1
|
Kumar H, Pushpa K, Kumari A, Verma K, Pergu R, Mylavarapu SVS. The exocyst complex and Rab5 are required for abscission by localizing ESCRT III subunits to the cytokinetic bridge. J Cell Sci 2019; 132:jcs226001. [PMID: 31221728 PMCID: PMC6679584 DOI: 10.1242/jcs.226001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 06/14/2019] [Indexed: 01/26/2023] Open
Abstract
Cytokinesis is the final step of cell division following chromosome segregation that generates two daughter cells. The conserved exocyst complex is required for scission of the intercellular cytokinetic bridge, although the molecular mechanisms it employs in this process are unclear. We identify and validate the early endocytic GTPase Rab5 as interacting with the exocyst complex in mammalian cells. Rab5 localizes in the cytokinetic bridge and on the midbody ring in a manner similar to the exocyst complex. Depletion of Rab5 led to delayed abscission. Caenorhabditis elegans orthologs of both exocyst complex subunits and Rab5 localize along the cleavage furrow and are required for cytokinesis in early embryos. Cytokinetic cells depleted of either Rab5 or the exocyst subunits Exoc3 and Exoc4 showed impaired deposition of the endosomal sorting complexes required for transport (ESCRT) III subunits CHMP2B and/or CHMP4B near the midbody ring. The study reveals an evolutionarily conserved role for the early endocytic marker Rab5 in cytokinetic abscission. In addition, it uncovers a key requirement of the exocyst and Rab5 for the delivery of components of the membrane-severing ESCRT III machinery to complete cytokinesis.
Collapse
Affiliation(s)
- Harsh Kumar
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
- Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Kumari Pushpa
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| | - Amrita Kumari
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
- Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Kuldeep Verma
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
| | - Rajaiah Pergu
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
- Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Sivaram V S Mylavarapu
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad-Gurgaon Expressway, Faridabad, Haryana 121001, India
- Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| |
Collapse
|
2
|
Dix CL, Matthews HK, Uroz M, McLaren S, Wolf L, Heatley N, Win Z, Almada P, Henriques R, Boutros M, Trepat X, Baum B. The Role of Mitotic Cell-Substrate Adhesion Re-modeling in Animal Cell Division. Dev Cell 2018; 45:132-145.e3. [PMID: 29634933 DOI: 10.1016/j.devcel.2018.03.009] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 01/17/2018] [Accepted: 03/13/2018] [Indexed: 12/24/2022]
Abstract
Animal cells undergo a dramatic series of shape changes as they divide, which depend on re-modeling of cell-substrate adhesions. Here, we show that while focal adhesion complexes are disassembled during mitotic rounding, integrins remain in place. These integrin-rich contacts connect mitotic cells to the underlying substrate throughout mitosis, guide polarized cell migration following mitotic exit, and are functionally important, since adherent cells undergo division failure when removed from the substrate. Further, the ability of cells to re-spread along pre-existing adhesive contacts is essential for division in cells compromised in their ability to construct a RhoGEF-dependent (Ect2) actomyosin ring. As a result, following Ect2 depletion, cells fail to divide on small adhesive islands but successfully divide on larger patterns, as the connection between daughter cells narrows and severs as they migrate away from one another. In this way, regulated re-modeling of cell-substrate adhesions during mitotic rounding aids division in animal cells.
Collapse
Affiliation(s)
- Christina L Dix
- MRC - Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Helen K Matthews
- MRC - Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Marina Uroz
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain
| | - Susannah McLaren
- MRC - Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Lucie Wolf
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), and Department for Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg 69120, Germany
| | - Nicholas Heatley
- MRC - Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Zaw Win
- MRC - Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Pedro Almada
- MRC - Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Ricardo Henriques
- MRC - Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Michael Boutros
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), and Department for Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg 69120, Germany
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain; Unitat de Biofisica i Bioenginyeria, Facultat de Medicina, Universitat de Barcelona, Barcelona 08036, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain; Center for Networked Biomedical Research on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona 08028, Spain
| | - Buzz Baum
- MRC - Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; Institute for the Physics of Living Systems, University College London, London WC1E 6BT, UK.
| |
Collapse
|
3
|
Vertii A, Kaufman PD, Hehnly H, Doxsey S. New dimensions of asymmetric division in vertebrates. Cytoskeleton (Hoboken) 2018; 75:87-102. [DOI: 10.1002/cm.21434] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 12/20/2017] [Accepted: 01/16/2018] [Indexed: 01/04/2023]
Affiliation(s)
- Anastassiia Vertii
- Department of MolecularCell and Cancer Biology University of Massachusetts Medical SchoolWorcester Massachusetts
| | - Paul D. Kaufman
- Department of MolecularCell and Cancer Biology University of Massachusetts Medical SchoolWorcester Massachusetts
| | - Heidi Hehnly
- Department of Cell and Developmental BiologySUNY Upstate Medical UniversitySyracuse New York13210
| | - Stephen Doxsey
- Program in Molecular Medicine University of Massachusetts Medical SchoolWorcester Massachusetts
| |
Collapse
|
4
|
Abstract
Cytokinesis is a complex cellular process that leads to a physical separation of two daughter cells. The key to a successful cytokinesis is a coordinated reorganization of cellular cytoskeleton and membrane trafficking pathways. Consequently, Rab GTPases recently emerged as major regulators of cellular division. Rabs belong to a superfamily of small monomeric GTPases that regulate a diverse array of cellular functions. Rabs in particular are well-established regulators of membrane transport and have been shown to mediate several membrane transport steps including vesicle formation, molecular motor-dependent vesicle transport and targeting of transport vesicles and organelles to their correct destinations. Significantly, several Rab GTPases also have been shown to function in regulating cell division. In this review, we discuss latest findings about the function of Rabs and polarized membrane transport during different steps of cytokinesis as well as during the final stage of cell division known as abscission.
Collapse
Affiliation(s)
- Paulius Gibieža
- a Institute of Cardiology, Lithuanian University of Health Sciences , Kaunas , Lithuania
| | - Rytis Prekeris
- b Department of Cell and Developmental Biology , University of Colorado Anschutz Medical Campus , Aurora , CO , USA
| |
Collapse
|
5
|
Nähse V, Christ L, Stenmark H, Campsteijn C. The Abscission Checkpoint: Making It to the Final Cut. Trends Cell Biol 2016; 27:1-11. [PMID: 27810282 DOI: 10.1016/j.tcb.2016.10.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/08/2016] [Accepted: 10/11/2016] [Indexed: 12/11/2022]
Abstract
Cytokinesis is the final stage of cell division and is concluded by abscission of the intercellular bridge to physically separate the daughter cells. Timing of cytokinetic abscission is monitored by a molecular machinery termed the abscission checkpoint. This machinery delays abscission in cells with persistent chromatin in the intercellular bridge. Recent work has also uncovered its response to high membrane tension, nuclear pore defects, and DNA replication stress. Although it is known that the abscission checkpoint depends on persistent activity of the Aurora B protein kinase, we have only recently begun to understand its molecular basis. We propose here a molecular framework for abscission checkpoint signaling and we discuss outstanding questions relating to its function and physiological relevance.
Collapse
Affiliation(s)
- Viola Nähse
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, 0379 Oslo, Norway; Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0379 Oslo, Norway
| | - Liliane Christ
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, 0379 Oslo, Norway; Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0379 Oslo, Norway
| | - Harald Stenmark
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, 0379 Oslo, Norway; Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0379 Oslo, Norway; Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Faculty of Medicine, 7491 Trondheim, Norway.
| | - Coen Campsteijn
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, 0379 Oslo, Norway; Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, 0379 Oslo, Norway.
| |
Collapse
|
6
|
Abstract
Cytokinesis is an essential step of cell proliferation leading to the physical separation of the dividing cells. Cytokinesis relies on both large scale and local scale cell shape changes, and terminates with the final abscission cut that requires close apposition of the plasma membrane. While furrow ingression is a prominent feature of the early phase of cytokinesis and is easy to visualize in all models, from dividing eggs to culture cells, the later steps of cytokinesis until abscission can be much more difficult to visualize. One key issue is to combine live-cell imaging over several hours and detailed, structural analysis of the cell shape changes in 3D, in particular at the time of cytokinetic abscission. Here, we describe the methodologies that we recently developed for studying cytokinetic abscission in human culture cells using live-cell phase-contrast microscopy, combined with correlative scanning electron microscopy. This allows us to determine the membrane surface and underlying cytoskeleton of the intercellular bridge with unprecedented precision and to determine the fate of the midbody remnant after abscission.
Collapse
|
7
|
Crowell EF, Gaffuri AL, Gayraud-Morel B, Tajbakhsh S, Echard A. Engulfment of the midbody remnant after cytokinesis in mammalian cells. J Cell Sci 2014; 127:3840-51. [PMID: 25002399 DOI: 10.1242/jcs.154732] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The midbody remnant (MBR) that is generated after cytokinetic abscission has recently attracted a lot of attention, because it might have crucial consequences for cell differentiation and tumorigenesis in mammalian cells. In these cells, it has been reported that the MBR is either released into the extracellular medium or retracted into one of the two daughter cells where it can be degraded by autophagy. Here, we describe a major alternative pathway in a variety of human and mouse immortalized cells, cancer cells and primary stem cells. Using correlative light and scanning electron microscopy and quantitative assays, we found that sequential abscissions on both sides of the midbody generate free MBRs, which are tightly associated with the cell surface through a Ca(2+)/Mg(2+)-dependent receptor. Surprisingly, MBRs move over the cell surface for several hours, before being eventually engulfed by an actin-dependent phagocytosis-like mechanism. Mathematical modeling combined with experimentation further demonstrates that lysosomal activities fully account for the clearance of MBRs after engulfment. This study changes our understanding of how MBRs are inherited and degraded in mammalian cells and suggests a mechanism by which MBRs might signal over long distances between cells.
Collapse
Affiliation(s)
- Elizabeth Faris Crowell
- Institut Pasteur, Membrane Traffic and Cell Division Lab, Department of Cell Biology and Infection, 25 Rue du Dr Roux, 75015 Paris, France CNRS URA 2582, F-75015 Paris, France
| | - Anne-Lise Gaffuri
- Institut Pasteur, Membrane Traffic and Cell Division Lab, Department of Cell Biology and Infection, 25 Rue du Dr Roux, 75015 Paris, France CNRS URA 2582, F-75015 Paris, France
| | - Barbara Gayraud-Morel
- Institut Pasteur, Stem Cells and Development, Department of Developmental & Stem Cell Biology, CNRS URA 2578, 25 Rue du Dr Roux, F-75015 Paris, France
| | - Shahragim Tajbakhsh
- Institut Pasteur, Stem Cells and Development, Department of Developmental & Stem Cell Biology, CNRS URA 2578, 25 Rue du Dr Roux, F-75015 Paris, France
| | - Arnaud Echard
- Institut Pasteur, Membrane Traffic and Cell Division Lab, Department of Cell Biology and Infection, 25 Rue du Dr Roux, 75015 Paris, France CNRS URA 2582, F-75015 Paris, France
| |
Collapse
|