1
|
Cui YL, Guo JS, Zhang CX, Yu XP, Li DT. Silencing NlFAR7 destroyed the pore canals and related structures of the brown planthopper. INSECT MOLECULAR BIOLOGY 2024; 33:350-361. [PMID: 38430546 DOI: 10.1111/imb.12903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/18/2024] [Indexed: 03/04/2024]
Abstract
Fatty acyl-CoA reductase (FAR) is one of the key enzymes, which catalyses the conversion of fatty acyl-CoA to the corresponding alcohols. Among the FAR family members in the brown planthopper (Nilaparvata lugens), NlFAR7 plays a pivotal role in both the synthesis of cuticular hydrocarbons and the waterproofing of the cuticle. However, the precise mechanism by which NlFAR7 influences the formation of the cuticle structure in N. lugens remains unclear. Therefore, this paper aims to investigate the impact of NlFAR7 through RNA interference, transmission electron microscope, focused ion beam scanning electron microscopy (FIB-SEM) and lipidomics analysis. FIB-SEM is employed to reconstruct the three-dimensional (3D) architecture of the pore canals and related cuticle structures in N. lugens subjected to dsNlFAR7 and dsGFP treatments, enabling a comprehensive assessment of changes in the cuticle structures. The results reveal a reduction in the thickness of the cuticle and disruptions in the spiral structure of pore canals, accompanied by widened base and middle diameters. Furthermore, the lipidomics comparison analysis between dsNlFAR7- and dsGFP-treated N. lugens demonstrated that there were 25 metabolites involved in cuticular lipid layer synthesis, including 7 triacylglycerols (TGs), 5 phosphatidylcholines (PCs), 3 phosphatidylethanolamines (PEs) and 2 diacylglycerols (DGs) decreased, and 4 triacylglycerols (TGs) and 4 PEs increased. In conclusion, silencing NlFAR7 disrupts the synthesis of overall lipids and destroys the cuticular pore canals and related structures, thereby disrupting the secretion of cuticular lipids, thus affecting the cuticular waterproofing of N. lugens. These findings give significant attention with reference to further biochemical researches on the substrate specificity of FAR protein, and the molecular regulation mechanisms during N. lugens life cycle.
Collapse
Affiliation(s)
- Yi-Lin Cui
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| | - Jian-Shen Guo
- Center of Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, China
| | - Chuan-Xi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Xiao-Ping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| | - Dan-Ting Li
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Science, China Jiliang University, Hangzhou, China
| |
Collapse
|
2
|
Lim SH, Lee H, Lee HJ, Kim K, Choi J, Han JM, Min DS. PLD1 is a key player in cancer stemness and chemoresistance: Therapeutic targeting of cross-talk between the PI3K/Akt and Wnt/β-catenin pathways. Exp Mol Med 2024; 56:1479-1487. [PMID: 38945955 PMCID: PMC11297275 DOI: 10.1038/s12276-024-01260-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 03/04/2024] [Accepted: 03/19/2024] [Indexed: 07/02/2024] Open
Abstract
The development of chemoresistance is a major challenge in the treatment of several types of cancers in clinical settings. Stemness and chemoresistance are the chief causes of poor clinical outcomes. In this context, we hypothesized that understanding the signaling pathways responsible for chemoresistance in cancers is crucial for the development of novel targeted therapies to overcome drug resistance. Among the aberrantly activated pathways, the PI3K-Akt/Wnt/β-catenin signaling pathway is clinically implicated in malignancies such as colorectal cancer (CRC) and glioblastoma multiforme (GBM). Aberrant dysregulation of phospholipase D (PLD) has been implicated in several malignancies, and oncogenic activation of this pathway facilitates tumor proliferation, stemness, and chemoresistance. Crosstalk involving the PLD and Wnt/β-catenin pathways promotes the progression of CRC and GBM and reduces the sensitivity of cancer cells to standard therapies. Notably, both pathways are tightly regulated and connected at multiple levels by upstream and downstream effectors. Thus, gaining deeper insights into the interactions between these pathways would help researchers discover unique therapeutic targets for the management of drug-resistant cancers. Here, we review the molecular mechanisms by which PLD signaling stimulates stemness and chemoresistance in CRC and GBM. Thus, the current review aims to address the importance of PLD as a central player coordinating cross-talk between the PI3K/Akt and Wnt/β-catenin pathways and proposes the possibility of targeting these pathways to improve cancer therapy and overcome drug resistance.
Collapse
Affiliation(s)
- Seong Hun Lim
- Department of Pharmacy, Yonsei University, Incheon, 21983, Republic of Korea
| | - Hyesung Lee
- Department of Pharmacy, Yonsei University, Incheon, 21983, Republic of Korea
| | - Hyun Ji Lee
- Department of Pharmacy, Yonsei University, Incheon, 21983, Republic of Korea
| | - Kuglae Kim
- Department of Pharmacy, Yonsei University, Incheon, 21983, Republic of Korea
| | - Junjeong Choi
- Department of Pharmacy, Yonsei University, Incheon, 21983, Republic of Korea
| | - Jung Min Han
- Department of Pharmacy, Yonsei University, Incheon, 21983, Republic of Korea
- POSTECH Biotech Center, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Do Sik Min
- Department of Pharmacy, Yonsei University, Incheon, 21983, Republic of Korea.
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon, 21983, Republic of Korea.
| |
Collapse
|
3
|
Zhou H, Huo Y, Yang N, Wei T. Phosphatidic acid: from biophysical properties to diverse functions. FEBS J 2024; 291:1870-1885. [PMID: 37103336 DOI: 10.1111/febs.16809] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/15/2023] [Accepted: 04/26/2023] [Indexed: 04/28/2023]
Abstract
Phosphatidic acid (PA), the simplest phospholipid, acts as a key metabolic intermediate and second messenger that impacts diverse cellular and physiological processes across species ranging from microbes to plants and mammals. The cellular levels of PA dynamically change in response to stimuli, and multiple enzymatic reactions can mediate its production and degradation. PA acts as a signalling molecule and regulates various cellular processes via its effects on membrane tethering, enzymatic activities of target proteins, and vesicular trafficking. Because of its unique physicochemical properties compared to other phospholipids, PA has emerged as a class of new lipid mediators influencing membrane structure, dynamics, and protein interactions. This review summarizes the biosynthesis, dynamics, and cellular functions and properties of PA.
Collapse
Affiliation(s)
- Hejiang Zhou
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yanwu Huo
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Na Yang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Laboratory of Genetic and Genomics, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Taotao Wei
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Li XL, Tei R, Uematsu M, Baskin JM. Ultralow Background Membrane Editors for Spatiotemporal Control of Phosphatidic Acid Metabolism and Signaling. ACS CENTRAL SCIENCE 2024; 10:543-554. [PMID: 38559292 PMCID: PMC10979500 DOI: 10.1021/acscentsci.3c01105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 04/04/2024]
Abstract
Phosphatidic acid (PA) is a multifunctional lipid with important metabolic and signaling functions, and efforts to dissect its pleiotropy demand strategies for perturbing its levels with spatiotemporal precision. Previous membrane editing approaches for generating local PA pools used light-mediated induced proximity to recruit a PA-synthesizing enzyme, phospholipase D (PLD), from the cytosol to the target organelle membrane. Whereas these optogenetic PLDs exhibited high activity, their residual activity in the dark led to undesired chronic lipid production. Here, we report ultralow background membrane editors for PA wherein light directly controls PLD catalytic activity, as opposed to localization and access to substrates, exploiting a light-oxygen-voltage (LOV) domain-based conformational photoswitch inserted into the PLD sequence and enabling their stable and nonperturbative targeting to multiple organelle membranes. By coupling organelle-targeted LOVPLD activation to lipidomics analysis, we discovered different rates of metabolism for PA and its downstream products depending on the subcellular location of PA production. We also elucidated signaling roles for PA pools on different membranes in conferring local activation of AMP-activated protein kinase signaling. This work illustrates how membrane editors featuring acute, optogenetic conformational switches can provide new insights into organelle-selective lipid metabolic and signaling pathways.
Collapse
Affiliation(s)
- Xiang-Ling Li
- Weill
Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
| | - Reika Tei
- Weill
Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
| | - Masaaki Uematsu
- Weill
Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
| | - Jeremy M. Baskin
- Weill
Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, United States
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
| |
Collapse
|
5
|
Wu J, Li X, Wu C, Wang Y, Zhang J. Current advances and development strategies of targeting son of sevenless 1 (SOS1) in drug discovery. Eur J Med Chem 2024; 268:116282. [PMID: 38430853 DOI: 10.1016/j.ejmech.2024.116282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/05/2024]
Abstract
The Son of Sevenless 1 (SOS1) guanine nucleotide exchange factor, prevalent across eukaryotic species, plays a pivotal role in facilitating the attachment of RAS protein to GTP, thereby regulating the activation of intracellular RAS proteins. This regulation is part of a feedback mechanism involving SOS1, which allows both activators and inhibitors of SOS1 to exert control over downstream signaling pathways, demonstrating potential anti-tumor effects. Predominantly, small molecule modulators that target SOS1 focus on a hydrophobic pocket within the CDC25 protein domain. The effectiveness of these modulators largely depends on their ability to interact with specific amino acids, notably Phe890 and Tyr884. This interaction is crucial for influencing the protein-protein interaction (PPI) between RAS and the catalytic domain of SOS1. Currently, most small molecule modulators targeting SOS1 are in the preclinical research phase, with a few advancing to clinical trials. This progression raises safety concerns, making the assurance of drug safety a primary consideration alongside the enhancement of efficacy in the development of SOS1 modulators. This review encapsulates recent advancements in the chemical categorization of SOS1 inhibitors and activators. It delves into the evolution of small molecule modulation targeting SOS1 and offers perspectives on the design of future generations of selective SOS1 small molecule modulators.
Collapse
Affiliation(s)
- Jialin Wu
- Department of Neurology, Neuro-system and Multimorbidity Laboratory and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiaoxue Li
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Chengyong Wu
- Department of Neurology, Neuro-system and Multimorbidity Laboratory and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuxi Wang
- Department of Pulmonary and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Jifa Zhang
- Department of Neurology, Neuro-system and Multimorbidity Laboratory and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
6
|
Howell MC, Green R, Cianne J, Dayhoff GW, Uversky VN, Mohapatra S, Mohapatra S. EGFR TKI resistance in lung cancer cells using RNA sequencing and analytical bioinformatics tools. J Biomol Struct Dyn 2023; 41:9808-9827. [PMID: 36524419 PMCID: PMC10272293 DOI: 10.1080/07391102.2022.2153269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/07/2022] [Indexed: 12/23/2022]
Abstract
Epidermal Growth Factor Receptor (EGFR) signaling and EGFR mutations play key roles in cancer pathogenesis, particularly in the development of drug resistance. For the ∼20% of all non-small cell lung cancer (NSCLC) patients that harbor an activating mutation, EGFR tyrosine kinase inhibitors (TKIs) provide initial clinical responses. However, long-term efficacy is not possible due to acquired drug resistance. Despite a gradually increasing knowledge of the mechanisms underpinning the development of resistance in tumors, there has been very little success in overcoming it and it is probable that many additional mechanisms are still unknown. Herein, publicly available RNASeq (RNA sequencing) datasets comparing lung cancer cell lines treated with EGFR TKIs until resistance developed with their corresponding parental cells and protein array data from our own EGFR TKI treated xenograft tumors, were analyzed for differential gene expression, with the intent to investigate the potential mechanisms of drug resistance to EGFR TKIs. Pathway analysis, as well as structural disorder analysis of proteins in these pathways, revealed several key proteins, including DUSP1, DUSP6, GAB2, and FOS, that could be targeted using novel combination therapies to overcome EGFR TKI resistance in lung cancer.
Collapse
Affiliation(s)
- Mark C Howell
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA
- Center for Research & Education in Nanobioengineering, Division of Translational Medicine, Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Ryan Green
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA
- Center for Research & Education in Nanobioengineering, Division of Translational Medicine, Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Junior Cianne
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA
| | - Guy W Dayhoff
- Department of Chemistry, College of Art and Sciences, University of South Florida, Tampa, FL, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA
| | - Shyam Mohapatra
- Center for Research & Education in Nanobioengineering, Division of Translational Medicine, Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- James A. Haley Veterans Hospital, Tampa, FL, USA
| | - Subhra Mohapatra
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA
- James A. Haley Veterans Hospital, Tampa, FL, USA
| |
Collapse
|
7
|
Li XL, Tei R, Uematsu M, Baskin JM. Ultralow background membrane editors for spatiotemporal control of lipid metabolism and signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.31.555787. [PMID: 37693485 PMCID: PMC10491157 DOI: 10.1101/2023.08.31.555787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Phosphatidic acid (PA) is a multifunctional lipid with important metabolic and signaling functions, and efforts to dissect its pleiotropy demand strategies for perturbing its levels with spatiotemporal precision. Previous membrane editing approaches for generating local PA pools used light-mediated induced proximity to recruit a PA-synthesizing enzyme, phospholipase D (PLD), from the cytosol to the target organelle membrane. Whereas these optogenetic PLDs exhibited high activity, their residual activity in the dark led to undesired chronic lipid production. Here, we report ultralow background membrane editors for PA wherein light directly controls PLD catalytic activity, as opposed to localization and access to substrates, exploiting a LOV domain-based conformational photoswitch inserted into the PLD sequence and enabling their stable and non-perturbative targeting to multiple organelle membranes. By coupling organelle-targeted LOVPLD activation to lipidomics analysis, we discovered different rates of metabolism for PA and its downstream products depending on the subcellular location of PA production. We also elucidated signaling roles for PA pools on different membranes in conferring local activation of AMP-activated protein kinase signaling. This work illustrates how membrane editors featuring acute, optogenetic conformational switches can provide new insights into organelle-selective lipid metabolic and signaling pathways.
Collapse
Affiliation(s)
- Xiang-Ling Li
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Reika Tei
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Masaaki Uematsu
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Jeremy M. Baskin
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, 14853, USA
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
8
|
Entrialgo-Cadierno R, Cueto-Ureña C, Welch C, Feliu I, Macaya I, Vera L, Morales X, Michelina SV, Scaparone P, Lopez I, Darbo E, Erice O, Vallejo A, Moreno H, Goñi-Salaverri A, Lara-Astiaso D, Halberg N, Cortes-Dominguez I, Guruceaga E, Ambrogio C, Lecanda F, Vicent S. The phospholipid transporter PITPNC1 links KRAS to MYC to prevent autophagy in lung and pancreatic cancer. Mol Cancer 2023; 22:86. [PMID: 37210549 DOI: 10.1186/s12943-023-01788-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 05/11/2023] [Indexed: 05/22/2023] Open
Abstract
BACKGROUND The discovery of functionally relevant KRAS effectors in lung and pancreatic ductal adenocarcinoma (LUAD and PDAC) may yield novel molecular targets or mechanisms amenable to inhibition strategies. Phospholipids availability has been appreciated as a mechanism to modulate KRAS oncogenic potential. Thus, phospholipid transporters may play a functional role in KRAS-driven oncogenesis. Here, we identified and systematically studied the phospholipid transporter PITPNC1 and its controlled network in LUAD and PDAC. METHODS Genetic modulation of KRAS expression as well as pharmacological inhibition of canonical effectors was completed. PITPNC1 genetic depletion was performed in in vitro and in vivo LUAD and PDAC models. PITPNC1-deficient cells were RNA sequenced, and Gene Ontology and enrichment analyses were applied to the output data. Protein-based biochemical and subcellular localization assays were run to investigate PITPNC1-regulated pathways. A drug repurposing approach was used to predict surrogate PITPNC1 inhibitors that were tested in combination with KRASG12C inhibitors in 2D, 3D, and in vivo models. RESULTS PITPNC1 was increased in human LUAD and PDAC, and associated with poor patients' survival. PITPNC1 was regulated by KRAS through MEK1/2 and JNK1/2. Functional experiments showed PITPNC1 requirement for cell proliferation, cell cycle progression and tumour growth. Furthermore, PITPNC1 overexpression enhanced lung colonization and liver metastasis. PITPNC1 regulated a transcriptional signature which highly overlapped with that of KRAS, and controlled mTOR localization via enhanced MYC protein stability to prevent autophagy. JAK2 inhibitors were predicted as putative PITPNC1 inhibitors with antiproliferative effect and their combination with KRASG12C inhibitors elicited a substantial anti-tumour effect in LUAD and PDAC. CONCLUSIONS Our data highlight the functional and clinical relevance of PITPNC1 in LUAD and PDAC. Moreover, PITPNC1 constitutes a new mechanism linking KRAS to MYC, and controls a druggable transcriptional network for combinatorial treatments.
Collapse
Affiliation(s)
- Rodrigo Entrialgo-Cadierno
- Program in Solid Tumours, University of Navarra, Centre of Applied Medical Research (CIMA), 55 Pio XII Avenue, 31008, Pamplona, Spain
| | - Cristina Cueto-Ureña
- Program in Solid Tumours, University of Navarra, Centre of Applied Medical Research (CIMA), 55 Pio XII Avenue, 31008, Pamplona, Spain
| | - Connor Welch
- Program in Solid Tumours, University of Navarra, Centre of Applied Medical Research (CIMA), 55 Pio XII Avenue, 31008, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Iker Feliu
- Program in Solid Tumours, University of Navarra, Centre of Applied Medical Research (CIMA), 55 Pio XII Avenue, 31008, Pamplona, Spain
| | - Irati Macaya
- Program in Solid Tumours, University of Navarra, Centre of Applied Medical Research (CIMA), 55 Pio XII Avenue, 31008, Pamplona, Spain
| | - Laura Vera
- Program in Solid Tumours, University of Navarra, Centre of Applied Medical Research (CIMA), 55 Pio XII Avenue, 31008, Pamplona, Spain
| | - Xabier Morales
- Imaging Unit and Cancer Imaging Laboratory, University of Navarra, CIMA, Pamplona, Spain
| | - Sandra Vietti Michelina
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Centre, University of Torino, Turin, Italy
| | - Pietro Scaparone
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Centre, University of Torino, Turin, Italy
| | - Ines Lopez
- Program in Solid Tumours, University of Navarra, Centre of Applied Medical Research (CIMA), 55 Pio XII Avenue, 31008, Pamplona, Spain
| | - Elodie Darbo
- University of Bordeaux, INSERM, BRIC, U 1312, F-33000, Bordeaux, France
| | - Oihane Erice
- Program in Solid Tumours, University of Navarra, Centre of Applied Medical Research (CIMA), 55 Pio XII Avenue, 31008, Pamplona, Spain
| | - Adrian Vallejo
- Program in Solid Tumours, University of Navarra, Centre of Applied Medical Research (CIMA), 55 Pio XII Avenue, 31008, Pamplona, Spain
| | - Haritz Moreno
- Program in Solid Tumours, University of Navarra, Centre of Applied Medical Research (CIMA), 55 Pio XII Avenue, 31008, Pamplona, Spain
| | | | - David Lara-Astiaso
- Molecular Therapies Program, University of Navarra, CIMA, Pamplona, Spain
- Wellcome - MRC Cambridge Stem Cell Institute (CSCI), Cambridge, UK
| | - Nils Halberg
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Ivan Cortes-Dominguez
- Imaging Unit and Cancer Imaging Laboratory, University of Navarra, CIMA, Pamplona, Spain
- Bioinformatics Platform, University of Navarra, CIMA, Pamplona, Spain
| | - Elizabeth Guruceaga
- Bioinformatics Platform, University of Navarra, CIMA, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Chiara Ambrogio
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Centre, University of Torino, Turin, Italy
| | - Fernando Lecanda
- Program in Solid Tumours, University of Navarra, Centre of Applied Medical Research (CIMA), 55 Pio XII Avenue, 31008, Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- Department of Pathology, Anatomy and Physiology, University of Navarra, Pamplona, Spain
| | - Silve Vicent
- Program in Solid Tumours, University of Navarra, Centre of Applied Medical Research (CIMA), 55 Pio XII Avenue, 31008, Pamplona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.
- Department of Pathology, Anatomy and Physiology, University of Navarra, Pamplona, Spain.
| |
Collapse
|
9
|
Li J, Shen L, Han X, He G, Fan W, Li Y, Yang S, Zhang Z, Yang Y, Jin W, Wang Y, Zhang W, Guo Y. Phosphatidic acid-regulated SOS2 controls sodium and potassium homeostasis in Arabidopsis under salt stress. EMBO J 2023; 42:e112401. [PMID: 36811145 PMCID: PMC10106984 DOI: 10.15252/embj.2022112401] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/24/2023] Open
Abstract
The maintenance of sodium/potassium (Na+ /K+ ) homeostasis in plant cells is essential for salt tolerance. Plants export excess Na+ out of cells mainly through the Salt Overly Sensitive (SOS) pathway, activated by a calcium signal; however, it is unknown whether other signals regulate the SOS pathway and how K+ uptake is regulated under salt stress. Phosphatidic acid (PA) is emerging as a lipid signaling molecule that modulates cellular processes in development and the response to stimuli. Here, we show that PA binds to the residue Lys57 in SOS2, a core member of the SOS pathway, under salt stress, promoting the activity and plasma membrane localization of SOS2, which activates the Na+ /H+ antiporter SOS1 to promote the Na+ efflux. In addition, we reveal that PA promotes the phosphorylation of SOS3-like calcium-binding protein 8 (SCaBP8) by SOS2 under salt stress, which attenuates the SCaBP8-mediated inhibition of Arabidopsis K+ transporter 1 (AKT1), an inward-rectifying K+ channel. These findings suggest that PA regulates the SOS pathway and AKT1 activity under salt stress, promoting Na+ efflux and K+ influx to maintain Na+ /K+ homeostasis.
Collapse
Affiliation(s)
- Jianfang Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Like Shen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life SciencesNanjing Agricultural UniversityNanjingChina
| | - Xiuli Han
- School of Life Sciences and MedicineShandong University of TechnologyZiboChina
| | - Gefeng He
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Wenxia Fan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life SciencesNanjing Agricultural UniversityNanjingChina
| | - Yu Li
- State Key Laboratory of Agrobiotechnology, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Shiping Yang
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
- State Key Laboratory of Agrobiotechnology, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Ziding Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Yongqing Yang
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Weiwei Jin
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
- National Maize Improvement Center of China and Center for Crop Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Yi Wang
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| | - Wenhua Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life SciencesNanjing Agricultural UniversityNanjingChina
| | - Yan Guo
- State Key Laboratory of Plant Environmental Resilience, College of Biological SciencesChina Agricultural UniversityBeijingChina
| |
Collapse
|
10
|
Luo G, Wang B, Hou Q, Wu X. Development of Son of Sevenless Homologue 1 (SOS1) Modulators To Treat Cancers by Regulating RAS Signaling. J Med Chem 2023; 66:4324-4341. [PMID: 36987571 DOI: 10.1021/acs.jmedchem.2c01729] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Son of sevenless homologue 1 (SOS1) protein is universally expressed in cells and plays an important role in the RAS signaling pathway. Specifically, this protein interacts with RAS in response to upstream stimuli to promote guanine nucleotide exchange in RAS and activates the downstream signaling pathways. Thus, targeting SOS1 is a new approach for treating RAS-driven cancers. In this Perspective, we briefly summarize the structural and functional aspects of SOS1 and focus on recent advances in the discovery of activators, inhibitors, and PROTACs that target SOS1. This review aims to provide a timely and updated overview on the strategies for targeting SOS1 in cancer therapy.
Collapse
Affiliation(s)
- Guangmei Luo
- Department of Medicinal Chemistry, School of Pharmacy and Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Bingrui Wang
- Department of Medicinal Chemistry, School of Pharmacy and Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Qiangqiang Hou
- Department of Medicinal Chemistry, School of Pharmacy and Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaoxing Wu
- Department of Medicinal Chemistry, School of Pharmacy and Institute of Innovative Drug Discovery and Development, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
11
|
Noreen S, Hasan S, Ishtiaq M, Ghumman SA. Phospholipases in cancer progression and metastasis. PHOSPHOLIPASES IN PHYSIOLOGY AND PATHOLOGY 2023:303-313. [DOI: 10.1016/b978-0-323-95697-0.00021-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Ni Q, Zhu B, Ji Y, Zheng Q, Liang X, Ma N, Jiang H, Zhang F, Shang Y, Wang Y, Xu S, Zhang E, Yuan Y, Chen T, Yin F, Cao H, Huang J, Xia J, Ding X, Qiu X, Ding K, Song C, Zhou W, Wu M, Wang K, Lui R, Lin Q, Chen W, Li Z, Cheng S, Wang X, Xie D, Li J. PPDPF Promotes the Development of Mutant KRAS-Driven Pancreatic Ductal Adenocarcinoma by Regulating the GEF Activity of SOS1. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2202448. [PMID: 36453576 PMCID: PMC9839844 DOI: 10.1002/advs.202202448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/11/2022] [Indexed: 06/17/2023]
Abstract
The guanine nucleotide exchange factor (GEF) SOS1 catalyzes the exchange of GDP for GTP on RAS. However, regulation of the GEF activity remains elusive. Here, the authors report that PPDPF functions as an important regulator of SOS1. The expression of PPDPF is significantly increased in pancreatic ductal adenocarcinoma (PDAC), associated with poor prognosis and recurrence of PDAC patients. Overexpression of PPDPF promotes PDAC cell growth in vitro and in vivo, while PPDPF knockout exerts opposite effects. Pancreatic-specific deletion of PPDPF profoundly inhibits tumor development in KRASG12D -driven genetic mouse models of PDAC. PPDPF can bind GTP and transfer GTP to SOS1. Mutations of the GTP-binding sites severely impair the tumor-promoting effect of PPDPF. Consistently, mutations of the critical amino acids mediating SOS1-PPDPF interaction significantly impair the GEF activity of SOS1. Therefore, this study demonstrates a novel model of KRAS activation via PPDPF-SOS1 axis, and provides a promising therapeutic target for PDAC.
Collapse
|
13
|
Morita SY, Ikeda Y. Regulation of membrane phospholipid biosynthesis in mammalian cells. Biochem Pharmacol 2022; 206:115296. [DOI: 10.1016/j.bcp.2022.115296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 11/02/2022]
|
14
|
Lin CW, Nocka LM, Stinger BL, DeGrandchamp JB, Lew LJN, Alvarez S, Phan HT, Kondo Y, Kuriyan J, Groves JT. A two-component protein condensate of the EGFR cytoplasmic tail and Grb2 regulates Ras activation by SOS at the membrane. Proc Natl Acad Sci U S A 2022; 119:e2122531119. [PMID: 35507881 PMCID: PMC9181613 DOI: 10.1073/pnas.2122531119] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/22/2022] [Indexed: 12/11/2022] Open
Abstract
We reconstitute a phosphotyrosine-mediated protein condensation phase transition of the ∼200 residue cytoplasmic tail of the epidermal growth factor receptor (EGFR) and the adaptor protein, Grb2, on a membrane surface. The phase transition depends on phosphorylation of the EGFR tail, which recruits Grb2, and crosslinking through a Grb2-Grb2 binding interface. The Grb2 Y160 residue plays a structurally critical role in the Grb2-Grb2 interaction, and phosphorylation or mutation of Y160 prevents EGFR:Grb2 condensation. By extending the reconstitution experiment to include the guanine nucleotide exchange factor, SOS, and its substrate Ras, we further find that the condensation state of the EGFR tail controls the ability of SOS, recruited via Grb2, to activate Ras. These results identify an EGFR:Grb2 protein condensation phase transition as a regulator of signal propagation from EGFR to the MAPK pathway.
Collapse
Affiliation(s)
- Chun-Wei Lin
- Department of Chemistry, University of California, Berkeley, CA 94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720
| | - Laura M. Nocka
- Department of Chemistry, University of California, Berkeley, CA 94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720
| | | | | | - L. J. Nugent Lew
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Steven Alvarez
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Henry T. Phan
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Yasushi Kondo
- Department of Chemistry, University of California, Berkeley, CA 94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720
| | - John Kuriyan
- Department of Chemistry, University of California, Berkeley, CA 94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720
- HHMI, Chevy Chase, MD 20815
| | - Jay T. Groves
- Department of Chemistry, University of California, Berkeley, CA 94720
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Institute for Digital Molecular Analytics and Science, Nanyang Technological University, 639798 Singapore
| |
Collapse
|
15
|
Zhao J, Luo Z. Discovery of Raf Family Is a Milestone in Deciphering the Ras-Mediated Intracellular Signaling Pathway. Int J Mol Sci 2022; 23:ijms23095158. [PMID: 35563547 PMCID: PMC9101324 DOI: 10.3390/ijms23095158] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 01/27/2023] Open
Abstract
The Ras-Raf-MEK-ERK signaling pathway, the first well-established MAPK pathway, plays essential roles in cell proliferation, survival, differentiation and development. It is activated in over 40% of human cancers owing to mutations of Ras, membrane receptor tyrosine kinases and other oncogenes. The Raf family consists of three isoforms, A-Raf, B-Raf and C-Raf. Since the first discovery of a truncated mutant of C-Raf as a transforming oncogene carried by a murine retrovirus, forty years of extensive studies have provided a wealth of information on the mechanisms underlying the activation, regulation and biological functions of the Raf family. However, the mechanisms by which activation of A-Raf and C-Raf is accomplished are still not completely understood. In contrast, B-Raf can be easily activated by binding of Ras-GTP, followed by cis-autophosphorylation of the activation loop, which accounts for the fact that this isoform is frequently mutated in many cancers, especially melanoma. The identification of oncogenic B-Raf mutations has led to accelerated drug development that targets Raf signaling in cancer. However, the effort has not proved as effective as anticipated, inasmuch as the mechanism of Raf activation involves multiple steps, factors and phosphorylation of different sites, as well as complex interactions between Raf isoforms. In this review, we will focus on the physiological complexity of the regulation of Raf kinases and their connection to the ERK phosphorylation cascade and then discuss the role of Raf in tumorigenesis and the clinical application of Raf inhibitors in the treatment of cancer.
Collapse
Affiliation(s)
- Jingtong Zhao
- Queen Mary School, Nanchang University, Nanchang 330031, China;
| | - Zhijun Luo
- Queen Mary School, Nanchang University, Nanchang 330031, China;
- Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology, Nanchang University, Nanchang 330031, China
- NCU-QMUL Joint Research Institute of Precision Medical Science, Nanchang 330031, China
- Correspondence:
| |
Collapse
|
16
|
Perez-Valle A, Ochoa B, Shah KN, Barreda-Gomez G, Astigarraga E, Boyano MD, Asumendi A. Upregulated phospholipase D2 expression and activity is related to the metastatic properties of melanoma. Oncol Lett 2022; 23:140. [PMID: 35340556 PMCID: PMC8931840 DOI: 10.3892/ol.2022.13260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/01/2022] [Indexed: 11/05/2022] Open
Abstract
The incidence rates of melanoma have increased steadily in recent decades and nearly 25% of the patients diagnosed with early-stage melanoma will eventually develop metastasis, for which there is currently no fully effective treatment. The link between phospholipases and tumors has been studied extensively, particularly in breast and colon cancers. With the aim of finding new biomarkers and therapeutic options for melanoma, the expression of different phospholipases was assessed in 17 distinct cell lines in the present study, demonstrating that phospholipase D2 (PLD2) is upregulated in metastatic melanoma as compared to normal skin melanocytes. These results were corroborated by immunofluorescence and lipase activity assays. Upregulation of PLD2 expression and increased lipase activity were observed in metastatic melanoma relative to normal skin melanocytes. So far, the implication of PLD2 activity in melanoma malignancies has remained elusive. To the best of our knowledge, the present study was the first to demonstrate that the overexpression of PLD2 enhances lipase activity, and its effect to increase the proliferation, migration and invasion capacity of melanoma cells was assessed with XTT and Transwell assays. In addition, silencing of PLD2 in melanoma cells reduced the metastatic potential of these cells. The present study provided evidence that PLD2 is involved in melanoma malignancy and in particular, in its metastatic potential, and established a basis for future studies evaluating PLD2 blockade as a therapeutic strategy to manage this condition.
Collapse
Affiliation(s)
- Arantza Perez-Valle
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, 48940 Bizkaia, Spain
| | - Begoña Ochoa
- Department of Physiology, School of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, 48940 Bizkaia, Spain
| | - Krushangi N. Shah
- Department of Biochemistry and Molecular Biology, Wright State University, Dayton, OH 45435, USA
| | | | - Egoitz Astigarraga
- IMG Pharma Biotech S.L., Bizkaia Technological Park, Zamudio, 48160 Bizkaia, Spain
| | - María Dolores Boyano
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, 48940 Bizkaia, Spain
- Biocruces-Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, 48903 Bizkaia, Spain
| | - Aintzane Asumendi
- Department of Cell Biology and Histology, School of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, 48940 Bizkaia, Spain
- Biocruces-Bizkaia Health Research Institute, Cruces University Hospital, Barakaldo, 48903 Bizkaia, Spain
| |
Collapse
|
17
|
Mu H, Zeng Y, Zhuang Y, Gao W, Zhou Y, Rajalingam K, Zhao W. Patterning of Oncogenic Ras Clustering in Live Cells Using Vertically Aligned Nanostructure Arrays. NANO LETTERS 2022; 22:1007-1016. [PMID: 35044178 DOI: 10.1021/acs.nanolett.1c03886] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
As a dominant oncogenic protein, Ras is well-known to segregate into clusters on the plasma membrane for activating downstream signaling. However, current technologies for direct measurements of Ras clustering are limited to sophisticated high-resolution techniques like electron microscopy and fluorescence lifetime imaging. To further promote fundamental investigations and the related drug development, we hereby introduce a nanobar-based platform which effectively guides Ras clusters into quantifiable patterns in live cells that is resolvable under conventional microscopy. Major Ras isoforms, K-Ras, H-Ras, and N-Ras, were differentiated, as well as their highly prevalent oncogenic mutants G12V and G13D. Moreover, the isoform specificity and the sensitivity of a Ras inhibitor were successfully characterized on nanobars. We envision that this nanobar-based platform will serve as an effective tool to read Ras clustering on the plasma membrane, enabling a novel avenue both to decipher Ras regulations and to facilitate anti-Ras drug development.
Collapse
Affiliation(s)
- Huanwen Mu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457, Singapore
- Ageing Research Institute for Society and Education, Nanyang Technological University, Singapore 637335, Singapore
| | - Yongpeng Zeng
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457, Singapore
| | - Yinyin Zhuang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457, Singapore
| | - Weibo Gao
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- The Photonics Institute and Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore 637371, Singapore
| | - Yong Zhou
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center, Houston, Texas 77030, United States
- Graduate Program in Biochemistry and Cell Biology, MD Anderson Cancer Center and UTHealth Graduate School of Biomedical Sciences, Houston, Texas 77030, United States
| | - Krishnaraj Rajalingam
- Cell Biology Unit, University Medical Center Mainz, Johannes Gutenberg University, D 55131 Mainz, Germany
- University Cancer Center Mainz, University Medical Center Mainz, Johannes Gutenberg University, D 55131 Mainz, Germany
| | - Wenting Zhao
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457, Singapore
| |
Collapse
|
18
|
Liu Y, Li C, Su R, Yin Z, Huang G, Yang J, Li Z, Zhang K, Fei J. Targeting SOS1 overcomes imatinib resistance with BCR-ABL independence through uptake transporter SLC22A4 in CML. Mol Ther Oncolytics 2021; 23:560-570. [PMID: 34938856 PMCID: PMC8654699 DOI: 10.1016/j.omto.2021.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 11/16/2021] [Indexed: 12/28/2022] Open
Abstract
Resistance to the BCR-ABL inhibitor imatinib mesylate poses a major problem for the treatment of chronic myeloid leukemia. Imatinib resistance often results from a secondary mutation in BCR-ABL that interferes with drug binding. However, sometimes there is no mutation in BCR-ABL, and the basis of such BCR-ABL-independent imatinib mesylate resistance remains to be elucidated. SOS1, a guanine nucleotide exchange factor for Ras protein, affects drug sensitivity and resistance to imatinib. The depletion of SOS1 markedly inhibits cell growth either in vitro or in vivo and significantly increases the sensitivity of chronic myeloid leukemia cells to imatinib. Furthermore, LC-MS/MS and RNA-seq assays reveal that SOS1 negatively regulates the expression of SLC22A4, a member of the carnitine/organic cation transporter family, which mediates the active uptake of imatinib into chronic myeloid leukemia cells. HPLC assay confirms that intracellular accumulation of imatinib is accompanied by upregulation of SLC22A4 through SOS1 inhibition in both sensitive and resistant chronic myeloid leukemia cells. BAY-293, an inhibitor of SOS1/Ras, was found to depress proliferation and colony formation in chronic myeloid leukemia cells with resistance and BCR-ABL independence. Altogether these findings indicate that targeting SOS1 inhibition promotes imatinib sensitivity and overcomes resistance with BCR-ABL independence by SLC22A4-mediated uptake transport.
Collapse
Affiliation(s)
- Yanjun Liu
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou 510632, China.,Engineering Technology Research Center of Guangdong Province for Small Nucleic Acids Drug Development, Guangzhou 510632, China.,Antisense Biopharmaceutical Technology Co., Ltd., Guangzhou 510632, China
| | - Chuting Li
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou 510632, China.,Engineering Technology Research Center of Guangdong Province for Small Nucleic Acids Drug Development, Guangzhou 510632, China.,Antisense Biopharmaceutical Technology Co., Ltd., Guangzhou 510632, China
| | - Rui Su
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou 510632, China.,Engineering Technology Research Center of Guangdong Province for Small Nucleic Acids Drug Development, Guangzhou 510632, China.,Antisense Biopharmaceutical Technology Co., Ltd., Guangzhou 510632, China
| | - Zhao Yin
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou 510632, China.,Engineering Technology Research Center of Guangdong Province for Small Nucleic Acids Drug Development, Guangzhou 510632, China.,Antisense Biopharmaceutical Technology Co., Ltd., Guangzhou 510632, China
| | - Guiping Huang
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou 510632, China.,Engineering Technology Research Center of Guangdong Province for Small Nucleic Acids Drug Development, Guangzhou 510632, China.,Antisense Biopharmaceutical Technology Co., Ltd., Guangzhou 510632, China
| | - Juhua Yang
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou 510632, China.,Engineering Technology Research Center of Guangdong Province for Small Nucleic Acids Drug Development, Guangzhou 510632, China.,Antisense Biopharmaceutical Technology Co., Ltd., Guangzhou 510632, China
| | - Zhendong Li
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510632, Guangdong, China
| | - Keda Zhang
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, Guangdong, China
| | - Jia Fei
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou 510632, China.,Engineering Technology Research Center of Guangdong Province for Small Nucleic Acids Drug Development, Guangzhou 510632, China.,Antisense Biopharmaceutical Technology Co., Ltd., Guangzhou 510632, China
| |
Collapse
|
19
|
Huang WYC, Alvarez S, Kondo Y, Kuriyan J, Groves JT. Relating cellular signaling timescales to single-molecule kinetics: A first-passage time analysis of Ras activation by SOS. Proc Natl Acad Sci U S A 2021; 118:e2103598118. [PMID: 34740968 PMCID: PMC8694064 DOI: 10.1073/pnas.2103598118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2021] [Indexed: 12/27/2022] Open
Abstract
Son of Sevenless (SOS) is a Ras guanine nucleotide exchange factor (GEF) that plays a central role in numerous cellular signaling pathways. Like many other signaling molecules, SOS is autoinhibited in the cytosol and activates only after recruitment to the membrane. The mean activation time of individual SOS molecules has recently been measured to be ∼60 s, which is unexpectedly long and seemingly contradictory with cellular signaling timescales, which have been measured to be as fast as several seconds. Here, we rectify this discrepancy using a first-passage time analysis to reconstruct the effective signaling timescale of multiple SOS molecules from their single-molecule activation kinetics. Along with corresponding experimental measurements, this analysis reveals how the functional response time, comprised of many slowly activating molecules, can become substantially faster than the average molecular kinetics. This consequence stems from the enzymatic processivity of SOS in a highly out-of-equilibrium reaction cycle during receptor triggering. Ultimately, rare, early activation events dominate the macroscopic reaction dynamics.
Collapse
Affiliation(s)
- William Y C Huang
- Department of Chemistry, University of California, Berkeley, CA 94720
| | - Steven Alvarez
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720
| | - Yasushi Kondo
- Department of Chemistry, University of California, Berkeley, CA 94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720
| | - John Kuriyan
- Department of Chemistry, University of California, Berkeley, CA 94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720
- HHMI, University of California, Berkeley, CA 94720
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Jay T Groves
- Department of Chemistry, University of California, Berkeley, CA 94720;
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| |
Collapse
|
20
|
Metz C, Oyanadel C, Jung J, Retamal C, Cancino J, Barra J, Venegas J, Du G, Soza A, González A. Phosphatidic acid-PKA signaling regulates p38 and ERK1/2 functions in ligand-independent EGFR endocytosis. Traffic 2021; 22:345-361. [PMID: 34431177 DOI: 10.1111/tra.12812] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 07/27/2021] [Accepted: 08/16/2021] [Indexed: 12/16/2022]
Abstract
Ligand-independent epidermal growth factor receptor (EGFR) endocytosis is inducible by a variety of stress conditions converging upon p38 kinase. A less known pathway involves phosphatidic acid (PA) signaling toward the activation of type 4 phosphodiesterases (PDE4) that decrease cAMP levels and protein kinase A (PKA) activity. This PA/PDE4/PKA pathway is triggered with propranolol used to inhibit PA hydrolysis and induces clathrin-dependent and clathrin-independent endocytosis, followed by reversible accumulation of EGFR in recycling endosomes. Here we give further evidence of this signaling pathway using biosensors of PA, cAMP, and PKA in live cells and then show that it activates p38 and ERK1/2 downstream the PKA inhibition. Clathrin-silencing and IN/SUR experiments involved the activity of p38 in the clathrin-dependent route, while ERK1/2 mediates clathrin-independent EGFR endocytosis. The PA/PDE4/PKA pathway selectively increases the EGFR endocytic rate without affecting LDLR and TfR constitute endocytosis. This selectiveness is probably because of EGFR phosphorylation, as detected in Th1046/1047 and Ser669 residues. The EGFR accumulates at perinuclear recycling endosomes colocalizing with TfR, fluorescent transferrin, and Rab11, while a small proportion distributes to Alix-endosomes. A non-selective recycling arrest includes LDLR and TfR in a reversible manner. The PA/PDE4/PKA pathway involving both p38 and ERK1/2 expands the possibilities of EGFR transmodulation and interference in cancer.
Collapse
Affiliation(s)
- Claudia Metz
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Claudia Oyanadel
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Juan Jung
- Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudio Retamal
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Jorge Cancino
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Jonathan Barra
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Jaime Venegas
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Guangwei Du
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Andrea Soza
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Alfonso González
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.,Centro de Envejecimiento y Regeneración (CARE), Pontificia Universidad Católica de Chile, Santiago, Chile.,Fundación Ciencia y Vida, Santiago, Chile
| |
Collapse
|
21
|
Regulation of the Small GTPase Ras and Its Relevance to Human Disease. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2262:19-43. [PMID: 33977469 DOI: 10.1007/978-1-0716-1190-6_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ras research has experienced a considerable boost in recent years, not least prompted by the Ras initiative launched by the NCI in 2013 ( https://www.cancer.gov/research/key-initiatives/ras ), accompanied and conditioned by a strongly reinvigorated determination within the Ras community to develop therapeutics attacking directly the Ras oncoproteins. As a member of the small G-protein superfamily, function and transforming activity of Ras all revolve about its GDP/GTP loading status. For one thing, the extent of GTP loading will determine the proportion of active Ras in the cell, with implications for intensity and quality of downstream signaling. But also the rate of nucleotide exchange, i.e., the Ras-GDP/GTP cycling rate, can have a major impact on Ras function, as illustrated perhaps most impressively by newly discovered fast-cycling oncogenic mutants of the Ras-related GTPase Rac1. Thus, while the last years have witnessed memorable new findings and technical developments in the Ras field, leading to an improved insight into many aspects of Ras biology, they have not jolted at the basics, but rather deepened our view of the fundamental regulatory principles of Ras activity control. In this brief review, we revisit the role and mechanisms of Ras nucleotide loading and its implications for cancer in the light of recent findings.
Collapse
|
22
|
Ras Isoforms from Lab Benches to Lives-What Are We Missing and How Far Are We? Int J Mol Sci 2021; 22:ijms22126508. [PMID: 34204435 PMCID: PMC8233758 DOI: 10.3390/ijms22126508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 11/21/2022] Open
Abstract
The central protein in the oncogenic circuitry is the Ras GTPase that has been under intense scrutiny for the last four decades. From its discovery as a viral oncogene and its non-oncogenic contribution to crucial cellular functioning, an elaborate genetic, structural, and functional map of Ras is being created for its therapeutic targeting. Despite decades of research, there still exist lacunae in our understanding of Ras. The complexity of the Ras functioning is further exemplified by the fact that the three canonical Ras genes encode for four protein isoforms (H-Ras, K-Ras4A, K-Ras4B, and N-Ras). Contrary to the initial assessment that the H-, K-, and N-Ras isoforms are functionally similar, emerging data are uncovering crucial differences between them. These Ras isoforms exhibit not only cell-type and context-dependent functions but also activator and effector specificities on activation by the same receptor. Preferential localization of H-, K-, and N-Ras in different microdomains of the plasma membrane and cellular organelles like Golgi, endoplasmic reticulum, mitochondria, and endosome adds a new dimension to isoform-specific signaling and diverse functions. Herein, we review isoform-specific properties of Ras GTPase and highlight the importance of considering these towards generating effective isoform-specific therapies in the future.
Collapse
|
23
|
Lehmann M. Diverse roles of phosphatidate phosphatases in insect development and metabolism. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 133:103469. [PMID: 32931938 PMCID: PMC7952469 DOI: 10.1016/j.ibmb.2020.103469] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/10/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
The conversion of the glycerophospholipid phosphatidic acid (PA) into diacylglycerol (DAG) is essential for the biosynthesis of membrane phospholipids and storage fats. Importantly, both PA and DAG can also serve signaling functions in the cell. The dephosphorylation of PA that yields DAG can be executed by two different classes of enzymes, Mg2+-dependent lipins and Mg2+-independent lipid phosphate phosphatases. Here, I will discuss the current status of research directed at understanding the roles of these enzymes in insect development and metabolism. Special emphasis will be given to studies in the model organism Drosophila melanogaster.
Collapse
Affiliation(s)
- Michael Lehmann
- Department of Biological Sciences, SCEN 601, 1 University of Arkansas, Fayetteville, AR, 72701, USA.
| |
Collapse
|
24
|
Phospholipase Signaling in Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 33983572 DOI: 10.1007/978-981-32-9620-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Breast cancer progression results from subversion of multiple intra- or intercellular signaling pathways in normal mammary tissues and their microenvironment, which have an impact on cell differentiation, proliferation, migration, and angiogenesis. Phospholipases (PLC, PLD and PLA) are essential mediators of intra- and intercellular signaling. They hydrolyze phospholipids, which are major components of cell membrane that can generate many bioactive lipid mediators, such as diacylglycerol, phosphatidic acid, lysophosphatidic acid, and arachidonic acid. Enzymatic processing of phospholipids by phospholipases converts these molecules into lipid mediators that regulate multiple cellular processes, which in turn can promote breast cancer progression. Thus, dysregulation of phospholipases contributes to a number of human diseases, including cancer. This review describes how phospholipases regulate multiple cancer-associated cellular processes, and the interplay among different phospholipases in breast cancer. A thorough understanding of the breast cancer-associated signaling networks of phospholipases is necessary to determine whether these enzymes are potential targets for innovative therapeutic strategies.
Collapse
|
25
|
Li X, Nakayama K, Goto T, Akamatsu S, Kobayashi T, Shimizu K, Ogawa O, Inoue T. A narrative review of urinary phospholipids: from biochemical aspect towards clinical application. Transl Androl Urol 2021; 10:1829-1849. [PMID: 33968673 PMCID: PMC8100843 DOI: 10.21037/tau-20-1263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
As a newly emerged discipline, lipidomic studies have focused on the comprehensive characterization and quantification of lipids in a given biological system, which has remarkably advanced in recent years owing to the rapid development of analytical techniques, especially mass spectrometry. Among diverse lipid classes, phospholipids, which have fundamental roles in the formation of cellular membranes, signaling processes, and bioenergetics have gained momentum in several fields of research. The altered composition, concentration, spatial distribution, and metabolism of phospholipids in cells, tissues, and body fluids have been elucidated in various human diseases such as cancer, inflammation, as well as cardiovascular and metabolic disorders. Among the different kinds of phospholipid sources in the human body, urine has not been extensively investigated in recent years owing to the extremely low concentrations of phospholipids and high levels of salts and other contaminants, which can interfere with precise detection. However, with profound advances and rapid expansion in analytical methods, urinary phospholipids have attracted increasing attention in current biomedical research as urine is an easily available source for the discovery of noninvasive biomarkers. In this review, we provide an overview of urinary phospholipids, including their biochemical aspects and clinical applications, aimed at promoting this field of research.
Collapse
Affiliation(s)
- Xin Li
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kenji Nakayama
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takayuki Goto
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shusuke Akamatsu
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Kobayashi
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koji Shimizu
- Clinical Research Center for Medical Equipment Development, Kyoto University Hospital, Kyoto, Japan
| | - Osamu Ogawa
- Department of Urology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takahiro Inoue
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
26
|
Kim MK, Hwang WC, Min DS. Pleckstrin homology domain of phospholipase D2 is a negative regulator of focal adhesion kinase. BMB Rep 2021. [PMID: 32843133 PMCID: PMC7907743 DOI: 10.5483/bmbrep.2021.54.2.154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phospholipase D2 (PLD2) has been implicated in the tyrosine kinase-mediated signaling pathways, but the regulation events are yet to be identified. Herein, we demonstrate that pleckstrin homology (PH) domain of PLD2 (PLD2-PH) exerts an antitumorigenic effect via the suppression of PLD2 and focal adhesion kinase (FAK). The kinase domain of FAK interacts with PLD2-PH and induces tyrosine phosphorylation and activation of PLD2. Furthermore, PLD2 increased tyrosine phosphorylation of FAK. However, ectopic expression of the PLD2-PH competes for binding to FAK and reduces the interaction between PLD2 and FAK, thereby suppressing FAK-induced PLD activation and tyrosine phosphorylation of FAK. The PLD2-PH suppressed the migration and invasion of glioblastoma cells, as well as tumor formation in a xenograft mouse model. This study uncovers a novel role of PLD2-PH as a negative regulator of PLD2 and FAK.
Collapse
Affiliation(s)
- Mi Kyoung Kim
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 46241, Korea
| | - Won Chan Hwang
- Department of Molecular Biology, College of Natural Science, Pusan National University, Busan 46241, Korea
- College of Pharmacy, Yonsei University, Incheon 21983, Korea
| | - Do Sik Min
- College of Pharmacy, Yonsei University, Incheon 21983, Korea
| |
Collapse
|
27
|
Ishizaki A, Murakami C, Yamada H, Sakane F. Diacylglycerol Kinase η Activity in Cells Using Protein Myristoylation and Cellular Phosphatidic Acid Sensor. Lipids 2021; 56:449-458. [PMID: 33624314 DOI: 10.1002/lipd.12301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/02/2021] [Accepted: 02/09/2021] [Indexed: 12/26/2022]
Abstract
Diacylglycerol kinase (DGK) phosphorylates diacylglycerol to produce phosphatidic acid (PtdOH) and regulates the balance between two lipid second messengers: diacylglycerol and PtdOH. Several lines of evidence suggest that the η isozyme of DGK is involved in the pathogenesis of bipolar disorder. However, the detailed molecular mechanisms regulating the pathophysiological functions remain unclear. One reason is that it is difficult to detect the cellular activity of DGKη. To overcome this difficulty, we utilized protein myristoylation and a cellular PtdOH sensor, the N-terminal region of α-synuclein (α-Syn-N). Although DGKη expressed in COS-7 cells was broadly distributed in the cytoplasm, myristoylated (Myr)-AcGFP-DGKη and Myr-AcGFP-DGKη-KD (inactive (kinase-dead) mutant) were substantially localized in the plasma membrane. Moreover, DsRed monomer-α-Syn-N significantly colocalized with Myr-AcGFP-DGKη but not Myr-AcGFP-DGKη-KD at the plasma membrane. When COS-7 cells were osmotically shocked, all DGKη constructs were exclusively translocated to osmotic shock-responsive granules (OSRG). DsRed monomer-α-Syn-N markedly colocalized with only Myr-AcGFP-DGKη at OSRG and exhibited a higher signal/background ratio (3.4) than Myr-AcGFP-DGKη at the plasma membrane in unstimulated COS-7 cells (2.5), indicating that α-Syn-N more effectively detects Myr-AcGFP-DGKη activity in OSRG. Therefore, these results demonstrated that the combination of myristoylation and the PtdOH sensor effectively detects DGKη activity in cells and that this method is convenient to examine the molecular functions of DGKη. Moreover, this method will be useful for the development of drugs targeting DGKη. Furthermore, the combination of myristoylation (intensive accumulation in membranes) and α-Syn-N can be applicable to assays for various cytosolic PtdOH-generating enzymes.
Collapse
Affiliation(s)
- Ayuka Ishizaki
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Chiaki Murakami
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Haruka Yamada
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Fumio Sakane
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| |
Collapse
|
28
|
Tsuji T, Morita SY, Nakamura Y, Ikeda Y, Kambe T, Terada T. Alterations in cellular and organellar phospholipid compositions of HepG2 cells during cell growth. Sci Rep 2021; 11:2731. [PMID: 33526799 PMCID: PMC7851136 DOI: 10.1038/s41598-021-81733-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 01/11/2021] [Indexed: 01/30/2023] Open
Abstract
The human hepatoblastoma cell line, HepG2, has been used for investigating a wide variety of physiological and pathophysiological processes. However, less information is available about the phospholipid metabolism in HepG2 cells. In the present report, to clarify the relationship between cell growth and phospholipid metabolism in HepG2 cells, we examined the phospholipid class compositions of the cells and their intracellular organelles by using enzymatic fluorometric methods. In HepG2 cells, the ratios of all phospholipid classes, but not the ratio of cholesterol, markedly changed with cell growth. Of note, depending on cell growth, the phosphatidic acid (PA) ratio increased and phosphatidylcholine (PC) ratio decreased in the nuclear membranes, the sphingomyelin (SM) ratio increased in the microsomal membranes, and the phosphatidylethanolamine (PE) ratio increased and the phosphatidylserine (PS) ratio decreased in the mitochondrial membranes. Moreover, the mRNA expression levels of enzymes related to PC, PE, PS, PA, SM and cardiolipin syntheses changed during cell growth. We suggest that the phospholipid class compositions of organellar membranes are tightly regulated by cell growth. These findings provide a basis for future investigations of cancer cell growth and lipid metabolism.
Collapse
Affiliation(s)
- Tokuji Tsuji
- grid.472014.4Department of Pharmacy, Shiga University of Medical Science Hospital, Otsu, Shiga 520-2192 Japan
| | - Shin-ya Morita
- grid.472014.4Department of Pharmacy, Shiga University of Medical Science Hospital, Otsu, Shiga 520-2192 Japan
| | - Yoshinobu Nakamura
- grid.472014.4Department of Pharmacy, Shiga University of Medical Science Hospital, Otsu, Shiga 520-2192 Japan
| | - Yoshito Ikeda
- grid.472014.4Department of Pharmacy, Shiga University of Medical Science Hospital, Otsu, Shiga 520-2192 Japan
| | - Taiho Kambe
- grid.258799.80000 0004 0372 2033Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502 Japan
| | - Tomohiro Terada
- grid.472014.4Department of Pharmacy, Shiga University of Medical Science Hospital, Otsu, Shiga 520-2192 Japan
| |
Collapse
|
29
|
Fuentes NR, Mlih M, Wang X, Webster G, Cortes-Acosta S, Salinas ML, Corbin IR, Karpac J, Chapkin RS. Membrane therapy using DHA suppresses epidermal growth factor receptor signaling by disrupting nanocluster formation. J Lipid Res 2021; 62:100026. [PMID: 33515553 PMCID: PMC7933808 DOI: 10.1016/j.jlr.2021.100026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 01/11/2021] [Accepted: 01/19/2021] [Indexed: 02/07/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) signaling drives the formation of many types of cancer, including colon cancer. Docosahexaenoic acid (DHA, 22∶6Δ4,7,10,13,16,19), a chemoprotective long-chain n-3 polyunsaturated fatty acid suppresses EGFR signaling. However, the mechanism underlying this phenotype remains unclear. Therefore, we used super-resolution microscopy techniques to investigate the mechanistic link between EGFR function and DHA-induced alterations to plasma membrane nanodomains. Using isogenic in vitro (YAMC and IMCE mouse colonic cell lines) and in vivo (Drosophila, wild type and Fat-1 mice) models, cellular DHA enrichment via therapeutic nanoparticle delivery, endogenous synthesis, or dietary supplementation reduced EGFR-mediated cell proliferation and downstream Ras/ERK signaling. Phospholipid incorporation of DHA reduced membrane rigidity and the size of EGFR nanoclusters. Similarly, pharmacological reduction of plasma membrane phosphatidic acid (PA), phosphatidylinositol-4,5-bisphosphate (PIP2) or cholesterol was associated with a decrease in EGFR nanocluster size. Furthermore, in DHA-treated cells only the addition of cholesterol, unlike PA or PIP2, restored EGFR nanoscale clustering. These findings reveal that DHA reduces EGFR signaling in part by reshaping EGFR proteolipid nanodomains, supporting the feasibility of using membrane therapy, i.e., dietary/drug-related strategies to target plasma membrane organization, to reduce EGFR signaling and cancer risk.
Collapse
Affiliation(s)
- Natividad R Fuentes
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, USA; Department of Nutrition, Texas A&M University, College Station, TX, USA; Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, USA
| | - Mohamed Mlih
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, Bryan, TX, USA
| | - Xiaoli Wang
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, USA; Department of Nutrition, Texas A&M University, College Station, TX, USA
| | - Gabriella Webster
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, USA; Department of Nutrition, Texas A&M University, College Station, TX, USA
| | - Sergio Cortes-Acosta
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, USA; Department of Nutrition, Texas A&M University, College Station, TX, USA
| | - Michael L Salinas
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, USA; Department of Nutrition, Texas A&M University, College Station, TX, USA
| | - Ian R Corbin
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jason Karpac
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, Bryan, TX, USA
| | - Robert S Chapkin
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, TX, USA; Department of Nutrition, Texas A&M University, College Station, TX, USA; Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX, USA; Center for Translational Environmental Health Research, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
30
|
Natural Products Attenuating Biosynthesis, Processing, and Activity of Ras Oncoproteins: State of the Art and Future Perspectives. Biomolecules 2020; 10:biom10111535. [PMID: 33182807 PMCID: PMC7698260 DOI: 10.3390/biom10111535] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/03/2020] [Accepted: 11/08/2020] [Indexed: 02/07/2023] Open
Abstract
RAS genes encode signaling proteins, which, in mammalian cells, act as molecular switches regulating critical cellular processes as proliferation, growth, differentiation, survival, motility, and metabolism in response to specific stimuli. Deregulation of Ras functions has a high impact on human health: gain-of-function point mutations in RAS genes are found in some developmental disorders and thirty percent of all human cancers, including the deadliest. For this reason, the pathogenic Ras variants represent important clinical targets against which to develop novel, effective, and possibly selective pharmacological inhibitors. Natural products represent a virtually unlimited resource of structurally different compounds from which one could draw on for this purpose, given the improvements in isolation and screening of active molecules from complex sources. After a summary of Ras proteins molecular and regulatory features and Ras-dependent pathways relevant for drug development, we point out the most promising inhibitory approaches, the known druggable sites of wild-type and oncogenic Ras mutants, and describe the known natural compounds capable of attenuating Ras signaling. Finally, we highlight critical issues and perspectives for the future selection of potential Ras inhibitors from natural sources.
Collapse
|
31
|
Structural insights into phospholipase D function. Prog Lipid Res 2020; 81:101070. [PMID: 33181180 DOI: 10.1016/j.plipres.2020.101070] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023]
Abstract
Phospholipase D (PLD) and its metabolic active product phosphatidic acid (PA) engage in a wide range of physiopathologic processes in the cell. PLDs have been considered as a potential and promising drug target. Recently, the crystal structures of PLDs in mammalian and plant have been solved at atomic resolution. These achievements allow us to understand the structural differences among different species of PLDs and the functions of their key domains. In this review, we summarize the sequence and structure of different species of PLD isoforms, and discuss the structural mechanisms for PLD interactions with their binding partners and the functions of each key domain in the regulation of PLDs activation and catalytic reaction.
Collapse
|
32
|
Baltanás FC, Zarich N, Rojas-Cabañeros JM, Santos E. SOS GEFs in health and disease. Biochim Biophys Acta Rev Cancer 2020; 1874:188445. [PMID: 33035641 DOI: 10.1016/j.bbcan.2020.188445] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/01/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022]
Abstract
SOS1 and SOS2 are the most universal and widely expressed family of guanine exchange factors (GEFs) capable or activating RAS or RAC1 proteins in metazoan cells. SOS proteins contain a sequence of modular domains that are responsible for different intramolecular and intermolecular interactions modulating mechanisms of self-inhibition, allosteric activation and intracellular homeostasis. Despite their homology, analyses of SOS1/2-KO mice demonstrate functional prevalence of SOS1 over SOS2 in cellular processes including proliferation, migration, inflammation or maintenance of intracellular redox homeostasis, although some functional redundancy cannot be excluded, particularly at the organismal level. Specific SOS1 gain-of-function mutations have been identified in inherited RASopathies and various sporadic human cancers. SOS1 depletion reduces tumorigenesis mediated by RAS or RAC1 in mouse models and is associated with increased intracellular oxidative stress and mitochondrial dysfunction. Since WT RAS is essential for development of RAS-mutant tumors, the SOS GEFs may be considered as relevant biomarkers or therapy targets in RAS-dependent cancers. Inhibitors blocking SOS expression, intrinsic GEF activity, or productive SOS protein-protein interactions with cellular regulators and/or RAS/RAC targets have been recently developed and shown preclinical and clinical effectiveness blocking aberrant RAS signaling in RAS-driven and RTK-driven tumors.
Collapse
Affiliation(s)
- Fernando C Baltanás
- Centro de Investigación del Cáncer - IBMCC (CSIC-USAL) and CIBERONC, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Natasha Zarich
- Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC) and CIBERONC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Jose M Rojas-Cabañeros
- Unidad Funcional de Investigación de Enfermedades Crónicas (UFIEC) and CIBERONC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Eugenio Santos
- Centro de Investigación del Cáncer - IBMCC (CSIC-USAL) and CIBERONC, Universidad de Salamanca, 37007 Salamanca, Spain.
| |
Collapse
|
33
|
New Era of Diacylglycerol Kinase, Phosphatidic Acid and Phosphatidic Acid-Binding Protein. Int J Mol Sci 2020; 21:ijms21186794. [PMID: 32947951 PMCID: PMC7555651 DOI: 10.3390/ijms21186794] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
Diacylglycerol kinase (DGK) phosphorylates diacylglycerol (DG) to generate phosphatidic acid (PA). Mammalian DGK consists of ten isozymes (α–κ) and governs a wide range of physiological and pathological events, including immune responses, neuronal networking, bipolar disorder, obsessive-compulsive disorder, fragile X syndrome, cancer, and type 2 diabetes. DG and PA comprise diverse molecular species that have different acyl chains at the sn-1 and sn-2 positions. Because the DGK activity is essential for phosphatidylinositol turnover, which exclusively produces 1-stearoyl-2-arachidonoyl-DG, it has been generally thought that all DGK isozymes utilize the DG species derived from the turnover. However, it was recently revealed that DGK isozymes, except for DGKε, phosphorylate diverse DG species, which are not derived from phosphatidylinositol turnover. In addition, various PA-binding proteins (PABPs), which have different selectivities for PA species, were recently found. These results suggest that DGK–PA–PABP axes can potentially construct a large and complex signaling network and play physiologically and pathologically important roles in addition to DGK-dependent attenuation of DG–DG-binding protein axes. For example, 1-stearoyl-2-docosahexaenoyl-PA produced by DGKδ interacts with and activates Praja-1, the E3 ubiquitin ligase acting on the serotonin transporter, which is a target of drugs for obsessive-compulsive and major depressive disorders, in the brain. This article reviews recent research progress on PA species produced by DGK isozymes, the selective binding of PABPs to PA species and a phosphatidylinositol turnover-independent DG supply pathway.
Collapse
|
34
|
Yao Y, Wang X, Li H, Fan J, Qian X, Li H, Xu Y. Phospholipase D as a key modulator of cancer progression. Biol Rev Camb Philos Soc 2020; 95:911-935. [PMID: 32073216 DOI: 10.1111/brv.12592] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 02/01/2020] [Accepted: 02/06/2020] [Indexed: 12/15/2022]
Abstract
The phospholipase D (PLD) family has a ubiquitous expression in cells. PLD isoforms (PLDs) and their hydrolysate phosphatidic acid (PA) have been demonstrated to engage in multiple stages of cancer progression. Aberrant expression of PLDs, especially PLD1 and PLD2, has been detected in various cancers. Inhibition or elimination of PLDs activity has been shown to reduce tumour growth and metastasis. PLDs and PA also serve as downstream effectors of various cell-surface receptors, to trigger and regulate propagation of intracellular signals in the process of tumourigenesis and metastasis. Here, we discuss recent advances in understanding the functions of PLDs and PA in discrete stages of cancer progression, including cancer cell growth, invasion and migration, and angiogenesis, with special emphasis on the tumour-associated signalling pathways mediated by PLDs and PA and the functional importance of PLDs and PA in cancer therapy.
Collapse
Affiliation(s)
- Yuanfa Yao
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China.,Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyi Wang
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China.,Department of Clinical Medicine, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hanbing Li
- Institute of Pharmacology, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, China
| | - Jiannan Fan
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China
| | - Xiaohan Qian
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China.,Department of Respiratory Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Li
- Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yingke Xu
- Department of Biomedical Engineering, Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China.,Department of Endocrinology, The Affiliated Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
35
|
McDermott MI, Wang Y, Wakelam MJO, Bankaitis VA. Mammalian phospholipase D: Function, and therapeutics. Prog Lipid Res 2019; 78:101018. [PMID: 31830503 DOI: 10.1016/j.plipres.2019.101018] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/08/2019] [Accepted: 10/14/2019] [Indexed: 01/23/2023]
Abstract
Despite being discovered over 60 years ago, the precise role of phospholipase D (PLD) is still being elucidated. PLD enzymes catalyze the hydrolysis of the phosphodiester bond of glycerophospholipids producing phosphatidic acid and the free headgroup. PLD family members are found in organisms ranging from viruses, and bacteria to plants, and mammals. They display a range of substrate specificities, are regulated by a diverse range of molecules, and have been implicated in a broad range of cellular processes including receptor signaling, cytoskeletal regulation and membrane trafficking. Recent technological advances including: the development of PLD knockout mice, isoform-specific antibodies, and specific inhibitors are finally permitting a thorough analysis of the in vivo role of mammalian PLDs. These studies are facilitating increased recognition of PLD's role in disease states including cancers and Alzheimer's disease, offering potential as a target for therapeutic intervention.
Collapse
Affiliation(s)
- M I McDermott
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, United States of America.
| | - Y Wang
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, United States of America; Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, United States of America
| | - M J O Wakelam
- Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom
| | - V A Bankaitis
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, United States of America; Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843-2128, United States of America; Department of Chemistry, Texas A&M University, College Station, Texas 77840, United States of America
| |
Collapse
|
36
|
Honda S, Murakami C, Yamada H, Murakami Y, Ishizaki A, Sakane F. Analytical Method for Diacylglycerol Kinase ζ Activity in Cells Using Protein Myristoylation and Liquid Chromatography-Tandem Mass Spectrometry. Lipids 2019; 54:763-771. [PMID: 31736090 DOI: 10.1002/lipd.12201] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/06/2019] [Accepted: 10/24/2019] [Indexed: 01/05/2023]
Abstract
Specific inhibitors of diacylglycerol kinase (DGK) ζ can be promising anticancer medications via the activation of cancer immunity. Although the detection of cellular activities of target enzymes is essential for drug screening in addition to in vitro assays, it is difficult to detect the activity of DGKζ in cells. In the present study, we generated AcGFP-DGKζ cDNA with a consensus N-myristoylation sequence at the 5' end (Myr-AcGFP-DGKζ) to target DGKζ to membranes. Using liquid chromatography (LC)-tandem mass spectrometry (MS/MS) (LC-MS/MS), we showed that Myr-AcGFP-DGKζ, but not AcGFP-DGKζ without the myristoylation sequence, substantially augmented the levels of several phosphatidic acid (PtdOH) species. In contrast to Myr-AcGFP-DGKζ, its inactive mutant did not exhibit an increase in PtdOH production, indicating that the increase in PtdOH production was DGK activity-dependent. This method will be useful in chemical compound selection for the development of drugs targeting DGKζ and can be applicable to various soluble (nonmembrane bound) lipid-metabolizing enzymes, including other DGK isozymes.
Collapse
Affiliation(s)
- Shotaro Honda
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Chiaki Murakami
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Haruka Yamada
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Yuki Murakami
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Ayuka Ishizaki
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| | - Fumio Sakane
- Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba, 263-8522, Japan
| |
Collapse
|
37
|
Abdelkarim H, Banerjee A, Grudzien P, Leschinsky N, Abushaer M, Gaponenko V. The Hypervariable Region of K-Ras4B Governs Molecular Recognition and Function. Int J Mol Sci 2019; 20:ijms20225718. [PMID: 31739603 PMCID: PMC6888304 DOI: 10.3390/ijms20225718] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/09/2019] [Accepted: 11/11/2019] [Indexed: 12/25/2022] Open
Abstract
The flexible C-terminal hypervariable region distinguishes K-Ras4B, an important proto-oncogenic GTPase, from other Ras GTPases. This unique lysine-rich portion of the protein harbors sites for post-translational modification, including cysteine prenylation, carboxymethylation, phosphorylation, and likely many others. The functions of the hypervariable region are diverse, ranging from anchoring K-Ras4B at the plasma membrane to sampling potentially auto-inhibitory binding sites in its GTPase domain and participating in isoform-specific protein-protein interactions and signaling. Despite much research, there are still many questions about the hypervariable region of K-Ras4B. For example, mechanistic details of its interaction with plasma membrane lipids and with the GTPase domain require further clarification. The roles of the hypervariable region in K-Ras4B-specific protein-protein interactions and signaling are incompletely defined. It is also unclear why post-translational modifications frequently found in protein polylysine domains, such as acetylation, glycation, and carbamoylation, have not been observed in K-Ras4B. Expanding knowledge of the hypervariable region will likely drive the development of novel highly-efficient and selective inhibitors of K-Ras4B that are urgently needed by cancer patients.
Collapse
Affiliation(s)
- Hazem Abdelkarim
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago (UIC), Chicago, IL 60607, USA; (H.A.); (P.G.); (N.L.); (M.A.)
| | - Avik Banerjee
- Department of Chemistry, University of Illinois at Chicago (UIC), Chicago, IL 60612, USA;
| | - Patrick Grudzien
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago (UIC), Chicago, IL 60607, USA; (H.A.); (P.G.); (N.L.); (M.A.)
| | - Nicholas Leschinsky
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago (UIC), Chicago, IL 60607, USA; (H.A.); (P.G.); (N.L.); (M.A.)
| | - Mahmoud Abushaer
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago (UIC), Chicago, IL 60607, USA; (H.A.); (P.G.); (N.L.); (M.A.)
| | - Vadim Gaponenko
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago (UIC), Chicago, IL 60607, USA; (H.A.); (P.G.); (N.L.); (M.A.)
- Correspondence: ; Tel.: +312-355-4839
| |
Collapse
|
38
|
Wang M, Wu Q, Fang M, Huang W, Zhu H. miR-152-3p Sensitizes Glioblastoma Cells Towards Cisplatin Via Regulation Of SOS1. Onco Targets Ther 2019; 12:9513-9525. [PMID: 31807027 PMCID: PMC6857816 DOI: 10.2147/ott.s210732] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 09/23/2019] [Indexed: 12/24/2022] Open
Abstract
Background Accumulating evidences suggest that microRNAs (miRNAs) play key roles in mediating glioblastoma progression. Decreased expression of miR-152-3p was reported in several cancer types including glioblastoma. Methods The sensitivity of glioblastoma cells to cisplatin was assessed by the cell counting kit-8 assay and flow cytometry analysis. The expression of miR-152-3p was determined by RT-qPCR method. Bioinformatic analysis, dual luciferase reporter assay and Western blot were used to explore the target gene of miR-152-3p. The association between miR-152-3p and SOS1 was confirmed in glioblastoma tissues by Pearson correlation analysis. Results In the current study, we discovered that overexpression of miR-152-3p increased cisplatin sensitivity while inhibition of miR-152-3p decreased cisplatin sensitivity in glioblastoma cells (T98G and U87). In addition, miR-152-3p augmented cell apoptosis induced by cisplatin treatment. It was further predicted and validated that SOS1, a protein involved in regulating chemotherapy sensitivity, was a direct target gene of miR-152-3p. SOS1 was proven to suppress the cytotoxic effect of cisplatin in glioblastoma. Transfection of recombinant SOS1 could effectively reverse the increased cisplatin sensitivity induced by miR-152-3p overexpression in T98G. Furthermore, overexpression of SOS1 reduced the percentage of apoptotic cells increased by miR-152-3p mimic in the presence of cisplatin in T98G. More importantly, a significant negative correlation between miR-152-3p levels and SOS1 levels was observed in glioblastoma tissues collected from 40 patients. Conclusion Our study identified miR-152-3p as a chemotherapy sensitizer in glioblastoma.
Collapse
Affiliation(s)
- Meihua Wang
- Department of Pathology, Changzhou Tumor Hospital, Affiliated to Soochow University, Changzhou, People's Republic of China
| | - Qi Wu
- Department of Histology and Embryology, Heze Medical College, Heze, People's Republic of China
| | - Mingming Fang
- Department of Radiotherapy, Changzhou Tumor Hospital, Affiliated to Soochow University, Changzhou, People's Republic of China
| | - Wu Huang
- Department of Neurosurgery, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, People's Republic of China
| | - Hong Zhu
- Department of Radiation Oncology, Minhang Branch of Cancer Hospital of Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
39
|
Crystal structure of plant PLDα1 reveals catalytic and regulatory mechanisms of eukaryotic phospholipase D. Cell Res 2019; 30:61-69. [PMID: 31619765 DOI: 10.1038/s41422-019-0244-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/24/2019] [Indexed: 12/13/2022] Open
Abstract
Phospholipase D (PLD) hydrolyzes the phosphodiester bond of glycerophospholipids and produces phosphatidic acid (PA), which acts as a second messenger in many living organisms. A large number of PLDs have been identified in eukaryotes, and are viewed as promising targets for drug design because these enzymes are known to be tightly regulated and to function in the pathophysiology of many human diseases. However, the underlying molecular mechanisms of catalysis and regulation of eukaryotic PLD remain elusive. Here, we determined the crystal structure of full-length plant PLDα1 in the apo state and in complex with PA. The structure shows that the N-terminal C2 domain hydrophobically interacts with the C-terminal catalytic domain that features two HKD motifs. Our analysis reveals the catalytic site, substrate-binding mechanism, and a new Ca2+-binding site that is required for the activation of PLD. In addition, we tested several efficient small-molecule inhibitors against PLDα1, and suggested a possible competitive inhibition mechanism according to structure-based docking analysis. This study explains many long-standing questions about PLDs and provides structural insights into PLD-targeted inhibitor/drug design.
Collapse
|
40
|
Shen L, Zhuang B, Wu Q, Zhang H, Nie J, Jing W, Yang L, Zhang W. Phosphatidic acid promotes the activation and plasma membrane localization of MKK7 and MKK9 in response to salt stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 287:110190. [PMID: 31481213 DOI: 10.1016/j.plantsci.2019.110190] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/07/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
Phosphatidic acid (PA) is a lipid secondary messenger involved in intracellular signaling in eukaryotes. It has been confirmed that PA mediates salt stress signaling by promoting activation of Mitogen-activated Protein Kinase 6 (MPK6) which phosphorylates Na+/H+ antiporter SOS1. However, the MPK6-upstream kinases and their relationship to PA remain unclear. Here, we found that, among the six tested Arabidopsis Mitogen-activated Protein Kinase Kinases (MKKs), PA specifically bound to MKK7 and MKK9 which phosphorylate MPK6, and promoted the activation of MKK7/MKK9. Based on phenotypic and physiological analyses, we found that MKK7 and MKK9 positively regulate Arabidopsis salt tolerance and are functionally redundant. NaCl treatment can induce significant increase in MKK7/MKK9 activities, and this depends, in part, on the Phospholipase Dα1 (PLDα1). MKK7 and MKK9 also mediate the NaCl-induced activation of MPK6. Furthermore, PA or NaCl treatment could induce translocation of MKK7/MKK9 to the plasma membrane, whereas this translocation disappeared in pldα1. These results indicate that PA binds to MKK7 and MKK9, increases their kinase activity and plasma membrane localization during Arabidopsis response to salt stress. Together with the PA-MPK6-SOS1 pathway identified previously, this mechanism may maximize the signal transduction efficiency, providing novel insights into the link between lipid signaling and MAPK cascade.
Collapse
Affiliation(s)
- Like Shen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University; Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, Nanjing, 210095, People's Republic of China
| | - Baocheng Zhuang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University; Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, Nanjing, 210095, People's Republic of China
| | - Qi Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University; Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, Nanjing, 210095, People's Republic of China
| | - Hongsheng Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University; Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, Nanjing, 210095, People's Republic of China
| | - Jianing Nie
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University; Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, Nanjing, 210095, People's Republic of China
| | - Wen Jing
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University; Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, Nanjing, 210095, People's Republic of China
| | - Lele Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University; Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, Nanjing, 210095, People's Republic of China
| | - Wenhua Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University; Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
41
|
Balboa MA, de Pablo N, Meana C, Balsinde J. The role of lipins in innate immunity and inflammation. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:1328-1337. [PMID: 31220616 DOI: 10.1016/j.bbalip.2019.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/07/2019] [Accepted: 06/01/2019] [Indexed: 02/08/2023]
|
42
|
Zhukovsky MA, Filograna A, Luini A, Corda D, Valente C. Phosphatidic acid in membrane rearrangements. FEBS Lett 2019; 593:2428-2451. [PMID: 31365767 DOI: 10.1002/1873-3468.13563] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 12/16/2022]
Abstract
Phosphatidic acid (PA) is the simplest cellular glycerophospholipid characterized by unique biophysical properties: a small headgroup; negative charge; and a phosphomonoester group. Upon interaction with lysine or arginine, PA charge increases from -1 to -2 and this change stabilizes protein-lipid interactions. The biochemical properties of PA also allow interactions with lipids in several subcellular compartments. Based on this feature, PA is involved in the regulation and amplification of many cellular signalling pathways and functions, as well as in membrane rearrangements. Thereby, PA can influence membrane fusion and fission through four main mechanisms: it is a substrate for enzymes producing lipids (lysophosphatidic acid and diacylglycerol) that are involved in fission or fusion; it contributes to membrane rearrangements by generating negative membrane curvature; it interacts with proteins required for membrane fusion and fission; and it activates enzymes whose products are involved in membrane rearrangements. Here, we discuss the biophysical properties of PA in the context of the above four roles of PA in membrane fusion and fission.
Collapse
Affiliation(s)
- Mikhail A Zhukovsky
- Institute of Protein Biochemistry and Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Angela Filograna
- Institute of Protein Biochemistry and Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Alberto Luini
- Institute of Protein Biochemistry and Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Daniela Corda
- Institute of Protein Biochemistry and Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| | - Carmen Valente
- Institute of Protein Biochemistry and Institute of Biochemistry and Cell Biology, National Research Council, Naples, Italy
| |
Collapse
|
43
|
Bestard-Escalas J, Maimó-Barceló A, Pérez-Romero K, Lopez DH, Barceló-Coblijn G. Ins and Outs of Interpreting Lipidomic Results. J Mol Biol 2019; 431:5039-5062. [PMID: 31422112 DOI: 10.1016/j.jmb.2019.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 12/20/2022]
Abstract
Membrane lipids are essential for life; however, research on how cells regulate cell lipid composition has been falling behind for quite some time. One reason was the difficulty in establishing analytical methods able to cope with the cell lipid repertoire. Development of a diversity of mass spectrometry-based technologies, including imaging mass spectrometry, has helped to demonstrate beyond doubt that the cell lipidome is not only greatly cell type dependent but also highly sensitive to any pathophysiological alteration such as differentiation or tumorigenesis. Interestingly, the current popularization of metabolomic studies among numerous disciplines has led many researchers to rediscover lipids. Hence, it is important to underscore the peculiarities of these metabolites and their metabolism, which are both radically different from protein and nucleic acid metabolism. Once differences in lipid composition have been established, researchers face a rather complex scenario, to investigate the signaling pathways and molecular mechanisms accounting for their results. Thus, a detail often overlooked, but of crucial relevance, is the complex networks of enzymes involved in controlling the level of each one of the lipid species present in the cell. In most cases, these enzymes are redundant and promiscuous, complicating any study on lipid metabolism, since the modification of one particular lipid enzyme impacts simultaneously on many species. Altogether, this review aims to describe the difficulties in delving into the regulatory mechanisms tailoring the lipidome at the activity, genetic, and epigenetic level, while conveying the numerous, stimulating, and sometimes unexpected research opportunities afforded by this type of studies.
Collapse
Affiliation(s)
- Joan Bestard-Escalas
- Lipids in Human Pathology, Institut d'Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), Palma, Balearic Islands, Spain
| | - Albert Maimó-Barceló
- Lipids in Human Pathology, Institut d'Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), Palma, Balearic Islands, Spain
| | - Karim Pérez-Romero
- Lipids in Human Pathology, Institut d'Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), Palma, Balearic Islands, Spain
| | - Daniel H Lopez
- Lipids in Human Pathology, Institut d'Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), Palma, Balearic Islands, Spain
| | - Gwendolyn Barceló-Coblijn
- Lipids in Human Pathology, Institut d'Investigació Sanitària Illes Balears (IdISBa, Health Research Institute of the Balearic Islands), Palma, Balearic Islands, Spain.
| |
Collapse
|
44
|
Abumanhal-Masarweh H, da Silva D, Poley M, Zinger A, Goldman E, Krinsky N, Kleiner R, Shenbach G, Schroeder JE, Shklover J, Shainsky-Roitman J, Schroeder A. Tailoring the lipid composition of nanoparticles modulates their cellular uptake and affects the viability of triple negative breast cancer cells. J Control Release 2019; 307:331-341. [PMID: 31238049 DOI: 10.1016/j.jconrel.2019.06.025] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/09/2019] [Accepted: 06/21/2019] [Indexed: 11/16/2022]
Abstract
Lipid nanoparticles are used widely as anticancer drug and gene delivery systems. Internalizing into the target cell is a prerequisite for the proper activity of many nanoparticulate drugs. We show here, that the lipid composition of a nanoparticle affects its ability to internalize into triple-negative breast cancer cells. The lipid headgroup had the greatest effect on enhancing cellular uptake compared to other segments of the molecule. Having a receptor-targeted headgroup induced the greatest increase in cellular uptake, followed by cationic amine headgroups, both being superior to neutral (zwitterion) phosphatidylcholine or to negatively-charged headgroups. The lipid tails also affected the magnitude of cellular uptake. Longer acyl chains facilitated greater liposomal cellular uptake compared to shorter tails, 18:0 > 16:0 > 14:0. When having the same lipid tail length, unsaturated lipids were superior to saturated ones, 18:1 > 18:0. Interestingly, liposomes composed of phospholipids having 14:0 or 12:0-carbon-long-tails, such as DMPC and DLPC, decreased cell viability in a concertation dependent manner, due to a destabilizing effect these lipids had on the cancer cell membrane. Contrarily, liposomes composed of phospholipids having longer carbon tails (16:0 and 18:0), such as DPPC and HSPC, enhanced cancer cell proliferation. This effect is attributed to the integration of the exogenous liposomal lipids into the cancer-cell membrane, supporting the proliferation process. Cholesterol is a common lipid additive in nanoscale formulations, rigidifying the membrane and stabilizing its structure. Liposomes composed of DMPC (14:0) showed increased cellular uptake when enriched with cholesterol, both by endocytosis and by fusion. Contrarily, the effect of cholesterol on HSPC (18:0) liposomal uptake was minimal. Furthermore, the concentration of nanoparticles in solution affected their cellular uptake. The higher the concentration of nanoparticles the greater the absolute number of nanoparticles taken up per cell. However, the efficiency of nanoparticle uptake, i.e. the percent of nanoparticles taken up by cells, decreased as the concentration of nanoparticles increased. This study demonstrates that tuning the lipid composition and concentration of nanoscale drug delivery systems can be leveraged to modulate their cellular uptake.
Collapse
Affiliation(s)
- Hanan Abumanhal-Masarweh
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel; Russell Berrie Nanotechnology Institute, The Norman Seiden Multidisciplinary Graduate program, Technion-Israel Institute of Technology, Haifa 3200, Israel
| | - Dana da Silva
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Maria Poley
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Assaf Zinger
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Evgenya Goldman
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Nitzan Krinsky
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Ron Kleiner
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Gal Shenbach
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Josh E Schroeder
- Department of Orthopedic Surgery, Hadassah Medical Center, Jerusalem 91120, Israel
| | - Jeny Shklover
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Janna Shainsky-Roitman
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Avi Schroeder
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel.
| |
Collapse
|
45
|
Thakur R, Naik A, Panda A, Raghu P. Regulation of Membrane Turnover by Phosphatidic Acid: Cellular Functions and Disease Implications. Front Cell Dev Biol 2019; 7:83. [PMID: 31231646 PMCID: PMC6559011 DOI: 10.3389/fcell.2019.00083] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/03/2019] [Indexed: 01/23/2023] Open
Abstract
Phosphatidic acid (PA) is a simple glycerophospholipid with a well-established role as an intermediate in phospholipid biosynthesis. In addition to its role in lipid biosynthesis, PA has been proposed to act as a signaling molecule that modulates several aspects of cell biology including membrane transport. PA can be generated in eukaryotic cells by several enzymes whose activity is regulated in the context of signal transduction and enzymes that can metabolize PA thus terminating its signaling activity have also been described. Further, several studies have identified PA binding proteins and changes in their activity are proposed to be mediators of the signaling activity of this lipid. Together these enzymes and proteins constitute a PA signaling toolkit that mediates the signaling functions of PA in cells. Recently, a number of novel genetic models for the analysis of PA function in vivo and analytical methods to quantify PA levels in cells have been developed and promise to enhance our understanding of PA functions. Studies of several elements of the PA signaling toolkit in a single cell type have been performed and are presented to provide a perspective on our understanding of the biochemical and functional organization of pools of PA in a eukaryotic cell. Finally, we also provide a perspective on the potential role of PA in human disease, synthesizing studies from model organisms, human disease genetics and analysis using recently developed PLD inhibitors.
Collapse
Affiliation(s)
- Rajan Thakur
- National Centre for Biological Sciences-TIFR, Bengaluru, India
| | - Amruta Naik
- National Centre for Biological Sciences-TIFR, Bengaluru, India
| | - Aniruddha Panda
- National Centre for Biological Sciences-TIFR, Bengaluru, India
| | - Padinjat Raghu
- National Centre for Biological Sciences-TIFR, Bengaluru, India
| |
Collapse
|
46
|
Functional link between plasma membrane spatiotemporal dynamics, cancer biology, and dietary membrane-altering agents. Cancer Metastasis Rev 2019; 37:519-544. [PMID: 29860560 DOI: 10.1007/s10555-018-9733-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The cell plasma membrane serves as a nexus integrating extra- and intracellular components, which together enable many of the fundamental cellular signaling processes that sustain life. In order to perform this key function, plasma membrane components assemble into well-defined domains exhibiting distinct biochemical and biophysical properties that modulate various signaling events. Dysregulation of these highly dynamic membrane domains can promote oncogenic signaling. Recently, it has been demonstrated that select membrane-targeted dietary bioactives (MTDBs) have the ability to remodel plasma membrane domains and subsequently reduce cancer risk. In this review, we focus on the importance of plasma membrane domain structural and signaling functionalities as well as how loss of membrane homeostasis can drive aberrant signaling. Additionally, we discuss the intricacies associated with the investigation of these membrane domain features and their associations with cancer biology. Lastly, we describe the current literature focusing on MTDBs, including mechanisms of chemoprevention and therapeutics in order to establish a functional link between these membrane-altering biomolecules, tuning of plasma membrane hierarchal organization, and their implications in cancer prevention.
Collapse
|
47
|
Role of phospholipase D in migration and invasion induced by linoleic acid in breast cancer cells. Mol Cell Biochem 2019; 457:119-132. [PMID: 30877512 DOI: 10.1007/s11010-019-03517-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 03/08/2019] [Indexed: 02/07/2023]
Abstract
Linoleic acid (LA) is an essential and omega-6 polyunsaturated fatty acid that mediates a variety of biological processes, including migration and invasion in breast cancer cells. Phospholipase D (PLD) catalyses the hydrolysis of phosphatidylcholine to produce phosphatidic acid and choline. Increases of expression and activity of PLD are reported in several human cancers, including gastric, colorectal, renal, stomach, lung and breast. In this article, we demonstrate that LA induces an increase of PLD activity in MDA-MB-231 breast cancer cells. Particularly, PLD1 and/or PLD2 mediate migration and invasion induced by LA. Moreover, LA induces increases in number and size of spheroids via PLD activity. FFAR1 also mediates migration and invasion, whereas PLD activation induced by LA requires the activities of FFAR1, FFAR4 and EGFR in MDA-MB-231 cells. In summary, PLD plays a pivotal role in migration and invasion induced by LA in MDA-MB-231 breast cancer cells.
Collapse
|
48
|
Huang WYC, Alvarez S, Kondo Y, Lee YK, Chung JK, Lam HYM, Biswas KH, Kuriyan J, Groves JT. A molecular assembly phase transition and kinetic proofreading modulate Ras activation by SOS. Science 2019; 363:1098-1103. [PMID: 30846600 PMCID: PMC6563836 DOI: 10.1126/science.aau5721] [Citation(s) in RCA: 222] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 01/10/2019] [Indexed: 12/15/2022]
Abstract
The guanine nucleotide exchange factor (GEF) Son of Sevenless (SOS) is a key Ras activator that is autoinhibited in the cytosol and activates upon membrane recruitment. Autoinhibition release involves structural rearrangements of the protein at the membrane and thus introduces a delay between initial recruitment and activation. In this study, we designed a single-molecule assay to resolve the time between initial receptor-mediated membrane recruitment and the initiation of GEF activity of individual SOS molecules on microarrays of Ras-functionalized supported membranes. The rise-and-fall shape of the measured SOS activation time distribution and the long mean time scale to activation (~50 seconds) establish a basis for kinetic proofreading in the receptor-mediated activation of Ras. We further demonstrate that this kinetic proofreading is modulated by the LAT (linker for activation of T cells)-Grb2-SOS phosphotyrosine-driven phase transition at the membrane.
Collapse
Affiliation(s)
- William Y C Huang
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Steven Alvarez
- Department of Materials Science and Engineering, University of California, Berkeley, CA 94720, USA
| | - Yasushi Kondo
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA
| | - Young Kwang Lee
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Jean K Chung
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | | | - Kabir H Biswas
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore
| | - John Kuriyan
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
- Divisions of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jay T Groves
- Department of Chemistry, University of California, Berkeley, CA 94720, USA.
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA
- Divisions of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
49
|
Kim Y, Lee D, Lee J, Lee S, Lawler S. Role of tumor-associated neutrophils in regulation of tumor growth in lung cancer development: A mathematical model. PLoS One 2019; 14:e0211041. [PMID: 30689655 PMCID: PMC6349324 DOI: 10.1371/journal.pone.0211041] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 01/07/2019] [Indexed: 02/06/2023] Open
Abstract
Neutrophils display rapid and potent innate immune responses in various diseases. Tumor-associated neutrophils (TANs) however either induce or overcome immunosuppressive functions of the tumor microenvironment through complex tumor-stroma crosstalk. We developed a mathematical model to address the question of how phenotypic alterations between tumor suppressive N1 TANS, and tumor promoting N2 TANs affect nonlinear tumor growth in a complex tumor microenvironment. The model provides a visual display of the complex behavior of populations of TANs and tumors in response to various TGF-β and IFN-β stimuli. In addition, the effect of anti-tumor drug administration is incorporated in the model in an effort to achieve optimal anti-tumor efficacy. The simulation results from the mathematical model were in good agreement with experimental data. We found that the N2-to-N1 ratio (N21R) index is positively correlated with aggressive tumor growth, suggesting that this may be a good prognostic factor. We also found that the antitumor efficacy increases when the relative ratio (Dap) of delayed apoptotic cell death of N1 and N2 TANs is either very small or relatively large, providing a basis for therapeutically targeting prometastatic N2 TANs.
Collapse
Affiliation(s)
- Yangjin Kim
- Department of Mathematics, Konkuk University, Seoul, Republic of Korea
- Mathematical Biosciences Institute, Ohio State University, Columbus, Ohio, United States of America
- * E-mail:
| | - Donggu Lee
- Department of Mathematics, Konkuk University, Seoul, Republic of Korea
| | - Junho Lee
- Department of Mathematics, Konkuk University, Seoul, Republic of Korea
| | - Seongwon Lee
- Division of Mathematical Models, National Institute for Mathematical Sciences, Daejeon, Republic of Korea
| | - Sean Lawler
- Department of neurosurgery, Harvard Medical School & Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| |
Collapse
|
50
|
Cai D, Choi PS, Gelbard M, Meyerson M. Identification and Characterization of Oncogenic SOS1 Mutations in Lung Adenocarcinoma. Mol Cancer Res 2019; 17:1002-1012. [PMID: 30635434 DOI: 10.1158/1541-7786.mcr-18-0316] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 04/18/2018] [Accepted: 01/04/2019] [Indexed: 12/27/2022]
Abstract
Lung adenocarcinomas are characterized by mutations in the receptor tyrosine kinase (RTK)/Ras/Raf pathway, with up to 75% of cases containing mutations in known driver genes. However, the driver alterations in the remaining cases are yet to be determined. Recent exome sequencing analysis has identified SOS1, encoding a guanine nucleotide exchange factor, as significantly mutated in lung adenocarcinomas lacking canonical oncogenic RTK/Ras/Raf pathway mutations. Here, we demonstrate that ectopic expression of lung adenocarcinoma-derived mutants of SOS1 induces anchorage-independent cell growth in vitro and tumor formation in vivo. Biochemical experiments suggest that these mutations lead to overactivation of the Ras pathway, which can be suppressed by mutations that disrupt either the Ras-GEF or putative Rac-GEF activity of SOS1. Transcriptional profiling reveals that the expression of mutant SOS1 leads to the upregulation of MYC target genes and genes associated with Ras transformation. Furthermore, we demonstrate that an AML cancer cell line harboring a lung adenocarcinoma-associated mutant SOS1 is dependent on SOS1 for survival and is also sensitive to MEK inhibition. Our work provides experimental evidence for the role of SOS1 as an oncogene and suggests a possible therapeutic strategy to target SOS1-mutated cancers. IMPLICATIONS: This study demonstrates that SOS1 mutations found in lung adenocarcinoma are oncogenic and that MEK inhibition may be a therapeutic avenue for the treatment of SOS1-mutant cancers.
Collapse
Affiliation(s)
- Diana Cai
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts.,The Broad Institute of MIT and Harvard, Cambridge, Massachusetts.,Program in Genetics and Genomics, Harvard University, Boston, Massachusetts
| | - Peter S Choi
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts.,The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Maya Gelbard
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts.,The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Matthew Meyerson
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts. .,The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| |
Collapse
|