology, BaRITOn, Bordeaux, France
| |
Collapse
|
32
|
Song Y, Sun B, Hao L, Hu J, Du S, Zhou X, Zhang L, Liu L, Gong L, Chi X, Liu Q, Shao S. Elevated eukaryotic elongation factor 2 expression is involved in proliferation and invasion of lung squamous cell carcinoma. Oncotarget 2018; 7:58470-58482. [PMID: 27542262 PMCID: PMC5295444 DOI: 10.18632/oncotarget.11298] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/27/2016] [Indexed: 12/23/2022] Open
Abstract
Eukaryotic elongation factor 2 (EF2), is a critical enzyme solely responsible for catalyzing the translocation of the elongated peptidyl-tRNA from the A to P sites of the ribosome during the process of protein synthesis. EF2 is found to be highly expressed in a variety of malignant tumors and is correlated with cancer cell progression and recurrence. The present study was designed to uncover the function of EF2 on lung squamous cell carcinoma (LSCC) cancer cell growth and progression. Our results from clinical tissue studies showed that EF2 protein was significantly overexpressed in LSCC tissues, compared with the adjacent normal lung tissues, which was confirmed by western blotting and tissue microarray. Forced expression of EF2 resulted in the enhancement of lung squamous carcinoma NCI-H520 cells growth through promotion of G2/M progression in cell cycle, activating Akt and Cdc2/Cyclin B1. In nude mice cancer xenograft model, overexpression of EF2 significantly facilitated cell proliferation in vivo. Furthermore, forced expression of EF2 in the cells increased the capabilities of migration and invasion by changing the expressions of EMT-related proteins and genes. These results provided novel insights into the role of EF2 in tumorigenesis and progression in LSCC. EF2-targeted therapy could become a good strategy for the clinical treatment of LSCC.
Collapse
Affiliation(s)
- Yang Song
- Department of Histology and Embryology, Dalian Medical University, Dalian, China
| | - Bing Sun
- Department of Chest Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - LiHong Hao
- Department of Histology and Embryology, Dalian Medical University, Dalian, China
| | - Jun Hu
- Department of Histology and Embryology, Dalian Medical University, Dalian, China
| | - Sha Du
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, Liaoning, China
| | - Xin Zhou
- Department of Histology and Embryology, Dalian Medical University, Dalian, China
| | - LiYuan Zhang
- Department of Histology and Embryology, Dalian Medical University, Dalian, China
| | - Lu Liu
- Department of Histology and Embryology, Dalian Medical University, Dalian, China
| | - LinLin Gong
- Department of Histology and Embryology, Dalian Medical University, Dalian, China
| | - XinMing Chi
- Department of Histology and Embryology, Dalian Medical University, Dalian, China
| | - Qiang Liu
- Institute of Cancer Stem Cell, Dalian Medical University Cancer Center, Liaoning, China
| | - ShuJuan Shao
- Department of Histology and Embryology, Dalian Medical University, Dalian, China.,Liaoning Key Laboratory of Proteomics, Dalian Medical University, Liaoning, China
| |
Collapse
|
33
|
IGF-II induced by hepatitis B virus X protein regulates EMT via SUMO mediated loss of E-cadherin in mice. Oncotarget 2018; 7:56944-56957. [PMID: 27486970 PMCID: PMC5302964 DOI: 10.18632/oncotarget.10922] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 07/18/2016] [Indexed: 12/31/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers and a leading cause of cancer mortality. Prognosis of this disease largely depends on its stage. An Enlarged liver, due to dysplasia, may be a critical point in the multi-step progression to HCC. The mechanism underlying hepatomegaly in human and mouse models are poorly understood. We previously reported we observed enlarged liver in hepatitis B virus X protein (HBx) expressing mice (HBx mice). Here we identify the critical role of HBx induced IGF-II in hepatomegaly in mice and abnormal cell growth in human hepatoma cells. We found that HBx induced IGF-II is essential to induce epithelial-mesenchymal transition (EMT) through loss of E-cadherin. In mouse liver, loss of E-cadherin was mediated by post-translational regulation, at least in part, by protease and SUMOylation not by transcriptional regulation. In contrast, in hepatoma cell line (HepG2 cells) Akt signal pathway controls the mRNA expression level of EMT-related transcription factors, especially Twist, in addition to post- translational modification through SUMOylation. Thus, IGF-II-mediated loss of E-cadherin is central in developing hepatomegaly in mice and abnormal cell growth in the hepatoma cell line. HBx induced IGF-II represents a potential biomarker, which is also a therapeutic target in HCC.
Collapse
|
34
|
Bernstock JD, Yang W, Ye DG, Shen Y, Pluchino S, Lee YJ, Hallenbeck JM, Paschen W. SUMOylation in brain ischemia: Patterns, targets, and translational implications. J Cereb Blood Flow Metab 2018; 38:5-16. [PMID: 29148315 PMCID: PMC5757445 DOI: 10.1177/0271678x17742260] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Post-translational protein modification by small ubiquitin-like modifier (SUMO) regulates a myriad of homeostatic and stress responses. The SUMOylation pathway has been extensively studied in brain ischemia. Convincing evidence is now at hand to support the notion that a major increase in levels of SUMOylated proteins is capable of inducing tolerance to ischemic stress. Therefore, the SUMOylation pathway has emerged as a promising therapeutic target for neuroprotection in the face of brain ischemia. Despite this, it is prudent to acknowledge that there are many key questions still to be addressed in brain ischemia related to SUMOylation. Accordingly, herein, we provide a critical review of literature within the field to summarize current knowledge and in so doing highlight pertinent translational implications of the SUMOylation pathway in brain ischemia.
Collapse
Affiliation(s)
- Joshua D Bernstock
- 1 Stroke Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NINDS/NIH), Bethesda, MD, USA.,2 Department of Clinical Neurosciences, Division of Stem Cell Neurobiology, Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Wei Yang
- 3 Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Daniel G Ye
- 1 Stroke Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NINDS/NIH), Bethesda, MD, USA
| | - Yuntian Shen
- 3 Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Stefano Pluchino
- 2 Department of Clinical Neurosciences, Division of Stem Cell Neurobiology, Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Yang-Ja Lee
- 1 Stroke Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NINDS/NIH), Bethesda, MD, USA
| | - John M Hallenbeck
- 1 Stroke Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NINDS/NIH), Bethesda, MD, USA
| | - Wulf Paschen
- 3 Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA.,4 Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
35
|
Xiong Y, Ye C, Yang N, Li M, Liu H. Ubc9 Binds to ADAP and Is Required for Rap1 Membrane Recruitment, Rac1 Activation, and Integrin-Mediated T Cell Adhesion. THE JOURNAL OF IMMUNOLOGY 2017; 199:4142-4154. [PMID: 29127148 DOI: 10.4049/jimmunol.1700572] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 10/16/2017] [Indexed: 11/19/2022]
Abstract
Although the immune adaptor adhesion and degranulation-promoting adaptor protein (ADAP) acts as a key mediator of integrin inside-out signaling leading to T cell adhesion, the regulation of this adaptor during integrin activation and clustering remains unclear. We now identify Ubc9, the sole small ubiquitin-related modifier E2 conjugase, as an essential regulator of ADAP where it is required for TCR-induced membrane recruitment of the small GTPase Rap1 and its effector protein RapL and for activation of the small GTPase Rac1 in T cell adhesion. We show that Ubc9 interacted directly with ADAP in vitro and in vivo, and the association was increased in response to anti-CD3 stimulation. The Ubc9-binding domain on ADAP was mapped to a nuclear localization sequence (aa 674-700) within ADAP. Knockdown of Ubc9 by short hairpin RNA or expression of the Ubc9-binding-deficient ADAP mutant significantly decreased TCR-induced integrin adhesion to ICAM-1 and fibronectin, as well as LFA-1 clustering, although it had little effect on the TCR proximal signaling responses and TCR-induced IL-2 transcription. Furthermore, downregulation of Ubc9 impaired TCR-mediated Rac1 activation and attenuated the membrane targeting of Rap1 and RapL, but not Rap1-interacting adaptor molecule. Taken together, our data demonstrate for the first time, to our knowledge, that Ubc9 acts as a functional binding partner of ADAP and plays a selective role in integrin-mediated T cell adhesion via modulation of Rap1-RapL membrane recruitment and Rac1 activation.
Collapse
Affiliation(s)
- Yiwei Xiong
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China; and
| | - Chengjin Ye
- Department of Veterinary Medicine, Zhejiang A & F University, Lin'an, Hangzhou, Zhejiang 311300, China
| | - Naiqi Yang
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China; and
| | - Madanqi Li
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China; and
| | - Hebin Liu
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, Jiangsu 215123, China; and .,Department of Veterinary Medicine, Zhejiang A & F University, Lin'an, Hangzhou, Zhejiang 311300, China
| |
Collapse
|
36
|
Luo Y, You S, Wang J, Fan S, Shi J, Peng A, Yu T. Association between Sumoylation-Related Gene rs77447679 Polymorphism and Risk of Gastric Cancer (GC) in a Chinese Population. J Cancer 2017; 8:3226-3231. [PMID: 29158794 PMCID: PMC5665038 DOI: 10.7150/jca.20587] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 08/14/2017] [Indexed: 12/12/2022] Open
Abstract
Purpose: Sumoylation plays a critical role in gene regulation and tumorigenesis, and is hypothesized to correlate with the development of various cancers. So far, there has been no reported association between sumoylation-related genes and the risk of gastric cancer (GC). Methods: A total of 17 tagging single-nucleotide polymorphisms (tag-SNPs) in 5 sumoylation-related genes were selected and genotyped by SNaPshot in a case-control study, including 1021 GC patients and 1304 controls. Odds ratio (OR) and 95% confidential interval (CI) were computed to evaluate the genetic association of the onset of GC. Results: We demonstrated that CBX4 rs77447679 polymorphism was significantly associated with GC risk (P= 0.017; adjusted OR: 1.71; 95% CI: 1.10-2.66). The patients with CC genotype had a lower risk of GC (CC vs. CA+AA, P= 0.017; adjusted OR: 1.24; 95% CI: 1.04-1.49). Conclusion: This study revealed that CBX4 rs77447679 polymorphism was positively associated with GC, and individuals with CC genotype had less risk of GC. The risky effects and functional effect of this polymorphism in GC require further investigation.
Collapse
Affiliation(s)
- Ying Luo
- Department of Nephrology & Rheumatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Sihong You
- Department of gastroenterology, Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China.,Department of Developmental Genetics, Nanjing Medical University, Nanjing 211166, China
| | - Jirong Wang
- Department of Developmental Genetics, Nanjing Medical University, Nanjing 211166, China.,Department of Oncology, Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Shuling Fan
- Department of Nephrology & Rheumatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jie Shi
- Nanjing Red Cross Blood Center, Nanjing 210003, China
| | - Ai Peng
- Department of Nephrology & Rheumatology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Tingting Yu
- Department of Developmental Genetics, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
37
|
Abstract
Many of the known SUMO substrates are nuclear proteins, which regulate gene expression and chromatin dynamics. Sumoylation, in general, appears to correlate with decreased transcriptional activity, and in many cases modulation of the chromatin template is implicated. Sumoylation of the core histones is associated with transcriptional silencing, and transcription factor sumoylation can decrease gene expression by promoting recruitment of chromatin modifying enzymes. Additionally, sumoylation of transcriptional corepressors and chromatin remodeling enzymes can influence interactions with other transcriptional regulators, and alter their enzymatic activity. In some cases, proteins that are components of transcriptional corepressor complexes have been shown to be SUMO E3 ligases, further emphasizing the integration of sumoylation with the regulation of chromatin remodeling. Despite the evidence suggesting that sumoylation is primarily repressive for access to chromatin, recent analyses suggest that protein sumoylation on the chromatin template may play important roles at highly expressed genes. Elucidating the dynamic interplay of sumoylation with other post-translational modifications of histones and chromatin associated proteins will be key to fully understanding the regulation of access to the chromatin template.
Collapse
|
38
|
Lee JS, Choi HJ, Baek SH. Sumoylation and Its Contribution to Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 963:283-298. [PMID: 28197919 DOI: 10.1007/978-3-319-50044-7_17] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Post-translational modifications play an important role in regulating protein activity by altering their functions. Sumoylation is a highly dynamic process which is tightly regulated by a fine balance between conjugating and deconjugating enzyme activities. It affects intracellular localization and their interaction with their binding partners, thereby changing gene expression. Consequently, these changes in turn affect signaling mechanisms that regulate many cellular functions, such as cell growth, proliferation, apoptosis , DNA repair , and cell survival. It is becoming apparent that deregulation in the SUMO pathway contributes to oncogenic transformation by affecting sumoylation/desumoylation of many oncoproteins and tumor suppressors. Loss of balance between sumoylation and desumoylation has been reported in a number of studies in a variety of disease types including cancer. This chapter summarizes the mechanisms and functions of the deregulated SUMO pathway affecting oncogenes and tumor suppressor genes.
Collapse
Affiliation(s)
- Jason S Lee
- Department of Biological Sciences, Seoul National University, Seoul, 151-742, South Korea
| | - Hee June Choi
- Department of Biological Sciences, Seoul National University, Seoul, 151-742, South Korea
| | - Sung Hee Baek
- Department of Biological Sciences, Seoul National University, Seoul, 151-742, South Korea.
| |
Collapse
|
39
|
Mao YQ, Houry WA. The Role of Pontin and Reptin in Cellular Physiology and Cancer Etiology. Front Mol Biosci 2017; 4:58. [PMID: 28884116 PMCID: PMC5573869 DOI: 10.3389/fmolb.2017.00058] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/03/2017] [Indexed: 12/29/2022] Open
Abstract
Pontin (RUVBL1, TIP49, TIP49a, Rvb1) and Reptin (RUVBL2, TIP48, TIP49b, Rvb2) are highly conserved ATPases of the AAA+ (ATPases Associated with various cellular Activities) superfamily and are involved in various cellular processes that are important for oncogenesis. First identified as being upregulated in hepatocellular carcinoma and colorectal cancer, their overexpression has since been shown in multiple cancer types such as breast, lung, gastric, esophageal, pancreatic, kidney, bladder as well as lymphatic, and leukemic cancers. However, their exact functions are still quite unknown as they interact with many molecular complexes with vastly different downstream effectors. Within the nucleus, Pontin and Reptin participate in the TIP60 and INO80 complexes important for chromatin remodeling. Although not transcription factors themselves, Pontin and Reptin modulate the transcriptional activities of bona fide proto-oncogenes such as MYC and β-catenin. They associate with proteins involved in DNA damage repair such as PIKK complexes as well as with the core complex of Fanconi anemia pathway. They have also been shown to be important for cell cycle progression, being involved in assembly of telomerase, mitotic spindle, RNA polymerase II, and snoRNPs. When the two ATPases localize to the cytoplasm, they were reported to promote cancer cell invasion and metastasis. Due to their various roles in carcinogenesis, it is not surprising that Pontin and Reptin are proving to be important biomarkers for diagnosis and prognosis of various cancers. They are also current targets for the development of new therapeutic anticancer drugs.
Collapse
Affiliation(s)
- Yu-Qian Mao
- Department of Biochemistry, University of TorontoToronto, ON, Canada
| | - Walid A Houry
- Department of Biochemistry, University of TorontoToronto, ON, Canada.,Department of Chemistry, University of TorontoToronto, ON, Canada
| |
Collapse
|
40
|
Abstract
Post-translational protein modification by small ubiquitin-like modifier (SUMO), termed sumoylation, is an important mechanism in cellular responses to stress and one that appears to be upregulated in many cancers. Here, we examine the role of sumoylation in tumorigenesis as a possibly necessary safeguard that protects the stability and functionality of otherwise easily misregulated gene expression programmes and signalling pathways of cancer cells.
Collapse
Affiliation(s)
- Jacob-Sebastian Seeler
- Nuclear Organization and Oncogenesis Unit, INSERM U993, Institut Pasteur, 28 rue de Dr Roux, 75724 Paris Cedex 15, France
| | - Anne Dejean
- Nuclear Organization and Oncogenesis Unit, INSERM U993, Institut Pasteur, 28 rue de Dr Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
41
|
Wetzel F, Mittag S, Cano-Cortina M, Wagner T, Krämer OH, Niedenthal R, Gonzalez-Mariscal L, Huber O. SUMOylation regulates the intracellular fate of ZO-2. Cell Mol Life Sci 2017; 74:373-392. [PMID: 27604867 PMCID: PMC11107645 DOI: 10.1007/s00018-016-2352-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 08/03/2016] [Accepted: 08/29/2016] [Indexed: 01/21/2023]
Abstract
The zonula occludens (ZO)-2 protein links tight junctional transmembrane proteins to the actin cytoskeleton and associates with splicing and transcription factors in the nucleus. Multiple posttranslational modifications control the intracellular distribution of ZO-2. Here, we report that ZO-2 is a target of the SUMOylation machinery and provide evidence on how this modification may affect its cellular distribution and function. We show that ZO-2 associates with the E2 SUMO-conjugating enzyme Ubc9 and with SUMO-deconjugating proteases SENP1 and SENP3. In line with this, modification of ZO-2 by endogenous SUMO1 was detectable. Ubc9 fusion-directed SUMOylation confirmed SUMOylation of ZO-2 and was inhibited in the presence of SENP1 but not by an enzymatic-dead SENP1 protein. Moreover, lysine 730 in human ZO-2 was identified as a potential modification site. Mutation of this site to arginine resulted in prolonged nuclear localization of ZO-2 in nuclear recruitment assays. In contrast, a construct mimicking constitutive SUMOylation of ZO-2 (SUMO1ΔGG-ZO-2) was preferentially localized in the cytoplasm. Based on previous findings the differential localization of these ZO-2 constructs may affect glycogen-synthase-kinase-3β (GSK3β) activity and β-catenin/TCF-4-mediated transcription. In this context we observed that ZO-2 directly binds to GSK3β and SUMO1ΔGG-ZO-2 modulates its kinase activity. Moreover, we show that ZO-2 forms a complex with β-catenin. Wild-type ZO-2 and ZO-2-K730R inhibited transcriptional activity in reporter gene assays, whereas the cytosolic SUMO1ΔGG-ZO-2 did not. From these data we conclude that SUMOylation affects the intracellular localization of ZO-2 and its regulatory role on GSK3β and β-catenin signaling activity.
Collapse
Affiliation(s)
- Franziska Wetzel
- Institute of Biochemistry II, Jena University Hospital, Friedrich-Schiller-University Jena, Nonnenplan 2-4, 07743, Jena, Germany
- Institut für Ernährungswissenschaften, Abt. Humanernährung, Dornburger Str. 29, 07743, Jena, Germany
| | - Sonnhild Mittag
- Institute of Biochemistry II, Jena University Hospital, Friedrich-Schiller-University Jena, Nonnenplan 2-4, 07743, Jena, Germany
| | - Misael Cano-Cortina
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav), Mexico City, 07360, Mexico
| | - Tobias Wagner
- Institute of Biochemistry and Biophysics, Friedrich-Schiller-University Jena, CMB Center for Molecular Biomedicine, Hans-Knöll-Str. 2, 07745, Jena, Germany
| | - Oliver H Krämer
- Department of Toxicology, University Medical Center Mainz, 55131, Mainz, Germany
| | - Rainer Niedenthal
- Institute of Physiological Chemistry/Biochemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Lorenza Gonzalez-Mariscal
- Department of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies (Cinvestav), Mexico City, 07360, Mexico
| | - Otmar Huber
- Institute of Biochemistry II, Jena University Hospital, Friedrich-Schiller-University Jena, Nonnenplan 2-4, 07743, Jena, Germany.
| |
Collapse
|
42
|
MacNeil DE, Bensoussan HJ, Autexier C. Telomerase Regulation from Beginning to the End. Genes (Basel) 2016; 7:genes7090064. [PMID: 27649246 PMCID: PMC5042394 DOI: 10.3390/genes7090064] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/25/2016] [Accepted: 08/26/2016] [Indexed: 12/11/2022] Open
Abstract
The vast body of literature regarding human telomere maintenance is a true testament to the importance of understanding telomere regulation in both normal and diseased states. In this review, our goal was simple: tell the telomerase story from the biogenesis of its parts to its maturity as a complex and function at its site of action, emphasizing new developments and how they contribute to the foundational knowledge of telomerase and telomere biology.
Collapse
Affiliation(s)
- Deanna Elise MacNeil
- Bloomfield Centre for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Côte Ste-Catherine Road, Montréal, QC H3T 1E2, Canada.
- Room M-29, Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montréal, QC H3A 0C7, Canada.
| | - Hélène Jeanne Bensoussan
- Bloomfield Centre for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Côte Ste-Catherine Road, Montréal, QC H3T 1E2, Canada.
- Room M-29, Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montréal, QC H3A 0C7, Canada.
| | - Chantal Autexier
- Bloomfield Centre for Research in Aging, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Côte Ste-Catherine Road, Montréal, QC H3T 1E2, Canada.
- Room M-29, Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montréal, QC H3A 0C7, Canada.
- Department of Experimental Medicine, McGill University, 1110 Pins Avenue West, Room 101, Montréal, QC H3A 1A3, Canada.
| |
Collapse
|
43
|
Yoshioka Y, Namiki D, Makiuchi M, Sugaya K, Onose JI, Ashida H, Abe N. Vialinin A and thelephantin G, potent inhibitors of tumor necrosis factor-α production, inhibit sentrin/SUMO-specific protease 1 enzymatic activity. Bioorg Med Chem Lett 2016; 26:4237-40. [PMID: 27491710 DOI: 10.1016/j.bmcl.2016.07.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 07/02/2016] [Accepted: 07/22/2016] [Indexed: 11/29/2022]
Abstract
Several p-terphenyl compounds have been isolated from the edible Chinese mushroom Thelephora vialis. Vialinin A, a p-terphenyl compound, strongly inhibits tumor necrosis factor-α production and release. Vialinin A inhibits the enzymatic activity of ubiquitin-specific peptidase 5, one of the target molecules in RBL-2H3 cells. Here we examined the inhibitory effect of p-terphenyl compounds, including vialinin A, against sentrin/SUMO-specific protease 1 (SENP1) enzymatic activity. The half maximal inhibitory concentration values of vialinin A and thelephantin G against full-length SENP1 were 1.64±0.23μM and 2.48±0.02μM, respectively. These findings suggest that p-terphenyl compounds are potent SENP1 inhibitors.
Collapse
Affiliation(s)
- Yasukiyo Yoshioka
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka Setagaya-ku, Tokyo 156-8502, Japan; Organization of Advanced Science and Technology, Kobe University, Kobe, Hyogo 657-8501, Japan
| | - Daisuke Namiki
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka Setagaya-ku, Tokyo 156-8502, Japan
| | - Mao Makiuchi
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka Setagaya-ku, Tokyo 156-8502, Japan
| | - Kouichi Sugaya
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka Setagaya-ku, Tokyo 156-8502, Japan
| | - Jun-Ichi Onose
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka Setagaya-ku, Tokyo 156-8502, Japan
| | - Hitoshi Ashida
- Organization of Advanced Science and Technology, Kobe University, Kobe, Hyogo 657-8501, Japan; Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo 651-8501, Japan
| | - Naoki Abe
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka Setagaya-ku, Tokyo 156-8502, Japan.
| |
Collapse
|
44
|
Vishwamitra D, Curry CV, Shi P, Alkan S, Amin HM. SUMOylation Confers Posttranslational Stability on NPM-ALK Oncogenic Protein. Neoplasia 2016; 17:742-754. [PMID: 26476082 PMCID: PMC4611074 DOI: 10.1016/j.neo.2015.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/07/2015] [Accepted: 09/15/2015] [Indexed: 01/09/2023] Open
Abstract
Nucleophosmin-anaplastic lymphoma kinase–expressing (NPM-ALK+) T-cell lymphoma is an aggressive form of cancer that commonly affects children and adolescents. The expression of NPM-ALK chimeric oncogene results from the chromosomal translocation t(2;5)(p23;q35) that causes the fusion of the ALK and NPM genes. This translocation generates the NPM-ALK protein tyrosine kinase that forms the constitutively activated NPM-ALK/NPM-ALK homodimers. In addition, NPM-ALK is structurally associated with wild-type NPM to form NPM/NPM-ALK heterodimers, which can translocate to the nucleus. The mechanisms that sustain the stability of NPM-ALK are not fully understood. SUMOylation is a posttranslational modification that is characterized by the reversible conjugation of small ubiquitin-like modifiers (SUMOs) with target proteins. SUMO competes with ubiquitin for substrate binding and therefore, SUMOylation is believed to protect target proteins from proteasomal degradation. Moreover, SUMOylation contributes to the subcellular distribution of target proteins. Herein, we found that the SUMOylation pathway is deregulated in NPM-ALK+ T-cell lymphoma cell lines and primary lymphoma tumors from patients. We also identified Lys24 and Lys32 within the NPM domain as the sites where NPM-ALK conjugates with SUMO-1 and SUMO-3. Importantly, antagonizing SUMOylation by the SENP1 protease decreased the accumulation of NPM-ALK and suppressed lymphoma cell viability, proliferation, and anchorage-independent colony formation. One possible mechanism for the SENP1-mediated decrease in NPM-ALK levels was the increase in NPM-ALK association with ubiquitin, which facilitates its degradation. Our findings propose a model in which aberrancies in SUMOylation contribute to the pathogenesis of NPM-ALK+ T-cell lymphoma. Unraveling such pathogenic mechanisms may lead to devising novel strategies to eliminate this aggressive neoplasm.
Collapse
Affiliation(s)
- Deeksha Vishwamitra
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX.
| | - Choladda V Curry
- Department of Pathology and Immunology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX
| | - Ping Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Serhan Alkan
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Hesham M Amin
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX; The University of Texas Graduate School of Biomedical Sciences, Houston, TX.
| |
Collapse
|
45
|
Role of SUMO activating enzyme in cancer stem cell maintenance and self-renewal. Nat Commun 2016; 7:12326. [PMID: 27465491 PMCID: PMC4974481 DOI: 10.1038/ncomms12326] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 06/23/2016] [Indexed: 12/16/2022] Open
Abstract
Cancer stem cells (CSCs) have key roles in treatment resistance, tumour metastasis and relapse. Using colorectal cancer (CC) cell lines, patient-derived xenograft (PDX) tissues and patient tissues, here we report that CC CSCs, which resist chemoradiation, have higher SUMO activating enzyme (E1) and global SUMOylation levels than non-CSCs. Knockdown of SUMO E1 or SUMO conjugating enzyme (E2) inhibits CC CSC maintenance and self-renewal, while overexpression of SUMO E1 or E2 increases CC cell stemness. We found that SUMOylation regulates CSCs through Oct-1, a transcription factor for aldehyde dehydrogenases (ALDHs). ALDH activity is not only a marker for CSCs but also important in CSC biology. SUMO does not modify Oct-1 directly, but regulates the expression of TRIM21 that enhances Oct-1 ubiquitination and, consequently, reducing Oct-1 stability. In summary, our findings suggest that SUMOylation could be a target to inhibit CSCs and ultimately to reduce treatment resistance, tumour metastasis and relapse. Cancer stem cells (CSCs) have key roles in tumor initiation and metastasis. Here, the authors show that the SUMO E1 and global sumoylation levels are high in colorectal CSCs and that depletion of the catalytic subunit of the SUMO E1, SAE2, affects CSCs self-renewal through TRIM21-mediated degradation of the Oct1, a transcription factor for ALDH.
Collapse
|
46
|
Suk FM, Lin SY, Lin RJ, Hsine YH, Liao YJ, Fang SU, Liang YC. Bortezomib inhibits Burkitt's lymphoma cell proliferation by downregulating sumoylated hnRNP K and c-Myc expression. Oncotarget 2016; 6:25988-6001. [PMID: 26317903 PMCID: PMC4694880 DOI: 10.18632/oncotarget.4620] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 07/06/2015] [Indexed: 11/26/2022] Open
Abstract
Bortezomib (Velcal) was the first proteasome inhibitor to be approved by the US Food and Drug Administration to treat patients with relapsed/refractory multiple myelomas. Previous studies have demonstrated that bortezomib inhibits tumor cell proliferation and induces apoptosis by blocking the nuclear factor (NF)-κB pathway. However, the exact mechanism by which bortezomib induces cancer cell apoptosis is still not well understood. In this study, we found that bortezomib significantly inhibited cell proliferation in both human Burkitt's lymphoma CA46 and Daudi cells. Through proteomic analysis, we found that bortezomib treatment changed the expression of various proteins in distinct functional categories including unfolding protein response (UPS), RNA processing, protein targeting and biosynthesis, apoptosis, and signal transduction. Among the proteins with altered expression, hnRNP K, hnRNP H, Hsp90α, Grp78, and Hsp7C were common to both Daudi and CA46 cells. Interestingly, bortezomib treatment downregulated the expression of high-molecular-weight (HMw) hnRNP K and c-Myc but upregulated the expression of low-molecular-weight (LMw) hnRNP K. Moreover, cell proliferation was significantly correlated with high expression of HMw hnRNP K and c-Myc. HMw and LMw hnRNP K were identified as sumoylated and desumoylated hnRNP K, respectively. Using transient transfection, we found that sumoylated hnRNP K increased c-Myc expression at the translational level and contributed to cell proliferation, and that Lys422 of hnRNP K is the candidate sumoylated residue. Our results suggest that besides inhibiting the ubiquitin-proteasome pathway, bortezomib may inhibit cell proliferation by downregulating sumoylated hnRNP K and c-Myc expression in Burkitt's lymphoma cells.
Collapse
Affiliation(s)
- Fat-Moon Suk
- Division of Gastroenterology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shyr-Yi Lin
- Department of Primary Care Medicine, Taipei Medical University Hospital, Taipei, Taiwan.,Department of General Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ren-Jye Lin
- Department of Primary Care Medicine, Taipei Medical University Hospital, Taipei, Taiwan.,Department of General Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yung-Hsin Hsine
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Yen-Ju Liao
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Sheng-Uei Fang
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Division of Gastroenterology and Hepatology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Yu-Chih Liang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
47
|
Maure JF, Moser SC, Jaffray EG, F. Alpi A, Hay RT. Loss of ubiquitin E2 Ube2w rescues hypersensitivity of Rnf4 mutant cells to DNA damage. Sci Rep 2016; 6:26178. [PMID: 27185577 PMCID: PMC4868978 DOI: 10.1038/srep26178] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/27/2016] [Indexed: 12/13/2022] Open
Abstract
SUMO and ubiquitin play important roles in the response of cells to DNA damage. These pathways are linked by the SUMO Targeted ubiquitin Ligase Rnf4 that catalyses transfer of ubiquitin from a ubiquitin loaded E2 conjugating enzyme to a polySUMO modified substrate. Rnf4 can functionally interact with multiple E2s, including Ube2w, in vitro. Chicken cells lacking Rnf4 are hypersensitive to hyroxyurea, DNA alkylating drugs and DNA crosslinking agents, but this sensitivity is suppressed by simultaneous depletion of Ube2w. Cells depleted of Ube2w alone are not hypersensitive to the same DNA damaging agents. Similar results were also obtained in human cells. These data indicate that Ube2w does not have an essential role in the DNA damage response, but is deleterious in the absence of Rnf4. Thus, although Rnf4 and Ube2w functionally interact in vitro, our genetic experiments indicate that in response to DNA damage Ube2w and Rnf4 function in distinct pathways.
Collapse
Affiliation(s)
- Jean-François Maure
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, DD1 5EH, UK
| | - Sandra C. Moser
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, DD1 5EH, UK
| | - Ellis G. Jaffray
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, DD1 5EH, UK
| | - Arno F. Alpi
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, DD1 5EH, UK
| | - Ronald T. Hay
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, DD1 5EH, UK
| |
Collapse
|
48
|
Rapid identification of ubiquitination and SUMOylation target sites by microfluidic peptide array. Biochem Biophys Rep 2016; 5:430-438. [PMID: 27047992 PMCID: PMC4817105 DOI: 10.1016/j.bbrep.2016.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
SUMOylation and ubiquitination are two essential post translational modifications (PTMs) involved in the regulation of important biological processes in eukaryotic cells. Identification of ubiquitin (Ub) and small ubiquitin-related modifier (SUMO)-conjugated lysine residues in proteins is critical for understanding the role of ubiquitination and SUMOylation, but remains experimentally challenging. We have developed a powerful in vitro Ub/SUMO assay using a novel high density peptide array incorporated within a microfluidic device that allows rapid identification of ubiquitination and SUMOylation sites on target proteins. We performed the assay with a panel of human proteins and a microbial effector with known target sites for Ub or SUMO modifications, and determined that 80% of these proteins were modified by Ub or specific SUMO isoforms at the sites previously determined using conventional methods. Our results confirm the specificity for both SUMO isoform and individual target proteins at the peptide level. In summary, this microfluidic high density peptide array approach is a rapid screening assay to determine sites of Ub and SUMO modification of target substrates, which will provide new insights into the composition, selectivity and specificity of these PTM target sites.
Collapse
|
49
|
The INO80 Complex Requires the Arp5-Ies6 Subcomplex for Chromatin Remodeling and Metabolic Regulation. Mol Cell Biol 2016; 36:979-91. [PMID: 26755556 DOI: 10.1128/mcb.00801-15] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 12/30/2015] [Indexed: 11/20/2022] Open
Abstract
ATP-dependent chromatin remodeling complexes are essential for transcription regulation, and yet it is unclear how these multisubunit complexes coordinate their activities to facilitate diverse transcriptional responses. In this study, we found that the conserved Arp5 and Ies6 subunits of the Saccharomyces cerevisiae INO80 chromatin-remodeler form an abundant and distinct subcomplex in vivo and stimulate INO80-mediated activity in vitro. Moreover, our genomic studies reveal that the relative occupancy of Arp5-Ies6 correlates with nucleosome positioning at transcriptional start sites and expression levels of >1,000 INO80-regulated genes. Notably, these genes are significantly enriched in energy metabolism pathways. Specifically, arp5Δ, ies6Δ, and ino80Δ mutants demonstrate decreased expression of genes involved in glycolysis and increased expression of genes in the oxidative phosphorylation pathway. Deregulation of these metabolic pathways results in constitutively elevated mitochondrial potential and oxygen consumption. Our results illustrate the dynamic nature of the INO80 complex assembly and demonstrate for the first time that a chromatin remodeler regulates glycolytic and respiratory capacity, thereby maintaining metabolic stability.
Collapse
|
50
|
Yao W, Beckwith SL, Zheng T, Young T, Dinh VT, Ranjan A, Morrison AJ. Assembly of the Arp5 (Actin-related Protein) Subunit Involved in Distinct INO80 Chromatin Remodeling Activities. J Biol Chem 2015; 290:25700-9. [PMID: 26306040 DOI: 10.1074/jbc.m115.674887] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Indexed: 11/06/2022] Open
Abstract
ATP-dependent chromatin remodeling, which repositions and restructures nucleosomes, is essential to all DNA-templated processes. The INO80 chromatin remodeling complex is an evolutionarily conserved complex involved in diverse cellular processes, including transcription, DNA repair, and replication. The functional diversity of the INO80 complex can, in part, be attributed to specialized activities of distinct subunits that compose the complex. Furthermore, structural analyses have identified biochemically discrete subunit modules that assemble along the Ino80 ATPase scaffold. Of particular interest is the Saccharomyces cerevisiae Arp5-Ies6 module located proximal to the Ino80 ATPase and the Rvb1-Rvb2 helicase module needed for INO80-mediated in vitro activity. In this study we demonstrate that the previously uncharacterized Ies2 subunit is required for Arp5-Ies6 association with the catalytic components of the INO80 complex. In addition, Arp5-Ies6 module assembly with the INO80 complex is dependent on distinct conserved domains within Arp5, Ies6, and Ino80, including the spacer region within the Ino80 ATPase domain. Arp5-Ies6 interacts with chromatin via assembly with the INO80 complex, as IES2 and INO80 deletion results in loss of Arp5-Ies6 chromatin association. Interestingly, ectopic addition of the wild-type Arp5-Ies6 module stimulates INO80-mediated ATP hydrolysis and nucleosome sliding in vitro. However, the addition of mutant Arp5 lacking unique insertion domains facilitates ATP hydrolysis in the absence of nucleosome sliding. Collectively, these results define the requirements of Arp5-Ies6 assembly, which are needed to couple ATP hydrolysis to productive nucleosome movement.
Collapse
Affiliation(s)
- Wei Yao
- From the Department of Biology, Stanford University, Stanford California 94305 and
| | - Sean L Beckwith
- From the Department of Biology, Stanford University, Stanford California 94305 and
| | - Tina Zheng
- From the Department of Biology, Stanford University, Stanford California 94305 and
| | - Thomas Young
- From the Department of Biology, Stanford University, Stanford California 94305 and
| | - Van T Dinh
- From the Department of Biology, Stanford University, Stanford California 94305 and
| | - Anand Ranjan
- Laboratory of Biochemistry and Molecular Biology, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Ashby J Morrison
- From the Department of Biology, Stanford University, Stanford California 94305 and
| |
Collapse
|