1
|
Guo K, Cao Y, Zhao Z, Zhao J, Liu L, Wang H. GGNBP2 regulates histone ubiquitination and methylation in spermatogenesis. Epigenetics 2024; 19:2381849. [PMID: 39109527 DOI: 10.1080/15592294.2024.2381849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/19/2024] [Accepted: 07/14/2024] [Indexed: 09/17/2024] Open
Abstract
Gametogenetin binding protein 2 (GGNBP2) was indispensable in normal spermatids for transformation into mature spermatozoa in mice, and when Gametogenetin binding protein 2 is bound to BRCC36 and RAD51, the complex participates in repairing DNA double-strand breaks (DSB) during the meiotic progression of spermatocytes. Ggnbp2 knockout resulted in the up-regulation of H2AK119ubi and down-regulation of H2BK120ubi in GC-2 cells (mouse spermatogonia-derived cell line) and postnatal day 18 testis lysate. Our results also demonstrated that Gametogenetin binding protein 2 inducedASXL1 to activate the deubiquitinating enzyme BAP1 in deubiquitinating H2A, while Gametogenetin binding protein 2 knockout disrupted the interaction between ASXL1 and BAP1, resulting in BAP1 localization change. Furthermore, the Gametogenetin binding protein 2 deletion reduced H2B ubiquitination by affecting E2 enzymes and E3 ligase binding. Gametogenetin binding protein 2 regulated H2A and H2B ubiquitination levels and controlled H3K27 and H3K79 methylation by PRC2 subunits and histone H3K79 methyltransferase. Altogether, our results suggest that Ggnbp2 knockout increased DNA damage response by promoting H2A ubiquitination and H3K27trimethylation (H3K27me3) and reduced nucleosome stability by decreasing H2B ubiquitination and H3K79 dimethylation (H3K79me2), revealing new mechanisms of epigenetic phenomenon during spermatogenesis. Gametogenetin binding protein 2 seems critical in regulating histone modification and chromatin structure in spermatogenesis.
Collapse
Affiliation(s)
- Kaimin Guo
- Department of Andrology, First hospital of Jilin University, Changchun, China
| | - Yin Cao
- Department of Andrology, First hospital of Jilin University, Changchun, China
| | - Zhiyi Zhao
- Department of Andrology, First hospital of Jilin University, Changchun, China
| | - Jiantao Zhao
- Department of Andrology, First hospital of Jilin University, Changchun, China
| | - Lingyun Liu
- Department of Andrology, First hospital of Jilin University, Changchun, China
| | - Hongliang Wang
- Department of Andrology, First hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Zhang Z, Samsa WE, Gong Z. NBS1 dePARylation by NUDT16 is critical for DNA double-strand break repair. Mol Cell Biochem 2024:10.1007/s11010-024-05140-8. [PMID: 39438373 DOI: 10.1007/s11010-024-05140-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/12/2024] [Indexed: 10/25/2024]
Abstract
NBS1, a protein linked to the autosomal recessive disorder Nijmegen breakage syndrome, plays an essential role in the DNA damage response and DNA repair. Despite its importance, the mechanisms regulating NBS1 and the impact of this regulation on DNA repair processes remain obscure. In this study, we discovered a new post-translational modification of NBS1, ADP-ribosylation. This modification can be removed by the NUDT16 hydrolase. The loss of NUDT16 results in a reduction of NBS1 protein levels due to NBS1 PARylation-dependent ubiquitination and degradation, which is mediated by the PAR-binding E3 ubiquitin ligase, RNF146. Importantly, ADP-ribosylation of NBS1 is crucial for its localization at DSBs and its involvement in homologous recombination (HR) repair. Additionally, the NUDT16-NBS1 interaction is regulated in response to DNA damage, providing further rationale for NBS1 regulation by NUDT16 hydrolase. In summary, our study unveils the critical role of NUDT16 in governing both the stability of NBS1 and recruitment of NBS1 to DNA double-strand breaks, providing novel insights into the regulation of NBS1 in the HR repair pathway.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - William E Samsa
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH, 44195, USA
| | - Zihua Gong
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, OH, 44195, USA.
| |
Collapse
|
3
|
Saini S, Gurung P. A comprehensive review of sensors of radiation-induced damage, radiation-induced proximal events, and cell death. Immunol Rev 2024. [PMID: 39425547 DOI: 10.1111/imr.13409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Radiation, a universal component of Earth's environment, is categorized into non-ionizing and ionizing forms. While non-ionizing radiation is relatively harmless, ionizing radiation possesses sufficient energy to ionize atoms and disrupt DNA, leading to cell damage, mutation, cancer, and cell death. The extensive use of radionuclides and ionizing radiation in nuclear technology and medical applications has sparked global concern for their capacity to cause acute and chronic illnesses. Ionizing radiation induces DNA damage either directly through strand breaks and base change or indirectly by generating reactive oxygen species (ROS) and reactive nitrogen species (RNS) via radiolysis of water. This damage triggers a complex cellular response involving recognition of DNA damage, cell cycle arrest, DNA repair mechanisms, release of pro-inflammatory cytokines, and cell death. This review focuses on the mechanisms of radiation-induced cellular damage, recognition of DNA damage and subsequent activation of repair processes, and the critical role of the innate immune response in resolution of the injury. Emphasis is placed on pattern recognition receptors (PRRs) and related receptors that detect damage-associated molecular patterns (DAMPs) and initiate downstream signaling pathways. Radiation-induced cell death pathways are discussed in detail. Understanding these processes is crucial for developing strategies to mitigate the harmful effects of radiation and improve therapeutic outcomes.
Collapse
Affiliation(s)
- Saurabh Saini
- Inflammation Program, University of Iowa, Iowa City, Iowa, USA
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
- Iowa City Veterans Affairs (VA) Medical Center, Iowa City, Iowa, USA
| | - Prajwal Gurung
- Inflammation Program, University of Iowa, Iowa City, Iowa, USA
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA
- Iowa City Veterans Affairs (VA) Medical Center, Iowa City, Iowa, USA
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, Iowa, USA
- Immunology Graduate Program, University of Iowa, Iowa City, Iowa, USA
- Center for Immunology and Immune Based Disease, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
4
|
Shi Q, Deng Z, Zhang L, Tong Z, Li JB, Chu GC, Ai H, Liu L. Promotion of RNF168-Mediated Nucleosomal H2A Ubiquitylation by Structurally Defined K63-Polyubiquitylated Linker Histone H1. Angew Chem Int Ed Engl 2024:e202413651. [PMID: 39363740 DOI: 10.1002/anie.202413651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/05/2024]
Abstract
The chemical synthesis of histones with homogeneous modifications is a powerful approach for quantitatively deciphering the functional crosstalk between different post-translational modifications (PTMs). In this study, we developed an expedient site-specific (poly)ubiquitylation strategy (CAEPL, Cysteine Aminoethylation coupled with Enzymatic Protein Ligation), which integrates the Cys-aminoethylation reaction with the process of ubiquitin-activating enzyme UBA1-assisted native chemical ligation. Using this strategy, we successfully prepared monoubiquitylated and K63-linked di- and tri-ubiquitylated linker histone H1.0 proteins, which were incorporated into individual chromatosomes. Quantitative biochemical analysis of different RNF168 constructs on H1 ubiquitylated chromatosomes with different ubiquitin chain lengths demonstrated that K63-linked polyubiquitylated H1.0 could directly stimulate RNF168 ubiquitylation activity by enhancing the affinity between RNF168 and the chromatosome. Subsequent cryo-EM structural analysis of the RNF168/UbcH5c-Ub/H1.0-K63-Ub3 chromatosome complex revealed the potential recruitment orientation between RNF168 UDM1 domain and K63-linked ubiquitin chain on H1.0. Finally, we explored the impact of H1.0 ubiquitylation on RNF168 activity in the context of asymmetric H1.0-K63-Ub3 di-nucleosome substrate, revealing a comparable stimulation effect of both the inter- and intra-nucleosomal crosstalk. Overall, our study highlights the significance of access to structurally defined polyubiquitylated H1.0 by the CAEPL strategy, enabling in-depth mechanistic investigations of in-trans PTM crosstalk between linker histone H1.0 and core histone H2A ubiquitylation.
Collapse
Affiliation(s)
- Qiang Shi
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Zhiheng Deng
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Liying Zhang
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Zebin Tong
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jia-Bin Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215031, China
| | - Guo-Chao Chu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Huasong Ai
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lei Liu
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Center for Synthetic and Systems Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
5
|
Lee YJ, Lee SY, Kim S, Kim SH, Lee SH, Park S, Kim JJ, Kim DW, Kim H. REXO5 promotes genomic integrity through regulating R-loop using its exonuclease activity. Leukemia 2024; 38:2150-2161. [PMID: 39080354 PMCID: PMC11436357 DOI: 10.1038/s41375-024-02362-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 09/29/2024]
Abstract
Chronic myeloid leukemia (CML), caused by BCR::ABL1 fusion gene, is known to regulate disease progression by altering the expression of genes. However, the molecular mechanisms underlying these changes are largely unknown. In this study, we identified RNA Exonuclease 5 (REXO5/LOC81691) as a novel gene with elevated mRNA expression levels in chronic myeloid leukemia (CML) patients. Additionally, using the REXO5 knockout (KO) K562 cell lines, we revealed a novel role for REXO5 in the DNA damage response (DDR). Compared to wild-type (WT) cells, REXO5 KO cells showed an accumulation of R-loops and increased DNA damage. We demonstrated that REXO5 translocates to sites of DNA damage through its RNA recognition motif (RRM) and selectively binds to R loops. Interestingly, we identified that REXO5 regulates R-loop levels by degrading mRNA within R-loop using its exonuclease domain. REXO5 KO showed ATR-CHK1 activation. Collectively, we demonstrated that REXO5 plays a key role in the physiological control of R-loops using its exonuclease domain. These findings may provide novel insights into how REXO5 expression changes contribute to CML pathogenesis.
Collapse
Affiliation(s)
- Ye Jin Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Seo Yun Lee
- Department of Life Science and Multidisciplinary Genome Institute, Hallym University, Chuncheon, Republic of Korea
| | - Soomi Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Soo-Hyun Kim
- Department of Hematology, Hematology Center, Uijeongbu Eulji Medical Center, Eulji University, Uijeongbu, South Korea
- Leukemia Omics Research Institute, Eulji University Uijeongbu Campus, Uijeongbu, South Korea
| | - Soo Hyeon Lee
- Department of Life Science and Multidisciplinary Genome Institute, Hallym University, Chuncheon, Republic of Korea
| | - Sungho Park
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Jae Jin Kim
- Department of Life Science and Multidisciplinary Genome Institute, Hallym University, Chuncheon, Republic of Korea.
| | - Dong-Wook Kim
- Department of Hematology, Hematology Center, Uijeongbu Eulji Medical Center, Eulji University, Uijeongbu, South Korea.
- Leukemia Omics Research Institute, Eulji University Uijeongbu Campus, Uijeongbu, South Korea.
| | - Hongtae Kim
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea.
| |
Collapse
|
6
|
Krawic C, Luczak MW, Zhitkovich A. Sensitive Detection of Histones and γ-H2AX by Immunoblotting: Problems and Solutions. Chem Res Toxicol 2024; 37:1588-1597. [PMID: 39237351 PMCID: PMC11409373 DOI: 10.1021/acs.chemrestox.4c00307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Histones and their posttranslational modifications (PTMs) are critical regulators of gene expression. Differentiation, environmental stressors, xenobiotics, and major human diseases cause significant changes in histone variants and PTMs. Western blotting is the mainstay methodology for detection of histones and their PTMs in the majority of studies. Surprisingly, despite their high abundance in cells, immunoblotting of histones typically involves loading of large protein amounts that are normally used for detection of sparse cellular proteins. We systematically examined technical factors in the Western-blotting-based detection of human histones with >30 antibodies. We found that under multiple protein transfer conditions, many histone epitopes on polyvinylidene fluoride (PVDF) membranes had a very low antibody accessibility, which was dramatically increased by the addition of a simple denaturation step. Denaturation of membrane-bound proteins also enhanced the specificity of some histone antibodies. In comparison to standard PVDF membranes, the sensitivity of histone detection on standard nitrocellulose membranes was typically much higher, which was further increased by the inclusion of the same denaturation step. Optimized protocols increased by >100-times detection sensitivity for the genotoxic marker γ-H2AX with two monoclonal antibodies. The impact of denaturation and nitrocellulose use varied for different histones, but for each histone, it was generally similar for antibodies targeting N-terminal and C-terminal regions. In summary, denaturation of membrane-bound histones strongly improves their detection by Westerns, resulting in more accurate measurements and permitting analyses with small biological samples.
Collapse
Affiliation(s)
- Casey Krawic
- Department of Pathology and Laboratory Medicine, Brown University, 70 Ship Street, Providence, Rhode Island 02903, United States
| | - Michal W Luczak
- Unlocked Laboratories, Laramie, Wyoming 82072, United States
| | - Anatoly Zhitkovich
- Department of Pathology and Laboratory Medicine, Brown University, 70 Ship Street, Providence, Rhode Island 02903, United States
| |
Collapse
|
7
|
Mishra S, Krawic C, Luczak MW, Zhitkovich A. Monoubiquitinated H2B, a Main Chromatin Target of Formaldehyde, Is Important for S-Phase Checkpoint Signaling and Genome Stability. Mol Carcinog 2024. [PMID: 39254477 DOI: 10.1002/mc.23819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/17/2024] [Accepted: 08/27/2024] [Indexed: 09/11/2024]
Abstract
Formaldehyde (FA) is a human carcinogen with ubiquitous environmental exposures and significant endogenous formation. Genotoxic activity of FA stems from its reactivity with DNA-NH2 groups. Histone lysines are another source of aldehyde-reactive amino groups in chromatin, however, chromatin/histone damage responses to FA and their biological significance are poorly understood. We examined histone posttranslational modifications in FA-treated human lung cells and found that the majority of the most prominent small lysine modifications associated with active or inactive chromatin were unchanged. FA moderately decreased H3K9 and H3K27 acetylation and H2A-K119 monoubiquitination but caused surprisingly severe losses of H2B-K120 monoubiquitination, especially in primary and stem-like cells. H2Aub1 decreases reflected its slower ubiquitination linked to a lower ubiquitin availability due to K48-polyubiquitination of FA-damaged proteins. Depletion of H2Bub1 resulted from its rapid deubiquitination in part by ATXN7L3-associated deubiquitinases and was independent on DNA damage signaling, indicating a direct chromatin damage response. Manipulations of H2Bub1 abundance showed that it was important for robust ATM and ATR signaling, efficient S-phase checkpoint, and suppression of mitotic transmission of unreplicated DNA and formation of micronuclei. Our findings identified H2B deubiquitination as a major FA-induced chromatin damage response that regulates S-phase checkpoint signaling and genome stability.
Collapse
Affiliation(s)
- Sasmita Mishra
- Department Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | - Casey Krawic
- Department Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | | | - Anatoly Zhitkovich
- Department Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
8
|
Zhang Z, Li Y, Shi R, Jia C, Xu S, Zhu G, Cao P, Huang H, Li X, Zhang H, Liu M, Chen C, Liu H, Kang C, Chen J. L3MBTL1, a polycomb protein, promotes Osimertinib acquired resistance through epigenetic regulation of DNA damage response in lung adenocarcinoma. Cell Death Dis 2024; 15:649. [PMID: 39231972 PMCID: PMC11374981 DOI: 10.1038/s41419-024-06796-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/22/2024] [Accepted: 05/30/2024] [Indexed: 09/06/2024]
Abstract
Osimertinib is a third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (EGFR-TKI) approved for patients with EGFR T790M resistance mutations as first- or second-line treatment of EGFR-positive patients. Resistance to Osimertinib will inevitably develop, and the underlying mechanisms are largely unknown. In this study, we discovered that acquired resistance to Osimertinib is associated with abnormal DNA damage response (DDR) in lung adenocarcinoma cells. We discovered that the polycomb protein Lethal(3) Malignant Brain Tumor-Like Protein 1 (L3MBTL1) regulates chromatin structure, thereby contributing to DDR and Osimertinib resistance. EGFR oncogene inhibition reduced L3MBTL1 ubiquitination while stabilizing its expression in Osimertinib-resistant cells. L3MBTL1 reduction and treatment with Osimertinib significantly inhibited DDR and proliferation of Osimertinib-resistant lung cancer cells in vitro and in vivo. L3MBTL1 binds throughout the genome and plays an important role in EGFR-TKI resistance. It also competes with 53BP1 for H4K20Me2 and inhibits the development of drug resistance in Osimertinib-resistant lung cancer cells in vitro and in vivo. Our findings suggest that L3MBTL1 inhibition is a novel approach to overcoming EGFR-TKI-acquired resistance.
Collapse
Affiliation(s)
- Zihe Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yongwen Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Ruifeng Shi
- Department of Thoracic Surgery and Oncology, the First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Chaoyi Jia
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Songlin Xu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Guangsheng Zhu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Peijun Cao
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Hua Huang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Xuanguang Li
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Hongbing Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Minghui Liu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Chen Chen
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hongyu Liu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China.
| | - Chunsheng Kang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Lab of Neuro-oncology, Tianjin Neurological Institute, Key Laboratory of PostNeuroinjury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, 300052, China.
| | - Jun Chen
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China.
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China.
- Department of Thoracic Surgery, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China.
| |
Collapse
|
9
|
Suzuki Y, Hayashi K, Goto F, Nomura Y, Fujimoto C, Makishima M. Premature senescence is regulated by crosstalk among TFEB, the autophagy lysosomal pathway and ROS derived from damaged mitochondria in NaAsO 2-exposed auditory cells. Cell Death Discov 2024; 10:382. [PMID: 39191766 DOI: 10.1038/s41420-024-02139-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 07/13/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024] Open
Abstract
Age-related hearing loss (ARHL) is one of the most prevalent types of sensory decline in a superaging society. Although various studies have focused on the effect of oxidative stress on the inner ear as an inducer of ARHL, there are no effective preventive approaches for ARHL. Recent studies have suggested that oxidative stress-induced DNA damage responses (oxidative DDRs) drive cochlear cell senescence and contribute to accelerated ARHL, and autophagy could function as a defense mechanism against cellular senescence in auditory cells. However, the underlying mechanism remains unclear. Sodium arsenite (NaAsO2) is a unique oxidative stress inducer associated with reactive oxygen species (ROS) that causes high-tone hearing loss similar to ARHL. Transcription factor EB (TFEB) functions as a master regulator of the autophagy‒lysosome pathway (ALP), which is a potential target during aging and the pathogenesis of various age-related diseases. Here, we focused on the function of TFEB and the impact of intracellular ROS as a potential target for ARHL treatment in a NaAsO2-induced auditory premature senescence model. Our results suggested that short exposure to NaAsO2 leads to DNA damage, lysosomal damage and mitochondrial damage in auditory cells, triggering temporary signals for TFEB transport into the nucleus and, as a result, causing insufficient autophagic flux and declines in lysosomal function and biogenesis and mitochondrial quality. Then, intracellular ROS derived from damaged mitochondria play a role as a second messenger to induce premature senescence in auditory cells. These findings suggest that TFEB activation via transport into the nucleus contributes to anti-senescence activity in auditory cells and represents a new therapeutic target for ARHL. We have revealed the potential function of TFEB as a master regulator of the induction of oxidative stress-induced premature senescence and the senescence-associated secretion phenotype (SASP) in auditory cells, which regulates ALP and controls mitochondrial quality through ROS production.
Collapse
Affiliation(s)
- Yuna Suzuki
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Tokyo, Japan
| | - Ken Hayashi
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Tokyo, Japan.
- Department of Otolaryngology, Sakura Koedo Clinic, Saitama, Japan.
- Department of Otolaryngology-Head and Neck Surgery, Keio University, Tokyo, Japan.
| | - Fumiyuki Goto
- Department of Otolaryngology-Head and Neck Surgery, Tokai University, Kanagawa, Japan
| | - Yasuyuki Nomura
- Department of Otolaryngology-Head and Neck Surgery, Nihon University, Tokyo, Japan
| | - Chisato Fujimoto
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
10
|
Özdemir C, Purkey LR, Sanchez A, Miller KM. PARticular MARks: Histone ADP-ribosylation and the DNA damage response. DNA Repair (Amst) 2024; 140:103711. [PMID: 38924925 DOI: 10.1016/j.dnarep.2024.103711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/04/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024]
Abstract
Cellular and molecular responses to DNA damage are highly orchestrated and dynamic, acting to preserve the maintenance and integrity of the genome. Histone proteins bind DNA and organize the genome into chromatin. Post-translational modifications of histones have been shown to play an essential role in orchestrating the chromatin response to DNA damage by regulating the DNA damage response pathway. Among the histone modifications that contribute to this intricate network, histone ADP-ribosylation (ADPr) is emerging as a pivotal component of chromatin-based DNA damage response (DDR) pathways. In this review, we survey how histone ADPr is regulated to promote the DDR and how it impacts chromatin and other histone marks. Recent advancements have revealed histone ADPr effects on chromatin structure and the regulation of DNA repair factor recruitment to DNA lesions. Additionally, we highlight advancements in technology that have enabled the identification and functional validation of histone ADPr in cells and in response to DNA damage. Given the involvement of DNA damage and epigenetic regulation in human diseases including cancer, these findings have clinical implications for histone ADPr, which are also discussed. Overall, this review covers the involvement of histone ADPr in the DDR and highlights potential future investigations aimed at identifying mechanisms governed by histone ADPr that participate in the DDR, human diseases, and their treatments.
Collapse
Affiliation(s)
- Cem Özdemir
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Laura R Purkey
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Anthony Sanchez
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Kyle M Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA; Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
11
|
Li P, Yu X. The role of rRNA in maintaining genome stability. DNA Repair (Amst) 2024; 139:103692. [PMID: 38759435 DOI: 10.1016/j.dnarep.2024.103692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 05/19/2024]
Abstract
Over the past few decades, unbiased approaches such as genetic screening and protein affinity purification have unveiled numerous proteins involved in DNA double-strand break (DSB) repair and maintaining genome stability. However, despite our knowledge of these protein factors, the underlying molecular mechanisms governing key cellular events during DSB repair remain elusive. Recent evidence has shed light on the role of non-protein factors, such as RNA, in several pivotal steps of DSB repair. In this review, we provide a comprehensive summary of these recent findings, highlighting the significance of ribosomal RNA (rRNA) as a critical mediator of DNA damage response, meiosis, and mitosis. Moreover, we discuss potential mechanisms through which rRNA may influence genome integrity.
Collapse
Affiliation(s)
- Peng Li
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Xiaochun Yu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
12
|
Hedlich-Dwyer J, Allard JS, Mulgrave VE, Kisby GE, Raber J, Gassman NR. Novel Techniques for Mapping DNA Damage and Repair in the Brain. Int J Mol Sci 2024; 25:7021. [PMID: 39000135 PMCID: PMC11241736 DOI: 10.3390/ijms25137021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
DNA damage in the brain is influenced by endogenous processes and metabolism along with exogenous exposures. Accumulation of DNA damage in the brain can contribute to various neurological disorders, including neurodegenerative diseases and neuropsychiatric disorders. Traditional methods for assessing DNA damage in the brain, such as immunohistochemistry and mass spectrometry, have provided valuable insights but are limited by their inability to map specific DNA adducts and regional distributions within the brain or genome. Recent advancements in DNA damage detection methods offer new opportunities to address these limitations and further our understanding of DNA damage and repair in the brain. Here, we review emerging techniques offering more precise and sensitive ways to detect and quantify DNA lesions in the brain or neural cells. We highlight the advancements and applications of these techniques and discuss their potential for determining the role of DNA damage in neurological disease.
Collapse
Affiliation(s)
- Jenna Hedlich-Dwyer
- Department of Pharmacology and Toxicology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Joanne S Allard
- Department of Physiology & Biophysics, Howard University College of Medicine, Washington, DC 20059, USA
| | - Veronica E Mulgrave
- Department of Physiology & Biophysics, Howard University College of Medicine, Washington, DC 20059, USA
| | - Glen E Kisby
- Department of Biomedical Sciences, College of Osteopathic Medicine, Western University of Health Sciences, Lebanon, OR 97355, USA
| | - Jacob Raber
- Department of Behavioral Neuroscience, Neurology, and Radiation Medicine, Division of Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR 97239, USA
| | - Natalie R Gassman
- Department of Pharmacology and Toxicology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
13
|
Carceles-Cordon M, Orme JJ, Domingo-Domenech J, Rodriguez-Bravo V. The yin and yang of chromosomal instability in prostate cancer. Nat Rev Urol 2024; 21:357-372. [PMID: 38307951 PMCID: PMC11156566 DOI: 10.1038/s41585-023-00845-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2023] [Indexed: 02/04/2024]
Abstract
Metastatic prostate cancer remains an incurable lethal disease. Studies indicate that prostate cancer accumulates genomic changes during disease progression and displays the highest levels of chromosomal instability (CIN) across all types of metastatic tumours. CIN, which refers to ongoing chromosomal DNA gain or loss during mitosis, and derived aneuploidy, are known to be associated with increased tumour heterogeneity, metastasis and therapy resistance in many tumour types. Paradoxically, high CIN levels are also proposed to be detrimental to tumour cell survival, suggesting that cancer cells must develop adaptive mechanisms to ensure their survival. In the context of prostate cancer, studies indicate that CIN has a key role in disease progression and might also offer a therapeutic vulnerability that can be pharmacologically targeted. Thus, a comprehensive evaluation of the causes and consequences of CIN in prostate cancer, its contribution to aggressive advanced disease and a better understanding of the acquired CIN tolerance mechanisms can translate into new tumour classifications, biomarker development and therapeutic strategies.
Collapse
Affiliation(s)
| | - Jacob J Orme
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Josep Domingo-Domenech
- Department of Urology, Mayo Clinic, Rochester, MN, USA.
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| | - Veronica Rodriguez-Bravo
- Department of Urology, Mayo Clinic, Rochester, MN, USA.
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
14
|
Zhang J, Sun P, Wu Z, Wu J, Jia J, Zou H, Mo Y, Zhou Z, Liu B, Ao Y, Wang Z. Targeting CK2 eliminates senescent cells and prolongs lifespan in Zmpste24-deficient mice. Cell Death Dis 2024; 15:380. [PMID: 38816370 PMCID: PMC11139886 DOI: 10.1038/s41419-024-06760-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 06/01/2024]
Abstract
Senescent cell clearance is emerging as a promising strategy for treating age-related diseases. Senolytics are small molecules that promote the clearance of senescent cells; however, senolytics are uncommon and their underlying mechanisms remain largely unknown. Here, we investigated whether genomic instability is a potential target for senolytic. We screened small-molecule kinase inhibitors involved in the DNA damage response (DDR) in Zmpste24-/- mouse embryonic fibroblasts, a progeroid model characterized with impaired DDR and DNA repair. 4,5,6,7-tetrabromo-2-azabenzamidazole (TBB), which specifically inhibits casein kinase 2 (CK2), was selected and discovered to preferentially trigger apoptosis in Zmpste24-/- cells. Mechanistically, inhibition of CK2 abolished the phosphorylation of heterochromatin protein 1α (HP1α), which retarded the dynamic HP1α dissociation from repressive histone mark H3K9me3 and its relocalization with γH2AX to DNA damage sites, suggesting that disrupting heterochromatin remodeling in the initiation of DDR accelerates apoptosis in senescent cells. Furthermore, feeding Zmpste24-deficient mice with TBB alleviated progeroid features and extended their lifespan. Our study identified TBB as a new class senolytic compound that can reduce age-related symptoms and prolong lifespan in progeroid mice.
Collapse
Affiliation(s)
- Jie Zhang
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518055, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
- Shenzhen Key Laboratory for Systemic Aging and Intervention, National Engineering Research Center for Biotechnology (Shenzhen), Shenzhen University, Shenzhen, 518055, China
| | - Pengfei Sun
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518055, China
| | - Zhuping Wu
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518055, China
| | - Jie Wu
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518055, China
| | - Jiali Jia
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518055, China
| | - Haoman Zou
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518055, China
| | - Yanzhen Mo
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518055, China
| | - Zhongjun Zhou
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong
| | - Baohua Liu
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518055, China
- Shenzhen Key Laboratory for Systemic Aging and Intervention, National Engineering Research Center for Biotechnology (Shenzhen), Shenzhen University, Shenzhen, 518055, China
| | - Ying Ao
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518055, China.
- Shenzhen Key Laboratory for Systemic Aging and Intervention, National Engineering Research Center for Biotechnology (Shenzhen), Shenzhen University, Shenzhen, 518055, China.
| | - Zimei Wang
- Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, Carson International Cancer Center, Department of Biochemistry & Molecular Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518055, China.
- Shenzhen Key Laboratory for Systemic Aging and Intervention, National Engineering Research Center for Biotechnology (Shenzhen), Shenzhen University, Shenzhen, 518055, China.
| |
Collapse
|
15
|
Alruwaili MM, Zonneville J, Naranjo MN, Serio H, Melendy T, Straubinger RM, Gillard B, Foster BA, Rajan P, Attwood K, Chatley S, Iyer R, Fountzilas C, Bakin AV. A synergistic two-drug therapy specifically targets a DNA repair dysregulation that occurs in p53-deficient colorectal and pancreatic cancers. Cell Rep Med 2024; 5:101434. [PMID: 38387463 PMCID: PMC10982975 DOI: 10.1016/j.xcrm.2024.101434] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 12/06/2023] [Accepted: 01/26/2024] [Indexed: 02/24/2024]
Abstract
The tumor-suppressor p53 is commonly inactivated in colorectal cancer and pancreatic ductal adenocarcinoma, but existing treatment options for p53-mutant (p53Mut) cancer are largely ineffective. Here, we report a therapeutic strategy for p53Mut tumors based on abnormalities in the DNA repair response. Investigation of DNA repair upon challenge with thymidine analogs reveals a dysregulation in DNA repair response in p53Mut cells that leads to accumulation of DNA breaks. Thymidine analogs do not interrupt DNA synthesis but induce DNA repair that involves a p53-dependent checkpoint. Inhibitors of poly(ADP-ribose) polymerase (PARPis) markedly enhance DNA double-strand breaks and cell death induced by thymidine analogs in p53Mut cells, whereas p53 wild-type cells respond with p53-dependent inhibition of the cell cycle. Combinations of trifluorothymidine and PARPi agents demonstrate superior anti-neoplastic activity in p53Mut cancer models. These findings support a two-drug combination strategy to improve outcomes for patients with p53Mut cancer.
Collapse
Affiliation(s)
- Mohammed M Alruwaili
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA; Department of Medical Laboratory Technology, College of Applied Medical Science, Northern Border University, Arar City, Saudi Arabia
| | - Justin Zonneville
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Maricris N Naranjo
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Hannah Serio
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Thomas Melendy
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, NY 14214, USA
| | - Robert M Straubinger
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, NY 14214, USA; Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Bryan Gillard
- Department of Pharmaceutical Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | - Barbara A Foster
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Priyanka Rajan
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Kristopher Attwood
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Sarah Chatley
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Renuka Iyer
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Christos Fountzilas
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| | - Andrei V Bakin
- Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA.
| |
Collapse
|
16
|
Tewary G, Freyter B, Al-Razaq MA, Auerbach H, Laschke MW, Kübelbeck T, Kolb A, Mangelinck A, Mann C, Kramer D, Rübe CE. Immunomodulatory Effects of Histone Variant H2A.J in Ionizing Radiation Dermatitis. Int J Radiat Oncol Biol Phys 2024; 118:801-816. [PMID: 37758068 DOI: 10.1016/j.ijrobp.2023.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/01/2023] [Accepted: 09/14/2023] [Indexed: 10/03/2023]
Abstract
PURPOSE Histone variant H2A.J is associated with premature senescence after ionizing radiation (IR) and modulates senescence-associated secretory phenotype (SASP). Using constitutive H2A.J knock-out mice, the role of H2A.J was investigated in radiation dermatitis. METHODS AND MATERIALS H2A.J wild-type (WT) and knock-out (KO) mice were exposed to moderate or high IR doses (≤20 Gy, skinfold IR). Radiation-induced skin reactions were investigated up to 2 weeks post-IR at macroscopic and microscopic levels. H2A.J and other senescence markers, as well as DNA damage and proliferation markers, were studied by immunohistochemistry, immunofluorescence, and electron microscopy. After high-dose IR, protein-coding transcriptomes were analyzed by RNA sequencing, immune cell infiltration by flow cytometry, and gene expression by reverse transcription polymerase chain reaction in (non-) irradiated WT versus KO skin. RESULTS In WT skin, epidermal keratinocytes showed time- and dose-dependent H2A.J accumulation after IR exposure. Unexpectedly, stronger inflammatory reactions with increased epidermal thickness and progressive hair follicle loss were observed in irradiated KO versus WT skin. Clearly more radiation-induced senescence was observed in keratinocyte populations of KO skin after moderate and high doses, with hair follicle stem cells being particularly badly damaged, leading to follicle atrophy. After high-dose IR, transcriptomic analysis revealed enhanced senescence-associated signatures in irradiated KO skin, with intensified release of SASP factors. Flow cytometric analysis indicated increased immune cell infiltration in both WT and KO skin; however, specific chemokine-mediated signaling in irradiated KO skin led to more neutrophil recruitment, thereby aggravating radiation toxicities. Increased skin damage in irradiated KO skin led to hyperproliferation, abnormal differentiation, and cornification of keratinocytes, accompanied by increased upregulation of transcription-factor JunB. CONCLUSIONS Lack of radiation-induced H2A.J expression in keratinocytes is associated with increased senescence induction, modulation of SASP expression, and exacerbated inflammatory skin reactions. Hence, epigenetic H2A.J-mediated gene expression in response to IR regulates keratinocyte immune functions and plays an essential role in balancing the inflammatory response during radiation dermatitis.
Collapse
Affiliation(s)
- Gargi Tewary
- Department of Radiation Oncology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Benjamin Freyter
- Department of Radiation Oncology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Mutaz Abd Al-Razaq
- Department of Radiation Oncology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Hendrik Auerbach
- Department of Radiation Oncology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Tanja Kübelbeck
- Department of Dermatology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Antonia Kolb
- Department of Dermatology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Adèle Mangelinck
- Institute for Integrative Biology of the Cell, Université Paris-Saclay, Gif-sur-Yvette Cedex, France
| | - Carl Mann
- Institute for Integrative Biology of the Cell, Université Paris-Saclay, Gif-sur-Yvette Cedex, France
| | - Daniela Kramer
- Department of Dermatology, Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Claudia E Rübe
- Department of Radiation Oncology, Saarland University Medical Center, Homburg/Saar, Germany.
| |
Collapse
|
17
|
Kawaguchi K, Kazama M, Hata T, Matsuo M, Obokata J, Satoh S. Inducible Expression of the Restriction Enzyme Uncovered Genome-Wide Distribution and Dynamic Behavior of Histones H4K16ac and H2A.Z at DNA Double-Strand Breaks in Arabidopsis. PLANT & CELL PHYSIOLOGY 2024; 65:142-155. [PMID: 37930797 DOI: 10.1093/pcp/pcad133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023]
Abstract
DNA double-strand breaks (DSBs) are among the most serious types of DNA damage, causing mutations and chromosomal rearrangements. In eukaryotes, DSBs are immediately repaired in coordination with chromatin remodeling for the deposition of DSB-related histone modifications and variants. To elucidate the details of DSB-dependent chromatin remodeling throughout the genome, artificial DSBs need to be reproducibly induced at various genomic loci. Recently, a comprehensive method for elucidating chromatin remodeling at multiple DSB loci via chemically induced expression of a restriction enzyme was developed in mammals. However, this DSB induction system is unsuitable for investigating chromatin remodeling during and after DSB repair, and such an approach has not been performed in plants. Here, we established a transgenic Arabidopsis plant harboring a restriction enzyme gene Sbf I driven by a heat-inducible promoter. Using this transgenic line, we performed chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) of histones H4K16ac and H2A.Z and investigated the dynamics of these histone marks around the endogenous 623 Sbf I recognition sites. We also precisely quantified DSB efficiency at all cleavage sites using the DNA resequencing data obtained by the ChIP-seq procedure. From the results, Sbf I-induced DSBs were detected at 360 loci, which induced the transient deposition of H4K16ac and H2A.Z around these regions. Interestingly, we also observed the co-localization of H4K16ac and H2A.Z at some DSB loci. Overall, DSB-dependent chromatin remodeling was found to be highly conserved between plants and animals. These findings provide new insights into chromatin remodeling that occurs in response to DSBs in Arabidopsis.
Collapse
Affiliation(s)
- Kohei Kawaguchi
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Sakyo-ku, Kyoto, Kyoto 606-8522, Japan
| | - Mei Kazama
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Sakyo-ku, Kyoto, Kyoto 606-8522, Japan
| | - Takayuki Hata
- Graduate School of Medicine, Hirosaki University, Hirosaki, Aomori 036-8560, Japan
| | - Mitsuhiro Matsuo
- Faculty of Agriculture, Setsunan University, Hirakata, Osaka 573-0101, Japan
| | - Junichi Obokata
- Faculty of Agriculture, Setsunan University, Hirakata, Osaka 573-0101, Japan
| | - Soichirou Satoh
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Sakyo-ku, Kyoto, Kyoto 606-8522, Japan
| |
Collapse
|
18
|
Lopez Chiloeches M, Bergonzini A, Martin OCB, Bergstein N, Erttmann SF, Aung KM, Gekara NO, Avila Cariño JF, Pateras IS, Frisan T. Genotoxin-producing Salmonella enterica induces tissue-specific types of DNA damage and DNA damage response outcomes. Front Immunol 2024; 14:1270449. [PMID: 38274797 PMCID: PMC10808668 DOI: 10.3389/fimmu.2023.1270449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction Typhoid toxin-expressing Salmonella enterica causes DNA damage in the intestinal mucosa in vivo, activating the DNA damage response (DDR) in the absence of inflammation. To understand whether the tissue microenvironment constrains the infection outcome, we compared the immune response and DDR patterns in the colon and liver of mice infected with a genotoxigenic strain or its isogenic control strain. Methods In situ spatial transcriptomic and immunofluorescence have been used to assess DNA damage makers, activation of the DDR, innate immunity markers in a multiparametric analysis. Result The presence of the typhoid toxin protected from colonic bacteria-induced inflammation, despite nuclear localization of p53, enhanced co-expression of type-I interferons (IfnbI) and the inflammasome sensor Aim2, both classic features of DNA-break-induced DDR activation. These effects were not observed in the livers of either infected group. Instead, in this tissue, the inflammatory response and DDR were associated with high oxidative stress-induced DNA damage. Conclusions Our work highlights the relevance of the tissue microenvironment in enabling the typhoid toxin to suppress the host inflammatory response in vivo.
Collapse
Affiliation(s)
- Maria Lopez Chiloeches
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR) Umeå University, Umeå, Sweden
| | - Anna Bergonzini
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR) Umeå University, Umeå, Sweden
| | - Océane C. B. Martin
- Biological and Medical Sciences Department, University Bordeaux, Centre National de la Recherche Scientifique (CNRS), Institut de Biochimie et Génétique Cellulaires (IBGC), Unité Mixte de Recherche (UMR) 5095, Bordeaux, France
| | - Nicole Bergstein
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR) Umeå University, Umeå, Sweden
| | - Saskia F. Erttmann
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR) Umeå University, Umeå, Sweden
- Infection Oncology Unit, Institute of Clinical Molecular Biology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Kyaw Min Aung
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Nelson O. Gekara
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- Institute of Medical Microbiology and Hygiene, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Javier F. Avila Cariño
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR) Umeå University, Umeå, Sweden
| | - Ioannis S. Pateras
- Second Department of Pathology, “Attikon” University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Teresa Frisan
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR) Umeå University, Umeå, Sweden
| |
Collapse
|
19
|
Frascogna C, Mottareale R, La Verde G, Arrichiello C, Muto P, Netti PA, Pugliese M, Panzetta V. Role of the mechanical microenvironment on CD-44 expression of breast adenocarcinoma in response to radiotherapy. Sci Rep 2024; 14:391. [PMID: 38172135 PMCID: PMC10764959 DOI: 10.1038/s41598-023-50473-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
The biological effects of ionizing radiation are exploited in the clinical practice of radiotherapy to destroy tumour cells while sparing the surrounding normal tissue. While most of the radiotherapy research focused on DNA damage and repair, recently a great attention is going to cells' interactions with the mechanical microenvironment of both malignant and healthy tissues after exposure. In fact, the stiffness of the extracellular matrix can modify cells' motility and spreading through the modulation of transmembrane proteins and surface receptors' expression, such as CD-44. CD-44 receptor has held much interest also in targeted-therapy due to its affinity with hyaluronic acid, which can be used to functionalize biodegradable nanoparticles loaded with chemotherapy drugs for targeted therapy. We evaluated changes in CD-44 expression in two mammary carcinoma cell lines (MCF10A and MDA-MB-231) after exposure to X-ray (2 or 10 Gy). To explore the role of the mechanical microenvironment, we mimicked tissues' stiffness with polyacrylamide's substrates producing two different elastic modulus values (0.5 and 15 kPa). We measured a dose dependent increase in CD-44 relative expression in tumour cells cultured in a stiffer microenvironment. These findings highlight a crucial connection between the mechanical properties of the cell's surroundings and the post-radiotherapy expression of surface receptors.
Collapse
Affiliation(s)
- Crescenzo Frascogna
- Center for Advanced Biomaterials for Healthcare @CRIB, Italian Institute of Technology, Largo Barsanti e Matteucci 53, 80125, Naples, Italy
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale Vincenzo Tecchio, 80125, Naples, Italy
| | - Rocco Mottareale
- Department of Physics "E. Pancini", University of Naples Federico II, Via Cinthia, 80126, Naples, Italy
| | - Giuseppe La Verde
- Department of Physics "E. Pancini", University of Naples Federico II, Via Cinthia, 80126, Naples, Italy
- Istituto Nazionale di Fisica Nucleare, INFN Sezione di Napoli, Via Cinthia Ed. 6, 80126, Naples, Italy
| | - Cecilia Arrichiello
- Radiotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione "G. Pascale", Via Semmola, 53, 80131, Naples, Italy
| | - Paolo Muto
- Radiotherapy Unit, Istituto Nazionale Tumori-IRCCS-Fondazione "G. Pascale", Via Semmola, 53, 80131, Naples, Italy
| | - Paolo A Netti
- Center for Advanced Biomaterials for Healthcare @CRIB, Italian Institute of Technology, Largo Barsanti e Matteucci 53, 80125, Naples, Italy
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale Vincenzo Tecchio, 80125, Naples, Italy
- Interdisciplinary Research Centre On Biomaterials CRIB, University of Naples Federico II, Piazzale Vincenzo Tecchio, 80125, Naples, Italy
| | - Mariagabriella Pugliese
- Department of Physics "E. Pancini", University of Naples Federico II, Via Cinthia, 80126, Naples, Italy.
- Istituto Nazionale di Fisica Nucleare, INFN Sezione di Napoli, Via Cinthia Ed. 6, 80126, Naples, Italy.
| | - Valeria Panzetta
- Center for Advanced Biomaterials for Healthcare @CRIB, Italian Institute of Technology, Largo Barsanti e Matteucci 53, 80125, Naples, Italy
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale Vincenzo Tecchio, 80125, Naples, Italy
- Interdisciplinary Research Centre On Biomaterials CRIB, University of Naples Federico II, Piazzale Vincenzo Tecchio, 80125, Naples, Italy
| |
Collapse
|
20
|
Xie Q, Liao Q, Wang L, Zhang Y, Chen J, Bai H, Li K, Ai J. The Dominant Mechanism of Cyclophosphamide-Induced Damage to Ovarian Reserve: Premature Activation or Apoptosis of Primordial Follicles? Reprod Sci 2024; 31:30-44. [PMID: 37486531 DOI: 10.1007/s43032-023-01294-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 06/30/2023] [Indexed: 07/25/2023]
Abstract
Cyclophosphamide (CPM), a part of most cancer treatment regimens, has demonstrated high gonadal toxicity in females. Initially, CPM is believed to damage the ovarian reserve by premature activation of primordial follicles, for the fact that facing CPM damage, primordial oocytes show the activation of PTEN/PI3K/AKT pathways, accompanied by accelerated activation of follicle developmental waves. Meanwhile, primordial follicles are dormant and not considered the target of CPM. However, many researchers have found DNA DSBs and apoptosis within primordial oocytes under CPM-induced ovarian damage instead of premature accelerated activation. A stricter surveillance system of DNA damage is also thought to be in primordial oocytes. So far, the apoptotic death mechanism is considered well-proved, but the premature activation theory is controversial and unacceptable. The connection between the upregulation of PTEN/PI3K/AKT pathways and DNA DSBs and apoptosis within primordial oocytes is also unclear. This review aims to highlight the flaw and/or support of the disputed premature activation theory and the apoptosis mechanism to identify the underlying mechanism of CPM's injury on ovarian reserve, which is crucial to facilitate the discovery and development of effective ovarian protectants. Ultimately, this review finds no good evidence for follicle activation and strong consistent evidence for apoptosis.
Collapse
Affiliation(s)
- Qin Xie
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Reproductive Medicine Center, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, No.136, Jingzhou Road, Xiangcheng District, Xiangyang, 441021, Hubei Province, People's Republic of China
| | - Qiuyue Liao
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lingjuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yan Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jing Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hualin Bai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kezhen Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Jihui Ai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
21
|
Lin F, Zhang R, Shao W, Lei C, Ma M, Zhang Y, Wen Z, Li W. Structural basis of nucleosomal H4K20 recognition and methylation by SUV420H1 methyltransferase. Cell Discov 2023; 9:120. [PMID: 38052811 DOI: 10.1038/s41421-023-00620-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/29/2023] [Indexed: 12/07/2023] Open
Abstract
Histone lysine methyltransferase SUV420H1, which is responsible for site-specific di-/tri-methylation of histone H4 lysine 20 (H4K20), has crucial roles in DNA-templated processes, including DNA replication, DNA damage repair, and chromatin compaction. Its mutations frequently occur in human cancers. Nucleosomes containing the histone variant H2A.Z enhance the catalytic activities of SUV420H1 on H4K20 di-methylation deposition, regulating early replication origins. However, the molecular mechanism by which SUV420H1 specifically recognizes and deposits H4K20 methyl marks on nucleosomes remains poorly understood. Here we report the cryo-electron microscopy structures of SUV420H1 associated with H2A-containing nucleosome core particles (NCPs), and H2A.Z-containing NCPs. We find that SUV420H1 makes extensive site-specific contacts with histone and DNA regions. SUV420H1 C-terminal domain recognizes the H2A-H2B acidic patch of NCPs through its two arginine anchors, thus enabling H4K20 insertion for catalysis specifically. We also identify important residues increasing the catalytic activities of SUV420H1 bound to H2A.Z NCPs. In vitro and in vivo functional analyses reveal that multiple disease-associated mutations at the interfaces are essential for its catalytic activity and chromatin state regulation. Together, our study provides molecular insights into the nucleosome-based recognition and methylation mechanisms of SUV420H1, and a structural basis for understanding SUV420H1-related human disease.
Collapse
Affiliation(s)
- Folan Lin
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Ruxin Zhang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Weihan Shao
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Cong Lei
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Mingxi Ma
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Ying Zhang
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Zengqi Wen
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, Guangdong, China.
| | - Wanqiu Li
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China.
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| |
Collapse
|
22
|
Tao H, Tan J, Zhang H, Ren H, Cai Z, Liu H, Wen B, Du J, Li G, Chen S, Xiao H, Deng Z. cGAS-STING Pathway Activation and Systemic Anti-Tumor Immunity Induction via Photodynamic Nanoparticles with Potent Toxic Platinum DNA Intercalator Against Uveal Melanoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302895. [PMID: 37807827 PMCID: PMC10667795 DOI: 10.1002/advs.202302895] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/01/2023] [Indexed: 10/10/2023]
Abstract
The cGAS-STING pathway, as a vital innate immune signaling pathway, has attracted considerable attention in tumor immunotherapy research. However, STING agonists are generally incapable of targeting tumors, thus limiting their clinical applications. Here, a photodynamic polymer (P1) is designed to electrostatically couple with 56MESS-a cationic platinum (II) agent-to form NPPDT -56MESS. The accumulation of NPPDT -56MESS in the tumors increases the efficacy and decreases the systemic toxicity of the drugs. Moreover, NPPDT -56MESS generates reactive oxygen species (ROS) under the excitation with an 808 nm laser, which then results in the disintegration of NPPDT -56MESS. Indeed, the ROS and 56MESS act synergistically to damage DNA and mitochondria, leading to a surge of cytoplasmic double-stranded DNA (dsDNA). This way, the cGAS-STING pathway is activated to induce anti-tumor immune responses and ultimately enhance anti-cancer activity. Additionally, the administration of NPPDT -56MESS to mice induces an immune memory effect, thus improving the survival rate of mice. Collectively, these findings indicate that NPPDT -56MESS functions as a chemotherapeutic agent and cGAS-STING pathway agonist, representing a combination chemotherapy and immunotherapy strategy that provides novel modalities for the treatment of uveal melanoma.
Collapse
Affiliation(s)
- Hui Tao
- Department of OphthalmologyThe Third Xiangya HospitalCentral South UniversityChangshaHunan410013P. R. China
| | - Jia Tan
- Eye Center of Xiangya HospitalCentral South UniversityChangshaHunan410008P. R. China
- Hunan Key Laboratory of Ophthalmology and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South UniversityChangshaHunan410008P. R. China
| | - Hanchen Zhang
- Beijing National Laboratory for Molecular SciencesLaboratory of Polymer Physics and ChemistryInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Hong Ren
- Department of OphthalmologyThe Third Xiangya HospitalCentral South UniversityChangshaHunan410013P. R. China
| | - Ziyi Cai
- Department of OphthalmologyThe Third Xiangya HospitalCentral South UniversityChangshaHunan410013P. R. China
| | - Hanhan Liu
- Department of OphthalmologyThe Third Xiangya HospitalCentral South UniversityChangshaHunan410013P. R. China
| | - Bingyu Wen
- Department of OphthalmologyThe Third Xiangya HospitalCentral South UniversityChangshaHunan410013P. R. China
| | - Jiaqi Du
- Department of OphthalmologyThe Third Xiangya HospitalCentral South UniversityChangshaHunan410013P. R. China
| | - Gaoyang Li
- Department of OphthalmologyThe Third Xiangya HospitalCentral South UniversityChangshaHunan410013P. R. China
| | - Shijie Chen
- Department of Spine SurgeryThe Third Xiangya HospitalCentral South UniversityChangshaHunan410013P. R. China
| | - Haihua Xiao
- Beijing National Laboratory for Molecular SciencesLaboratory of Polymer Physics and ChemistryInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Zhihong Deng
- Department of OphthalmologyThe Third Xiangya HospitalCentral South UniversityChangshaHunan410013P. R. China
| |
Collapse
|
23
|
Tsai LK, Peng M, Chang CC, Wen L, Liu L, Liang X, Chen YE, Xu J, Sung LY. ZSCAN4 interacts with PARP1 to promote DNA repair in mouse embryonic stem cells. Cell Biosci 2023; 13:193. [PMID: 37875990 PMCID: PMC10594928 DOI: 10.1186/s13578-023-01140-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 10/05/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND In eukaryotic cells, DNA double strand breaks (DSB) are primarily repaired by canonical non-homologous end joining (c-NHEJ), homologous recombination (HR) and alternative NHEJ (alt-NHEJ). Zinc finger and SCAN domain containing 4 (ZSCAN4), sporadically expressed in 1-5% mouse embryonic stem cells (mESCs), is known to regulate genome stability by promoting HR. RESULTS Here we show that ZSCAN4 promotes DNA repair by acting with Poly (ADP-ribose) polymerase 1 (PARP1), which is a key member of the alt-NHEJ pathway. In the presence of PARP1, ZSCAN4-expressing mESCs are associated with lower extent of endogenous or chemical induced DSB comparing to ZSCAN4-negative ones. Reduced DSBs associated with ZSCAN4 are abolished by PARP1 inhibition, achieved either through small molecule inhibitor or gene knockout in mESCs. Furthermore, PARP1 binds directly to ZSCAN4, and the second ⍺-helix and the fourth zinc finger motif of ZSCAN4 are critical for this binding. CONCLUSIONS These data reveal that PARP1 and ZSCAN4 have a protein-protein interaction, and shed light on the molecular mechanisms by which ZSCAN4 reduces DSB in mESCs.
Collapse
Affiliation(s)
- Li-Kuang Tsai
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan, ROC
| | - Min Peng
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan, ROC
| | - Chia-Chun Chang
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan, ROC
| | - Luan Wen
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xiubin Liang
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Y Eugene Chen
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Jie Xu
- Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA.
| | - Li-Ying Sung
- Institute of Biotechnology, National Taiwan University, Taipei, 106, Taiwan, ROC.
- Center for Developmental Biology and Regenerative Medicine, Taipei, 106, Taiwan, ROC.
- Center for Biotechnology, National Taiwan University, Taipei, 106, Taiwan, ROC.
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 115, Taiwan, ROC.
| |
Collapse
|
24
|
Osia B, Merkell A, Lopezcolorado FW, Ping X, Stark JM. RAD52 and ERCC6L/PICH have a compensatory relationship for genome stability in mitosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.23.554522. [PMID: 37662271 PMCID: PMC10473716 DOI: 10.1101/2023.08.23.554522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The mammalian RAD52 protein is a DNA repair factor that has both strand annealing and recombination mediator activities, yet is dispensable for cell viability. To characterize genetic contexts that reveal dependence on RAD52 to sustain cell viability (i.e., synthetic lethal relationships), we performed genome-wide CRISPR knock-out screens. Subsequent secondary screening found that depletion of ERCC6L in RAD52-deficient cells causes reduced viability and elevated genome instability, measured as accumulation of 53BP1 into nuclear foci. Furthermore, loss of RAD52 causes elevated levels of anaphase ultrafine bridges marked by ERCC6L, and conversely depletion of ERCC6L causes elevated RAD52 foci both in prometaphase and interphase cells. These effects were enhanced with combination treatments using hydroxyurea and the topoisomerase IIα inhibitor ICRF-193, and the timing of these treatments are consistent with defects in addressing such stress in mitosis. Thus, loss of RAD52 appears to cause an increased reliance on ERCC6L in mitosis, and vice versa. Consistent with this notion, combined depletion of ERCC6L and disrupting G2/M progression via CDK1 inhibition causes a marked loss of viability in RAD52-deficient cells. We suggest that RAD52 and ERCC6L play compensatory roles in protecting genome stability in mitosis.
Collapse
|
25
|
Zhang Y, Gong H, Wang JS, Li MN, Cao DL, Gu J, Zhao LX, Zhang XD, Deng YT, Dong FL, Gao YJ, Sun WX, Jiang BC. Nerve Injury-Induced γH2AX Reduction in Primary Sensory Neurons Is Involved in Neuropathic Pain Processing. Int J Mol Sci 2023; 24:10148. [PMID: 37373296 DOI: 10.3390/ijms241210148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/02/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Phosphorylation of the serine 139 of the histone variant H2AX (γH2AX) is a DNA damage marker that regulates DNA damage response and various diseases. However, whether γH2AX is involved in neuropathic pain is still unclear. We found the expression of γH2AX and H2AX decreased in mice dorsal root ganglion (DRG) after spared nerve injury (SNI). Ataxia telangiectasia mutated (ATM), which promotes γH2AX, was also down-regulated in DRG after peripheral nerve injury. ATM inhibitor KU55933 decreased the level of γH2AX in ND7/23 cells. The intrathecal injection of KU55933 down-regulated DRG γH2AX expression and significantly induced mechanical allodynia and thermal hyperalgesia in a dose-dependent manner. The inhibition of ATM by siRNA could also decrease the pain threshold. The inhibition of dephosphorylation of γH2AX by protein phosphatase 2A (PP2A) siRNA partially suppressed the down-regulation of γH2AX after SNI and relieved pain behavior. Further exploration of the mechanism revealed that inhibiting ATM by KU55933 up-regulated extracellular-signal regulated kinase (ERK) phosphorylation and down-regulated potassium ion channel genes, such as potassium voltage-gated channel subfamily Q member 2 (Kcnq2) and potassium voltage-gated channel subfamily D member 2 (Kcnd2) in vivo, and KU559333 enhanced sensory neuron excitability in vitro. These preliminary findings imply that the down-regulation of γH2AX may contribute to neuropathic pain.
Collapse
Affiliation(s)
- Yan Zhang
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - Hao Gong
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - Ji-Shuai Wang
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - Meng-Na Li
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - De-Li Cao
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - Jun Gu
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, University of Miami, Coral Gables, FL 33136, USA
| | - Lin-Xia Zhao
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - Xin-Dan Zhang
- The 1st Clinical Department, China Medical University, Shenyang 110122, China
| | - Yu-Tao Deng
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - Fu-Lu Dong
- Department of Pathology, Medical School, Nantong University, Nantong 226001, China
| | - Yong-Jing Gao
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong 226019, China
| | - Wen-Xing Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong 226019, China
| | - Bao-Chun Jiang
- Institute of Pain Medicine and Special Environmental Medicine, Nantong University, Nantong 226019, China
| |
Collapse
|
26
|
Pal D, Raj K, Nandi SS, Sinha S, Mishra A, Mondal A, Lagoa R, Burcher JT, Bishayee A. Potential of Synthetic and Natural Compounds as Novel Histone Deacetylase Inhibitors for the Treatment of Hematological Malignancies. Cancers (Basel) 2023; 15:2808. [PMID: 37345145 PMCID: PMC10216849 DOI: 10.3390/cancers15102808] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 06/23/2023] Open
Abstract
Histone deacetylases (HDACs) and histone acetyltransferases (HATs) are enzymes that remove or add acetyl groups to lysine residues of histones, respectively. Histone deacetylation causes DNA to more snugly encircle histones and decreases gene expression, whereas acetylation has the opposite effect. Through these small alterations in chemical structure, HATs and HDACs regulate DNA expression. Recent research indicates histone deacetylase inhibitors (HDACis) may be used to treat malignancies, including leukemia, B-cell lymphoma, virus-associated tumors, and multiple myeloma. These data suggest that HDACis may boost the production of immune-related molecules, resulting in the growth of CD8-positive T-cells and the recognition of nonreactive tumor cells by the immune system, thereby diminishing tumor immunity. The argument for employing epigenetic drugs in the treatment of acute myeloid leukemia (AML) patients is supported by evidence that both epigenetic changes and mutations in the epigenetic machinery contribute to AML etiology. Although hypomethylating drugs have been licensed for use in AML, additional epigenetic inhibitors, such as HDACis, are now being tested in humans. Preclinical studies evaluating the efficacy of HDACis against AML have shown the ability of specific agents, such as anobinostat, vorinostat, and tricostatin A, to induce growth arrest, apoptosis, autophagy and cell death. However, these inhibitors do not seem to be successful as monotherapies, but instead achieve results when used in conjunction with other medications. In this article, we discuss the mounting evidence that HDACis promote extensive histone acetylation, as well as substantial increases in reactive oxygen species and DNA damage in hematological malignant cells. We also evaluate the potential of various natural product-based HDACis as therapeutic agents to combat hematological malignancies.
Collapse
Affiliation(s)
- Dilipkumar Pal
- Department of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495 009, India
| | - Khushboo Raj
- Department of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495 009, India
| | - Shyam Sundar Nandi
- Department of Biotechnology, Indian Council for Medical Research-National Institute of Virology, Mumbai 400 012, India
| | - Surajit Sinha
- Department of Cancer Biology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Arijit Mondal
- Department of Pharmaceutical Chemistry, M.R. College of Pharmaceutical Sciences and Research, Balisha 743 234, India
| | - Ricardo Lagoa
- Associate Laboratory in Chemical Engineering, Polytechnic Institute of Leiria, Morro do Lena, Alto do Vieiro, 2411-901 Leiria, Portugal
| | - Jack T. Burcher
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| |
Collapse
|
27
|
Huang C, Wang L, Chen H, Fu W, Shao L, Zhou D, Wu J, Ye Y. A positive feedback loop between ID3 and PPARγ via DNA damage repair regulates the efficacy of radiotherapy for rectal cancer. BMC Cancer 2023; 23:429. [PMID: 37170184 PMCID: PMC10176823 DOI: 10.1186/s12885-023-10874-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 04/21/2023] [Indexed: 05/13/2023] Open
Abstract
OBJECTIVE To study the effect of inhibitor of differentiation 3 (ID3) on radiotherapy in patients with rectal cancer and to explore its primary mechanism. METHODS Cell proliferation and clonogenic assays were used to study the relationship between ID3 and radiosensitivity. Co-immunoprecipitation and immunofluorescence were performed to analyze the possible mechanism of ID3 in the radiosensitivity of colorectal cancer. At the same time, a xenograft tumor model of HCT116 cells in nude mice was established to study the effect of irradiation on the tumorigenesis of ID3 knockdown colorectal cancer cells in vivo. Immunohistochemistry was performed to analyze the relationship between ID3 expression and the efficacy of radiotherapy in 46 patients with rectal cancer. RESULTS Proliferation and clonogenic assays revealed that the radiosensitivity of colorectal cancer cells decreased with ID3 depletion through p53-independent pathway. With the decrease in ID3 expression, MDC1 was downregulated. Furthermore, the expression of ID3, MDC1, and γH2AX increased and formed foci after irradiation. ID3 interacted with PPARγ and form a positive feedback loop to enhance the effect of ID3 on the radiosensitivity of colorectal cancer. Irradiation tests in nude mice also confirmed that HCT116 cells with ID3 knockdown were more affected by irradiation. Immunohistochemical study showed that rectal cancer patients with low expression of ID3 had better radiotherapy efficacy. CONCLUSIONS ID3 and PPARγ influence the radiosensitivity of colorectal cancer cells by interacting with MDC1 to form a positive feedback loop that promotes DNA damage repair. Patients with low expression of ID3 who received neoadjuvant chemoradiotherapy can obtain a better curative effect.
Collapse
Affiliation(s)
- Chuanzhong Huang
- Laboratory of Immuno-Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, 350014, China
| | - Ling Wang
- Laboratory of Immuno-Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, 350014, China
| | - Huijing Chen
- Laboratory of Immuno-Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China
| | - Wankai Fu
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Lingdong Shao
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Dongmei Zhou
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, 350014, China
- Departments of Pathology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Junxin Wu
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, 350014, China.
- Department of Radiation Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China.
| | - Yunbin Ye
- Laboratory of Immuno-Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China.
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350122, China.
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou, 350014, China.
| |
Collapse
|
28
|
Kwon J, Lee D, Lee SA. BAP1 as a guardian of genome stability: implications in human cancer. Exp Mol Med 2023; 55:745-754. [PMID: 37009801 PMCID: PMC10167335 DOI: 10.1038/s12276-023-00979-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/02/2023] [Accepted: 01/27/2023] [Indexed: 04/04/2023] Open
Abstract
BAP1 is a ubiquitin C-terminal hydrolase domain-containing deubiquitinase with a wide array of biological activities. Studies in which advanced sequencing technologies were used have uncovered a link between BAP1 and human cancer. Somatic and germline mutations of the BAP1 gene have been identified in multiple human cancers, with a particularly high frequency in mesothelioma, uveal melanoma and clear cell renal cell carcinoma. BAP1 cancer syndrome highlights that all carriers of inherited BAP1-inactivating mutations develop at least one and often multiple cancers with high penetrance during their lifetime. These findings, together with substantial evidence indicating the involvement of BAP1 in many cancer-related biological activities, strongly suggest that BAP1 functions as a tumor suppressor. Nonetheless, the mechanisms that account for the tumor suppressor function of BAP1 have only begun to be elucidated. Recently, the roles of BAP1 in genome stability and apoptosis have drawn considerable attention, and they are compelling candidates for key mechanistic factors. In this review, we focus on genome stability and summarize the details of the cellular and molecular functions of BAP1 in DNA repair and replication, which are crucial for genome integrity, and discuss the implications for BAP1-associated cancer and relevant therapeutic strategies. We also highlight some unresolved issues and potential future research directions.
Collapse
Affiliation(s)
- Jongbum Kwon
- Department of Life Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea.
| | - Daye Lee
- Department of Life Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Shin-Ai Lee
- Department of Life Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, Building 37, Room 1068, Bethesda, MD, 20892-4263, USA
| |
Collapse
|
29
|
Chatterjee D, Cong F, Wang XF, Machado Costa CA, Huang YC, Deng WM. Cell polarity opposes Jak/STAT-mediated Escargot activation that drives intratumor heterogeneity in a Drosophila tumor model. Cell Rep 2023; 42:112061. [PMID: 36709425 PMCID: PMC10374876 DOI: 10.1016/j.celrep.2023.112061] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 11/28/2022] [Accepted: 01/18/2023] [Indexed: 01/30/2023] Open
Abstract
In proliferating neoplasms, microenvironment-derived selective pressures promote tumor heterogeneity by imparting diverse capacities for growth, differentiation, and invasion. However, what makes a tumor cell respond to signaling cues differently from a normal cell is not well understood. In the Drosophila ovarian follicle cells, apicobasal-polarity loss induces heterogeneous epithelial multilayering. When exacerbated by oncogenic-Notch expression, this multilayer displays an increased consistency in the occurrence of morphologically distinguishable cells adjacent to the polar follicle cells. Polar cells release the Jak/STAT ligand Unpaired (Upd), in response to which neighboring polarity-deficient cells exhibit a precursor-like transcriptomic state. Among the several regulons active in these cells, we could detect and further validate the expression of Snail family transcription factor Escargot (Esg). We also ascertain a similar relationship between Upd and Esg in normally developing ovaries, where establishment of polarity determines early follicular differentiation. Overall, our results indicate that epithelial-cell polarity acts as a gatekeeper against microenvironmental selective pressures that drive heterogeneity.
Collapse
Affiliation(s)
- Deeptiman Chatterjee
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, USA
| | - Fei Cong
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, USA
| | - Xian-Feng Wang
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, USA
| | - Caique Almeida Machado Costa
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, USA
| | - Yi-Chun Huang
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, USA
| | - Wu-Min Deng
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, USA.
| |
Collapse
|
30
|
Limper CB, Bondah N, Zhu D, Villanueva AN, Chukwukere UK, Huang W, August A. Effective differentiation of double negative thymocytes requires high fidelity replication of mitochondrial DNA in an age dependent manner. Front Immunol 2023; 14:1128626. [PMID: 37020546 PMCID: PMC10067910 DOI: 10.3389/fimmu.2023.1128626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/03/2023] [Indexed: 04/07/2023] Open
Abstract
One of the most proliferative periods for T cells occurs during their development in the thymus. Increased DNA replication can result in increased DNA mutations in the nuclear genome, but also in mitochondrial genomes. A high frequency of mitochondrial DNA mutations can lead to abnormal mitochondrial function and have negative implications on human health. Furthermore, aging is accompanied by an increase in such mutations through oxidative damage and replication errors. Increased mitochondrial DNA mutations cause loss of mitochondrial protein function, and decrease energy production, substrates, and metabolites. Here we have evaluated the effect of increased mitochondrial DNA mutations on T cell development in the thymus. Using mice carrying a mutant mitochondrial DNA polymerase γ (PolG) that causes increased mitochondrial DNA mutations, we show that high fidelity replication of mitochondrial DNA is pivotal for proper T cell development. Reducing the fidelity of mitochondrial DNA replication results in a premature age-dependent reduction in the total number of CD4/CD8 double negative and double positive thymocytes. Analysis of mitochondrial density in thymocyte subpopulations suggests that this may be due to reduced proliferation in specific double negative stages. Taken together, this work suggests that T cell development is regulated by the ability of mitochondria to faithfully replicate their DNA.
Collapse
Affiliation(s)
- Candice B. Limper
- Department of Microbiology and Immunology, Cornell Institute of Host-Microbe Interaction and Disease, Cornell Center for Immunology, Cornell University, Ithaca, NY, United States
| | - Narda Bondah
- Department of Microbiology and Immunology, Cornell Institute of Host-Microbe Interaction and Disease, Cornell Center for Immunology, Cornell University, Ithaca, NY, United States
| | - Daphne Zhu
- Department of Microbiology and Immunology, Cornell Institute of Host-Microbe Interaction and Disease, Cornell Center for Immunology, Cornell University, Ithaca, NY, United States
| | - Alanis N. Villanueva
- Department of Microbiology and Immunology, Cornell Institute of Host-Microbe Interaction and Disease, Cornell Center for Immunology, Cornell University, Ithaca, NY, United States
| | - Uchenna K. Chukwukere
- Department of Microbiology and Immunology, Cornell Institute of Host-Microbe Interaction and Disease, Cornell Center for Immunology, Cornell University, Ithaca, NY, United States
| | - Weishan Huang
- Department of Microbiology and Immunology, Cornell Institute of Host-Microbe Interaction and Disease, Cornell Center for Immunology, Cornell University, Ithaca, NY, United States
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Avery August
- Department of Microbiology and Immunology, Cornell Institute of Host-Microbe Interaction and Disease, Cornell Center for Immunology, Cornell University, Ithaca, NY, United States
- Cornell Center for Health Equity, Cornell University, Ithaca, NY, United States
- *Correspondence: Avery August,
| |
Collapse
|
31
|
Qi H, Grace Wright RH, Beato M, Price BD. The ADP-ribose hydrolase NUDT5 is important for DNA repair. Cell Rep 2022; 41:111866. [PMID: 36543120 DOI: 10.1016/j.celrep.2022.111866] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 09/16/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
DNA damage leads to rapid synthesis of poly(ADP-ribose) (pADPr), which is important for damage signaling and repair. pADPr chains are removed by poly(ADP-ribose) glycohydrolase (PARG), releasing free mono(ADP-ribose) (mADPr). Here, we show that the NUDIX hydrolase NUDT5, which can hydrolyze mADPr to ribose-5-phosphate and either AMP or ATP, is recruited to damage sites through interaction with PARG. NUDT5 does not regulate PARP or PARG activity. Instead, loss of NUDT5 reduces basal cellular ATP levels and exacerbates the decrease in cellular ATP that occurs during DNA repair. Further, loss of NUDT5 activity impairs RAD51 recruitment, attenuates the phosphorylation of key DNA-repair proteins, and reduces both H2A.Z exchange at damage sites and repair by homologous recombination. The ability of NUDT5 to hydrolyze mADPr, and/or regulate cellular ATP, may therefore be important for efficient DNA repair. Targeting NUDT5 to disrupt PAR/mADPr and energy metabolism may be an effective anti-cancer strategy.
Collapse
Affiliation(s)
- Hongyun Qi
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston MA 02215, USA
| | - Roni Helene Grace Wright
- Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Sant Cugat del Vallès, 08195 Barcelona, Spain
| | - Miguel Beato
- Centro de Regulación Genòmica (CRG), The Barcelona Institute of Science and Technology (BIST), 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Brendan D Price
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston MA 02215, USA.
| |
Collapse
|
32
|
Wang FC, Peng B, Ren TT, Liu SP, Du JR, Chen ZH, Zhang TT, Gu X, Li M, Cao SL, Xu X. A 1,2,3-Triazole Derivative of Quinazoline Exhibits Antitumor Activity by Tethering RNF168 to SQSTM1/P62. J Med Chem 2022; 65:15028-15047. [DOI: 10.1021/acs.jmedchem.2c00432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Fu-Cheng Wang
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, International Cancer Center, and Marshall Laboratory of Biomedical Engineering, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, PR China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518060, PR China
| | - Bin Peng
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, International Cancer Center, and Marshall Laboratory of Biomedical Engineering, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, PR China
| | - Ting-Ting Ren
- Department of Chemistry, Capital Normal University, Beijing, 100048, PR China
| | - Shao-Peng Liu
- Department of Chemistry, Capital Normal University, Beijing, 100048, PR China
| | - Jing-Rui Du
- Department of Chemistry, Capital Normal University, Beijing, 100048, PR China
| | - Zi-Hao Chen
- Department of Chemistry, Capital Normal University, Beijing, 100048, PR China
| | - Ting-Ting Zhang
- Department of Chemistry, Capital Normal University, Beijing, 100048, PR China
| | - Xiaoyang Gu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 10091, PR China
| | - Mo Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 10091, PR China
| | - Sheng-Li Cao
- Department of Chemistry, Capital Normal University, Beijing, 100048, PR China
| | - Xingzhi Xu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, International Cancer Center, and Marshall Laboratory of Biomedical Engineering, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, PR China
| |
Collapse
|
33
|
Lou Y, Ye M, Xu C, Tao F. Insight into the physiological and pathological roles of USP44, a potential tumor target (Review). Oncol Lett 2022; 24:455. [PMID: 36380875 PMCID: PMC9650596 DOI: 10.3892/ol.2022.13575] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 10/06/2022] [Indexed: 11/24/2022] Open
Abstract
Ubiquitin-specific peptidase 44 (USP44) is a member of the ubiquitin-specific proteases (USPs) family and its functions in various biological processes have been gradually elucidated in recent years. USP44 targets multiple downstream factors and regulates multiple mechanisms through its deubiquitination activity. Ubiquitination is, in essence, a process in which a single ubiquitin molecule or a multiubiquitin chain binds to a substrate protein to form an isopeptide bond. Deubiquitination is the catalyzing of the isopeptide bonds between ubiquitin and substrate proteins through deubiquitylating enzymes. These two processes serve an important role in the regulation of the expression, conformation, localization and function of substrate proteins by regulating their binding to ubiquitin. Based on existing research, this paper summarized the current state of knowledge about USP44. The physiological roles of USP44 in various cellular events and its pathophysiological roles in different cancer types are evaluated and the therapeutic potential of USP44 for cancer treatment is evaluated.
Collapse
Affiliation(s)
- Yuming Lou
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, P.R. China,Department of Stomach and Intestine Surgery, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang 312000, P.R. China
| | - Minfeng Ye
- Department of Stomach and Intestine Surgery, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang 312000, P.R. China
| | - Chaoyang Xu
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang 321000, P.R. China,Department of Stomach and Intestine Surgery, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang 312000, P.R. China,Correspondence to: Dr Chaoyang Xu, Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, 365 Renmin East Road, Jinhua, Zhejiang 321000, P.R. China, E-mail:
| | - Feng Tao
- Department of Stomach and Intestine Surgery, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang 312000, P.R. China,Professor Feng Tao, Department of Stomach and Intestine Surgery, Shaoxing Hospital, Zhejiang University School of Medicine, 568 Zhongxing North Road, Shaoxing, Zhejiang 312000, P.R. China, E-mail:
| |
Collapse
|
34
|
Cao L, Tian H, Fang M, Xu Z, Tang D, Chen J, Yin J, Xiao H, Shang K, Han H, Li X. Activating cGAS-STING pathway with ROS-responsive nanoparticles delivering a hybrid prodrug for enhanced chemo-immunotherapy. Biomaterials 2022; 290:121856. [DOI: 10.1016/j.biomaterials.2022.121856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/16/2022] [Accepted: 10/08/2022] [Indexed: 11/02/2022]
|
35
|
Aricthota S, Rana PP, Haldar D. Histone acetylation dynamics in repair of DNA double-strand breaks. Front Genet 2022; 13:926577. [PMID: 36159966 PMCID: PMC9503837 DOI: 10.3389/fgene.2022.926577] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022] Open
Abstract
Packaging of eukaryotic genome into chromatin is a major obstacle to cells encountering DNA damage caused by external or internal agents. For maintaining genomic integrity, the double-strand breaks (DSB) must be efficiently repaired, as these are the most deleterious type of DNA damage. The DNA breaks have to be detected in chromatin context, the DNA damage response (DDR) pathways have to be activated to repair breaks either by non‐ homologous end joining and homologous recombination repair. It is becoming clearer now that chromatin is not a mere hindrance to DDR, it plays active role in sensing, detection and repair of DNA damage. The repair of DSB is governed by the reorganization of the pre-existing chromatin, leading to recruitment of specific machineries, chromatin remodelling complexes, histone modifiers to bring about dynamic alterations in histone composition, nucleosome positioning, histone modifications. In response to DNA break, modulation of chromatin occurs via various mechanisms including post-translational modification of histones. DNA breaks induce many types of histone modifications, such as phosphorylation, acetylation, methylation and ubiquitylation on specific histone residues which are signal and context dependent. DNA break induced histone modifications have been reported to function in sensing the breaks, activating processing of breaks by specific pathways, and repairing damaged DNA to ensure integrity of the genome. Favourable environment for DSB repair is created by generating open and relaxed chromatin structure. Histone acetylation mediate de-condensation of chromatin and recruitment of DSB repair proteins to their site of action at the DSB to facilitate repair. In this review, we will discuss the current understanding on the critical role of histone acetylation in inducing changes both in chromatin organization and promoting recruitment of DSB repair proteins to sites of DNA damage. It consists of an overview of function and regulation of the deacetylase enzymes which remove these marks and the function of histone acetylation and regulators of acetylation in genome surveillance.
Collapse
|
36
|
Oanh N, Lee HS, Kim YH, Min S, Park YJ, Heo J, Park YY, Lim WC, Cho H. Regulation of nuclear DNA damage response by mitochondrial morphofunctional pathway. Nucleic Acids Res 2022; 50:9247-9259. [PMID: 35979947 PMCID: PMC9458461 DOI: 10.1093/nar/gkac690] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/22/2022] [Accepted: 08/03/2022] [Indexed: 12/24/2022] Open
Abstract
Cells are constantly challenged by genotoxic stresses that can lead to genome instability. The integrity of the nuclear genome is preserved by the DNA damage response (DDR) and repair. Additionally, these stresses can induce mitochondria to transiently hyperfuse; however, it remains unclear whether canonical DDR is linked to these mitochondrial morphological changes. Here, we report that the abolition of mitochondrial fusion causes a substantial defect in the ATM-mediated DDR signaling. This deficiency is overcome by the restoration of mitochondria fusion. In cells with fragmented mitochondria, genotoxic stress-induced activation of JNK and its translocation to DNA lesion are lost. Importantly, the mitochondrial fusion machinery of MFN1/MFN2 associates with Sab (SH3BP5) and JNK, and these interactions are indispensable for the Sab-mediated activation of JNK and the ATM-mediated DDR signaling. Accordingly, the formation of BRCA1 and 53BP1 foci, as well as homology and end-joining repair are impaired in cells with fragmented mitochondria. Together, these data show that mitochondrial fusion-dependent JNK signaling is essential for the DDR, providing vital insight into the integration of nuclear and cytoplasmic stress signals.
Collapse
Affiliation(s)
| | | | - Yong-Hyun Kim
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Republic of Korea,Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, Republic of Korea
| | - Sunwoo Min
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Yeon-Ji Park
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - June Heo
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Republic of Korea,Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, Republic of Korea
| | - Yong-Yea Park
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Won-Chung Lim
- Correspondence may also be addressed to Won-Chung Lim.
| | - Hyeseong Cho
- To whom correspondence should be addressed. Tel: +82 312195052; Fax: +82 312195059;
| |
Collapse
|
37
|
Chen BR, Sleckman BP. The regulation of DNA end resection by chromatin response to DNA double strand breaks. Front Cell Dev Biol 2022; 10:932633. [PMID: 35912102 PMCID: PMC9335370 DOI: 10.3389/fcell.2022.932633] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/29/2022] [Indexed: 11/18/2022] Open
Abstract
DNA double-strand breaks (DSBs) constantly arise upon exposure to genotoxic agents and during physiological processes. The timely repair of DSBs is important for not only the completion of the cellular functions involving DSBs as intermediates, but also the maintenance of genome stability. There are two major pathways dedicated to DSB repair: homologous recombination (HR) and non-homologous end joining (NHEJ). The decision of deploying HR or NHEJ to repair DSBs largely depends on the structures of broken DNA ends. DNA ends resected to generate extensive single-strand DNA (ssDNA) overhangs are repaired by HR, while those remaining blunt or minimally processed can be repaired by NHEJ. As the generation and repair of DSB occurs within the context of chromatin, the resection of broken DNA ends is also profoundly affected by the state of chromatin flanking DSBs. Here we review how DNA end resection can be regulated by histone modifications, chromatin remodeling, and the presence of ssDNA structure through altering the accessibility to chromatin and the activity of pro- and anti-resection proteins.
Collapse
Affiliation(s)
- Bo-Ruei Chen
- Division of Hematology and Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, United States
- *Correspondence: Bo-Ruei Chen,
| | - Barry P. Sleckman
- Division of Hematology and Oncology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
38
|
Zuo C, Ding R, Wu X, Wang Y, Chu GC, Liang LJ, Ai H, Tong ZB, Mao J, Zheng Q, Wang T, Li Z, Liu L, Sun D. Thioester-Assisted Sortase-A-Mediated Ligation. Angew Chem Int Ed Engl 2022; 61:e202201887. [PMID: 35514243 DOI: 10.1002/anie.202201887] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Indexed: 11/12/2022]
Abstract
Sortase A (SrtA)-mediated ligation, a popular method for protein labeling and semi-synthesis, is limited by its reversibility and dependence on the LPxTG motif, where "x" is any amino acid. Here, we report that SrtA can mediate the efficient and irreversible ligation of a protein/peptide containing a C-terminal thioester with another protein/peptide bearing an N-terminal Gly, with broad tolerance for a wide variety of LPxT-derived sequences. This strategy, the thioester-assisted SrtA-mediated ligation, enabled the expedient preparation of proteins bearing various N- or C-terminal labels, including post-translationally modified proteins such as the Ser139-phosphorylated histone H2AX and Lys9-methylated histone H3, with less dependence on the LPxTG motif. Our study validates the chemical modification of substrates as an effective means of augmenting the synthetic capability of existing enzymatic methods.
Collapse
Affiliation(s)
- Chong Zuo
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, State Key Laboratory of Chemical Oncogenomics (Shenzhen), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Ruichao Ding
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, State Key Laboratory of Chemical Oncogenomics (Shenzhen), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xiangwei Wu
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, State Key Laboratory of Chemical Oncogenomics (Shenzhen), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yuanxia Wang
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Guo-Chao Chu
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, State Key Laboratory of Chemical Oncogenomics (Shenzhen), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Lu-Jun Liang
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, State Key Laboratory of Chemical Oncogenomics (Shenzhen), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Huasong Ai
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, State Key Laboratory of Chemical Oncogenomics (Shenzhen), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Ze-Bin Tong
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, State Key Laboratory of Chemical Oncogenomics (Shenzhen), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Junxiong Mao
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, State Key Laboratory of Chemical Oncogenomics (Shenzhen), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Qingyun Zheng
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, State Key Laboratory of Chemical Oncogenomics (Shenzhen), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Tian Wang
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, State Key Laboratory of Chemical Oncogenomics (Shenzhen), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Zichen Li
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, State Key Laboratory of Chemical Oncogenomics (Shenzhen), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Lei Liu
- Tsinghua-Peking Center for Life Sciences, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, State Key Laboratory of Chemical Oncogenomics (Shenzhen), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Demeng Sun
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230001, China
| |
Collapse
|
39
|
Czaja AJ. Epigenetic Aspects and Prospects in Autoimmune Hepatitis. Front Immunol 2022; 13:921765. [PMID: 35844554 PMCID: PMC9281562 DOI: 10.3389/fimmu.2022.921765] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/12/2022] [Indexed: 12/12/2022] Open
Abstract
The observed risk of autoimmune hepatitis exceeds its genetic risk, and epigenetic factors that alter gene expression without changing nucleotide sequence may help explain the disparity. Key objectives of this review are to describe the epigenetic modifications that affect gene expression, discuss how they can affect autoimmune hepatitis, and indicate prospects for improved management. Multiple hypo-methylated genes have been described in the CD4+ and CD19+ T lymphocytes of patients with autoimmune hepatitis, and the circulating micro-ribonucleic acids, miR-21 and miR-122, have correlated with laboratory and histological features of liver inflammation. Both epigenetic agents have also correlated inversely with the stage of liver fibrosis. The reduced hepatic concentration of miR-122 in cirrhosis suggests that its deficiency may de-repress the pro-fibrotic prolyl-4-hydroxylase subunit alpha-1 gene. Conversely, miR-155 is over-expressed in the liver tissue of patients with autoimmune hepatitis, and it may signify active immune-mediated liver injury. Different epigenetic findings have been described in diverse autoimmune and non-autoimmune liver diseases, and these changes may have disease-specificity. They may also be responses to environmental cues or heritable adaptations that distinguish the diseases. Advances in epigenetic editing and methods for blocking micro-ribonucleic acids have improved opportunities to prove causality and develop site-specific, therapeutic interventions. In conclusion, the role of epigenetics in affecting the risk, clinical phenotype, and outcome of autoimmune hepatitis is under-evaluated. Full definition of the epigenome of autoimmune hepatitis promises to enhance understanding of pathogenic mechanisms and satisfy the unmet clinical need to improve therapy for refractory disease.
Collapse
Affiliation(s)
- Albert J. Czaja
- *Correspondence: Albert J. Czaja, ; orcid.org/0000-0002-5024-3065
| |
Collapse
|
40
|
Zuo C, Ding R, Wu X, Wang Y, Chu GC, Liang LJ, Ai H, Tong ZB, Mao J, Zheng Q, Wang T, Li Z, Liu L, Sun D. Thioester‐Assisted Sortase‐A ‐ Mediated Ligation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Chong Zuo
- Tsinghua University Tsinghua-Peking Center for Life Sciences CHINA
| | - Ruichao Ding
- Tsinghua University Tsinghua-Peking Center for Life Sciences CHINA
| | - Xiangwei Wu
- Tsinghua University Tsinghua-Peking Center for Life Sciences CHINA
| | - Yuanxia Wang
- University of Science and Technology of China School of Life Sciences CHINA
| | - Guo-Chao Chu
- Tsinghua University Department of Chemistry CHINA
| | - Lu-Jun Liang
- Tsinghua University Department of Chemistry CHINA
| | - Huasong Ai
- Tsinghua University Department of Chemistry CHINA
| | - Ze-Bin Tong
- Tsinghua University Department of Chemistry CHINA
| | - Junxiong Mao
- Tsinghua University Department of Chemistry CHINA
| | | | - Tian Wang
- Tsinghua University Tsinghua-Peking Center for Life Sciences CHINA
| | - Zichen Li
- Tsinghua University Department of Chemistry CHINA
| | - Lei Liu
- Tsinghua University Department of Chemistry CHINA
| | - Demeng Sun
- University of Science and Technology of China School of Life Sciences 96 Jinzhai Road 230026 Hefei CHINA
| |
Collapse
|
41
|
Kelliher J, Ghosal G, Leung JWC. New answers to the old RIDDLE: RNF168 and the DNA damage response pathway. FEBS J 2022; 289:2467-2480. [PMID: 33797206 PMCID: PMC8486888 DOI: 10.1111/febs.15857] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/12/2021] [Accepted: 03/31/2021] [Indexed: 12/31/2022]
Abstract
The chromatin-based DNA damage response pathway is tightly orchestrated by histone post-translational modifications, including histone H2A ubiquitination. Ubiquitination plays an integral role in regulating cellular processes including DNA damage signaling and repair. The ubiquitin E3 ligase RNF168 is essential in assembling a cohort of DNA repair proteins at the damaged chromatin via its enzymatic activity. RNF168 ubiquitinates histone H2A(X) at the N terminus and generates a specific docking scaffold for ubiquitin-binding motif-containing proteins. The regulation of RNF168 at damaged chromatin and the mechanistic implication in the recruitment of DNA repair proteins to the damaged sites remain an area of active investigation. Here, we review the function and regulation of RNF168 in the context of ubiquitin-mediated DNA damage signaling and repair. We will also discuss the unanswered questions that require further investigation and how understanding RNF168 targeting specificity could benefit the therapeutic development for cancer treatment.
Collapse
Affiliation(s)
- Jessica Kelliher
- Department of Radiation Oncology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Gargi Ghosal
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, United States,To whom correspondence should be addressed: and
| | - Justin Wai Chung Leung
- Department of Radiation Oncology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States,To whom correspondence should be addressed: and
| |
Collapse
|
42
|
Wang X, Wang L, Huang Y, Deng Z, Li C, Zhang J, Zheng M, Yan S. A plant-specific module for homologous recombination repair. Proc Natl Acad Sci U S A 2022; 119:e2202970119. [PMID: 35412914 PMCID: PMC9169791 DOI: 10.1073/pnas.2202970119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
Homologous recombination repair (HR) is an error-free DNA damage repair pathway to maintain genome stability and a basis of gene targeting using genome-editing tools. However, the mechanisms of HR in plants are still poorly understood. Through genetic screens for DNA damage response mutants (DDRM) in Arabidopsis, we find that a plant-specific ubiquitin E3 ligase DDRM1 is required for HR. DDRM1 contains an N-terminal BRCT (BRCA1 C-terminal) domain and a C-terminal RING (really interesting new gene) domain and is highly conserved in plants including mosses. The ddrm1 mutant is defective in HR and thus is hypersensitive to DNA-damaging reagents. Biochemical studies reveal that DDRM1 interacts with and ubiquitinates the transcription factor SOG1, a plant-specific master regulator of DNA damage responses. Interestingly, DDRM1-mediated ubiquitination promotes the stability of SOG1. Consistently, genetic data support that SOG1 functions downstream of DDRM1. Our study reveals that DDRM1-SOG1 is a plant-specific module for HR and highlights the importance of ubiquitination in HR.
Collapse
Affiliation(s)
- Xuanpeng Wang
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lili Wang
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yongchi Huang
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhiping Deng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Cunliang Li
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jian Zhang
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mingxi Zheng
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shunping Yan
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
43
|
Wang H, Yang L, Liu M, Luo J. Protein post-translational modifications in the regulation of cancer hallmarks. Cancer Gene Ther 2022; 30:529-547. [PMID: 35393571 DOI: 10.1038/s41417-022-00464-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/28/2022] [Accepted: 03/18/2022] [Indexed: 12/12/2022]
Abstract
Posttranslational modifications (PTMs) of proteins, the major mechanism of protein function regulation, play important roles in regulating a variety of cellular physiological and pathological processes. Although the classical PTMs, such as phosphorylation, acetylation, ubiquitination and methylation, have been well studied, the emergence of many new modifications, such as succinylation, hydroxybutyrylation, and lactylation, introduces a new layer to protein regulation, leaving much more to be explored and wide application prospects. In this review, we will provide a broad overview of the significant roles of PTMs in regulating human cancer hallmarks through selecting a diverse set of examples, and update the current advances in the therapeutic implications of these PTMs in human cancer.
Collapse
Affiliation(s)
- Haiying Wang
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China.
| | - Liqian Yang
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Minghui Liu
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, 100191, Beijing, China
| | - Jianyuan Luo
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China. .,Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, 100191, Beijing, China.
| |
Collapse
|
44
|
Płódowska M, Krakowiak W, Węgierek-Ciuk A, Lankoff A, Szary K, Lis K, Wojcik A, Lisowska H. Hypothermia differentially modulates the formation and decay of NBS1, γH2AX and 53BP1 foci in U2OS cells exposed to gamma radiation. Sci Rep 2022; 12:5878. [PMID: 35393518 PMCID: PMC8989987 DOI: 10.1038/s41598-022-09829-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/22/2022] [Indexed: 11/09/2022] Open
Abstract
In studies on the mechanism of DNA damage response where ionizing radiation is used as the DNA damaging agent, cells are often exposed to ionizing radiation on melting ice (corresponding to 0.8 °C). The purpose of this procedure is to inhibit cellular processes i.e. DNA repair. Low temperature at exposure has been shown to act in a radioprotective manner at the level of cytogenetic damage, but its mechanisms of action are poorly understood. The aim of the study was to analyze the effect of hypothermia at the level of formation and decay of NBS1, γH2AX, and 53BP1 foci, micronuclei, survival, cell cycle progression and oxidative stress in U2OS cells. The results show that hypothermia alone induced oxidative stress and foci. When applied in combination with radiation but only during the exposure time, it potentiated the formation of γH2AX and 53BP1 but not of NBS1 foci. When applied during irradiation and subsequent repair time, 53BP1 and NBS1 foci formed and decayed, but the levels were markedly lower than when repair was carried out at 37 °C. The frequency of micronuclei was elevated in cells irradiated at 0.8 °C, but only when analysed 20 h after irradiation which is likely due to a reduced G2 cell cycle block. Hypothermia reduced cell survival, both with and without radiation exposure. The temperature effect should be considered when cooling cells on melting ice to inhibit DNA repair in the induction of DNA damage.
Collapse
Affiliation(s)
- Magdalena Płódowska
- Department of Medical Biology, Institute of Biology, Jan Kochanowski University, Kielce, Poland.
| | - Wiktoria Krakowiak
- Department of Medical Biology, Institute of Biology, Jan Kochanowski University, Kielce, Poland
| | - Aneta Węgierek-Ciuk
- Department of Medical Biology, Institute of Biology, Jan Kochanowski University, Kielce, Poland
| | - Anna Lankoff
- Department of Medical Biology, Institute of Biology, Jan Kochanowski University, Kielce, Poland.,Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Warsaw, Poland
| | - Karol Szary
- Department of Atomic Physics and Nanophysics, Institute of Physics, Jan Kochanowski University, Kielce, Poland
| | - Krzysztof Lis
- Department of Medical Physics, Holy Cross Cancer Center, Kielce, Poland
| | - Andrzej Wojcik
- Department of Medical Biology, Institute of Biology, Jan Kochanowski University, Kielce, Poland.,Centre for Radiation Protection Research, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Halina Lisowska
- Department of Medical Biology, Institute of Biology, Jan Kochanowski University, Kielce, Poland
| |
Collapse
|
45
|
Swift ML, Azizkhan-Clifford J. DNA damage-induced sumoylation of Sp1 induces its interaction with RNF4 and degradation in S phase to remove 53BP1 from DSBs and permit HR. DNA Repair (Amst) 2022; 111:103289. [DOI: 10.1016/j.dnarep.2022.103289] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/26/2022] [Accepted: 01/29/2022] [Indexed: 02/06/2023]
|
46
|
Gai X, Xin D, Wu D, Wang X, Chen L, Wang Y, Ma K, Li Q, Li P, Yu X. Pre-ribosomal RNA reorganizes DNA damage repair factors in nucleus during meiotic prophase and DNA damage response. Cell Res 2022; 32:254-268. [PMID: 34980897 PMCID: PMC8888703 DOI: 10.1038/s41422-021-00597-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 11/11/2021] [Indexed: 11/09/2022] Open
Abstract
In response to DNA double-strand breaks (DSBs), DNA damage repair factors are recruited to DNA lesions and form nuclear foci. However, the underlying molecular mechanism remains largely elusive. Here, by analyzing the localization of DSB repair factors in the XY body and DSB foci, we demonstrate that pre-ribosomal RNA (pre-rRNA) mediates the recruitment of DSB repair factors around DNA lesions. Pre-rRNA exists in the XY body, a DSB repair hub, during meiotic prophase, and colocalizes with DSB repair factors, such as MDC1, BRCA1 and TopBP1. Moreover, pre-rRNA-associated proteins and RNAs, such as ribosomal protein subunits, RNase MRP and snoRNAs, also localize in the XY body. Similar to those in the XY body, pre-rRNA and ribosomal proteins also localize at DSB foci and associate with DSB repair factors. RNA polymerase I inhibitor treatment that transiently suppresses transcription of rDNA but does not affect global protein translation abolishes foci formation of DSB repair factors as well as DSB repair. The FHA domain and PST repeats of MDC1 recognize pre-rRNA and mediate phase separation of DSB repair factors, which may be the molecular basis for the foci formation of DSB repair factors during DSB response.
Collapse
Affiliation(s)
- Xiaochen Gai
- grid.494629.40000 0004 8008 9315Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315School of Life Sciences, Westlake University, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang China
| | - Di Xin
- grid.494629.40000 0004 8008 9315Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315School of Life Sciences, Westlake University, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang China
| | - Duo Wu
- grid.494629.40000 0004 8008 9315Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315School of Life Sciences, Westlake University, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang China
| | - Xin Wang
- grid.494629.40000 0004 8008 9315Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315School of Life Sciences, Westlake University, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang China
| | - Linlin Chen
- grid.494629.40000 0004 8008 9315Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315School of Life Sciences, Westlake University, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang China
| | - Yiqing Wang
- grid.494629.40000 0004 8008 9315Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315School of Life Sciences, Westlake University, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang China
| | - Kai Ma
- grid.494629.40000 0004 8008 9315Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315School of Life Sciences, Westlake University, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang China
| | - Qilin Li
- grid.494629.40000 0004 8008 9315Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315School of Life Sciences, Westlake University, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang China
| | - Peng Li
- grid.494629.40000 0004 8008 9315Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315School of Life Sciences, Westlake University, Hangzhou, Zhejiang China ,grid.494629.40000 0004 8008 9315Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang China
| | - Xiaochun Yu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China. .,School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China. .,Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
47
|
Shadfar S, Brocardo M, Atkin JD. The Complex Mechanisms by Which Neurons Die Following DNA Damage in Neurodegenerative Diseases. Int J Mol Sci 2022; 23:ijms23052484. [PMID: 35269632 PMCID: PMC8910227 DOI: 10.3390/ijms23052484] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/12/2022] [Accepted: 02/17/2022] [Indexed: 01/18/2023] Open
Abstract
Human cells are exposed to numerous exogenous and endogenous insults every day. Unlike other molecules, DNA cannot be replaced by resynthesis, hence damage to DNA can have major consequences for the cell. The DNA damage response contains overlapping signalling networks that repair DNA and hence maintain genomic integrity, and aberrant DNA damage responses are increasingly described in neurodegenerative diseases. Furthermore, DNA repair declines during aging, which is the biggest risk factor for these conditions. If unrepaired, the accumulation of DNA damage results in death to eliminate cells with defective genomes. This is particularly important for postmitotic neurons because they have a limited capacity to proliferate, thus they must be maintained for life. Neuronal death is thus an important process in neurodegenerative disorders. In addition, the inability of neurons to divide renders them susceptible to senescence or re-entry to the cell cycle. The field of cell death has expanded significantly in recent years, and many new mechanisms have been described in various cell types, including neurons. Several of these mechanisms are linked to DNA damage. In this review, we provide an overview of the cell death pathways induced by DNA damage that are relevant to neurons and discuss the possible involvement of these mechanisms in neurodegenerative conditions.
Collapse
Affiliation(s)
- Sina Shadfar
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia; (S.S.); (M.B.)
| | - Mariana Brocardo
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia; (S.S.); (M.B.)
| | - Julie D. Atkin
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia; (S.S.); (M.B.)
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, VIC 3086, Australia
- Correspondence:
| |
Collapse
|
48
|
Glioblastoma recurrent cells switch between ATM and ATR pathway as an alternative strategy to survive radiation stress. Med Oncol 2022; 39:50. [PMID: 35150325 DOI: 10.1007/s12032-022-01657-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/14/2022] [Indexed: 10/19/2022]
Abstract
Primary treatment modality for glioblastoma (GBM) post-surgery is radiation therapy. Due to increased DNA damage repair capacity of resistant residual GBM cells, recurrence is inevitable in glioblastoma and unfortunately the recurrent tumours are resistant to the conventional therapy. Here we used our previously described in vitro radiation survival model generated from primary GBM patient samples and cell lines, which recapitulates the clinical scenario of therapy resistance and relapse. Using the parent and recurrent GBM cells from these models, we show that similar to parent GBM, the recurrent GBM cells also elicit a competent DNA damage response (DDR) post irradiation. However, the use of apical DNA damage repair sensory kinase (ATM and/or ATR) is different in the recurrent cells compared to parent cells. Consistently, we demonstrate that there is a differential clonogenic response of parent and recurrent GBM cells to the ATM and ATR kinase inhibitors with recurrent samples switching between these sensory kinases for survival emphasizing on the underlying heterogeneity within and across GBM samples. Taken together, here we report that recurrent tumours utilize an alternate DDR kinase to overcome radiation induced DNA damage. Since there is no effective treatment specifically for recurred GBM patients, these findings provide a rationale for developing newer treatment option to sensitize recurrent GBM samples by detecting in clinics the ability of cells to activate a DNA damage repair kinase different from their parent counterparts.
Collapse
|
49
|
SEDT2 palmitoylation mediated by ZDHHC16 in EGFR-mutated glioblastoma promotes ionizing radiation-induced DNA damage. Int J Radiat Oncol Biol Phys 2022; 113:648-660. [DOI: 10.1016/j.ijrobp.2022.02.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 01/16/2022] [Accepted: 02/12/2022] [Indexed: 11/19/2022]
|
50
|
Geng A, Xu S, Yao Y, Qian Z, Wang X, Sun J, Zhang J, Shi F, Chen Z, Zhang W, Mao Z, Lu W, Jiang Y. Chrysin impairs genomic stability by suppressing DNA double-strand break repair in breast cancer cells. Cell Cycle 2022; 21:379-391. [PMID: 34985375 PMCID: PMC8855858 DOI: 10.1080/15384101.2021.2020434] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Chrysin, a natural compound isolated from various plants, such as the blue passion flower (Passiflora caerulea L.), exhibits multiple pharmacological activities, such as antitumor, anti-inflammatory and antioxidant activities. Accumulating evidence shows that chrysin inhibits cancer cell growth by inducing apoptosis and regulating cell cycle arrest. However, whether chrysin is involved in regulating genomic stability and its underlying mechanisms in breast cancer cells have not been determined. Here, we demonstrated that chrysin impairs genomic stability in MCF-7 and BT474 cells, inhibits cell survival and enhances the sensitivity of MCF-7 cells to chemotherapeutic drugs. Further experiments revealed that chrysin impairs DNA double-strand break (DSB) repair, resulting in accumulation of DNA damage. Mechanistic studies showed that chrysin inhibits the recruitment of the key NHEJ factor 53BP1 and delays the recruitment of the HR factor RAD51. Thus, we elucidated novel regulatory mechanisms of chrysin in DSB repair and proposed that a combination of chrysin and chemotherapy has curative potential in breast cancers.
Collapse
Affiliation(s)
- Anke Geng
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China,Department of Gynecology of Shanghai First Maternity & Infant Hospital, School of Medicine, Tongji University, Shanghai, China,CONTACT Anke Geng Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai200092, China
| | - Shiya Xu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yunxia Yao
- College of Pharmacy, Yanbian University, Yanji, Jilin, China
| | - Zhen Qian
- Department of Gynecology of Shanghai First Maternity & Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiyue Wang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China,Department of Gynecology of Shanghai First Maternity & Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiahui Sun
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jingyuan Zhang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Fangfang Shi
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zhixi Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Weina Zhang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China,Department of Gynecology of Shanghai First Maternity & Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wen Lu
- Department of Gynecology of Shanghai First Maternity & Infant Hospital, School of Medicine, Tongji University, Shanghai, China,Wen Lu Department of Gynecology of Shanghai First Maternity & Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ying Jiang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China,Ying Jiang Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| |
Collapse
|