1
|
Yates J, Mathey-Andrews C, Park J, Garza A, Gagné A, Hoffman S, Bi K, Titchen B, Hennessey C, Remland J, Shannon E, Camp S, Balamurali S, Cavale SK, Li Z, Raghawan AK, Kraft A, Boland G, Aguirre AJ, Sethi NS, Boeva V, Van Allen E. Cell states and neighborhoods in distinct clinical stages of primary and metastatic esophageal adenocarcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.17.608386. [PMID: 39229240 PMCID: PMC11370330 DOI: 10.1101/2024.08.17.608386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Esophageal adenocarcinoma (EAC) is a highly lethal cancer of the upper gastrointestinal tract with rising incidence in western populations. To decipher EAC disease progression and therapeutic response, we performed multiomic analyses of a cohort of primary and metastatic EAC tumors, incorporating single-nuclei transcriptomic and chromatin accessibility sequencing, along with spatial profiling. We identified tumor microenvironmental features previously described to associate with therapy response. We identified five malignant cell programs, including undifferentiated, intermediate, differentiated, epithelial-to-mesenchymal transition, and cycling programs, which were associated with differential epigenetic plasticity and clinical outcomes, and for which we inferred candidate transcription factor regulons. Furthermore, we revealed diverse spatial localizations of malignant cells expressing their associated transcriptional programs and predicted their significant interactions with microenvironmental cell types. We validated our findings in three external single-cell RNA-seq and three bulk RNA-seq studies. Altogether, our findings advance the understanding of EAC heterogeneity, disease progression, and therapeutic response.
Collapse
Affiliation(s)
- Josephine Yates
- Institute for Machine Learning, Department of Computer Science, ETH Zürich, Zurich, Switzerland
- ETH AI Center, ETH Zurich, Zurich, Switzerland
- Swiss Institute for Bioinformatics (SIB), Lausanne, Switzerland
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Camille Mathey-Andrews
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jihye Park
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Amanda Garza
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Andréanne Gagné
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Samantha Hoffman
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Division of Medical Sciences, Harvard University, Boston, Massachusetts, USA
| | - Kevin Bi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Breanna Titchen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Division of Medical Sciences, Harvard University, Boston, Massachusetts, USA
| | | | - Joshua Remland
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Erin Shannon
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Sabrina Camp
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Siddhi Balamurali
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Shweta Kiran Cavale
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Zhixin Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Akhouri Kishore Raghawan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Agnieszka Kraft
- Institute for Machine Learning, Department of Computer Science, ETH Zürich, Zurich, Switzerland
- Swiss Institute for Bioinformatics (SIB), Lausanne, Switzerland
| | - Genevieve Boland
- Department of Surgery, Division of Gastrointestinal and Surgical Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Andrew J Aguirre
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Division of Medical Sciences, Harvard University, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Nilay S Sethi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Valentina Boeva
- Institute for Machine Learning, Department of Computer Science, ETH Zürich, Zurich, Switzerland
- ETH AI Center, ETH Zurich, Zurich, Switzerland
- Swiss Institute for Bioinformatics (SIB), Lausanne, Switzerland
- Cochin Institute, Inserm U1016, CNRS UMR 8104, Paris Descartes University UMR-S1016, Paris 75014, France
| | - Eliezer Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Division of Medical Sciences, Harvard University, Boston, Massachusetts, USA
- Parker Institute for Cancer Immunotherapy, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Lv Y, Sun S, Zhang J, Wang C, Chen C, Zhang Q, Zhao J, Qi Y, Zhang W, Wang Y, Li M. Loss of RBM45 inhibits breast cancer progression by reducing the SUMOylation of IRF7 to promote IFNB1 transcription. Cancer Lett 2024; 596:216988. [PMID: 38797234 DOI: 10.1016/j.canlet.2024.216988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/11/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Type I interferons exhibit anti-proliferative and anti-cancer activities, but their detailed regulatory mechanisms in cancer have not been fully elucidated yet. RNA binding proteins are master orchestrators of gene regulation, which are closely related to tumor progression. Here we show that the upregulated RNA binding protein RBM45 correlates with poor prognosis in breast cancer. Depletion of RBM45 suppresses breast cancer progression both in cultured cells and xenograft mouse models. Mechanistically, RBM45 ablation inhibits breast cancer progression through regulating type I interferon signaling, particularly by elevating IFN-β production. Importantly, RBM45 recruits TRIM28 to IRF7 and stimulates its SUMOylation, thereby repressing IFNB1 transcription. Loss of RBM45 reduced the SUMOylation of IRF7 by reducing the interaction between TRIM28 and IRF7 to promote IFNB1 transcription, leading to the inhibition of breast cancer progression. Taken together, our finding uncovers a vital role of RBM45 in modulating type I interferon signaling and cancer aggressive progression, implicating RBM45 as a potential therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Yuesheng Lv
- Department of Oncology of the Second Affiliated Hospital of Dalian Medical University & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116023, China
| | - Siwen Sun
- Department of Oncology & Sino-US Research Center for Cancer Translational Medicine, The Second Affiliated Hospital, Dalian Medical University, Dalian, 116023, China
| | - Jinrui Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Chong Wang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Chaoqun Chen
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Qianyi Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Jinyao Zhao
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yangfan Qi
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Wenjing Zhang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China.
| | - Yang Wang
- Sino-US Research Center for Cancer Translational Medicine of the Second Affiliated Hospital of Dalian Medical University & Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116023, China.
| | - Man Li
- Department of Oncology & Sino-US Research Center for Cancer Translational Medicine, The Second Affiliated Hospital, Dalian Medical University, Dalian, 116023, China.
| |
Collapse
|
3
|
Saw PE, Liu Q, Wong PP, Song E. Cancer stem cell mimicry for immune evasion and therapeutic resistance. Cell Stem Cell 2024; 31:1101-1112. [PMID: 38925125 DOI: 10.1016/j.stem.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 03/11/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
Cancer stem cells (CSCs) are heterogeneous, possess self-renewal attributes, and orchestrate important crosstalk in tumors. We propose that the CSC state represents "mimicry" by cancer cells that leads to phenotypic plasticity. CSC mimicry is suggested as CSCs can impersonate immune cells, vasculo-endothelia, or lymphangiogenic cells to support cancer growth. CSCs facilitate both paracrine and juxtracrine signaling to prime tumor-associated immune and stromal cells to adopt pro-tumoral phenotypes, driving therapeutic resistance. Here, we outline the ingenuity of CSCs' mimicry in their quest to evade immune detection, which leads to immunotherapeutic resistance, and highlight CSC-mimicry-targeted therapeutic strategies for robust immunotherapy.
Collapse
Affiliation(s)
- Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Nanhai Clinical Translational Center, Sun Yat-sen Memorial Hospital, Foshan, China
| | - Qiang Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ping-Pui Wong
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Nanhai Clinical Translational Center, Sun Yat-sen Memorial Hospital, Foshan, China
| | - Erwei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China; Nanhai Clinical Translational Center, Sun Yat-sen Memorial Hospital, Foshan, China; Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Zenith Institute of Medical Sciences, Guangzhou 510120, China.
| |
Collapse
|
4
|
Ma J, Gong Y, Sun X, Liu C, Li X, Sun Y, Yang D, He J, Wang M, Du J, Zhang J, Xu W, Wang T, Chi X, Tang Y, Song J, Wang Y, Ma F, Chen C, Zhang H, Zhan J. Tumor suppressor FRMD3 controls mammary epithelial cell fate determination via notch signaling pathway. SCIENCE ADVANCES 2024; 10:eadk8958. [PMID: 38959315 PMCID: PMC11221522 DOI: 10.1126/sciadv.adk8958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 05/17/2024] [Indexed: 07/05/2024]
Abstract
The luminal-to-basal transition in mammary epithelial cells (MECs) is accompanied by changes in epithelial cell lineage plasticity; however, the underlying mechanism remains elusive. Here, we report that deficiency of Frmd3 inhibits mammary gland lineage development and induces stemness of MECs, subsequently leading to the occurrence of triple-negative breast cancer. Loss of Frmd3 in PyMT mice results in a luminal-to-basal transition phenotype. Single-cell RNA sequencing of MECs indicated that knockout of Frmd3 inhibits the Notch signaling pathway. Mechanistically, FERM domain-containing protein 3 (FRMD3) promotes the degradation of Disheveled-2 by disrupting its interaction with deubiquitinase USP9x. FRMD3 also interrupts the interaction of Disheveled-2 with CK1, FOXK1/2, and NICD and decreases Disheveled-2 phosphorylation and nuclear localization, thereby impairing Notch-dependent luminal epithelial lineage plasticity in MECs. A low level of FRMD3 predicts poor outcomes for breast cancer patients. Together, we demonstrated that FRMD3 is a tumor suppressor that functions as an endogenous activator of the Notch signaling pathway, facilitating the basal-to-luminal transformation in MECs.
Collapse
Affiliation(s)
- Ji Ma
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, and Peking University International Cancer Institute, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Yuqing Gong
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, and Peking University International Cancer Institute, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Xiaoran Sun
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, and Peking University International Cancer Institute, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
- Department of Pathology, Peking University Health Science Center, Beijing 100191, China
| | - Cheng Liu
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, and Peking University International Cancer Institute, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Xueying Li
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, and Peking University International Cancer Institute, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Yi Sun
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, and Peking University International Cancer Institute, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Decao Yang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, and Peking University International Cancer Institute, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Junming He
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, and Peking University International Cancer Institute, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Mengyuan Wang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, and Peking University International Cancer Institute, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Juan Du
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, and Peking University International Cancer Institute, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Jing Zhang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, and Peking University International Cancer Institute, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Weizhi Xu
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, and Peking University International Cancer Institute, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Tianzhuo Wang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, and Peking University International Cancer Institute, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Xiaochun Chi
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, and Peking University International Cancer Institute, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Yan Tang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, and Peking University International Cancer Institute, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Jiagui Song
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, and Peking University International Cancer Institute, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Yunling Wang
- Institute of Cardiovascular Research, Peking University Health Science Center, Beijing 100191, China
| | - Fei Ma
- National Cancer Center, State Key Laboratory of Molecular Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Hongquan Zhang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, and Peking University International Cancer Institute, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| | - Jun Zhan
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology, and Embryology, School of Basic Medical Sciences, and Peking University International Cancer Institute, State Key Laboratory of Molecular Oncology, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
5
|
Guo CC, Lee S, Lee JG, Chen H, Zaleski M, Choi W, McConkey DJ, Wei P, Czerniak B. Molecular profile of bladder cancer progression to clinically aggressive subtypes. Nat Rev Urol 2024; 21:391-405. [PMID: 38321289 DOI: 10.1038/s41585-023-00847-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2023] [Indexed: 02/08/2024]
Abstract
Bladder cancer is a histologically and clinically heterogenous disease. Most bladder cancers are urothelial carcinomas, which frequently develop distinct histological subtypes. Several urothelial carcinoma histological subtypes, such as micropapillary, plasmacytoid, small-cell carcinoma and sarcomatoid, show highly aggressive behaviour and pose unique challenges in diagnosis and treatment. Comprehensive genomic characterizations of the urothelial carcinoma subtypes have revealed that they probably arise from a precursor subset of conventional urothelial carcinomas that belong to different molecular subtypes - micropapillary and plasmacytoid subtypes develop along the luminal pathway, whereas small-cell and sarcomatoid subtypes evolve along the basal pathway. The subtypes exhibit distinct genomic alterations, but in most cases their biological properties seem to be primarily determined by specific gene expression profiles, including epithelial-mesenchymal transition, urothelial-to-neural lineage plasticity, and immune infiltration with distinct upregulation of immune regulatory genes. These breakthrough studies have transformed our view of bladder cancer histological subtype biology, generated new hypotheses for therapy and chemoresistance, and facilitated the discovery of new therapeutic targets.
Collapse
Affiliation(s)
- Charles C Guo
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sangkyou Lee
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - June G Lee
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Huiqin Chen
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Zaleski
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Woonyoung Choi
- Johns Hopkins Greenberg Bladder Cancer Institute, Johns Hopkins University, Baltimore, MD, USA
| | - David J McConkey
- Johns Hopkins Greenberg Bladder Cancer Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Peng Wei
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bogdan Czerniak
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
6
|
Berrino C, Omar A. Unravelling the Mysteries of the Sonic Hedgehog Pathway in Cancer Stem Cells: Activity, Crosstalk and Regulation. Curr Issues Mol Biol 2024; 46:5397-5419. [PMID: 38920995 PMCID: PMC11202538 DOI: 10.3390/cimb46060323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/24/2024] [Accepted: 05/25/2024] [Indexed: 06/27/2024] Open
Abstract
The Sonic Hedgehog (Shh) signalling pathway plays a critical role in normal development and tissue homeostasis, guiding cell differentiation, proliferation, and survival. Aberrant activation of this pathway, however, has been implicated in the pathogenesis of various cancers, largely due to its role in regulating cancer stem cells (CSCs). CSCs are a subpopulation of cancer cells with the ability to self-renew, differentiate, and initiate tumour growth, contributing significantly to tumorigenesis, recurrence, and resistance to therapy. This review focuses on the intricate activity of the Shh pathway within the context of CSCs, detailing the molecular mechanisms through which Shh signalling influences CSC properties, including self-renewal, differentiation, and survival. It further explores the regulatory crosstalk between the Shh pathway and other signalling pathways in CSCs, highlighting the complexity of this regulatory network. Here, we delve into the upstream regulators and downstream effectors that modulate Shh pathway activity in CSCs. This review aims to cast a specific focus on the role of the Shh pathway in CSCs, provide a detailed exploration of molecular mechanisms and regulatory crosstalk, and discuss current and developing inhibitors. By summarising key findings and insights gained, we wish to emphasise the importance of further elucidating the interplay between the Shh pathway and CSCs to develop more effective cancer therapies.
Collapse
|
7
|
Ruan X, Yan W, Cao M, Daza RAM, Fong MY, Yang K, Wu J, Liu X, Palomares M, Wu X, Li A, Chen Y, Jandial R, Spitzer NC, Hevner RF, Wang SE. Breast cancer cell-secreted miR-199b-5p hijacks neurometabolic coupling to promote brain metastasis. Nat Commun 2024; 15:4549. [PMID: 38811525 PMCID: PMC11137082 DOI: 10.1038/s41467-024-48740-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/09/2024] [Indexed: 05/31/2024] Open
Abstract
Breast cancer metastasis to the brain is a clinical challenge rising in prevalence. However, the underlying mechanisms, especially how cancer cells adapt a distant brain niche to facilitate colonization, remain poorly understood. A unique metabolic feature of the brain is the coupling between neurons and astrocytes through glutamate, glutamine, and lactate. Here we show that extracellular vesicles from breast cancer cells with a high potential to develop brain metastases carry high levels of miR-199b-5p, which shows higher levels in the blood of breast cancer patients with brain metastases comparing to those with metastatic cancer in other organs. miR-199b-5p targets solute carrier transporters (SLC1A2/EAAT2 in astrocytes and SLC38A2/SNAT2 and SLC16A7/MCT2 in neurons) to hijack the neuron-astrocyte metabolic coupling, leading to extracellular retention of these metabolites and promoting cancer cell growth. Our findings reveal a mechanism through which cancer cells of a non-brain origin reprogram neural metabolism to fuel brain metastases.
Collapse
Affiliation(s)
- Xianhui Ruan
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Wei Yan
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Minghui Cao
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Ray Anthony M Daza
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Miranda Y Fong
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
- Department of Cancer Biology, City of Hope Beckman Research Institute, Duarte, CA, USA
| | - Kaifu Yang
- School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Jun Wu
- Center for Comparative Medicine, City of Hope Beckman Research Institute, Duarte, CA, USA
| | - Xuxiang Liu
- Department of Cancer Biology, City of Hope Beckman Research Institute, Duarte, CA, USA
| | | | - Xiwei Wu
- Department of Computational and Quantitative Medicine, City of Hope Beckman Research Institute, Duarte, CA, USA
| | - Arthur Li
- Division of Biostatistics, City of Hope Beckman Research Institute, Duarte, CA, USA
| | - Yuan Chen
- Department of Surgery, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Rahul Jandial
- Department of Surgery; City of Hope, Duarte, CA, USA
| | - Nicholas C Spitzer
- Neurobiology Department, School of Biological Sciences and Center for Neural Circuits and Behavior, University of California San Diego, La Jolla, CA, USA
- Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, CA, USA
| | - Robert F Hevner
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
| | - Shizhen Emily Wang
- Department of Pathology, University of California San Diego, La Jolla, CA, USA.
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
8
|
Yang X, Xu H, Yang X, Wang H, Zou L, Yang Q, Qi X, Li L, Duan H, Yan X, Fu NY, Tan J, Hou Z, Jiao B. Mcam inhibits macrophage-mediated development of mammary gland through non-canonical Wnt signaling. Nat Commun 2024; 15:36. [PMID: 38167296 PMCID: PMC10761817 DOI: 10.1038/s41467-023-44338-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 12/08/2023] [Indexed: 01/05/2024] Open
Abstract
While canonical Wnt signaling is well recognized for its crucial regulatory functions in cell fate decisions, the role of non-canonical Wnt signaling in adult stem cells remains elusive and contradictory. Here, we identified Mcam, a potential member of the non-canonical Wnt signaling, as an important negative regulator of mammary gland epithelial cells (MECs) by genome-scale CRISPR-Cas9 knockout (GeCKO) library screening. Loss of Mcam increases the clonogenicity and regenerative capacity of MECs, and promotes the proliferation, differentiation, and ductal morphogenesis of mammary epithelial in knockout mice. Mechanically, Mcam knockout recruits and polarizes macrophages through the Il4-Stat6 axis, thereby promoting secretion of the non-canonical Wnt ligand Wnt5a and its binding to the non-canonical Wnt signaling receptor Ryk to induce the above phenotypes. These findings reveal Mcam roles in mammary gland development by orchestrating communications between MECs and macrophages via a Wnt5a/Ryk axis, providing evidences for non-canonical Wnt signaling in mammary development.
Collapse
Affiliation(s)
- Xing Yang
- Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, 650051, China
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, Yunnan, 650051, China
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Haibo Xu
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Xu Yang
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Hui Wang
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Li Zou
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Qin Yang
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Xiaopeng Qi
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Li Li
- Research Center of Stem cells and Ageing, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Hongxia Duan
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100000, China
| | - Xiyun Yan
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100000, China
| | - Nai Yang Fu
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, 169857, Singapore
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Jing Tan
- Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, 650051, China.
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, Yunnan, 650051, China.
| | - Zongliu Hou
- Yan'an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, 650051, China.
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, Yunnan, 650051, China.
| | - Baowei Jiao
- Key Laboratory of Genetic Evolution & Animal Models (Chinese Academy of Sciences), Chinese Academy of Sciences, Kunming, Yunnan, 650201, China.
- KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China.
| |
Collapse
|
9
|
Marzban H, Pedram N, Amini P, Gholampour Y, Saranjam N, Moradi S, Rahvarian J. Immunobiology of cancer stem cells and their immunoevasion mechanisms. Mol Biol Rep 2023; 50:9559-9573. [PMID: 37776412 DOI: 10.1007/s11033-023-08768-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/16/2023] [Indexed: 10/02/2023]
Abstract
Cancer stem cells (CSCs) defined as a small fraction of cells within malignancies have been isolated from tumors with different histological origins with stem related characteristics such as self-replicating potential, tumorigenesis, and therapy resistance. The dynamic communication between CSCs and tumor microenvironment particularly immune cells orchestrates their fate and plasticity as well as the patient outcome. According to recent evidence, it has been reported that they harness different immunological pathways to escape immunosurveillance and express aberrantly immunomodulatory agents or decreased levels of factors forming antigen presenting machinery (APM), subsequently followed by impaired antigen presentation and suppressed immune detection. As effective therapies are expected to be able to eradicate CSCs, mechanistic understanding of such interactions can provide insights into causes of therapy failure particularly in immunotherapy. Also, it can contribute to enhance the practical interventions against CSCs and their immunomodulatory features resulting in CSCs eradication and improving patient clinical outcome. The aim of this review is to explain the present knowledge regarding the immunobiology of CSCs and the immunoevasion mechanisms they use.
Collapse
Affiliation(s)
- Havva Marzban
- Department of Immunology, Mayo Clinic, Scottsdale, US.
| | - Nastaran Pedram
- Faculty of Veterinary Medicine, Department of Clinical Science, Shiraz University, Shiraz, Iran
| | - Parnian Amini
- Department of Veterinary Laboratory Science, Islamic Azad University, Rasht Branch, Rasht, Iran
| | - Yasaman Gholampour
- Faculty of Veterinary Medicine, Department of Clinical Sciences, Razi University, Kermanshah, Iran
| | | | - Samira Moradi
- Faculty of Medical Science, Department of Medicine, Hormozgan University, Bandar Abbas, Iran
| | - Jeiran Rahvarian
- Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
10
|
Espinosa-Sotelo R, Fusté NP, Peñuelas-Haro I, Alay A, Pons G, Almodóvar X, Albaladejo J, Sánchez-Vera I, Bonilla-Amadeo R, Dituri F, Serino G, Ramos E, Serrano T, Calvo M, Martínez-Chantar ML, Giannelli G, Bertran E, Fabregat I. Dissecting the role of the NADPH oxidase NOX4 in TGF-beta signaling in hepatocellular carcinoma. Redox Biol 2023; 65:102818. [PMID: 37463530 PMCID: PMC10372458 DOI: 10.1016/j.redox.2023.102818] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/05/2023] [Accepted: 07/12/2023] [Indexed: 07/20/2023] Open
Abstract
The NADPH oxidase NOX4 has been proposed as necessary for the apoptosis induced by the Transforming Growth Factor-beta (TGF-β) in hepatocytes and hepatocellular carcinoma (HCC) cells. However, whether NOX4 is required for TGF-β-induced canonical (SMADs) or non-canonical signals is not fully understood yet, neither its potential involvement in other parallel actions induced by TGF-β. In this work we have used CRISPR Cas9 technology to stable attenuate NOX4 expression in HCC cells. Results have indicated that NOX4 is required for an efficient SMAD2/3 phosphorylation in response to TGF-β, whereas non-canonical signals, such as the phosphorylation of the Epidermal Growth Receptor or AKT, are higher in NOX4 silenced cells. TGF-β-mediated inhibition of cell proliferation and viability is attenuated in NOX4 silenced cells, correlating with decreased response in terms of apoptosis, and maintenance of high expression of MYC and CYCLIN D1. These results would indicate that NOX4 is required for all the tumor suppressor actions of TGF-β in HCC. However, analysis in human HCC tumors has revealed a worse prognosis for patients showing high expression of TGF-β1-related genes concomitant with high expression of NOX4. Deepening into other tumorigenic actions of TGF-β that may contribute to tumor progression, we found that NOX4 is also required for TGF-β-induced migratory effects. The Epithelial-Mesenchymal transition (EMT) program does not appear to be affected by attenuation of NOX4 levels. However, TGF-β-mediated regulation of cytoskeleton dynamics and focal adhesions require NOX4, which is necessary for TGF-β-induced increase in the chaperone Hsp27 and correct subcellular localization of Hic-5 within focal adhesions, as well for upregulation of the metalloprotease MMP9. All these results together point to NOX4 as a key element in the whole TGF-β signaling in HCC cells, revealing an unknown role for NOX4 as tumor promoter in HCC patients presenting activation of the TGF-β pathway.
Collapse
Affiliation(s)
- Rut Espinosa-Sotelo
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; CIBEREHD, ISCIII, Spain
| | - Noel P Fusté
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Irene Peñuelas-Haro
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; CIBEREHD, ISCIII, Spain
| | - Ania Alay
- Unit of Bioinformatics for Precision Oncology, Catalan Institute of Oncology (ICO), L'Hospitalet de Llobregat, Barcelona, Spain; Preclinical and Experimental Research in Thoracic Tumors (PReTT), Oncobell Program, IDIBELL, L'Hospitalet de Llobregat, Spain
| | - Gabriel Pons
- Physiological Sciences Department, University of Barcelona, Oncobell-IDIBELL, Barcelona, Spain
| | - Xènia Almodóvar
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Júlia Albaladejo
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ismael Sánchez-Vera
- Physiological Sciences Department, University of Barcelona, Oncobell-IDIBELL, Barcelona, Spain
| | - Ricard Bonilla-Amadeo
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Francesco Dituri
- National Institute of Gastroenterology, IRCCS Saverio De Bellis Research Hospital, Castellana Wrotte, Bari, Italy
| | - Grazia Serino
- National Institute of Gastroenterology, IRCCS Saverio De Bellis Research Hospital, Castellana Wrotte, Bari, Italy
| | - Emilio Ramos
- CIBEREHD, ISCIII, Spain; Department of Surgery, Liver Transplant Unit, University Hospital of Bellvitge and Faculty of Medicine and Health Sciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Teresa Serrano
- CIBEREHD, ISCIII, Spain; Pathological Anatomy Service, University Hospital of Bellvitge and Faculty of Medicine and Health Sciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Mariona Calvo
- Oncología Médica, Institut Català d'Oncologia (ICO-IDIBELL), L'Hospitalet del Llobregat, Barcelona, Spain
| | - María Luz Martínez-Chantar
- CIBEREHD, ISCIII, Spain; Center for Cooperative Research in Biosciences (CIC BioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Bizkaia, Spain
| | - Gianluigi Giannelli
- National Institute of Gastroenterology, IRCCS Saverio De Bellis Research Hospital, Castellana Wrotte, Bari, Italy
| | - Esther Bertran
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; CIBEREHD, ISCIII, Spain
| | - Isabel Fabregat
- TGF-β and Cancer Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain; CIBEREHD, ISCIII, Spain.
| |
Collapse
|
11
|
Murai T, Matsuda S. Pleiotropic Signaling by Reactive Oxygen Species Concerted with Dietary Phytochemicals and Microbial-Derived Metabolites as Potent Therapeutic Regulators of the Tumor Microenvironment. Antioxidants (Basel) 2023; 12:1056. [PMID: 37237922 PMCID: PMC10215163 DOI: 10.3390/antiox12051056] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
The excessive generation of reactive oxygen species (ROS) plays a pivotal role in the pathogenesis of diseases. ROS are central to cellular redox regulation and act as second messengers to activate redox-sensitive signals. Recent studies have revealed that certain sources of ROS can be beneficial or harmful to human health. Considering the essential and pleiotropic roles of ROS in basic physiological functions, future therapeutics should be designed to modulate the redox state. Dietary phytochemicals, microbiota, and metabolites derived from them can be expected to be developed as drugs to prevent or treat disorders in the tumor microenvironment.
Collapse
Affiliation(s)
- Toshiyuki Murai
- Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita 565-0871, Japan
| | - Satoru Matsuda
- Department of Food Science and Nutrition, Nara Women’s University, Kita-Uoya Nishimachi, Nara 630-8506, Japan
| |
Collapse
|
12
|
Yao L, Li J, Jiang B, Zhang Z, Li X, Ouyang X, Xiao Y, Liu G, Wang Z, Zhang G. RNF2 inhibits E-Cadherin transcription to promote hepatocellular carcinoma metastasis via inducing histone mono-ubiquitination. Cell Death Dis 2023; 14:261. [PMID: 37037816 PMCID: PMC10085990 DOI: 10.1038/s41419-023-05785-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 04/12/2023]
Abstract
RNF2 is a RING domain-containing E3 ubiquitin ligase that mediate histone H2A mono-ubiquitination to repress gene transcription, but its expression patterns and molecular function in hepatocellular carcinoma (HCC) remain unclear. Herein, we extracted data from TGCA database and validated RNF2 expression in our own cohort, which revealed that RNF2 was highly expressed in HCC and was associated with malignant characteristics and poor prognosis of HCC. Moreover, RNF2 was demonstrated to promote HCC metastasis via enhancing epithelial-mesenchymal transition (EMT) both in vitro and in vivo. Mechanistically, RNF2 repressed E-Cadherin transcription by increasing the deposition of H2K119ub at the E-Cadherin promoter region. In addition, RNF2-regulated crosstalk between H2AK119ub, H3K27me3 and H3K4me3 synergistically reduced E-Cadherin transcription, which promoted EMT and HCC metastasis. These results indicate that RNF2 played an oncogenic role in HCC progression via inducing EMT, and RNF2 could be a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Lei Yao
- Department of General Surgery, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, 410008, China
| | - Jun Li
- Department of General Surgery, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, 410008, China
| | - Bo Jiang
- Department of thyroid surgery, First Affiliated Hospital of Zhengzhou University, No.1, East Construction Road, Zhengzhou, 450052, Henan, China
| | - Zeyu Zhang
- Department of General Surgery, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, 410008, China
| | - Xinying Li
- Department of General Surgery, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, No. 87, Xiangya Road, Changsha, 410008, China
| | - Xiwu Ouyang
- Department of General Surgery, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, No. 87, Xiangya Road, Changsha, 410008, China
| | - Yao Xiao
- Department of General Surgery, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, No. 87, Xiangya Road, Changsha, 410008, China
| | - Guodong Liu
- Department of General Surgery, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, No. 87, Xiangya Road, Changsha, 410008, China
| | - Zhiming Wang
- Department of General Surgery, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, No. 87, Xiangya Road, Changsha, 410008, China.
| | - Gewen Zhang
- Department of General Surgery, Xiangya Hospital, Central South University, No. 87, Xiangya Road, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, No. 87, Xiangya Road, Changsha, 410008, China.
| |
Collapse
|
13
|
Liao X, Chen J, Luo D, Luo B, Huang W, Xie W. Prognostic value of long non-coding RNA MALAT1 in hepatocellular carcinoma: A study based on multi-omics analysis and RT-PCR validation. Pathol Oncol Res 2023; 28:1610808. [PMID: 36685103 PMCID: PMC9845286 DOI: 10.3389/pore.2022.1610808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023]
Abstract
Background: This study aimed to explore the relationship between MALAT1 and the prognosis of patients with hepatocellular carcinoma (HCC). Methods: We constructed a MALAT1 protein-protein interaction network using the STRING database and a network of competing endogenous RNAs (ceRNAs) using the StarBase database. Using data from the GEPIA2 database, we studied the association between genes in these networks and survival of patients with HCC. The potential mechanisms underlying the relationship between MALAT1 and HCC prognosis were studied using combined data from RNA sequencing, DNA methylation, and somatic mutation data from The Cancer Genome Atlas (TCGA) liver cancer cohort. Tumor tissues and 19 paired adjacent non-tumor tissues (PANTs) from HCC patients who underwent radical resection were analyzed for MALAT1 mRNA levels using real-time PCR, and associations of MALAT1 expression with clinicopathological features or prognosis of patients were analyzed using log-rank test and Gehan-Breslow-Wilcoxon test. Results: Five interacting proteins and five target genes of MALAT1 in the ceRNA network significantly correlated with poor survival of patients with HCC (p < 0.05). High MALAT1 expression was associated with mutations in two genes leading to poor prognosis and may upregulate some prognostic risk genes through methylation. MALAT1 was significantly co-expressed with various signatures of genes involved in HCC progression, including the cell cycle, DNA damage repair, mismatch repair, homologous recombination, molecular cancer m6A, exosome, ferroptosis, infiltration of lymphocyte (p < 0.05). The expression of MALAT1 was markedly upregulated in HCC tissues compared with PANTs. In Kaplan-Meier analysis, patients with high MALAT1 expression had significantly shorter progression-free survival (PFS) (p = 0.033) and overall survival (OS) (p = 0.023) than those with low MALAT1 expression. Median PFS was 19.2 months for patients with high MALAT1 expression and 52.8 months for patients with low expression, while the corresponding median OS was 40.5 and 78.3 months. In subgroup analysis of patients with vascular invasion, cirrhosis, and HBsAg positive or AFP positive, MALAT1 overexpression was significantly associated with shorter PFS and OS. Models for predicting PFS and OS constructed based on MALAT1 expression and clinicopathological features had moderate predictive power, with areas under the receiver operating characteristic curves of 0.661-0.731. Additionally, MALAT1 expression level was significantly associated with liver cirrhosis, vascular invasion, and tumor capsular infiltration (p < 0.05 for all). Conclusion: MALAT1 is overexpressed in HCC, and higher expression is associated with worse prognosis. MALAT1 mRNA level may serve as a prognostic marker for patients with HCC after hepatectomy.
Collapse
Affiliation(s)
- Xiaoli Liao
- Department of Chemotherapy, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Junming Chen
- Department of Medical Oncology, Fujian Medical University Union Hospital, Fuzhou, China
| | - DongCheng Luo
- Department of Chemotherapy, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Baohua Luo
- Department of Gastroenterology, Jiangbin Hospital, Nanning, China
| | - Wenfeng Huang
- Department of Medical Oncology, Second Affiliated Hospital of Guangxi Medical University, Nanning, China,*Correspondence: Wenfeng Huang, ; Weimin Xie,
| | - Weimin Xie
- Department of Chemotherapy, Guangxi Medical University Cancer Hospital, Nanning, China,*Correspondence: Wenfeng Huang, ; Weimin Xie,
| |
Collapse
|
14
|
Cui J, Zhang C, Lee JE, Bartholdy BA, Yang D, Liu Y, Erler P, Galbo PM, Hodge DQ, Huangfu D, Zheng D, Ge K, Guo W. MLL3 loss drives metastasis by promoting a hybrid epithelial-mesenchymal transition state. Nat Cell Biol 2023; 25:145-158. [PMID: 36604594 PMCID: PMC10003829 DOI: 10.1038/s41556-022-01045-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 11/09/2022] [Indexed: 01/07/2023]
Abstract
Phenotypic plasticity associated with the hybrid epithelial-mesenchymal transition (EMT) is crucial to metastatic seeding and outgrowth. However, the mechanisms governing the hybrid EMT state remain poorly defined. Here we showed that deletion of the epigenetic regulator MLL3, a tumour suppressor frequently altered in human cancer, promoted the acquisition of hybrid EMT in breast cancer cells. Distinct from other EMT regulators that mediate only unidirectional changes, MLL3 loss enhanced responses to stimuli inducing EMT and mesenchymal-epithelial transition in epithelial and mesenchymal cells, respectively. Consequently, MLL3 loss greatly increased metastasis by enhancing metastatic colonization. Mechanistically, MLL3 loss led to increased IFNγ signalling, which contributed to the induction of hybrid EMT cells and enhanced metastatic capacity. Furthermore, BET inhibition effectively suppressed the growth of MLL3-mutant primary tumours and metastases. These results uncovered MLL3 mutation as a key driver of hybrid EMT and metastasis in breast cancer that could be targeted therapeutically.
Collapse
Affiliation(s)
- Jihong Cui
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Chi Zhang
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ji-Eun Lee
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Boris A Bartholdy
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Dapeng Yang
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Yu Liu
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Piril Erler
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Phillip M Galbo
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Dayle Q Hodge
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Danwei Huangfu
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- Departments of Neurology and Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kai Ge
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Wenjun Guo
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA.
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
15
|
Alfarano G, Audano M, Di Chiaro P, Balestrieri C, Milan M, Polletti S, Spaggiari P, Zerbi A, Diaferia GR, Mitro N, Natoli G. Interferon regulatory factor 1 (IRF1) controls the metabolic programmes of low-grade pancreatic cancer cells. Gut 2023; 72:109-128. [PMID: 35568393 DOI: 10.1136/gutjnl-2021-325811] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 04/29/2022] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Pancreatic ductal adenocarcinomas (PDACs) include heterogeneous mixtures of low-grade cells forming pseudoglandular structures and compact nests of high-grade cells organised in non-glandular patterns. We previously reported that low-grade PDAC cells display high expression of interferon regulatory factor 1 (IRF1), a pivotal transcription factor of the interferon (IFN) system, suggesting grade-specific, cell-intrinsic activation of IFN responses. Here, we set out to determine the molecular bases and the functional impact of the activation of IFN-regulated responses in human PDACs. DESIGN We first confirmed the correlation between glandular differentiation and molecular subtypes of PDAC on the one hand, and the expression of IRF1 and IFN-stimulated genes on the other. We next used unbiased omics approaches to systematically analyse basal and IFN-regulated responses in low-grade and high-grade PDAC cells, as well as the impact of IRF1 on gene expression programmes and metabolic profiles of PDAC cells. RESULTS High-level expression of IRF1 in low-grade PDAC cells was controlled by endodermal lineage-determining transcription factors. IRF1-regulated gene expression equipped low-grade PDAC cells with distinctive properties related to antigen presentation and processing as well as responsiveness to IFN stimulation. Notably, IRF1 also controlled the characteristic metabolic profile of low-grade PDAC cells, suppressing both mitochondrial respiration and fatty acid synthesis, which may in part explain its growth-inhibiting activity. CONCLUSION IRF1 links endodermal differentiation to the expression of genes controlling antigen presentation and processing as well as to the specification of the metabolic profile characteristic of classical PDAC cells.
Collapse
Affiliation(s)
- Gabriele Alfarano
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Matteo Audano
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Pierluigi Di Chiaro
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Chiara Balestrieri
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marta Milan
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Sara Polletti
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Paola Spaggiari
- Department of Pathology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Alessandro Zerbi
- Pancreatic Surgery Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Humanitas University, Pieve Emanuele (Milano), Italy
| | | | - Nico Mitro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Gioacchino Natoli
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
16
|
Matched Analyses of Brain Metastases versus Primary Non-Small Cell Lung Cancer Reveal a Unique microRNA Signature. Int J Mol Sci 2022; 24:ijms24010193. [PMID: 36613642 PMCID: PMC9820685 DOI: 10.3390/ijms24010193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
Distant spreading of tumor cells to the central nervous system in non-small cell lung cancer (NSCLC) occurs frequently and poses major clinical issues due to limited treatment options. RNAs displaying differential expression in brain metastasis versus primary NSCLC may explain distant tumor growth and may potentially be used as therapeutic targets. In this study, we conducted systematic microRNA expression profiling from tissue biopsies of primary NSCLC and brain metastases from 25 patients. RNA analysis was performed using the nCounter Human v3 miRNA Expression Assay, NanoString technologies, followed by differential expression analysis and in silico target gene pathway analysis. We uncovered a panel of 11 microRNAs with differential expression and excellent diagnostic performance in brain metastasis versus primary NSCLC. Five microRNAs were upregulated in brain metastasis (miR-129-2-3p, miR-124-3p, miR-219a-2-3p, miR-219a-5p, and miR-9-5p) and six microRNAs were downregulated in brain metastasis (miR-142-3p, miR-150-5p, miR-199b-5p, miR-199a-3p, miR-199b-5p, and miR-199a-5p). The differentially expressed microRNAs were predicted to converge on distinct target gene networks originating from five to twelve core target genes. In conclusion, we uncovered a unique microRNA profile linked to two target gene networks. Our results highlight the potential of specific microRNAs as biomarkers for brain metastasis in NSCLC and indicate plausible mechanistic connections.
Collapse
|
17
|
Li J, Wang ZH, Dang YM, Li DN, Liu Z, Dai DP, Cai JP. MTH1 suppression enhances the stemness of MCF7 through upregulation of STAT3. Free Radic Biol Med 2022; 188:447-458. [PMID: 35809767 DOI: 10.1016/j.freeradbiomed.2022.06.240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 11/22/2022]
Abstract
MTH1 protein can sanitize the damaged (d)NTP pool and MTH1 inhibitors have been developed to impede the growth of rapidly proliferating tumor cells; however, the effect of MTH1 inhibition on breast cancer stemness has not been reported yet. Here, we constructed breast cancer cell lines with the stable depletion of MTH1. MTH1 suppression clearly increased the ratio of CD44+CD24-/low subpopulations and promoted the formation of tumorspheres in MCF7 and T47D cells. RNA expression profiling, RT-qPCR and Western blotting showed the upregulation of master stem cell transcription factors Sox2, Oct4 and Nanog in MTH1 knockdown cells. GSEA suggested and Western blotting verified that MTH1 knockdown increased the expression of phosphorylated STAT3 (Tyr705). Furthermore, we indirectly demonstrated that the increased concentration of 8-oxo-dGTP and 8-oxo-GTP in MTH1-knockdown cells and exogenous 8-oxoGTP, rather than 8-oxo-dGTP, could significantly increase the phosphorylation of STAT3. In conclusion, this work indicates that MTH1 inhibition increased the proportion of breast cancer stem cells (BCSCs) and promoted stemness properties in MCF7 cells.
Collapse
Affiliation(s)
- Jin Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China
| | - Zi-Hui Wang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China; Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, PR China
| | - Ya-Min Dang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China; Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, PR China
| | - Dan-Ni Li
- The Clinical Laboratory of Beijing Hospital, Ministry of Health, Beijing, PR China
| | - Zhen Liu
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China; Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, PR China
| | - Da-Peng Dai
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China
| | - Jian-Ping Cai
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, PR China.
| |
Collapse
|
18
|
Bozsodi A, Scholtz B, Papp G, Sapi Z, Biczo A, Varga PP, Lazary A. Potential molecular mechanism in self-renewal is associated with miRNA dysregulation in sacral chordoma - A next-generation RNA sequencing study. Heliyon 2022; 8:e10227. [PMID: 36033338 PMCID: PMC9404356 DOI: 10.1016/j.heliyon.2022.e10227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/24/2022] [Accepted: 08/04/2022] [Indexed: 12/04/2022] Open
Abstract
Background Chordoma, the most frequent malignant primary spinal neoplasm, characterized by a high rate of recurrence, is an orphan disease where the clarification of the molecular oncogenesis would be crucial to developing new, effective therapies. Dysregulated expression of non-coding RNAs, especially microRNAs (miRNA) has a significant role in cancer development. Methods Next-generation RNA sequencing (NGS) was used for the combinatorial analysis of mRNA-miRNA gene expression profiles in sacral chordoma and nucleus pulposus samples. Advanced bioinformatics workflow was applied to the data to predict miRNA-mRNA regulatory networks with altered activity in chordoma. Results A large set of significantly dysregulated miRNAs in chordoma and their differentially expressed target genes have been identified. Several molecular pathways related to tumorigenesis and the modulation of the immune system are predicted to be dysregulated due to aberrant miRNA expression in chordoma. We identified a gene set including key regulators of the Hippo pathway, which is targeted by differently expressed miRNAs, and validated their altered expression by RT-qPCR. These newly identified miRNA/RNA interactions are predicted to have a role in the self-renewal process of chordoma stem cells, which might sustain the high rate of recurrence for this tumor. Conclusions Our results can significantly contribute to the designation of possible targets for the development of anti-chordoma therapies.
Collapse
Affiliation(s)
- Arpad Bozsodi
- National Center for Spinal Disorders, Buda Health Center, Királyhágó u. 1-3, Budapest, H-1126, Hungary
- School of PhD Studies, Semmelweis University, Üllői út 26, Budapest, H-1085, Hungary
| | - Beata Scholtz
- Genomic Medicine and Bioinformatic Core Facility, Dept. of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, H-4032, Hungary
| | - Gergo Papp
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, H-1085, Hungary
| | - Zoltan Sapi
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26, Budapest, H-1085, Hungary
| | - Adam Biczo
- National Center for Spinal Disorders, Buda Health Center, Királyhágó u. 1-3, Budapest, H-1126, Hungary
| | - Peter Pal Varga
- National Center for Spinal Disorders, Buda Health Center, Királyhágó u. 1-3, Budapest, H-1126, Hungary
| | - Aron Lazary
- National Center for Spinal Disorders, Buda Health Center, Királyhágó u. 1-3, Budapest, H-1126, Hungary
- Department of Spine Surgery, Department of Orthopaedics, Semmelweis University, Királyhágó u. 1-3, Budapest, H-1126, Hungary
- Corresponding author.
| |
Collapse
|
19
|
Wang L, Jin Z, Master RP, Maharjan CK, Carelock ME, Reccoppa TBA, Kim MC, Kolb R, Zhang W. Breast Cancer Stem Cells: Signaling Pathways, Cellular Interactions, and Therapeutic Implications. Cancers (Basel) 2022; 14:3287. [PMID: 35805056 PMCID: PMC9265870 DOI: 10.3390/cancers14133287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/02/2022] [Accepted: 07/02/2022] [Indexed: 02/01/2023] Open
Abstract
Breast cancer stem cells (BCSCs) constitute a small population of cells within breast cancer and are characterized by their ability to self-renew, differentiate, and recapitulate the heterogeneity of the tumor. Clinically, BCSCs have been correlated with cancer progression, metastasis, relapse, and drug resistance. The tumorigenic roles of BCSCs have been extensively reviewed and will not be the major focus of the current review. Here, we aim to highlight how the crucial intrinsic signaling pathways regulate the fate of BCSCs, including the Wnt, Notch, Hedgehog, and NF-κB signaling pathways, as well as how different cell populations crosstalk with BCSCs within the TME, including adipocytes, endothelial cells, fibroblasts, and immune cells. Based on the molecular and cellular activities of BCSCs, we will also summarize the targeting strategies for BCSCs and related clinical trials. This review will highlight that BCSC development in breast cancer is impacted by both BCSC endogenous signaling and external factors in the TME, which provides an insight into how to establish a comprehensively therapeutic strategy to target BCSCs for breast cancer treatments.
Collapse
Affiliation(s)
- Lei Wang
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
- Immunology Concentration, Biomedical Graduate Program, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Zeng Jin
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
- Cancer Biology Concentration, Biomedical Graduate Program, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Rohan P. Master
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
| | - Chandra K. Maharjan
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
| | - Madison E. Carelock
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
- Cancer Biology Concentration, Biomedical Graduate Program, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Tiffany B. A. Reccoppa
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
- Department of Biology, College of Liberal Arts & Sciences, University of Florida, Gainesville, FL 32610, USA
| | - Myung-Chul Kim
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
| | - Ryan Kolb
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
- UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
| | - Weizhou Zhang
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32610, USA; (L.W.); (Z.J.); (R.P.M.); (C.K.M.); (M.E.C.); (T.B.A.R.); (M.-C.K.); (R.K.)
- UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
20
|
Huang JL, Chen SY, Lin CS. Targeting Cancer Stem Cells through Epigenetic Modulation of Interferon Response. J Pers Med 2022; 12:jpm12040556. [PMID: 35455671 PMCID: PMC9027081 DOI: 10.3390/jpm12040556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells (CSCs) are a small subset of cancer cells and are thought to play a critical role in the initiation and maintenance of tumor mass. CSCs exhibit similar hallmarks to normal stem cells, such as self-renewal, differentiation, and homeostasis. In addition, CSCs are equipped with several features so as to evade anticancer mechanisms. Therefore, it is hard to eliminate CSCs by conventional anticancer therapeutics that are effective at clearing bulk cancer cells. Interferons are innate cytokines and are the key players in immune surveillance to respond to invaded pathogens. Interferons are also crucial for adaptive immunity for the killing of specific aliens including cancer cells. However, CSCs usually evolve to escape from interferon-mediated immune surveillance and to shape the niche as a “cold” tumor microenvironment (TME). These CSC characteristics are related to their unique epigenetic regulations that are different from those of normal and bulk cancer cells. In this review, we introduce the roles of epigenetic modifiers, focusing on LSD1, BMI1, G9a, and SETDB1, in contributing to CSC characteristics and discussing the interplay between CSCs and interferon response. We also discuss the emerging strategy for eradicating CSCs by targeting these epigenetic modifiers, which can elevate cytosolic nuclei acids, trigger interferon response, and reshape a “hot” TME for improving cancer immunotherapy. The key epigenetic and immune genes involved in this crosstalk can be used as biomarkers for precision oncology.
Collapse
Affiliation(s)
- Jau-Ling Huang
- Department of Bioscience Technology, College of Health Science, Chang Jung Christian University, Tainan 711, Taiwan;
| | - Si-Yun Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Chang-Shen Lin
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Correspondence:
| |
Collapse
|
21
|
Goldhammer N, Kim J, Villadsen R, Rønnov-Jessen L, Petersen OW. Myoepithelial progenitors as founder cells of hyperplastic human breast lesions upon PIK3CA transformation. Commun Biol 2022; 5:219. [PMID: 35273332 PMCID: PMC8913783 DOI: 10.1038/s42003-022-03161-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/08/2022] [Indexed: 12/20/2022] Open
Abstract
The myoepithelial (MEP) lineage of human breast comprises bipotent and multipotent progenitors in ducts and terminal duct lobular units (TDLUs). We here assess whether this heterogeneity impacts on oncogenic PIK3CA transformation. Single cell RNA sequencing (scRNA-seq) and multicolor imaging reveal that terminal ducts represent the most enriched source of cells with ductal MEP markers including α-smooth muscle actin (α-SMA), keratin K14, K17 and CD200. Furthermore, we find neighboring CD200high and CD200low progenitors within terminal ducts. When sorted and kept in ground state conditions, their CD200low and CD200high phenotypes are preserved. Upon differentiation, progenitors remain multipotent and bipotent, respectively. Immortalized progenitors are transduced with mutant PIK3CA on an shp53 background. Upon transplantation, CD200low MEP progenitors distinguish from CD200high by the formation of multilayered structures with a hyperplastic inner layer of luminal epithelial cells. We suggest a model with spatially distributed MEP progenitors as founder cells of biphasic breast lesions with implications for early detection and prevention strategies. Breast myoepithelial cells are characterised using single cell sequencing, where they are distinguished by CD200 expression. Distinct properties of CD200-low and CD200-high are found, which suggest that CD200-low cells are multipotent, whereas CD200-high cells are bipotent.
Collapse
Affiliation(s)
- Nadine Goldhammer
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, Denmark.,Novo Nordisk Foundation Center for Stem Cell Biology, University of Copenhagen, Copenhagen N, Denmark
| | - Jiyoung Kim
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, Denmark.,Novo Nordisk Foundation Center for Stem Cell Biology, University of Copenhagen, Copenhagen N, Denmark
| | - René Villadsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, Denmark
| | - Lone Rønnov-Jessen
- Section for Cell Biology and Physiology, Department of Biology, University of Copenhagen, Copenhagen Ø, Denmark
| | - Ole William Petersen
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen N, Denmark. .,Novo Nordisk Foundation Center for Stem Cell Biology, University of Copenhagen, Copenhagen N, Denmark.
| |
Collapse
|
22
|
Pérez-Núñez I, Rozalén C, Palomeque JÁ, Sangrador I, Dalmau M, Comerma L, Hernández-Prat A, Casadevall D, Menendez S, Liu DD, Shen M, Berenguer J, Ruiz IR, Peña R, Montañés JC, Albà MM, Bonnin S, Ponomarenko J, Gomis RR, Cejalvo JM, Servitja S, Marzese DM, Morey L, Voorwerk L, Arribas J, Bermejo B, Kok M, Pusztai L, Kang Y, Albanell J, Celià-Terrassa T. LCOR mediates interferon-independent tumor immunogenicity and responsiveness to immune-checkpoint blockade in triple-negative breast cancer. NATURE CANCER 2022; 3:355-370. [PMID: 35301507 DOI: 10.1038/s43018-022-00339-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 01/21/2022] [Indexed: 01/05/2023]
Abstract
Ligand-dependent corepressor (LCOR) mediates normal and malignant breast stem cell differentiation. Cancer stem cells (CSCs) generate phenotypic heterogeneity and drive therapy resistance, yet their role in immunotherapy is poorly understood. Here we show that immune-checkpoint blockade (ICB) therapy selects for LCORlow CSCs with reduced antigen processing/presentation machinery (APM) driving immune escape and ICB resistance in triple-negative breast cancer (TNBC). We unveil an unexpected function of LCOR as a master transcriptional activator of APM genes binding to IFN-stimulated response elements (ISREs) in an IFN signaling-independent manner. Through genetic modification of LCOR expression, we demonstrate its central role in modulation of tumor immunogenicity and ICB responsiveness. In TNBC, LCOR associates with ICB clinical response. Importantly, extracellular vesicle (EV) Lcor-messenger RNA therapy in combination with anti-PD-L1 overcame resistance and eradicated breast cancer metastasis in preclinical models. Collectively, these data support LCOR as a promising target for enhancement of ICB efficacy in TNBC, by boosting of tumor APM independently of IFN.
Collapse
Affiliation(s)
- Iván Pérez-Núñez
- Cancer Research Program, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Catalina Rozalén
- Cancer Research Program, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - José Ángel Palomeque
- Cancer Research Program, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Irene Sangrador
- Cancer Research Program, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Mariona Dalmau
- Cancer Research Program, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Laura Comerma
- Pathology Department, Hospital del Mar, Barcelona, Spain
| | - Anna Hernández-Prat
- Cancer Research Program, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - David Casadevall
- Cancer Research Program, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Silvia Menendez
- Cancer Research Program, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Daniel Dan Liu
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA
| | - Minhong Shen
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Jordi Berenguer
- Cancer Research Program, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Irene Rius Ruiz
- Preclinical Research Program, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Raul Peña
- Cancer Research Program, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - José Carlos Montañés
- Research Program on Biomedical Informatics, Hospital del Mar Medical Research Institute and Universitat Pompeu Fabra, Barcelona, Spain
| | - M Mar Albà
- Research Program on Biomedical Informatics, Hospital del Mar Medical Research Institute and Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Sarah Bonnin
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Julia Ponomarenko
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Roger R Gomis
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
- Cancer Science Program, Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Oncología, Madrid, Spain
| | - Juan Miguel Cejalvo
- Centro de Investigación Biomédica en Red de Oncología, Madrid, Spain
- Medical Oncology Department, Hospital Clínico Universitario; Medicine Department, Universidad de Valencia, Spain, INCLIVA, Valencia, Spain
| | - Sonia Servitja
- Centro de Investigación Biomédica en Red de Oncología, Madrid, Spain
- Medical Oncology Department, Hospital del Mar, Barcelona, Spain
| | - Diego M Marzese
- Fundació Institut d'Investigació Sanitària Illes Balears, Mallorca, Spain
| | - Lluis Morey
- Sylvester Comprehensive Cancer Center, Miami, FL, USA
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Leonie Voorwerk
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Joaquín Arribas
- Cancer Research Program, Hospital del Mar Medical Research Institute, Barcelona, Spain
- Preclinical Research Program, Vall d'Hebron Institute of Oncology, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Oncología, Madrid, Spain
| | - Begoña Bermejo
- Centro de Investigación Biomédica en Red de Oncología, Madrid, Spain
- Medical Oncology Department, Hospital Clínico Universitario; Medicine Department, Universidad de Valencia, Spain, INCLIVA, Valencia, Spain
| | - Marleen Kok
- Division of Tumor Biology & Immunology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Lajos Pusztai
- Breast Medical Oncology, Yale Cancer Center, Yale School of Medicine, New Haven, CT, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, NJ, USA
| | - Joan Albanell
- Cancer Research Program, Hospital del Mar Medical Research Institute, Barcelona, Spain.
- Universitat Pompeu Fabra, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Oncología, Madrid, Spain.
- Medical Oncology Department, Hospital del Mar, Barcelona, Spain.
| | - Toni Celià-Terrassa
- Cancer Research Program, Hospital del Mar Medical Research Institute, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Oncología, Madrid, Spain.
| |
Collapse
|
23
|
Richard V, Davey MG, Annuk H, Miller N, Dwyer RM, Lowery A, Kerin MJ. MicroRNAs in Molecular Classification and Pathogenesis of Breast Tumors. Cancers (Basel) 2021; 13:5332. [PMID: 34771496 PMCID: PMC8582384 DOI: 10.3390/cancers13215332] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/21/2022] Open
Abstract
The current clinical practice of breast tumor classification relies on the routine immunohistochemistry-based expression analysis of hormone receptors, which is inadequate in addressing breast tumor heterogeneity and drug resistance. MicroRNA expression profiling in tumor tissue and in the circulation is an efficient alternative to intrinsic molecular subtyping that enables precise molecular classification of breast tumor variants, the prediction of tumor progression, risk stratification and also identifies critical regulators of the tumor microenvironment. This review integrates data from protein, gene and miRNA expression studies to elaborate on a unique miRNA-based 10-subtype taxonomy, which we propose as the current gold standard to allow appropriate classification and separation of breast cancer into a targetable strategy for therapy.
Collapse
Affiliation(s)
- Vinitha Richard
- Discipline of Surgery, The Lambe Institute for Translational Research, National University of Ireland, H91 YR71 Galway, Ireland; (M.G.D.); (H.A.); (N.M.); (R.M.D.); (A.L.)
| | | | | | | | | | | | - Michael J. Kerin
- Discipline of Surgery, The Lambe Institute for Translational Research, National University of Ireland, H91 YR71 Galway, Ireland; (M.G.D.); (H.A.); (N.M.); (R.M.D.); (A.L.)
| |
Collapse
|
24
|
Li B, Xia Y, Lv J, Wang W, Xuan Z, Chen C, Jiang T, Fang L, Wang L, Li Z, He Z, Li Q, Xie L, Qiu S, Zhang L, Zhang D, Xu H, Xu Z. miR-151a-3p-rich small extracellular vesicles derived from gastric cancer accelerate liver metastasis via initiating a hepatic stemness-enhancing niche. Oncogene 2021; 40:6180-6194. [PMID: 34535770 DOI: 10.1038/s41388-021-02011-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/18/2021] [Accepted: 09/06/2021] [Indexed: 12/24/2022]
Abstract
Liver metastasis (LM) severely affects gastric cancer (GC) patients' prognosis. Small extracellular vesicles (sEVs) play key roles in intercellular communication. Specific sEV-miRNAs from several types of cancer were found to induce a premetastatic niche in target organs before tumor cell arrive. However, whether the primary GC affects hepatic microenvironment or the role of sEV-miRNAs in GC-LM is yet unclear. We report that GC-derived sEVs are primarily absorbed by Kupffer cells (KCs). sEV-miR-151a-3p is highly expressed in GC-LM patients' plasma and presents poor prognosis. Treating mice with sEVs-enriched in miR-151a-3p promotes GC-LM, whereas has no influence on the proliferation of GC cells in situ. Mechanistically, sEV-miR-151a-3p inhibits SP3 in KCs. Simultaneously, sEV-miR-151a-3p targets YTHDF3 to decrease the transcriptional inhibitory activity of SP3 by reducing SUMO1 translation in a N6-methyladenosine-dependent manner. These factors contribute to TGF-β1 transactivation in KCs, subsequently activating the SMAD2/3 pathway and enhancing the stem cell-like properties of incoming GC cells. Furthermore, sEV-miR-151a-3p induces miR-151a-3p transcription in KCs to form a positive feedback loop. In summary, our results reveal a previously unidentified regulatory axis initiated by sEV-miR-151a-3p that establishes a hepatic stemness-permissive niche to support GC-LM. sEV-miR-151a-3p could be a promising diagnostic biomarker and preventive treatment candidate for GC-LM.
Collapse
Affiliation(s)
- Bowen Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Yiwen Xia
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Jialun Lv
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Weizhi Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Zhe Xuan
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Cen Chen
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, the First School of Clinical Medicine, Southern Medical University, Nanjing, 210002, Jiangsu Province, China
| | - Tianlu Jiang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Lang Fang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Linjun Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Zheng Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Zhongyuan He
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Qingya Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Li Xie
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Shengkui Qiu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China.,Department of General Surgery, the Second Affiliated Hospital of Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Lu Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Diancai Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Hao Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China. .,Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, China.
| |
Collapse
|
25
|
Actin Cytoskeleton Dynamics and Type I IFN-Mediated Immune Response: A Dangerous Liaison in Cancer? BIOLOGY 2021; 10:biology10090913. [PMID: 34571790 PMCID: PMC8469949 DOI: 10.3390/biology10090913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022]
Abstract
Simple Summary Actin cytoskeleton is a dynamic subcellular component critical for maintaining cell shape and for elaborating response to any stimulus converging on the cell. Cytoskeleton constantly interfaces with diverse cellular components and affects a wide range of processes important in homeostasis and disease. What has been clearly demonstrated to date is that pathogens modify and use host cytoskeleton to their advantage. What is now emerging is that in sterile conditions, when a chronic inflammation occurs as in cancer, the subversion of tissue homeostasis induces an alarm status which mimics infection. This activates cellular players similar to those that solve an infection, but their persistence may pave the way for tumor progression. Understanding molecular mechanisms engaged by cytoskeleton to induce this viral mimicry could improve our knowledge of processes governing tumor progression and resistance to therapy. Abstract Chronic viral infection and cancer are closely inter-related and are both characterized by profound alteration of tissue homeostasis. The actin cytoskeleton dynamics highly participate in tissue homeostasis and act as a sensor leading to an immune-mediated anti-cancer and anti-viral response. Herein we highlight the crucial role of actin cytoskeleton dynamics in participating in a viral mimicry activation with profound effect in anti-tumor immune response. This still poorly explored field understands the cytoskeleton dynamics as a platform of complex signaling pathways which may regulate Type I IFN response in cancer. This emerging network needs to be elucidated to identify more effective anti-cancer strategies and to further advance the immuno-oncology field which has revolutionized the cancer treatment. For a progress to occur in this exciting arena we have to shed light on actin cytoskeleton related pathways and immune response. Herein we summarize the major findings, considering the double sword of the immune response and in particular the role of Type I IFN pathways in resistance to anti-cancer treatment.
Collapse
|
26
|
Chen L, Yi X, Guo P, Guo H, Chen Z, Hou C, Qi L, Wang Y, Li C, Liu P, Liu Y, Xu Y, Zhang N. The role of bone marrow-derived cells in the origin of liver cancer revealed by single-cell sequencing. Cancer Biol Med 2021; 17:142-153. [PMID: 32296582 PMCID: PMC7142842 DOI: 10.20892/j.issn.2095-3941.2019.0369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 01/09/2020] [Indexed: 12/21/2022] Open
Abstract
Objective: Epithelial cancers often originate from progenitor cells, while the origin of hepatocellular carcinoma (HCC) is still controversial. HCC, one of the deadliest cancers, is closely linked with liver injuries and chronic inflammation, which trigger massive infiltration of bone marrow-derived cells (BMDCs) during liver repair. Methods: To address the possible roles of BMDCs in HCC origination, we established a diethylnitrosamine (DEN)-induced HCC model in bone marrow transplanted mice. Immunohistochemistry and frozen tissue immunofluorescence were used to verify DEN-induced HCC in the pathology of the disease. The cellular origin of DEN-induced HCC was further studied by single cell sequencing, single-cell nested PCR, and immunofluorescence-fluorescence in situ hybridization. Results: Studies by using single cell sequencing and biochemical analysis revealed that HCC cells in these mice were coming from donor mice BMDCs, and not from recipient mice. Furthermore, the copy numbers of mouse orthologs of several HCC-related genes previously reported in human HCC were also altered in our mouse model. DEN-induced HCCs exhibited a similar histological phenotype and genomic profile as human HCCs. Conclusions: These results suggested that BMDCs are an important origin of HCC, which provide important clues to HCC prevention, detection, and treatments.
Collapse
Affiliation(s)
- Lu Chen
- The concrete information of affiliations should be presented, for instance, Department of Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300070, China
| | - Xianfu Yi
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300070, China
| | - Piao Guo
- The concrete information of affiliations should be presented, for instance, Department of Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300070, China
| | - Hua Guo
- The concrete information of affiliations should be presented, for instance, Department of Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300070, China
| | - Ziye Chen
- The concrete information of affiliations should be presented, for instance, Department of Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300070, China
| | - Chunyu Hou
- The Center for Translational Cancer Research, Peking University First Hospital, Beijing 100034, China
| | - Lisha Qi
- The concrete information of affiliations should be presented, for instance, Department of Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300070, China
| | - Yongrong Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.,CAMS Key Laboratory for Prevention and Control of Hematological Disease Treatment Related Infection, Tianjin 300020, China
| | - Chengwen Li
- Cytogenetics Laboratory, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | - Peng Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
| | - Yucun Liu
- The Center for Translational Cancer Research, Peking University First Hospital, Beijing 100034, China
| | - Yuanfu Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China.,CAMS Key Laboratory for Prevention and Control of Hematological Disease Treatment Related Infection, Tianjin 300020, China
| | - Ning Zhang
- The concrete information of affiliations should be presented, for instance, Department of Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin 300070, China.,The Center for Translational Cancer Research, Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
27
|
Epithelial plasticity, epithelial-mesenchymal transition, and the TGF-β family. Dev Cell 2021; 56:726-746. [PMID: 33756119 DOI: 10.1016/j.devcel.2021.02.028] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/04/2021] [Accepted: 02/23/2021] [Indexed: 12/15/2022]
Abstract
Epithelial cells repress epithelial characteristics and elaborate mesenchymal characteristics to migrate to other locations and acquire new properties. Epithelial plasticity responses are directed through cooperation of signaling pathways, with TGF-β and TGF-β-related proteins playing prominent instructive roles. Epithelial-mesenchymal transitions (EMTs) directed by activin-like molecules, bone morphogenetic proteins, or TGF-β regulate metazoan development and wound healing and drive fibrosis and cancer progression. In carcinomas, diverse EMTs enable stem cell generation, anti-cancer drug resistance, genomic instability, and localized immunosuppression. This review discusses roles of TGF-β and TGF-β-related proteins, and underlying molecular mechanisms, in epithelial plasticity in development and wound healing, fibrosis, and cancer.
Collapse
|
28
|
Flindris S, Katsoulas N, Goussia A, Lazaris AC, Navrozoglou I, Paschopoulos M, Thymara I. The Expression of NRIP1 and LCOR in Endometrioid Endometrial Cancer. In Vivo 2021; 35:2631-2640. [PMID: 34410950 DOI: 10.21873/invivo.12545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/15/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND The aim of the study was to analyze the expression of nuclear receptor interacting protein 1 (NRIP1) and its partner ligand-dependent nuclear receptor co-repressor (LCOR) in endometrioid endometrial cancer and to investigate their association with estrogen receptor (ER), progesterone receptor (PR), Ki-67, clinicopathological parameters and patient survival. MATERIALS AND METHODS Immunohistochemical evaluation was carried out to investigate the subcellular expression of NRIP1 and LCOR in endometrioid endometrial cancer samples. Statistical analysis was used to identify the correlations of NRIP1 and LCOR expression with clinicopathological variables and to estimate the survival rates. RESULTS Endometrial cancer tissues exhibited higher expression of NRIP1 and LCOR in comparison with the normal tissues. Cytoplasmic LCOR expression was positively associated with ER and PR expression, while cytoplasmic NRIP1 expression was positively associated with ER expression. Moreover, cytoplasmic expression of NRIP1 was positively associated with Ki-67. CONCLUSION Our study demonstrated that high cytoplasmic expression of LCOR may predict a longer overall survival of patients with endometrioid endometrial cancer. Patients with tumors expressing low levels of LCOR showed a worse survival compared to those expressing high levels.
Collapse
Affiliation(s)
- Stefanos Flindris
- Department of Obstetrics and Gynecology, University Hospital of Ioannina, Ioannina, Greece;
| | - Nikolaos Katsoulas
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, Laiko General Hospital of Athens, Athens, Greece
| | - Anna Goussia
- Department of Pathology, University Hospital of Ioannina, Ioannina, Greece
| | - Andreas Christos Lazaris
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, Laiko General Hospital of Athens, Athens, Greece
| | - Iordanis Navrozoglou
- Department of Obstetrics and Gynecology, University Hospital of Ioannina, Ioannina, Greece
| | - Minas Paschopoulos
- Department of Obstetrics and Gynecology, University Hospital of Ioannina, Ioannina, Greece
| | - Irene Thymara
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, Laiko General Hospital of Athens, Athens, Greece
| |
Collapse
|
29
|
Li K, Zhang TT, Zhao CX, Wang F, Cui B, Yang ZN, Lv XX, Yeerjiang Z, Yuan YF, Yu JM, Wang ZH, Zhang XW, Yu JJ, Liu SS, Shang S, Huang B, Hua F, Hu ZW. Faciogenital Dysplasia 5 supports cancer stem cell traits in basal-like breast cancer by enhancing EGFR stability. Sci Transl Med 2021; 13:13/586/eabb2914. [PMID: 33762435 DOI: 10.1126/scitranslmed.abb2914] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 10/27/2020] [Accepted: 03/05/2021] [Indexed: 12/13/2022]
Abstract
Most basal-like breast cancers (BLBCs) are triple-negative breast cancers (TNBCs), which have the worst prognosis and distant metastasis-free survival among breast cancer subtypes. Now, no targeted therapies are available for patients with BLBC due to the lack of reliable and effective molecular targets. Here, we performed the BLBC tissue microarray-based immunohistochemical analysis and showed that Faciogenital Dysplasia 5 (FGD5) abundance is associated with poor prognosis in BLBCs. FGD5 deletion decreased the proliferation, invasion, and tumorsphere formation capacity of BLBC cells. Furthermore, genetic inhibition of Fgd5 in mouse mammary epithelial cells attenuated BLBC initiation and progression by reducing the self-renewal ability of tumor-initiating cells. In addition, FGD5 abundance was positively correlated with the abundance of epidermal growth factor receptor (EGFR) in BLBCs. FGD5 ablation decreased EGFR abundance by reducing EGFR stability in TNBC cells in 2D and 3D culture conditions. Mechanistically, FGD5 binds to EGFR and interferes with basal EGFR ubiquitination and degradation induced by the E3 ligase ITCH. Impaired EGFR degradation caused BLBC cell proliferation and promoted invasive properties and self-renewal. To verify the role of the FGD5-EGFR interaction in the regulation of EGFR stability, we screened a cell-penetrating α-helical peptide PER3 binding with FGD5 to disrupt the interaction. Treatment of BLBC patient-derived xenograft-bearing mice with the peptide PER3 disrupting the FGD5-EGFR interaction either with or without chemotherapy reduced BLBC progression. Our study identified FGD5 as a positive modulator of tumor-initiating cells and suggests a potential therapeutic option for the BLBC subtype of breast cancer.
Collapse
Affiliation(s)
- Ke Li
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Ting-Ting Zhang
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Chen-Xi Zhao
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Feng Wang
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Bing Cui
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhao-Na Yang
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiao-Xi Lv
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zaiwuli Yeerjiang
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yu-Fen Yuan
- Anyang Tumor Hospital, Henan University of Science and Technology, Anyang 300020, China
| | - Jin-Mei Yu
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhen-He Wang
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiao-Wei Zhang
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jiao-Jiao Yu
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shan-Shan Liu
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shuang Shang
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Bo Huang
- Institute of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Fang Hua
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Zhuo-Wei Hu
- Immunology and Cancer Pharmacology Group, State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
30
|
Tsuchiya H, Shiota G. Immune evasion by cancer stem cells. Regen Ther 2021; 17:20-33. [PMID: 33778133 PMCID: PMC7966825 DOI: 10.1016/j.reth.2021.02.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/10/2021] [Accepted: 02/21/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor immunity represents a new avenue for cancer therapy. Immune checkpoint inhibitors have successfully improved outcomes in several tumor types. In addition, currently, immune cell-based therapy is also attracting significant attention. However, the clinical efficacy of these treatments requires further improvement. The mechanisms through which cancer cells escape the immune response must be identified and clarified. Cancer stem cells (CSCs) play a central role in multiple aspects of malignant tumors. CSCs can initiate tumors in partially immunocompromised mice, whereas non-CSCs fail to form tumors, suggesting that tumor initiation is a definitive function of CSCs. However, the fact that non-CSCs also initiate tumors in more highly immunocompromised mice suggests that the immune evasion property may be a more fundamental feature of CSCs rather than a tumor-initiating property. In this review, we summarize studies that have elucidated how CSCs evade tumor immunity and create an immunosuppressive milieu with a focus on CSC-specific characteristics and functions. These profound mechanisms provide important clues for the development of novel tumor immunotherapies.
Collapse
Key Words
- ADCC, antibody-dependent cell mediated cytotoxicity
- ALDH, alcohol dehydrogenase
- AML, acute myeloid leukemia
- ARID3B, AT-rich interaction domain-containing protein 3B
- CCR7, C–C motif chemokine receptor 7
- CIK, cytokine-induced killer cell
- CMV, cytomegalovirus
- CSC, cancer stem cell
- CTL, cytotoxic T lymphocytes
- CTLA-4, cytotoxic T-cell-associated antigen-4
- Cancer stem cells
- DC, dendritic cell
- DNMT, DNA methyltransferase
- EMT, epithelial–mesenchymal transition
- ETO, fat mass and obesity associated protein
- EV, extracellular vesicle
- HNSCC, head and neck squamous cell carcinoma
- Immune checkpoints
- Immune evasion
- KDM4, lysine-specific demethylase 4C
- KIR, killer immunoglobulin-like receptor
- LAG3, lymphocyte activation gene 3
- LILR, leukocyte immunoglobulin-like receptor
- LMP, low molecular weight protein
- LOX, lysyl oxidase
- MDSC, myeloid-derived suppressor cell
- MHC, major histocompatibility complex
- MIC, MHC class I polypeptide-related sequence
- NGF, nerve growth factor
- NK cells
- NK, natural killer
- NOD, nonobese diabetic
- NSG, NOD/SCID IL-2 receptor gamma chain null
- OCT4, octamer-binding transcription factor 4
- PD-1, programmed death receptor-1
- PD-L1/2, ligands 1/2
- PI9, protease inhibitor 9
- PSME3, proteasome activator subunit 3
- SCID, severe combined immunodeficient
- SOX2, sex determining region Y-box 2
- T cells
- TAM, tumor-associated macrophage
- TAP, transporter associated with antigen processing
- TCR, T cell receptor
- Treg, regulatory T cell
- ULBP, UL16 binding protein
- uPAR, urokinase-type plasminogen activator receptor
Collapse
Affiliation(s)
- Hiroyuki Tsuchiya
- Division of Medical Genetics and Regenerative Medicine, Department of Genomic Medicine and Regenerative Therapy, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Goshi Shiota
- Division of Medical Genetics and Regenerative Medicine, Department of Genomic Medicine and Regenerative Therapy, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| |
Collapse
|
31
|
Tan Z, Zhou P, Zhu Z, Wang Y, Guo Z, Shen M, Xiao Y, Shen W, Wu D. Upregulated long non‑coding RNA LincIN promotes tumor progression via the regulation of nuclear factor 90/microRNA‑7/HOXB13 in esophageal squamous cell carcinoma. Int J Mol Med 2021; 47:78. [PMID: 33693959 PMCID: PMC7979264 DOI: 10.3892/ijmm.2021.4911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 02/18/2021] [Indexed: 12/09/2022] Open
Abstract
Long non-coding RNA LincIN has been reported to be overexpressed and to be involved in the metastasis of breast cancer. However, the expression and role of LincIN in esophageal squamous cell carcinoma (ESCC) remain unsolved. In the present study, LincIN expression was examined in ESCC by RT-qPCR, and the roles of LincIN in ESCC were determined using cell growth, migration and invasion assays. In addition, the effects of LincIN on nuclear factor 90 (NF90) and microRNA/miR (miR)-7 were examined by RNA immunoprecipitation assay, RT-qPCR, dual-luciferase reporter assay and western blot analysis. The results revealed that LincIN expression was significantly increased in ESCC tissues and cell lines. The increased expression of LincIN was positively associated with invasion depth, lymph node metastasis, TNM stage and a poor prognosis. Functional assays revealed that the overexpression of LincIN promoted ESCC cell growth, migration and invasion. Mechanistic analysis revealed that LincIN physically bound to NF90, enhanced the binding between NF90 and primary miR-7 (pri-miR-7), and further enhanced the inhibitory effects of NF90 on miR-7 biogenesis. Therefore, LincIN downregulated miR-7 expression in ESCC. The expression of miR-7 inversely correlated with that of LincIN in ESCC tissues. By downregulating miR-7, LincIN increased the expression of HOXB13, a target of miR-7. The overexpression of miR-7 or the depletion of HOXB13 both attenuated the tumor-promoting roles of LincIN in ESCC cell growth, migration and invasion. On the whole, the findings of the present study suggest that LincIN is overexpressed and plays an oncogenic role in ESCC via the regulation of the NF90/miR-7/HOXB13 axis. Thus, LincIN may prove to be a promising prognostic biomarker and therapeutic target for ESCC.
Collapse
Affiliation(s)
- Zhibo Tan
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Peitao Zhou
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Zhenru Zhu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Ying Wang
- Department of Medical Oncology, National Cancer Centre/National Clinical Research Centre for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong 518116, P.R. China
| | - Zeqin Guo
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Mengying Shen
- Hepatology Unit and Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yazhi Xiao
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Weixi Shen
- Department of Oncology, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong 518100, P.R. China
| | - Dehua Wu
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
32
|
Zheng Q, Zhang M, Zhou F, Zhang L, Meng X. The Breast Cancer Stem Cells Traits and Drug Resistance. Front Pharmacol 2021; 11:599965. [PMID: 33584277 PMCID: PMC7876385 DOI: 10.3389/fphar.2020.599965] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022] Open
Abstract
Drug resistance is a major challenge in breast cancer (BC) treatment at present. Accumulating studies indicate that breast cancer stem cells (BCSCs) are responsible for the BC drugs resistance, causing relapse and metastasis in BC patients. Thus, BCSCs elimination could reverse drug resistance and improve drug efficacy to benefit BC patients. Consequently, mastering the knowledge on the proliferation, resistance mechanisms, and separation of BCSCs in BC therapy is extremely helpful for BCSCs-targeted therapeutic strategies. Herein, we summarize the principal BCSCs surface markers and signaling pathways, and list the BCSCs-related drug resistance mechanisms in chemotherapy (CT), endocrine therapy (ET), and targeted therapy (TT), and display therapeutic strategies for targeting BCSCs to reverse drug resistance in BC. Even more importantly, more attention should be paid to studies on BCSC-targeted strategies to overcome the drug resistant dilemma of clinical therapies in the future.
Collapse
Affiliation(s)
- Qinghui Zheng
- Department of Breast Surgery, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Mengdi Zhang
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Fangfang Zhou
- Institutes of Biology and Medical Science, Soochow University, Suzhou, China
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis and Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Xuli Meng
- Department of Breast Surgery, Zhejiang Provincial People's Hospital, Hangzhou, China
| |
Collapse
|
33
|
Gessani S, Belardelli F. Type I Interferons as Joint Regulators of Tumor Growth and Obesity. Cancers (Basel) 2021; 13:cancers13020196. [PMID: 33430520 PMCID: PMC7827047 DOI: 10.3390/cancers13020196] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/31/2020] [Accepted: 01/01/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary The escalating global epidemic of overweight and obesity is a major public health and economic problem, as excess body weight represents a significant risk factor for several chronic diseases including cancer. Despite the strong scientific evidence for a link between obesity and cancer, the mechanisms involved in this interplay have not yet been fully understood. The aim of this review is to evaluate the role of type I interferons, a family of antiviral cytokines with key roles in the regulation of both obesity and cancer, highlighting how the dysregulation of the interferon system can differently affect these pathological conditions. Abstract Type I interferons (IFN-I) are antiviral cytokines endowed with multiple biological actions, including antitumor activity. Studies in mouse models and cancer patients support the concept that endogenous IFN-I play important roles in the control of tumor development and growth as well as in response to several chemotherapy/radiotherapy treatments. While IFN-I signatures in the tumor microenvironment are often considered as biomarkers for a good prognostic response to antitumor therapies, prolonged IFN-I signaling can lead to immune dysfunction, thereby promoting pathogen or tumor persistence, thus revealing the “Janus face” of these cytokines in cancer control, likely depending on timing, tissue microenvironment and cumulative levels of IFN-I signals. Likewise, IFN-I exhibit different and even opposite effects on obesity, a pathologic condition linked to cancer development and growth. As an example, evidence obtained in mouse models shows that localized expression of IFN-I in the adipose tissue results in inhibition of diet–induced obesity, while hyper-production of these cytokines by specialized cells such as plasmacytoid dendritic cells in the same tissue, can induce systemic inflammatory responses leading to obesity. Further studies in mouse models and humans should reveal the mechanisms by which IFN-I can regulate both tumor growth and obesity and to understand the role of factors such as genetic background, diet and microbioma in shaping the production and action of these cytokines under physiological and pathological conditions.
Collapse
Affiliation(s)
- Sandra Gessani
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
- Correspondence: (S.G.); (F.B.)
| | - Filippo Belardelli
- Institute of Translational Pharmacology, CNR, 00133 Rome, Italy
- Correspondence: (S.G.); (F.B.)
| |
Collapse
|
34
|
von Locquenghien M, Rozalén C, Celià-Terrassa T. Interferons in cancer immunoediting: sculpting metastasis and immunotherapy response. J Clin Invest 2021; 131:143296. [PMID: 33393507 PMCID: PMC7773346 DOI: 10.1172/jci143296] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Interferons (IFNs) are pleiotropic cytokines critical for regulation of epithelial cell functions and for immune system regulation. In cancer, IFNs contribute to tumor-intrinsic and -extrinsic mechanisms that determine the quality of antitumor immunity and response to immunotherapy. In this Review, we focus on the different types of tumor IFN sensitivity that determine dynamic tumor-immune interactions and their coevolution during cancer progression and metastasis. We extend the discussion to new evidence supporting immunotherapy-mediated immunoediting and the dual opposing roles of IFNs that lead to immune checkpoint blockade response or resistance. Understanding the intricate dynamic responses to IFN will lead to novel immunotherapeutic strategies to circumvent protumorigenic effects of IFN while exploiting IFN-mediated antitumor immunity.
Collapse
|
35
|
Zhan X, Guo S, Li Y, Ran H, Huang H, Mi L, Wu J, Wang X, Xiao D, Chen L, Li D, Zhang S, Yan X, Yu Y, Li T, Han Q, He K, Cui J, Li T, Zhou T, Rich JN, Bao S, Zhang X, Li A, Man J. Glioma stem-like cells evade interferon suppression through MBD3/NuRD complex-mediated STAT1 downregulation. J Exp Med 2020; 217:151561. [PMID: 32181805 PMCID: PMC7201922 DOI: 10.1084/jem.20191340] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 12/06/2019] [Accepted: 01/13/2020] [Indexed: 12/18/2022] Open
Abstract
Type I interferons (IFNs) are known to mediate antineoplastic effects during tumor progression. Type I IFNs can be produced by multiple cell types in the tumor microenvironment; however, the molecular mechanisms by which tumor cells evade the inhibition of immune microenvironment remain unknown. Here we demonstrate that glioma stem-like cells (GSCs) evade type I IFN suppression through downregulation of STAT1 to initiate tumor growth under inhospitable conditions. The downregulation of STAT1 is mediated by MBD3, an epigenetic regulator. MBD3 is preferentially expressed in GSCs and recruits NuRD complex to STAT1 promoter to suppress STAT1 expression by histone deacetylation. Importantly, STAT1 overexpression or MBD3 depletion induces p21 transcription, resensitizes GSCs to IFN suppression, attenuates GSC tumor growth, and prolongs animal survival. Our findings demonstrate that inactivation of STAT1 signaling by MBD3/NuRD provides GSCs with a survival advantage to escape type I IFN suppression, suggesting that targeting MBD3 may represent a promising therapeutic opportunity to compromise GSC tumorigenic potential.
Collapse
Affiliation(s)
- Xiaoyan Zhan
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China.,China Military Institute of Chinese Materia, the Fifth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Saisai Guo
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Yuanyuan Li
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Haowen Ran
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Haohao Huang
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Lanjuan Mi
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Jin Wu
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Xinzheng Wang
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Dake Xiao
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Lishu Chen
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Da Li
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Songyang Zhang
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Xu Yan
- The First Hospital of Jilin University, Changchun, China
| | - Yu Yu
- The First Hospital of Jilin University, Changchun, China
| | - Tingting Li
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Qiuying Han
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Kun He
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Jiuwei Cui
- The First Hospital of Jilin University, Changchun, China
| | - Tao Li
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Tao Zhou
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Jeremy N Rich
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Shideng Bao
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH.,Center for Cancer Stem Cell Research, Lerner Research Institute, Cleveland, OH.,Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Xuemin Zhang
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, National Center of Biomedical Analysis, Beijing, China.,The First Hospital of Jilin University, Changchun, China
| | - Ailing Li
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China.,The First Hospital of Jilin University, Changchun, China
| | - Jianghong Man
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| |
Collapse
|
36
|
Kyriazi AA, Papiris E, Kitsos Kalyvianakis K, Sakellaris G, Baritaki S. Dual Effects of Non-Coding RNAs (ncRNAs) in Cancer Stem Cell Biology. Int J Mol Sci 2020; 21:ijms21186658. [PMID: 32932969 PMCID: PMC7556003 DOI: 10.3390/ijms21186658] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022] Open
Abstract
The identification of cancer stem cells (CSCs) as initiators of carcinogenesis has revolutionized the era of cancer research and our perception for the disease treatment options. Additional CSC features, including self-renewal and migratory and invasive capabilities, have further justified these cells as putative diagnostic, prognostic, and therapeutic targets. Given the CSC plasticity, the identification of CSC-related biomarkers has been a serious burden in CSC characterization and therapeutic targeting. Over the past decades, a compelling amount of evidence has demonstrated critical regulatory functions of non-coding RNAs (ncRNAs) on the exclusive features of CSCs. We now know that ncRNAs may interfere with signaling pathways, vital for CSC phenotype maintenance, such as Notch, Wnt, and Hedgehog. Here, we discuss the multifaceted contribution of microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), as representative ncRNA classes, in sustaining the CSC-like traits, as well as the underlying molecular mechanisms of their action in various CSC types. We further discuss the use of CSC-related ncRNAs as putative biomarkers of high diagnostic, prognostic, and therapeutic value.
Collapse
Affiliation(s)
- Athina A. Kyriazi
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, 71500 Heraklion, Greece; (A.A.K.); (E.P.); (K.K.K.)
| | - Efstathios Papiris
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, 71500 Heraklion, Greece; (A.A.K.); (E.P.); (K.K.K.)
| | - Konstantinos Kitsos Kalyvianakis
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, 71500 Heraklion, Greece; (A.A.K.); (E.P.); (K.K.K.)
| | - George Sakellaris
- Surgery Unit, University General Hospital, 71500 Heraklion (PAGNH), Greece;
| | - Stavroula Baritaki
- Laboratory of Experimental Oncology, Division of Surgery, School of Medicine, University of Crete, 71500 Heraklion, Greece; (A.A.K.); (E.P.); (K.K.K.)
- Correspondence: ; Tel.: +30-2810394727
| |
Collapse
|
37
|
Celià-Terrassa T, Jolly MK. Cancer Stem Cells and Epithelial-to-Mesenchymal Transition in Cancer Metastasis. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a036905. [PMID: 31570380 DOI: 10.1101/cshperspect.a036905] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The cancer stem cell (CSC) concept stands for undifferentiated tumor cells with the ability to initiate heterogeneous tumors. It is also relevant in metastasis and can explain how metastatic tumors mirror the heterogeneity of primary tumors. Cellular plasticity, including the epithelial-to-mesenchymal transition (EMT), enables the generation of CSCs at different steps of the metastatic process including metastatic colonization. In this review, we update the concept of CSCs and provide evidence of the existence of metastatic stem cells (MetSCs). In addition, we highlight the nuanced understanding of EMT that has been gained recently and the association of mesenchymal-to-epithelial transition (MET) with the acquisition of CSCs properties during metastasis. We also comment on the computational approaches that have profoundly influenced our understanding of CSCs and EMT; and how these studies and new experimental technologies can yield a deeper understanding of the biological aspects of metastasis.
Collapse
Affiliation(s)
- Toni Celià-Terrassa
- Cancer Research Program, IMIM (Hospital del Mar Medical Research Institute), 08003 Barcelona, Spain
| | - Mohit Kumar Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
38
|
Guo Q, Wang T, Yang Y, Gao L, Zhao Q, Zhang W, Xi T, Zheng L. Transcriptional Factor Yin Yang 1 Promotes the Stemness of Breast Cancer Cells by Suppressing miR-873-5p Transcriptional Activity. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:527-541. [PMID: 32711380 PMCID: PMC7381513 DOI: 10.1016/j.omtn.2020.06.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/20/2020] [Accepted: 06/22/2020] [Indexed: 01/01/2023]
Abstract
Transcription factor Yin Yang 1 (YY1) is upregulated in multiple tumors and plays essential roles in tumor proliferation and metastasis. However, the function of YY1 in breast cancer stemness remains unclear. Herein, we found that YY1 expression was negatively correlated with the overall survival and relapse-free survival of breast cancer patients and positively correlated with the expression of stemness markers in breast cancer. Overexpression of YY1 increased the expression of stemness markers, elevated CD44+CD24− cell sub-population, and enhanced the capacity of cell spheroid formation and tumor-initiation. In contrast, YY1 knockdown exhibited the opposite effects. Mechanistically, YY1 decreased microRNA-873-5p (miR-873-5p) level by recruiting histone deacetylase 4 (HDAC4) and HDAC9 to miR-873-5p promoter and thus increasing the deacetylation level of miR-873-5p promoter. Sequentially, YY1 activated the downstream PI3K/AKT and ERK1/2 pathways, which have been confirmed to be suppressed by miR-873-5p in our recent work. Moreover, the suppressed effect of YY1/miR-873-5p axis on the stemness of breast cancer cells was partially dependent on PI3K/AKT and ERK1/2 pathways. Finally, it was found that the YY1/miR-873-5p axis is involved in the chemoresistance of breast cancer cells. Our study defines a novel YY1/miR-873-5p axis responsible for the stemness of breast cancer cells.
Collapse
Affiliation(s)
- Qianqian Guo
- Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, 127 Dongming Road, Zhengzhou 450003, People's Republic of China
| | - Ting Wang
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Yue Yang
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Lanlan Gao
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Qiong Zhao
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China
| | - Wenzhou Zhang
- Department of Pharmacy, Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, 127 Dongming Road, Zhengzhou 450003, People's Republic of China
| | - Tao Xi
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China.
| | - Lufeng Zheng
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, People's Republic of China.
| |
Collapse
|
39
|
Zhao X, Ma L, Dai L, Zuo D, Li X, Zhu H, Xu F. TNF‑α promotes the malignant transformation of intestinal stem cells through the NF‑κB and Wnt/β‑catenin signaling pathways. Oncol Rep 2020; 44:577-588. [PMID: 32627006 PMCID: PMC7336517 DOI: 10.3892/or.2020.7631] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 05/22/2020] [Indexed: 12/16/2022] Open
Abstract
Cancer stem cells are responsible for tumorigenesis, progression, recurrence and metastasis. Intestinal stem cells (ISCs) are regarded as the origin of intestinal neoplasia. Inflammation also serves an important role in intestinal neoplasia. To explore the molecular mechanisms underlying the inflammation‑mediated induction of intestinal tumorigenesis, the present study investigated the function of tumor necrosis factor (TNF)‑α in the malignant transformation of ISCs. NCM460 spheroid (NCM460s) cells with higher expression of stem cell genes, such as Oct4, Nanog, Sox2 and Lgr5, and with a higher ratio of CD133+, were obtained from NCM460 cells in serum‑free medium. TNF‑α accelerated cell proliferation, migration and invasion, induced chemotherapy resistance and the epithelial‑mesenchymal transition. NF‑κB and Wnt/β‑catenin pathways were activated in TNF‑α‑induced inflammatory responses, leading to the nuclear translocation of p65 and β‑catenin, as well as promoter activity of NF‑κB and TCF/LEF transcription factors. It was further demonstrated that TNF‑α‑induced activation of the NF‑κB and Wnt/β‑catenin signaling pathways, as well as the upregulation of proinflammatory cytokines, were significantly suppressed by p65‑knockdown. Notably, PDTC, an inhibitor of NF‑κB signaling, reversed TNF‑α‑induced activation of the NF‑κB and Wnt/β‑catenin pathways. A similar role was observed for IWP‑2, an inhibitor of Wnt/β‑catenin signaling. Collectively, these results demonstrated that the NF‑κB and Wnt/β‑catenin pathways were activated to promote TNF‑α‑induced malignant transformation of ISCs, in which these two pathways cross‑regulated each other.
Collapse
Affiliation(s)
- Xiaopeng Zhao
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Lu Ma
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Lu Dai
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Di Zuo
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Xin Li
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Hongli Zhu
- Department of Gynecology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712000, P.R. China
| | - Fang Xu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| |
Collapse
|
40
|
Wang H, Agarwal P, Jiang B, Stewart S, Liu X, Liang Y, Hancioglu B, Webb A, Fisher JP, Liu Z, Lu X, Tkaczuk KHR, He X. Bioinspired One Cell Culture Isolates Highly Tumorigenic and Metastatic Cancer Stem Cells Capable of Multilineage Differentiation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000259. [PMID: 32537420 PMCID: PMC7284220 DOI: 10.1002/advs.202000259] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/23/2020] [Accepted: 04/06/2020] [Indexed: 05/08/2023]
Abstract
Cancer stem cells (CSCs) are rare cancer cells that are postulated to be responsible for cancer relapse and metastasis. However, CSCs are difficult to isolate and poorly understood. Here, a bioinspired approach for label-free isolation and culture of CSCs, by microencapsulating one cancer cell in the nanoliter-scale hydrogel core of each prehatching embryo-like core-shell microcapsule, is reported. Only a small percentage of the individually microencapsulated cancer cells can proliferate into a cell colony. Gene and protein expression analyses indicate high stemness of the cells in the colonies. Importantly, the colony cells are capable of cross-tissue multilineage (e.g., endothelial, cardiac, neural, and osteogenic) differentiation, which is not observed for "CSCs" isolated using other contemporary approaches. Further studies demonstrate the colony cells are highly tumorigenic, metastatic, and drug resistant. These data show the colony cells obtained with the bioinspired one-cell-culture approach are truly CSCs. Significantly, multiple pathways are identified to upregulate in the CSCs and enrichment of genes related to the pathways is correlated with significantly decreased survival of breast cancer patients. Collectively, this study may provide a valuable method for isolating and culturing CSCs, to facilitate the understanding of cancer biology and etiology and the development of effective CSC-targeted cancer therapies.
Collapse
Affiliation(s)
- Hai Wang
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMD20742USA
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & NanosafetyCAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
- Department of Biomedical EngineeringThe Ohio State UniversityColumbusOH43210USA
| | - Pranay Agarwal
- Department of Biomedical EngineeringThe Ohio State UniversityColumbusOH43210USA
| | - Bin Jiang
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMD20742USA
| | - Samantha Stewart
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMD20742USA
| | - Xuanyou Liu
- Division of Cardiovascular MedicineCenter for Precision MedicineUniversity of Missouri School of MedicineColumbiaMO65212USA
| | - Yutong Liang
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMD20742USA
| | - Baris Hancioglu
- Department of Biomedical InformaticsThe Ohio State UniversityColumbusOH43210USA
| | - Amy Webb
- Department of Biomedical InformaticsThe Ohio State UniversityColumbusOH43210USA
| | - John P. Fisher
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMD20742USA
| | - Zhenguo Liu
- Division of Cardiovascular MedicineCenter for Precision MedicineUniversity of Missouri School of MedicineColumbiaMO65212USA
| | - Xiongbin Lu
- Department of Medical and Molecular Genetics and Melvin and Bren Simon Cancer CenterIndiana University School of MedicineIndianapolisIN46202USA
| | - Katherine H. R. Tkaczuk
- Marlene and Stewart Greenebaum Comprehensive Cancer CenterUniversity of MarylandBaltimoreMD21201USA
| | - Xiaoming He
- Fischell Department of BioengineeringUniversity of MarylandCollege ParkMD20742USA
- Department of Biomedical EngineeringThe Ohio State UniversityColumbusOH43210USA
- Marlene and Stewart Greenebaum Comprehensive Cancer CenterUniversity of MarylandBaltimoreMD21201USA
- Robert E. Fischell, Institute for Biomedical DevicesUniversity of MarylandCollege ParkMD20742USA
| |
Collapse
|
41
|
Yang G, Bondaruk J, Cogdell D, Wang Z, Lee S, Lee JG, Zhang S, Choi W, Wang Y, Liang Y, Wang G, Wang Y, Yao H, Dadhania V, Gao J, Logothetis C, Siefker-Radtke A, Kamat A, Dinney C, Theodorescu D, Kimmel M, Wei P, Guo CC, Weinstein JN, McConkey DJ, Czerniak B. Urothelial-to-Neural Plasticity Drives Progression to Small Cell Bladder Cancer. iScience 2020; 23:101201. [PMID: 32521509 PMCID: PMC7286965 DOI: 10.1016/j.isci.2020.101201] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/08/2020] [Accepted: 05/22/2020] [Indexed: 12/12/2022] Open
Abstract
We report a comprehensive molecular analysis of 34 cases of small cell carcinoma (SCC) and 84 cases of conventional urothelial carcinoma (UC), with The Cancer Genome Atlas cohort of 408 conventional UC bladder cancers used as the reference. SCCs showed mutational landscapes characterized by nearly uniform inactivation of TP53 and were dominated by Sanger mutation signature 3 associated with loss of BRCA1/2 function. SCCs were characterized by downregulation of luminal and basal markers and were referred to as double-negative. Transcriptome analyses indicated that SCCs displayed lineage plasticity driven by a urothelial-to-neural phenotypic switch with a dysregulated epithelial-to-mesenchymal transition network. SCCs were depleted of immune cells, and expressed high levels of the immune checkpoint receptor, adenosine receptor A2A (ADORA2A), which is a potent inhibitor of immune infiltration. Our observations have important implications for the prognostication and development of more effective therapies for this lethal bladder cancer variant. SCCs show TP53/RB1 loss with mutational signature of BRCA1/2 loss of function SCCs are driven by neural phenotypic switch with dysregulated EMT network SCCs show depleted immune phenotype with upregulation of ADORA2A
Collapse
Affiliation(s)
- Guoliang Yang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jolanta Bondaruk
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David Cogdell
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ziqiao Wang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sangkyou Lee
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - June Goo Lee
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shizhen Zhang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Woonyoung Choi
- Johns Hopkins Greenberg Bladder Cancer Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Yan Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yu Liang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gang Wang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ying Wang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hui Yao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vipulkumar Dadhania
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianjun Gao
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher Logothetis
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Arlene Siefker-Radtke
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ashish Kamat
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Colin Dinney
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dan Theodorescu
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai, Los Angeles, CA, USA
| | - Marek Kimmel
- Department of Statistics, Rice University, Houston, TX, USA
| | - Peng Wei
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Charles C Guo
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - John N Weinstein
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David J McConkey
- Johns Hopkins Greenberg Bladder Cancer Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Bogdan Czerniak
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
42
|
Zhang KD, Hu B, Cen G, Yang YH, Chen WW, Guo ZY, Wang XF, Zhao Q, Qiu ZJ. MiR-301a transcriptionally activated by HIF-2α promotes hypoxia-induced epithelial-mesenchymal transition by targeting TP63 in pancreatic cancer. World J Gastroenterol 2020; 26:2349-2373. [PMID: 32476798 PMCID: PMC7243651 DOI: 10.3748/wjg.v26.i19.2349] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/20/2010] [Accepted: 04/18/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Pancreatic cancer (PC) is one of the deadliest cancers worldwide. PC metastasis involves a complex set of events, including epithelial-mesenchymal transition (EMT), that increase tumor cell invasiveness. Recent evidence has shown that hypoxia is a major EMT regulator in pancreatic cancer cells and facilitates metastasis; however, the mechanisms remain elusive. AIM To investigate the role of miR-301a in hypoxia-induced EMT in PC cells. METHODS Real-time PCR and Western blot analysis were used to detect the expression of miR-301a and EMT markers in PDAC cells cultured in hypoxic and normoxic conditions. Western blot analysis was used to detect the expression of EMT markers in PDAC cells with miR-301a overexpression. Wound healing assay and Transwell assay were used to detect the migration capabilities of PDAC cells with miR-301a overexpression and knockout. Luciferase assay was used to detect the miR-301a promoter and the 3' untranslated region activity of TP63. Orthotopic PC mouse models were used to study the role of miR-301a in metastasis of PDAC cells in vivo. In situ hybridization assay was used to detect the expression of miR-301a in PDAC patient samples (adjacent paratumor and paired tumor tissues). . RESULTS Hypoxic environment could directly promote the EMT of PC cells. The expression level of miR-301a was increased in a HIF2α dependent manner in hypoxia-cultured CFPAC-1 and BxPC-3 cells. Overexpression of miR-301a enhanced the hypoxia-induced EMT of PC cells, while knocking out miR-301a result in the suppression of hypoxia-induced EMT. TP63 was a direct target of miR-301a and involved in the metastatic process of PC cells. Furthermore, miR-301a upregulation facilitated PDAC distant metastasis and lymph node metastasis in vivo. Additionally, miR-301a overexpression was indicative of aggressive clinicopathological behaviors and poor prognosis. CONCLUSION The newly identified HIF-2α-miR301a-TP63 signaling pathway may play a crucial role in hypoxia-induced EMT in PDAC cells.
Collapse
MESH Headings
- 3' Untranslated Regions/genetics
- Animals
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Pancreatic Ductal/diagnosis
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/mortality
- Carcinoma, Pancreatic Ductal/pathology
- Cell Hypoxia/genetics
- Cell Line, Tumor
- Epithelial-Mesenchymal Transition/genetics
- Female
- Gene Expression Regulation, Neoplastic
- Gene Knockout Techniques
- Humans
- Kaplan-Meier Estimate
- Male
- Mice
- MicroRNAs/analysis
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Middle Aged
- Pancreas/pathology
- Pancreatic Neoplasms/diagnosis
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/mortality
- Pancreatic Neoplasms/pathology
- Prognosis
- Promoter Regions, Genetic/genetics
- Signal Transduction/genetics
- Transcription Factors/genetics
- Tumor Suppressor Proteins/genetics
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Kun-Dong Zhang
- Department of General Surgery, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai 200080, China
| | - Bin Hu
- Department of General Surgery, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai 200080, China
| | - Gang Cen
- Department of General Surgery, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai 200080, China
| | - Yu-Han Yang
- Department of General Surgery, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai 200080, China
| | - Wei-Wei Chen
- Department of General Surgery, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai 200080, China
| | - Zeng-Ya Guo
- Department of General Surgery, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai 200080, China
| | - Xiao-Feng Wang
- Department of General Surgery, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai 200080, China
| | - Qian Zhao
- Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology and Rui-Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Zheng-Jun Qiu
- Department of General Surgery, Shanghai Key Laboratory of Pancreatic Disease, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai 200080, China
| |
Collapse
|
43
|
SH3RF3 promotes breast cancer stem-like properties via JNK activation and PTX3 upregulation. Nat Commun 2020; 11:2487. [PMID: 32427938 PMCID: PMC7237486 DOI: 10.1038/s41467-020-16051-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 04/08/2020] [Indexed: 02/08/2023] Open
Abstract
Cancer stem-like cells (CSCs) are the tumorigenic cell subpopulation and contribute to cancer recurrence and metastasis. However, the understanding of CSC regulatory mechanisms remains incomplete. By transcriptomic analysis, we identify a scaffold protein SH3RF3 (also named POSH2) that is upregulated in CSCs of breast cancer clinical tumors and cancer cell lines, and enhances the CSC properties of breast cancer cells. Mechanically, SH3RF3 interacts with the c-Jun N-terminal kinase (JNK) in a JNK-interacting protein (JIP)-dependent manner, leading to enhanced phosphorylation of JNK and activation of the JNK-JUN pathway. Further the JNK-JUN signaling expands CSC subpopulation by transcriptionally activating the expression of Pentraxin 3 (PTX3). The functional role of SH3RF3 in CSCs is validated with patient-derived organoid culture, and supported by clinical cohort analyses. In conclusion, our work elucidates the role and molecular mechanism of SH3RF3 in CSCs of breast cancer, and might provide opportunities for CSC-targeting therapy.
Collapse
|
44
|
Crudele F, Bianchi N, Reali E, Galasso M, Agnoletto C, Volinia S. The network of non-coding RNAs and their molecular targets in breast cancer. Mol Cancer 2020; 19:61. [PMID: 32188472 PMCID: PMC7079433 DOI: 10.1186/s12943-020-01181-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 03/05/2020] [Indexed: 02/06/2023] Open
Abstract
Background Non-coding RNAs are now recognized as fundamental components of the cellular processes. Non-coding RNAs are composed of different classes, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Their detailed roles in breast cancer are still under scrutiny. Main body We systematically reviewed from recent literature the many functional and physical interactions of non-coding RNAs in breast cancer. We used a data driven approach to establish the network of direct, and indirect, interactions. Human curation was essential to de-convolute and critically assess the experimental approaches in the reviewed articles. To enrol the scientific papers in our article cohort, due to the short time span (shorter than 5 years) we considered the journal impact factor rather than the citation number. The outcome of our work is the formal establishment of different sub-networks composed by non-coding RNAs and coding genes with validated relations in human breast cancer. This review describes in a concise and unbiased fashion the core of our current knowledge on the role of lncRNAs, miRNAs and other non-coding RNAs in breast cancer. Conclusions A number of coding/non-coding gene interactions have been investigated in breast cancer during recent years and their full extent is still being established. Here, we have unveiled some of the most important networks embracing those interactions, and described their involvement in cancer development and in its malignant progression.
Collapse
Affiliation(s)
- Francesca Crudele
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.,LTTA, University of Ferrara, Ferrara, Italy
| | - Nicoletta Bianchi
- Department of Biomedical Sciences and Specialist Surgery, University of Ferrara, 44121, Ferrara, Italy
| | - Eva Reali
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Marco Galasso
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Chiara Agnoletto
- Area of Neuroscience, International School for Advanced Studies (SISSA-ISAS), Trieste, Italy
| | - Stefano Volinia
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy. .,LTTA, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
45
|
Lu K, Feng F, Yang Y, Liu K, Duan J, Liu H, Yang J, Wu M, Liu C, Chang Y. High-throughput screening identified miR-7-2-3p and miR-29c-3p as metastasis suppressors in gallbladder carcinoma. J Gastroenterol 2020; 55:51-66. [PMID: 31562534 DOI: 10.1007/s00535-019-01627-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/01/2019] [Indexed: 02/04/2023]
Abstract
BACKGROUND Gallbladder carcinoma (GBC) is one of the most aggressive and lethal tumors, with extremely high metastatic activity and poor prognosis. Previously we have studied miRNAs that promote metastasis and progression of GBC, the aim of present study was to systematically elucidate the metastasis suppressor miRNAs in GBC. METHODS A novel designed high-throughput screening method that combined high content screening (HCS) and miRNA microarray analysis was conducted to filter out anti-metastatic miRNAs of GBC. Frozen samples were analyzed for the expression of goal miRNAs by real-time PCR. The biological functions of miRNAs were studied by transwell, immunoblot. Liver metastasis model via spleen injection was further examined in nude mice. Kaplan-Meier and Cox regression analyses were used to analyze the effect of goal miRNAs on overall survival. The target genes and interaction network of goal miRNAs were determined by whole transcriptome genome sequencing. RESULTS Out of the miRNAs library, a series of prominent metastatic suppressor miRNA candidates were filtered out. Among them, miR-7-2-3p and miR-29c-3p were discovered downregulated in GBC, and upregulation of them could reverse epithelial-mesenchymal transition and decrease the metastasis ability of GBC cells in vitro and in vivo, which was dominated by the miRNA-mRNA-lncRNA co-expression network. And DCLK1 and SLC36A1 are the direct target genes of miR-7-2-3p and miR-29c-3p. Moreover, the deficiency of miR-7-2-3p and miR-29c-3p was closely associated with poor prognosis of GBC patients. CONCLUSIONS Our findings indicate that miR-7-2-3p and miR-29c-3p play crucial roles in the pathogenesis and worse prognosis of GBCs, which may serve as prognosis biomarkers and promise potential therapeutic targets in the future.
Collapse
Affiliation(s)
- Kai Lu
- Biliary Tract Surgery Department, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, People's Republic of China
| | - Feiling Feng
- Biliary Tract Surgery Department, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, People's Republic of China
| | - Yingcheng Yang
- Organ Transplantation Department, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, People's Republic of China
| | - Kai Liu
- Biliary Tract Surgery Department, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, People's Republic of China
| | - Jicheng Duan
- Biliary Tract Surgery Department, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, People's Republic of China
| | - Hu Liu
- Biliary Tract Surgery Department, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, People's Republic of China
| | - Jiahe Yang
- Biliary Tract Surgery Department, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, People's Republic of China
| | - Mengchao Wu
- Hepatic Surgery Department, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, People's Republic of China
| | - Chen Liu
- Biliary Tract Surgery Department, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, People's Republic of China.
| | - Yanxin Chang
- Biliary Tract Surgery Department, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, People's Republic of China.
| |
Collapse
|
46
|
Type I Interferons and Cancer: An Evolving Story Demanding Novel Clinical Applications. Cancers (Basel) 2019; 11:cancers11121943. [PMID: 31817234 PMCID: PMC6966569 DOI: 10.3390/cancers11121943] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/20/2019] [Accepted: 11/30/2019] [Indexed: 01/05/2023] Open
Abstract
The first report on the antitumor effects of interferon α/β (IFN-I) in mice was published 50 years ago. IFN-α were the first immunotherapeutic drugs approved by the FDA for clinical use in cancer. However, their clinical use occurred at a time when most of their mechanisms of action were still unknown. These cytokines were being used as either conventional cytostatic drugs or non-specific biological response modifiers. Specific biological activities subsequently ascribed to IFN-I were poorly considered for their clinical use. Notably, a lot of the data in humans and mice underlines the importance of endogenous IFN-I, produced by both immune and tumor cells, in the control of tumor growth and in the response to antitumor therapies. While many oncologists consider IFN-I as “dead drugs”, recent studies reveal new mechanisms of action with potential implications in cancer control and immunotherapy response or resistance, suggesting novel rationales for their usage in target and personalized anti-cancer treatments. In this Perspectives Article, we focus on the following aspects: (1) the added value of IFN-I for enhancing the antitumor impact of standard anticancer treatments (chemotherapy and radiotherapy) and new therapeutic approaches, such as check point inhibitors and epigenetic drugs; (2) the role of IFN-I in the control of cancer stem cells growth and its possible implications for the development of novel antitumor therapies; and (3) the role of IFN-I in the development of cancer vaccines and the intriguing therapeutic possibilities offered by in situ delivery of ex vivo IFN-stimulated dendritic cells.
Collapse
|
47
|
Hu Y, Ma Y, Liu J, Cai Y, Zhang M, Fang X. LINC01128 expedites cervical cancer progression by regulating miR-383-5p/SFN axis. BMC Cancer 2019; 19:1157. [PMID: 31779593 PMCID: PMC6883532 DOI: 10.1186/s12885-019-6326-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/04/2019] [Indexed: 12/13/2022] Open
Abstract
Background Cervical cancer (CC), causing significant morbidity and mortality worldwide, is one of the most common gynecological malignancies in women. SFN has been reported as a potential prognostic marker with apparent high expression in tumors. Nevertheless, the function mechanism of SFN is not clear yet in CC. Methods The relative expressions of RNAs were detected by real-time quantitative PCR (RT-qPCR). Colony formation assay, EdU stained assay and CCK-8 assay were to check cell proliferation ability in CC. Flow cytometry and apoptosis related proteins analysis were used to measure cells apoptosis capacity. Luciferase reporter assay and RNA pull down assay were to verify the molecular mechanism. Results SFN was highly expressed in CC tissues and CC cell lines compared with normal tissues and normal cell line. After interfering SFN, cell proliferation, migration and invasion ability was inhibited as well as cell apoptosis ability was promoted. In subsequence, miR-383-5p exhibited conspicuous low expression in CC tissues. And miR-383-5p was found to bind to SFN and have anti-cancerous effects in CC. Moreover, LINC01128 displayed remarkable high expression in CC tissues. Besides, LINC01128 shortage could reduce the expression of SFN at mRNA and protein levels. And the affinity between LINC01128 and miR-383-5p was verified. In the end, it was proved that LINC01128 could enhance cell proliferation, migration and invasion as well as inhibit cell apoptosis by binding with miR-383-5p and upregulating SFN. Conclusion LINC01128 expedited cells cellular process in CC by binding with miR-383-5p to release SFN. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Yi Hu
- Department of Obstetrics and Gynaecology, The Second Xiangya Hospital, Central South University, 139 Renmin road, Changsha, 410011, Hunan, China.,Department of Obstetrics and Gynaecology, the First Affiliated Hospital of University of South China, Hengyang, 421001, Hunan, China
| | - Yan Ma
- Department of Obstetrics and Gynaecology, the First Affiliated Hospital of University of South China, Hengyang, 421001, Hunan, China
| | - Jie Liu
- Department of Obstetrics and Gynaecology, the First Affiliated Hospital of University of South China, Hengyang, 421001, Hunan, China
| | - Yanlin Cai
- Department of Obstetrics and Gynaecology, the First Affiliated Hospital of University of South China, Hengyang, 421001, Hunan, China
| | - Mengmeng Zhang
- Department of Obstetrics and Gynaecology, The Second Xiangya Hospital, Central South University, 139 Renmin road, Changsha, 410011, Hunan, China
| | - Xiaoling Fang
- Department of Obstetrics and Gynaecology, The Second Xiangya Hospital, Central South University, 139 Renmin road, Changsha, 410011, Hunan, China.
| |
Collapse
|
48
|
Ravindran S, Rasool S, Maccalli C. The Cross Talk between Cancer Stem Cells/Cancer Initiating Cells and Tumor Microenvironment: The Missing Piece of the Puzzle for the Efficient Targeting of these Cells with Immunotherapy. CANCER MICROENVIRONMENT 2019; 12:133-148. [PMID: 31758404 PMCID: PMC6937350 DOI: 10.1007/s12307-019-00233-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 10/17/2019] [Indexed: 12/14/2022]
Abstract
Cancer Stem Cells/Cancer Initiating Cells (CSCs/CICs) is a rare sub-population within a tumor that is responsible for tumor formation, progression and resistance to therapies. The interaction between CSCs/CICs and tumor microenvironment (TME) can sustain “stemness” properties and promote their survival and plasticity. This cross-talk is also pivotal in regulating and modulating CSC/CIC properties. This review will provide an overview of the mechanisms underlying the mutual interaction between CSCs/CICs and TME. Particular focus will be dedicated to the immunological profile of CSCs/CICs and its role in orchestrating cancer immunosurveillance. Moreover, the available immunotherapy strategies that can target CSCs/CICs and of their possible implementation will be discussed. Overall, the dissection of the mechanisms regulating the CSC/CIC-TME interaction is warranted to understand the plasticity and immunoregulatory properties of stem-like tumor cells and to achieve complete eradications of tumors through the optimization of immunotherapy.
Collapse
Affiliation(s)
- Shilpa Ravindran
- Research Department, Sidra Medicine, Al Luqta Street, PO Box 26999, Doha, Qatar
| | - Saad Rasool
- Research Department, Sidra Medicine, Al Luqta Street, PO Box 26999, Doha, Qatar
| | - Cristina Maccalli
- Research Department, Sidra Medicine, Al Luqta Street, PO Box 26999, Doha, Qatar.
| |
Collapse
|
49
|
Dong KS, Chen Y, Yang G, Liao ZB, Zhang HW, Liang HF, Chen XP, Dong HH. TGF-β1 accelerates the hepatitis B virus X-induced malignant transformation of hepatic progenitor cells by upregulating miR-199a-3p. Oncogene 2019; 39:1807-1820. [PMID: 31740785 PMCID: PMC7033045 DOI: 10.1038/s41388-019-1107-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 10/29/2019] [Accepted: 11/06/2019] [Indexed: 12/25/2022]
Abstract
Increasing evidence has suggested that liver cancer arises partially from transformed hepatic progenitor cells (HPCs). However, the detailed mechanisms underlying HPC transformation are poorly understood. In this study, we provide evidence linking the coexistence of hepatitis B virus X protein (HBx) and transforming growth factor beta 1 (TGF-β1) with miR-199a-3p in the malignant transformation of HPCs. The examination of liver cancer specimens demonstrated that HBx and TGF-β1 expression was positively correlated with epithelial cell adhesion molecule (EpCAM) and cluster of differentiation 90 (CD90). Importantly, EpCAM and CD90 expression was much higher in the specimens expressing both high HBx and high TGF-β1 than in those with high HBx or high TGF-β1 and the double-low-expression group. HBx and TGF-β1 double-high expression was significantly associated with poor prognosis in primary liver cancer. We also found that HBx and TGF-β1 induced the transformation of HPCs into hepatic cancer stem cells and promoted epithelial–mesenchymal transformation, which was further enhanced by concomitant HBx and TGF-β1 exposure. Moreover, activation of the c-Jun N-terminal kinase (JNK)/c-Jun pathway was involved in the malignant transformation of HPCs. miR-199a-3p was identified as a significantly upregulated microRNA in HPCs upon HBx and TGF-β1 exposure, which were shown to promote miR-199a-3p expression via c-Jun-mediated activation. Finally, we found that miR-199a-3p was responsible for the malignant transformation of HPCs. In conclusion, our results provide evidence that TGF-β1 cooperates with HBx to promote the malignant transformation of HPCs through a JNK/c-Jun/miR-199a-3p-dependent pathway. This may open new avenues for therapeutic interventions targeting the malignant transformation of HPCs in treating liver cancer.
Collapse
Affiliation(s)
- Ke-Shuai Dong
- Hepatic Surgery Center, Department of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Hepatobiliary and Laparoscopic Surgery, Renmin Hospital, Wuhan University, Hubei Key Laboratory of Digestive System Disease, Wuhan, China
| | - Yan Chen
- Department of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guang Yang
- Hepatic Surgery Center, Department of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi-Bin Liao
- Hepatic Surgery Center, Department of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong-Wei Zhang
- Hepatic Surgery Center, Department of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui-Fang Liang
- Hepatic Surgery Center, Department of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Ping Chen
- Hepatic Surgery Center, Department of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Han-Hua Dong
- Hepatic Surgery Center, Department of Hepatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
50
|
Sridharan S, Howard CM, Tilley AMC, Subramaniyan B, Tiwari AK, Ruch RJ, Raman D. Novel and Alternative Targets Against Breast Cancer Stemness to Combat Chemoresistance. Front Oncol 2019; 9:1003. [PMID: 31681564 PMCID: PMC6805781 DOI: 10.3389/fonc.2019.01003] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 09/18/2019] [Indexed: 12/15/2022] Open
Abstract
Breast cancer stem cells (BCSCs) play a vital role in tumor progression and metastasis. They are heterogeneous and inherently radio- and chemoresistant. They have the ability to self-renew and differentiate into non-BCSCs. These determinants of BCSCs including the plasticity between the mesenchymal and epithelial phenotypes often leads to minimal residual disease (MRD), tumor relapse, and therapy failure. By studying the resistance mechanisms in BCSCs, a combinatorial therapy can be formulated to co-target BCSCs and bulk tumor cells. This review addresses breast cancer stemness and molecular underpinnings of how the cancer stemness can lead to pharmacological resistance. This might occur through rewiring of signaling pathways and modulated expression of various targets that support survival and self-renewal, clonogenicity, and multi-lineage differentiation into heterogeneous bulk tumor cells following chemotherapy. We explore emerging novel and alternative molecular targets against BC stemness and chemoresistance involving survival, drug efflux, metabolism, proliferation, cell migration, invasion, and metastasis. Strategic targeting of such vulnerabilities in BCSCs may overcome the chemoresistance and increase the longevity of the metastatic breast cancer patients.
Collapse
Affiliation(s)
- Sangita Sridharan
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| | - Cory M. Howard
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| | | | | | - Amit K. Tiwari
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, Toledo, OH, United States
| | - Randall J. Ruch
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| | - Dayanidhi Raman
- Department of Cancer Biology, University of Toledo, Toledo, OH, United States
| |
Collapse
|