1
|
Wang HM, Seo CD, Lee KJ, Park JH, Lim HS. Evaluation of the cell permeability of bicyclic peptoids and bicyclic peptide-peptoid hybrids. Bioorg Chem 2022; 127:105976. [DOI: 10.1016/j.bioorg.2022.105976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 11/02/2022]
|
2
|
Kalita D, Sahariah B, Mookerjee SP, Sarma BK. Strategies to Control the cis-trans Isomerization of Peptoid Amide Bonds. Chem Asian J 2022; 17:e202200149. [PMID: 35362652 DOI: 10.1002/asia.202200149] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/30/2022] [Indexed: 11/11/2022]
Abstract
Peptoids are oligomers of N-substituted glycine units. They structurally resemble peptides but, unlike natural peptides, the side chains of peptoids are present on the amide nitrogen atoms instead of the α-carbons. The N-substitution improves cell-permeability of peptoids and enhance their proteolytic stability over natural peptides. Therefore, peptoids are ideal peptidomimetic candidates for drug discovery, especially for intracellular targets. Unfortunately, most peptoid ligands discovered so far possess moderate affinity towards their biological targets. The moderate affinity of peptoids for biomacromolecules is linked to their conformational flexibility, which causes substantial entropic loss during the peptoid-biomacromolecule binding process. The conformational flexibility of peptoids is caused by the lack of backbone chirality, absence of hydrogen bond donors (NH) in their backbone to form CO···HN hydrogen bonds and the facile cis-trans isomerization of their tertiary amide bonds. In recent years, many investigators have shown that the incorporation of specific side chains with unique steric and stereoelectronic features can favourably shift the cis-trans equilibria of peptoids towards one of the two isomeric forms. Such strategies are helpful to design homogenous peptoid oligomers having well defined secondary structures. Herein, we discuss the strategies developed over the years to control the cis-trans isomerization of peptoid amide bonds.
Collapse
Affiliation(s)
- Debajit Kalita
- Jawaharlal Nehru Centre for Advanced Scientific Research, New Chemistry Unit, INDIA
| | - Biswajit Sahariah
- Jawaharlal Nehru Centre for Advanced Scientific Research, New Chemistry Unit, INDIA
| | | | - Bani Kanta Sarma
- Jawaharlal Nehru Centre for Advanced Scientific Research, New Chemistry Unit, Rachenahalli Lake Road, Jakkur, 560064, India, 560064, Bangalore, INDIA
| |
Collapse
|
3
|
Aquino C, Sarkar M. One Bead-One Compound (OBOC) Peptidomimetic-Encoded Library Synthesis via Split-and-Pool Methods. Methods Mol Biol 2022; 2541:105-120. [PMID: 36083550 DOI: 10.1007/978-1-0716-2545-3_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Large structurally diverse peptidomimetic chemical libraries have been very useful tools in chemical biology and drug discovery for the identification of therapeutically important compounds with higher affinity and improved pharmacological properties against different protein targets.Here we describe a simple and general method for the submonomer solid phase synthesis of large one bead-one compound (OBOC) peptidomimetic libraries of structurally diverse compounds that can be encoded by mass or genetic methods.
Collapse
|
4
|
Rani K. Clinical Approaches of Biomimetic: An Emerging Next Generation Technology. Biomimetics (Basel) 2021. [DOI: 10.5772/intechopen.97148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Biomimetic is the study of various principles of working mechanisms of naturally occurring phenomena and their further respective integrations in to such a modified advanced mechanized instruments/models of digital or artificial intelligence protocols. Hence, biomimetic has been proposed in last decades for betterment of human mankind for improving security systems by developing various convenient robotic vehicles and devices inspired by natural working phenomenon of plants, animals, birds and insects based on biochemical engineering and nanotechnology. Hence, biomimetic will be considered next generation technology to develop various robotic products in the fields of chemistry, medicine, material sciences, regenerative medicine and tissue engineering medicine, biomedical engineering to treat various diseases and congenital disorders. The characteristics of tissue engineered scaffolds are found to possess multifunctional cellular properties like biocompatibility, biodegradability and favorable mechanized properties when comes in close contact with the body fluids in vivo. This chapter will provide overall overview to the readers for the study based on reported data of developed biomimetic materials and tools exploited for various biomedical applications and tissue engineering applications which further helpful to meet the needs of the medicine and health care industries.
Collapse
|
5
|
Perera S, Fernando A, Dallman J, Weeramange C, Lansakara A, Nguyen T, Rafferty RJ. Construction and Biological Evaluation of Small Libraries Based on the Intermediates within the Total Synthesis of Uvaretin. ChemMedChem 2021; 16:1631-1639. [PMID: 33491867 DOI: 10.1002/cmdc.202001010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Indexed: 11/12/2022]
Abstract
Discovering therapeutic agents: New bioactive agents, either as sole or combinational agents, have been constructed through the synthetic manipulation of the intermediates within the total synthesis of the uvaretin class of natural products. It was found that increasing the hydrophobic character of the phenolic core correlates to a decrease in sole agent cytotoxicity. The synthesis of new, small chemical screening libraries (CSL) constructed from the intermediates of our total synthesis route of the uvaretin class of natural products is demonstrated herein. Numerous chalcone-based CSLs with various substitution on the phenolic groups within the chalcone core were assembled. Through cytotoxicity investigations, it was found that the level of hydrophobicity of the phenolic core of the chalcones gives biases: less cytotoxicity with more hydrophobic cores. In addition, it was observed that the potentiation, evaluated with 6-thiopurine in the pancreatic cancer cell line MIA PaCa-2, is tunable by the inclusion of less-hydrophobic character on the phenolic core. The role of the o-hydroxybenzyl group, present within the uvaretin family, was revealed to be cytotoxic in character. Merging all of the structure-activity relationship studies performed on the CSLs constructed in this effort led to the construction of a new chalcone hybrid possessing both a cytotoxic enone group and a small-molecule-potentiating, reduced enone group.
Collapse
Affiliation(s)
- Shashika Perera
- Department of Chemistry, Kansas State University, 1212 Mid-Campus Drive North, Manhattan, KS 66506, USA
| | - Asantha Fernando
- Department of Chemistry, Kansas State University, 1212 Mid-Campus Drive North, Manhattan, KS 66506, USA
| | - Johnathan Dallman
- Department of Chemistry, Kansas State University, 1212 Mid-Campus Drive North, Manhattan, KS 66506, USA
| | - Chamitha Weeramange
- Department of Chemistry, Kansas State University, 1212 Mid-Campus Drive North, Manhattan, KS 66506, USA
| | - Ashabha Lansakara
- Department of Chemistry, Kansas State University, 1212 Mid-Campus Drive North, Manhattan, KS 66506, USA
| | - Thi Nguyen
- Department of Chemistry, Kansas State University, 1212 Mid-Campus Drive North, Manhattan, KS 66506, USA
| | - Ryan J Rafferty
- Department of Chemistry, Kansas State University, 1212 Mid-Campus Drive North, Manhattan, KS 66506, USA
| |
Collapse
|
6
|
Morimoto J, Sando S. Peptoids with Substituents on the Backbone Carbons as Conformationally Constrained Synthetic Oligoamides. J SYN ORG CHEM JPN 2020. [DOI: 10.5059/yukigoseikyokaishi.78.1076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo
| |
Collapse
|
7
|
McEnaney P, Balzarini M, Park H, Kodadek T. Structural characterization of a peptoid-inspired conformationally constrained oligomer (PICCO) bound to streptavidin. Chem Commun (Camb) 2020; 56:10560-10563. [PMID: 32785302 DOI: 10.1039/d0cc02588g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A high affinity Streptavidin ligand was mined from a DNA-encoded library of non-peptidic oligimers and characterized structurally.
Collapse
Affiliation(s)
- Patrick McEnaney
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 3345, USA.
| | | | | | | |
Collapse
|
8
|
Utaka Y, Kashiwazaki G, Tsuchida N, Fukushima M, Takahashi I, Kawai Y, Kitayama T. Remarkable Potential of Zerumbone to Generate a Library with Six Natural Product-like Skeletons by Natural Material-Related Diversity-Oriented Synthesis. J Org Chem 2020; 85:8371-8386. [PMID: 32524816 DOI: 10.1021/acs.joc.0c00689] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Diversity-oriented synthesis (DOS) is an effective strategy for the quick creation of diverse and high three-dimensional compounds from simple starting materials. The selection of a starting material is the key to constructing useful, chemically diverse compound libraries for the development of new drugs. Here, we report a novel, general, and facile strategy for the creation of diverse compounds with high structural diversity from readily available natural products, such as zerumbone, as the synthetic starting material. Zerumbone is the major component of the essential oil from wild ginger, Zingiber zerumbet Smith. It is noteworthy that zerumbone has a powerful latent reactivity, partly because of its three double bonds, two conjugated and one isolated, and a double conjugated carbonyl group in an 11-membered ring structure. In fact, zerumbone has been shown to be a successful example of natural material-related DOS (NMRDOS). We will report that zerumbone can be converted in one chemical step from four zerumbone derivatives into rare and markedly different scaffolds by transannulation.
Collapse
Affiliation(s)
- Yoshimi Utaka
- Major in Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nara 631-8505, Japan
| | - Gengo Kashiwazaki
- Major in Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nara 631-8505, Japan
| | - Noriko Tsuchida
- Faculty of Medicine, Saitama Medical University, Saitama 350-0495, Japan
| | - Miyuki Fukushima
- Major in Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nara 631-8505, Japan
| | - Issei Takahashi
- Major in Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nara 631-8505, Japan
| | - Yasushi Kawai
- Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan
| | - Takashi Kitayama
- Major in Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nara 631-8505, Japan
| |
Collapse
|
9
|
Paciaroni NG, Perry DL, Norwood VM, Murillo-Solano C, Collins J, Tenneti S, Chakrabarti D, Huigens RW. Re-Engineering of Yohimbine's Biological Activity through Ring Distortion: Identification and Structure-Activity Relationships of a New Class of Antiplasmodial Agents. ACS Infect Dis 2020; 6:159-167. [PMID: 31913597 DOI: 10.1021/acsinfecdis.9b00380] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Select natural products are ideal starting points for ring distortion, or the dramatic altering of inherently complex molecules through short synthetic pathways, to generate an array of novel compounds with diverse skeletal architectures. A major goal of our ring distortion approach is to re-engineer the biological activity of indole alkaloids to identify new compounds with diverse biological activities in areas of significance to human health and medicine. In this study, we re-engineered the biological activity of the indole alkaloid yohimbine through ring rearrangement and ring cleavage synthesis pathways to discover new series of antiplasmodial agents. One new compound, Y7j, was found to demonstrate good potency against chloroquine-resistant Plasmodium falciparum Dd2 cells (EC50 = 0.33 μM) without eliciting cytotoxicity against HepG2 cells (EC50 > 40 μM). Y7j demonstrated stage-specific action against parasites at the late ring/trophozoite stage. A series of analogues was synthesized to gain structure-activity relationship insights, and we learned that both benzyl groups of Y7j are required for activity and fine-tuning of antiplasmodial activities could be accomplished by changing substitution patterns on the benzyl moieties. This study demonstrates the potential for ring distortion to drive new discoveries and change paradigms in chemical biology and drug discovery.
Collapse
Affiliation(s)
- Nicholas G. Paciaroni
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| | - David L. Perry
- Division of Molecular Biology and Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, 12722 Research Parkway, Orlando, Florida 32826, United States
| | - Verrill M. Norwood
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| | - Claribel Murillo-Solano
- Division of Molecular Biology and Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, 12722 Research Parkway, Orlando, Florida 32826, United States
| | - Jennifer Collins
- Division of Molecular Biology and Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, 12722 Research Parkway, Orlando, Florida 32826, United States
| | - Srinivasarao Tenneti
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| | - Debopam Chakrabarti
- Division of Molecular Biology and Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, 12722 Research Parkway, Orlando, Florida 32826, United States
| | - Robert W. Huigens
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development (CNPD3), University of Florida, 1345 Center Drive, Gainesville, Florida 32610, United States
| |
Collapse
|
10
|
Rahim A, Sahariah B, Baruah K, Deka JKR, Sarma BK. Solid-Phase Synthesis of Hybrid 2,5-Diketopiperazines Using Acylhydrazide, Carbazate, Semicarbazide, Amino Acid, and Primary Amine Submonomers. J Org Chem 2020; 85:2927-2937. [PMID: 32000488 DOI: 10.1021/acs.joc.9b02083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report the solid-phase synthesis of N,N'-di(acylamino)-2,5-diketopiperazine, an acylhydrazide-based conformationally rigid 2,5-DKP scaffold having exocyclic N-N bonds. We also show that different combinations of acylhydrazides, carbazates, semicarbazides, amino acids, and primary amines can be used to synthesize a highly diverse collection of hybrid DKP molecules via the solid-phase submonomer synthesis route. Finally, we show incorporation of a methyl substituent in one of the carbon atoms of the DKP ring to generate chiral daa- and hybrid-DKPs without compromising the synthetic efficiency.
Collapse
Affiliation(s)
- Abdur Rahim
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Dadri, Uttar Pradesh 201314, India
| | - Biswajit Sahariah
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Dadri, Uttar Pradesh 201314, India
| | - Kalpita Baruah
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Dadri, Uttar Pradesh 201314, India
| | - Jugal Kishore Rai Deka
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Dadri, Uttar Pradesh 201314, India
| | - Bani Kanta Sarma
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| |
Collapse
|
11
|
Dickson P, Kodadek T. Chemical composition of DNA-encoded libraries, past present and future. Org Biomol Chem 2019; 17:4676-4688. [PMID: 31017595 PMCID: PMC6520149 DOI: 10.1039/c9ob00581a] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
DNA-encoded libraries represent an exciting and powerful modality for high-throughput screening. In this article, we highlight recent important advances in this field and also suggest some important directions that would make the technology even more powerful.
Collapse
Affiliation(s)
- Paige Dickson
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| | | |
Collapse
|
12
|
|
13
|
Morimoto J, Fukuda Y, Sando S. Solid-Phase Synthesis of β-Peptoids with Chiral Backbone Substituents Using Reductive Amination. Org Lett 2018; 19:5912-5915. [PMID: 29039680 DOI: 10.1021/acs.orglett.7b02909] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new submonomeric synthetic method of β-peptoids that allows introduction of chiral backbone substituents is established. The synthesis of β-peptoids with various backbone substituents on β-carbons and spectroscopic studies of synthesized oligomers are described.
Collapse
Affiliation(s)
- Jumpei Morimoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yasuhiro Fukuda
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shinsuke Sando
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
14
|
Tran-Hoang N, Kodadek T. Solid-Phase Synthesis of β-Amino Ketones Via DNA-Compatible Organocatalytic Mannich Reactions. ACS COMBINATORIAL SCIENCE 2018; 20:55-60. [PMID: 29316387 PMCID: PMC7074847 DOI: 10.1021/acscombsci.7b00151] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
One-bead-one-compound (OBOC) libraries constructed by solid-phase split-and-pool synthesis are a valuable source of protein ligands. Most OBOC libraries are comprised of oligoamides, particularly peptides, peptoids, and peptoid-inspired molecules. Further diversification of the chemical space covered by OBOC libraries is desirable. Toward this end, we report here the efficient proline-catalyzed asymmetric Mannich reaction between immobilized aldehydes and soluble ketones and anilines. The reaction conditions do not compromise the amplification of DNA by the PCR. Thus, this chemistry will likely be useful for the construction of novel DNA-encoded libraries by solid-phase synthesis.
Collapse
Affiliation(s)
- Nam Tran-Hoang
- Department of Chemistry The Scripps Research Institute 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Thomas Kodadek
- Department of Chemistry The Scripps Research Institute 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
15
|
Shi Y, Challa S, Sang P, She F, Li C, Gray GM, Nimmagadda A, Teng P, Odom T, Wang Y, van der Vaart A, Li Q, Cai J. One-Bead-Two-Compound Thioether Bridged Macrocyclic γ-AApeptide Screening Library against EphA2. J Med Chem 2017; 60:9290-9298. [PMID: 29111705 DOI: 10.1021/acs.jmedchem.7b01280] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Identification of molecular ligands that recognize peptides or proteins is significant but poses a fundamental challenge in chemical biology and biomedical sciences. Development of cyclic peptidomimetic library is scarce, and thus discovery of cyclic peptidomimetic ligands for protein targets is rare. Herein we report the unprecedented one-bead-two-compound (OBTC) combinatorial library based on a novel class of the macrocyclic peptidomimetics γ-AApeptides. In the library, we utilized the coding peptide tags synthesized with Dde-protected α-amino acids, which were orthogonal to solid phase synthesis of γ-AApeptides. Employing the thioether linkage, the desired macrocyclic γ-AApeptides were found to be effective for ligand identification. Screening the library against the receptor tyrosine kinase EphA2 led to the discovery of one lead compound that tightly bound to EphA2 (Kd = 81 nM) and potently antagonized EphA2-mediated signaling. This new approach of macrocyclic peptidomimetic library may lead to a novel platform for biomacromolecular surface recognition and function modulation.
Collapse
Affiliation(s)
- Yan Shi
- Department of Chemistry, University of South Florida , 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| | - Sridevi Challa
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute , 12902 Magnolia Drive, Tampa, Florida 33612, United States
| | - Peng Sang
- Department of Chemistry, University of South Florida , 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| | - Fengyu She
- Department of Chemistry, University of South Florida , 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| | - Chunpu Li
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Geoffrey M Gray
- Department of Chemistry, University of South Florida , 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| | - Alekhya Nimmagadda
- Department of Chemistry, University of South Florida , 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| | - Peng Teng
- Department of Chemistry, University of South Florida , 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| | - Timothy Odom
- Department of Chemistry, University of South Florida , 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| | - Yan Wang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Arjan van der Vaart
- Department of Chemistry, University of South Florida , 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| | - Qi Li
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida , 4202 E. Fowler Avenue, Tampa, Florida 33620, United States
| |
Collapse
|
16
|
Liu R, Li X, Lam KS. Combinatorial chemistry in drug discovery. Curr Opin Chem Biol 2017; 38:117-126. [PMID: 28494316 PMCID: PMC5645069 DOI: 10.1016/j.cbpa.2017.03.017] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 03/27/2017] [Accepted: 03/29/2017] [Indexed: 02/07/2023]
Abstract
Several combinatorial methods have been developed to create focused or diverse chemical libraries with a wide range of linear or macrocyclic chemical molecules: peptides, non-peptide oligomers, peptidomimetics, small-molecules, and natural product-like organic molecules. Each combinatorial approach has its own unique high-throughput screening and encoding strategy. In this article, we provide a brief overview of combinatorial chemistry in drug discovery with emphasis on recently developed new technologies for design, synthesis, screening and decoding of combinatorial library. Examples of successful application of combinatorial chemistry in hit discovery and lead optimization are given. The limitations and strengths of combinatorial chemistry are also briefly discussed. We are now in a better position to truly leverage the power of combinatorial technologies for the discovery and development of next-generation drugs.
Collapse
Affiliation(s)
- Ruiwu Liu
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA 95817, USA; University of California Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA
| | - Xiaocen Li
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA 95817, USA; University of California Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA
| | - Kit S Lam
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA 95817, USA; University of California Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA; Division of Hematology & Oncology, Department of Internal Medicine, University of California Davis, Sacramento, CA 95817, USA.
| |
Collapse
|
17
|
Wu H, An H, Mo SC, Kodadek T. Asymmetric synthesis of vinylogous β-amino acids and their incorporation into mixed backbone oligomers. Org Biomol Chem 2017; 15:3255-3264. [PMID: 28346549 PMCID: PMC7243482 DOI: 10.1039/c7ob00333a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chiral vinylogous β-amino acids (VBAA) were synthesized using enantioselective Mannich reactions of aldehydes with in situ generated N-carbamoyl imines followed by a Horner-Wadsworth-Emmons reaction. The efficiency with which these units could be incorporated into oligomers with different moieties on the C- and N-terminal sides was established, as was the feasibility of sequencing oligomers containing VBAAs by tandem mass spectrometry. The data show that VBAAs will be useful building blocks for the construction of combinatorial libraries of peptidomimetic compounds.
Collapse
Affiliation(s)
- Hao Wu
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| | | | | | | |
Collapse
|
18
|
Vastl J, Wang T, Trinh TB, Spiegel DA. Encoded Silicon-Chip-Based Platform for Combinatorial Synthesis and Screening. ACS COMBINATORIAL SCIENCE 2017; 19:255-261. [PMID: 28263558 DOI: 10.1021/acscombsci.6b00181] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Solid-supported chemical libraries have proven useful for the rapid and cost-effective discovery of bioactive compounds. However, traditional on-bead screening involves time-intensive chemical characterization of hit compounds and high false positive rates. Herein, we report a new platform for encoded chemical synthesis and solid-supported screening using p-Chips, microsized silicon microtransponders capable of storing and emitting unique numerical identifiers (IDs). By encoding the structures of library members using p-Chip IDs, we can track compound identities throughout both split-and-pool synthesis and protein binding assays without destructive cleavage. Thanks to the numerical IDs, our p-Chip platform can provide binding constants for library members simply by stripping and reprobing with different protein concentrations, unlike traditional on-bead assays. To showcase these features, we synthesized a library of 108 hemagglutinin (HA) peptide variants using split-and-pool approach, and measured EC50s for each variant directly on p-Chips. On-chip EC50s obtained from these studies showed excellent correlation (80%) with those obtained using traditional ELISA methods. Our screen also yielded a false positive rate of 14%, markedly superior to that reported for conventional bead-based binding studies (66-96%).1-9 On the basis of these results, we believe the p-Chip platform has the potential to improve the effectiveness of solid-supported high-throughput screening by a significant margin.
Collapse
Affiliation(s)
- Julian Vastl
- Department of Chemistry, Yale University, 225
Prospect Street, New Haven, Connecticut 06511, United States
| | - Tina Wang
- Department of Chemistry, Yale University, 225
Prospect Street, New Haven, Connecticut 06511, United States
| | - Thi B. Trinh
- Department of Chemistry, Yale University, 225
Prospect Street, New Haven, Connecticut 06511, United States
| | - David A. Spiegel
- Department of Chemistry, Yale University, 225
Prospect Street, New Haven, Connecticut 06511, United States
| |
Collapse
|
19
|
Ciardiello JJ, Stewart HL, Sore HF, Galloway WRJD, Spring DR. A novel complexity-to-diversity strategy for the diversity-oriented synthesis of structurally diverse and complex macrocycles from quinine. Bioorg Med Chem 2017; 25:2825-2843. [PMID: 28283333 DOI: 10.1016/j.bmc.2017.02.060] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 02/26/2017] [Indexed: 01/15/2023]
Abstract
Recent years have witnessed a global decline in the productivity and advancement of the pharmaceutical industry. A major contributing factor to this is the downturn in drug discovery successes. This can be attributed to the lack of structural (particularly scaffold) diversity and structural complexity exhibited by current small molecule screening collections. Macrocycles have been shown to exhibit a diverse range of biological properties, with over 100 natural product-derived examples currently marketed as FDA-approved drugs. Despite this, synthetic macrocycles are widely considered to be a poorly explored structural class within drug discovery, which can be attributed to their synthetic intractability. Herein we describe a novel complexity-to-diversity strategy for the diversity-oriented synthesis of novel, structurally complex and diverse macrocyclic scaffolds from natural product starting materials. This approach exploits the inherent structural (including functional) and stereochemical complexity of natural products in order to rapidly generate diversity and complexity. Readily-accessible natural product-derived intermediates serve as structural templates which can be divergently functionalized with different building blocks to generate a diverse range of acyclic precursors. Subsequent macrocyclisation then furnishes compounds that are each based around a distinct molecular scaffold. Thus, high levels of library scaffold diversity can be rapidly achieved. In this proof-of-concept study, the natural product quinine was used as the foundation for library synthesis, and six novel structurally diverse, highly complex and functionalized macrocycles were generated.
Collapse
Affiliation(s)
- J J Ciardiello
- Department of Chemistry, The University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - H L Stewart
- Department of Chemistry, The University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - H F Sore
- Department of Chemistry, The University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - W R J D Galloway
- Department of Chemistry, The University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - D R Spring
- Department of Chemistry, The University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom.
| |
Collapse
|
20
|
Design and Synthesis of a Novel N-(1H-tetrazol-5-yl)methyl Cyclic Peptoid Using Nosyl-protected N-(1-trityl-1H-tetrazol-5-yl)methyl Substituted Glycine. Int J Pept Res Ther 2017. [DOI: 10.1007/s10989-017-9581-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
21
|
Paciaroni NG, Ratnayake R, Matthews JH, Norwood VM, Arnold AC, Dang LH, Luesch H, Huigens RW. A Tryptoline Ring-Distortion Strategy Leads to Complex and Diverse Biologically Active Molecules from the Indole Alkaloid Yohimbine. Chemistry 2017; 23:4327-4335. [PMID: 27900785 DOI: 10.1002/chem.201604795] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Indexed: 02/06/2023]
Abstract
High-throughput screening (HTS) is the primary driver to current drug-discovery efforts. New therapeutic agents that enter the market are a direct reflection of the structurally simple compounds that make up screening libraries. Unlike medically relevant natural products (e.g., morphine), small molecules currently being screened have a low fraction of sp3 character and few, if any, stereogenic centers. Although simple compounds have been useful in drugging certain biological targets (e.g., protein kinases), more sophisticated targets (e.g., transcription factors) have largely evaded the discovery of new clinical agents from screening collections. Herein, a tryptoline ring-distortion strategy is described that enables the rapid synthesis of 70 complex and diverse compounds from yohimbine (1); an indole alkaloid. The compounds that were synthesized had architecturally complex and unique scaffolds, unlike 1 and other scaffolds. These compounds were subjected to phenotypic screens and reporter gene assays, leading to the identification of new compounds that possessed various biological activities, including antiproliferative activities against cancer cells with functional hypoxia-inducible factors, nitric oxide inhibition, and inhibition and activation of the antioxidant response element. This tryptoline ring-distortion strategy can begin to address diversity problems in screening libraries, while occupying biologically relevant chemical space in areas critical to human health.
Collapse
Affiliation(s)
- Nicholas G Paciaroni
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, 32610, USA.,Center for Natural Product Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL, 32610, USA
| | - Ranjala Ratnayake
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, 32610, USA.,Center for Natural Product Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL, 32610, USA
| | - James H Matthews
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, 32610, USA.,Center for Natural Product Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL, 32610, USA
| | - Verrill M Norwood
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, 32610, USA.,Center for Natural Product Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL, 32610, USA
| | - Austin C Arnold
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, 32610, USA
| | - Long H Dang
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, 32610, USA.,Center for Natural Product Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL, 32610, USA.,Department of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Hendrik Luesch
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, 32610, USA.,Center for Natural Product Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL, 32610, USA
| | - Robert W Huigens
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, 32610, USA.,Center for Natural Product Drug Discovery and Development (CNPD3), University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
22
|
Mendes KR, Malone ML, Ndungu JM, Suponitsky-Kroyter I, Cavett VJ, McEnaney PJ, MacConnell AB, Doran TM, Ronacher K, Stanley K, Utset O, Walzl G, Paegel BM, Kodadek T. High-throughput Identification of DNA-Encoded IgG Ligands that Distinguish Active and Latent Mycobacterium tuberculosis Infections. ACS Chem Biol 2017; 12:234-243. [PMID: 27957856 DOI: 10.1021/acschembio.6b00855] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The circulating antibody repertoire encodes a patient's health status and pathogen exposure history, but identifying antibodies with diagnostic potential usually requires knowledge of the antigen(s). We previously circumvented this problem by screening libraries of bead-displayed small molecules against case and control serum samples to discover "epitope surrogates" (ligands of IgGs enriched in the case sample). Here, we describe an improved version of this technology that employs DNA-encoded libraries and high-throughput FACS-based screening to discover epitope surrogates that differentiate noninfectious/latent (LTB) patients from infectious/active TB (ATB) patients, which is imperative for proper treatment selection and antibiotic stewardship. Normal control/LTB (10 patients each, NCL) and ATB (10 patients) serum pools were screened against a library (5 × 106 beads, 448 000 unique compounds) using fluorescent antihuman IgG to label hit compound beads for FACS. Deep sequencing decoded all hit structures and each hit's occurrence frequencies. ATB hits were pruned of NCL hits and prioritized for resynthesis based on occurrence and homology. Several structurally homologous families were identified and 16/21 resynthesized representative hits validated as selective ligands of ATB serum IgGs (p < 0.005). The native secreted TB protein Ag85B (though not the E. coli recombinant form) competed with one of the validated ligands for binding to antibodies, suggesting that it mimics a native Ag85B epitope. The use of DNA-encoded libraries and FACS-based screening in epitope surrogate discovery reveals thousands of potential hit structures. Distilling this list down to several consensus chemical structures yielded a diagnostic panel for ATB composed of thermally stable and economically produced small molecule ligands in place of protein antigens.
Collapse
Affiliation(s)
- Kimberly R. Mendes
- Opko Health, Inc., 5353 Parkside
Drive Jupiter, Florida 33458, United States
| | | | - John Maina Ndungu
- Opko Health, Inc., 5353 Parkside
Drive Jupiter, Florida 33458, United States
| | | | | | | | | | | | - Katharina Ronacher
- Department
of Science and Technology/National Research Foundation Centre of Excellence
for Biomedical TB Research/Medical Research Council Centre for Molecular
and Cellular Biology, Division of Molecular Biology and Human Genetics,
Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Kim Stanley
- Department
of Science and Technology/National Research Foundation Centre of Excellence
for Biomedical TB Research/Medical Research Council Centre for Molecular
and Cellular Biology, Division of Molecular Biology and Human Genetics,
Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Ofelia Utset
- Opko Health, Inc., 5353 Parkside
Drive Jupiter, Florida 33458, United States
| | - Gerhard Walzl
- Department
of Science and Technology/National Research Foundation Centre of Excellence
for Biomedical TB Research/Medical Research Council Centre for Molecular
and Cellular Biology, Division of Molecular Biology and Human Genetics,
Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | | | | |
Collapse
|
23
|
Abstract
Polyketide biosynthesis engages a series of well-timed biosynthetic operations to generate elaborate natural products from simple building blocks. Mimicry of these processes has offered practical means for total synthesis and provided a foundation for reaction discovery. We now report an unusual intramolecular trans-amidation reaction discovered while preparing stabilized probes for the study of actinorhodin biosynthesis. This rapid cyclization event offers insight into the natural cyclization process inherent to the biosynthesis of type II polyketide antibiotics.
Collapse
|
24
|
Doran TM, Sarkar M, Kodadek T. Chemical Tools To Monitor and Manipulate Adaptive Immune Responses. J Am Chem Soc 2016; 138:6076-94. [PMID: 27115249 PMCID: PMC5332222 DOI: 10.1021/jacs.6b02954] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Methods to monitor and manipulate the immune system are of enormous clinical interest. For example, the development of vaccines represents one of the earliest and greatest accomplishments of the biomedical research enterprise. More recently, drugs capable of "reawakening" the immune system to cancer have generated enormous excitement. But, much remains to be done. All drugs available today that manipulate the immune system cannot distinguish between "good" and "bad" immune responses and thus drive general and systemic immune suppression or activation. Indeed, with the notable exception of vaccines, our ability to monitor and manipulate antigen-specific immune responses is in its infancy. Achieving this finer level of control would be highly desirable. For example, it might allow the pharmacological editing of pathogenic immune responses without restricting the ability of the immune system to defend against infection. On the diagnostic side, a method to comprehensively monitor the circulating, antigen-specific antibody population could provide a treasure trove of clinically useful biomarkers, since many diseases expose the immune system to characteristic molecules that are deemed foreign and elicit the production of antibodies against them. This Perspective will discuss the state-of-the-art of this area with a focus on what we consider seminal opportunities for the chemistry community to contribute to this important field.
Collapse
Affiliation(s)
- Todd M. Doran
- Departments of Chemistry & Cancer Biology, The Scripps Research
Institute, 130 Scripps Way, Jupiter, FL 33458
| | - Mohosin Sarkar
- Departments of Chemistry & Cancer Biology, The Scripps Research
Institute, 130 Scripps Way, Jupiter, FL 33458
| | - Thomas Kodadek
- Departments of Chemistry & Cancer Biology, The Scripps Research
Institute, 130 Scripps Way, Jupiter, FL 33458
| |
Collapse
|
25
|
Kodadek T, McEnaney PJ. Towards vast libraries of scaffold-diverse, conformationally constrained oligomers. Chem Commun (Camb) 2016; 52:6038-59. [PMID: 26996593 PMCID: PMC4846527 DOI: 10.1039/c6cc00617e] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
There is great interest in the development of probe molecules and drug leads that would bind tightly and selectively to protein surfaces that are difficult to target with traditional molecules, such as those involved in protein-protein interactions. The currently available evidence suggests that this will require molecules that are larger and have quite different chemical properties than typical Lipinski-compliant molecules that target enzyme active sites. We describe here efforts to develop vast libraries of conformationally constrained oligomers as a potentially rich source of these molecules.
Collapse
Affiliation(s)
- Thomas Kodadek
- Departments of Chemistry and Cancer Biology, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| | | |
Collapse
|
26
|
Vastl J, Kartika R, Park K, Cho AE, Spiegel DA. Peptidines: glycine-amidine-based oligomers for solution- and solid-phase synthesis. Chem Sci 2016; 7:3317-3324. [PMID: 29997824 PMCID: PMC6006957 DOI: 10.1039/c5sc03882k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/31/2016] [Indexed: 12/17/2022] Open
Abstract
Efforts to emulate biological oligomers have given rise to a host of useful technologies, ranging from solid-phase peptide and nucleic acid synthesis to various peptidomimetic platforms. Herein we introduce a novel class of peptide-like oligomers called "peptidines" wherein each carbonyl O-atom within poly-N-alkyl glycine oligomers is replaced with a functionalized N-atom. Compared to peptoids or peptides, the presence of this amidine N-substituent in peptidines effectively doubles the number of diversification sites per monomeric unit, and can decrease their overall conformational flexibility. We have developed iterative solution- and solid-phase protocols for the straightforward assembly of peptidines containing diverse backbone and amidine substituents, derived from readily available primary and secondary amines. We have also performed crystallographic and computational studies, which demonstrate a strong preference for the trans (E) amidine geometry. Given their straightforward synthetic preparation and high functional group density, peptidines have the potential to serve as useful tools for library generation, peptide mimicry, and the identification of biologically active small molecules.
Collapse
Affiliation(s)
- Julian Vastl
- Department of Chemistry , Yale University , 225 Prospect Street , New Haven , CT 06511 , USA .
| | - Rendy Kartika
- Department of Chemistry , Louisinanna State University , 337 Chemistry and Materials Building , Baton Rouge , LA 70803 , USA
| | - Kichul Park
- Department of Bioinformatics , Korea University Sejong Campus , 2511 Sejong-ro , Sejong City 399-770 , Korea
| | - Art E Cho
- Department of Bioinformatics , Korea University Sejong Campus , 2511 Sejong-ro , Sejong City 399-770 , Korea
| | - David A Spiegel
- Department of Chemistry , Yale University , 225 Prospect Street , New Haven , CT 06511 , USA . .,Department of Pharmacology , Yale University , 333 Cedar Street , New Haven , CT 06520 , USA
| |
Collapse
|
27
|
Sarkar M, Liu Y, Qi J, Peng H, Morimoto J, Rader C, Chiorazzi N, Kodadek T. Targeting Stereotyped B Cell Receptors from Chronic Lymphocytic Leukemia Patients with Synthetic Antigen Surrogates. J Biol Chem 2016; 291:7558-70. [PMID: 26851280 DOI: 10.1074/jbc.m115.701656] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Indexed: 12/17/2022] Open
Abstract
Chronic lymphocytic leukemia (CLL) is a disease in which a single B-cell clone proliferates relentlessly in peripheral lymphoid organs, bone marrow, and blood. DNA sequencing experiments have shown that about 30% of CLL patients have stereotyped antigen-specific B-cell receptors (BCRs) with a high level of sequence homology in the variable domains of the heavy and light chains. These include many of the most aggressive cases that haveIGHV-unmutated BCRs whose sequences have not diverged significantly from the germ line. This suggests a personalized therapy strategy in which a toxin or immune effector function is delivered selectively to the pathogenic B-cells but not to healthy B-cells. To execute this strategy, serum-stable, drug-like compounds able to target the antigen-binding sites of most or all patients in a stereotyped subset are required. We demonstrate here the feasibility of this approach with the discovery of selective, high affinity ligands for CLL BCRs of the aggressive, stereotyped subset 7P that cross-react with the BCRs of several CLL patients in subset 7p, but not with BCRs from patients outside this subset.
Collapse
Affiliation(s)
| | - Yun Liu
- The Karches Center for Chronic Lymphocytic Leukemia Research, Hofstra North Shore-LIJ School of Medicine, The Feinstein Institute for Medical Research, Manhasset, New York 11030
| | | | | | | | - Christoph Rader
- Cancer Biology, and Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida 33458 and
| | - Nicholas Chiorazzi
- The Karches Center for Chronic Lymphocytic Leukemia Research, Hofstra North Shore-LIJ School of Medicine, The Feinstein Institute for Medical Research, Manhasset, New York 11030
| | | |
Collapse
|
28
|
Mizoguchi H, Oguri H. Development of an Artificial Assembly Line Generating Skeletally Diverse Indole Alkaloids Inspired by Biogenetic Strategy. J SYN ORG CHEM JPN 2016. [DOI: 10.5059/yukigoseikyokaishi.74.854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Hiroki Oguri
- Division of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology
| |
Collapse
|
29
|
Doran TM, Gao Y, Simanski S, McEnaney P, Kodadek T. High affinity binding of conformationally constrained synthetic oligomers to an antigen-specific antibody: Discovery of a diagnostically useful synthetic ligand for murine Type 1 diabetes autoantibodies. Bioorg Med Chem Lett 2015; 25:4910-4917. [PMID: 26067174 PMCID: PMC4607566 DOI: 10.1016/j.bmcl.2015.05.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 05/18/2015] [Indexed: 10/23/2022]
Abstract
'Antigen surrogates' are synthetic, non-natural molecules that recognize the antigen-binding sites of antibodies. These molecules are of interest as replacements for native antigens as antibody 'capture agents' in ELISA-like assays of potential diagnostic utility, for example when the antibody is indicative of a disease state. Antigen surrogates for disease-related antibodies can be mined from one-bead one-compound (OBOC) libraries by first denuding the library of ligands for antibodies present in the serum of control patients or animals, followed by screening the remainder of the library against serum from individuals with a particular disease of interest. Most of the work in this area has been done with peptoids (oligomers of N-alkylated glycine), which provide antibody ligands with only modest affinity and selectivity. Here, we explore the hypothesis that this is due to the 'floppiness' of the peptoid backbone by creating libraries of peptoid-like molecules that have conformation-restricting structural elements inserted into their backbones. Indeed, we show here that these libraries can provide high affinity and selectivity antigen surrogates and that this much-improved binding is completely dependent on conformational restriction of the oligomer chain.
Collapse
Affiliation(s)
- Todd M Doran
- The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, United States
| | - Yu Gao
- The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, United States
| | - Scott Simanski
- The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, United States
| | - Patrick McEnaney
- The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, United States
| | - Thomas Kodadek
- The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, United States.
| |
Collapse
|
30
|
MacConnell AB, McEnaney PJ, Cavett VJ, Paegel BM. DNA-Encoded Solid-Phase Synthesis: Encoding Language Design and Complex Oligomer Library Synthesis. ACS COMBINATORIAL SCIENCE 2015; 17:518-34. [PMID: 26290177 PMCID: PMC4571006 DOI: 10.1021/acscombsci.5b00106] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
![]()
The
promise of exploiting combinatorial synthesis for small molecule
discovery remains unfulfilled due primarily to the “structure
elucidation problem”: the back-end mass spectrometric analysis
that significantly restricts one-bead-one-compound (OBOC) library
complexity. The very molecular features that confer binding potency
and specificity, such as stereochemistry, regiochemistry, and scaffold
rigidity, are conspicuously absent from most libraries because isomerism
introduces mass redundancy and diverse scaffolds yield uninterpretable
MS fragmentation. Here we present DNA-encoded solid-phase synthesis
(DESPS), comprising parallel compound synthesis in organic solvent
and aqueous enzymatic ligation of unprotected encoding dsDNA oligonucleotides.
Computational encoding language design yielded 148 thermodynamically
optimized sequences with Hamming string distance ≥ 3 and total
read length <100 bases for facile sequencing. Ligation is efficient
(70% yield), specific, and directional over 6 encoding positions.
A series of isomers served as a testbed for DESPS’s utility
in split-and-pool diversification. Single-bead quantitative PCR detected
9 × 104 molecules/bead and sequencing allowed for
elucidation of each compound’s synthetic history. We applied
DESPS to the combinatorial synthesis of a 75 645-member OBOC
library containing scaffold, stereochemical and regiochemical diversity
using mixed-scale resin (160-μm quality control beads and 10-μm
screening beads). Tandem DNA sequencing/MALDI-TOF MS analysis of 19
quality control beads showed excellent agreement (<1 ppt) between
DNA sequence-predicted mass and the observed mass. DESPS synergistically
unites the advantages of solid-phase synthesis and DNA encoding, enabling
single-bead structural elucidation of complex compounds and synthesis
using reactions normally considered incompatible with unprotected
DNA. The widespread availability of inexpensive oligonucleotide synthesis,
enzymes, DNA sequencing, and PCR make implementation of DESPS straightforward,
and may prompt the chemistry community to revisit the synthesis of
more complex and diverse libraries.
Collapse
Affiliation(s)
- Andrew B. MacConnell
- Department of Chemistry and ‡Doctoral Program in Chemical and Biological
Sciences, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Patrick J. McEnaney
- Department of Chemistry and ‡Doctoral Program in Chemical and Biological
Sciences, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Valerie J. Cavett
- Department of Chemistry and ‡Doctoral Program in Chemical and Biological
Sciences, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Brian M. Paegel
- Department of Chemistry and ‡Doctoral Program in Chemical and Biological
Sciences, The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
31
|
Mendes K, Ndungu JM, Clark LF, Kodadek T. Optimization of the Magnetic Recovery of Hits from One-Bead-One-Compound Library Screens. ACS COMBINATORIAL SCIENCE 2015. [PMID: 26221913 DOI: 10.1021/acscombsci.5b00090] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
On-bead screening of one-bead-one-compound (OBOC) libraries is a useful procedure for the identification of protein ligands. An important aspect of this experiment is the method by which beads that bind the target protein are separated from those that do not. Ideally, such a method would be rapid and convenient and result in the isolation of 100% of the "hits" with no false positives (beads that display compounds that are not good ligands for the target). We introduced a technique in which beads that have bound a labeled target protein can be magnetized, thus allowing their convenient isolation ( Astle et al. Chem. Biol. 2010 , 17 , 38 - 45 ). However, recent work in our laboratory and others has shown that magnetic hit recovery can result in the isolation of large numbers of false positives and has also suggested that many true hit beads are missed. In this study, we employ a well-defined model system to examine the efficiency of various magnetic hit isolation protocols. We show that the choice of reagents and the particular operations employed are critical for optimal results.
Collapse
Affiliation(s)
- Kimberly Mendes
- Opko Health, Inc., RF Building, Jupiter, Florida 33458, United States
| | - J. M. Ndungu
- Opko Health, Inc., RF Building, Jupiter, Florida 33458, United States
| | - Lorraine F. Clark
- Departments
of Chemistry and Cancer Biology, The Scripps Research Institute, 130
Scripps Way, Jupiter, Florida 33458, United States
| | - Thomas Kodadek
- Departments
of Chemistry and Cancer Biology, The Scripps Research Institute, 130
Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
32
|
Sarma BK, Liu X, Wu H, Gao Y, Kodadek T. Solid phase synthesis of 1,3,4-oxadiazin-5 (6R)-one and 1,3,4-oxadiazol-2-one scaffolds from acyl hydrazides. Org Biomol Chem 2015; 13:59-63. [PMID: 25354697 DOI: 10.1039/c4ob01883d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Solid phase synthesis of 1,3,4-oxadiazin-5(6R)-one and 1,3,4-oxadiazol-2-one scaffolds from resin-bound acyl hydrazides is described. We demonstrate here that the reactions of resin-bound aryl or hetero-aromatic acyl hydrazides with 2-substituted-2-bromoacetic acids and 4-nitrophenyl chloroformate and subsequent treatment with DIEA lead to intramolecular cyclization reactions to produce six-membered 1,3,4-oxadiazin-5(6R)-ones and five-membered 1,3,4-oxadiazol-2-ones, respectively. We also show that acyl hydrazide-derived 1,3,4-oxadiazol-2-ones may be useful serine hydrolase inhibitors.
Collapse
Affiliation(s)
- Bani Kanta Sarma
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Dadri, Uttar Pradesh-201314, India
| | | | | | | | | |
Collapse
|
33
|
Suwal S, Kodadek T. Solid-phase synthesis of peptoid-like oligomers containing diverse diketopiperazine units. Org Biomol Chem 2015; 12:5831-4. [PMID: 24976298 DOI: 10.1039/c4ob00829d] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Diketopiperazine (DKP) units are found in many bioactive small molecules. Here we report facile chemistry for incorporating diverse DKP units within peptoid and peptoid-like libraries made by solid-phase split and pool synthesis.
Collapse
Affiliation(s)
- Sujit Suwal
- Department of Chemistry and Cancer Biology, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| | | |
Collapse
|
34
|
Tao L, Zhu F, Qin C, Zhang C, Chen S, Zhang P, Zhang C, Tan C, Gao C, Chen Z, Jiang Y, Chen YZ. Clustered distribution of natural product leads of drugs in the chemical space as influenced by the privileged target-sites. Sci Rep 2015; 5:9325. [PMID: 25790752 PMCID: PMC5380136 DOI: 10.1038/srep09325] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 02/18/2015] [Indexed: 01/02/2023] Open
Abstract
Some natural product leads of drugs (NPLDs) have been found to congregate in the chemical space. The extent, detailed patterns, and mechanisms of this congregation phenomenon have not been fully investigated and their usefulness for NPLD discovery needs to be more extensively tested. In this work, we generated and evaluated the distribution patterns of 442 NPLDs of 749 pre-2013 approved and 263 clinical trial small molecule drugs in the chemical space represented by the molecular scaffold and fingerprint trees of 137,836 non-redundant natural products. In the molecular scaffold trees, 62.7% approved and 37.4% clinical trial NPLDs congregate in 62 drug-productive scaffolds/scaffold-branches. In the molecular fingerprint tree, 82.5% approved and 63.0% clinical trial NPLDs are clustered in 60 drug-productive clusters (DCs) partly due to their preferential binding to 45 privileged target-site classes. The distribution patterns of the NPLDs are distinguished from those of the bioactive natural products. 11.7% of the NPLDs in these DCs have remote-similarity relationship with the nearest NPLD in their own DC. The majority of the new NPLDs emerge from preexisting DCs. The usefulness of the derived knowledge for NPLD discovery was demonstrated by the recognition of the new NPLDs of 2013-2014 approved drugs.
Collapse
Affiliation(s)
- Lin Tao
- 1] Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, the Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology, the Graduate School at Shenzhen, Tsinghua University, Shenzhen, and Shenzhen Technology and Engineering Laboratory for Personalized Cancer Diagnostics and Therapeutics, PO Box 518000, P. R. China [2] Bioinformatics and Drug Design Group, Department of Pharmacy, and Center for Computational Science and Engineering, National University of Singapore, Singapore 117543 [3] NUS Graduate School for Integrative Sciences and Engineering, Singapore 117456
| | - Feng Zhu
- 1] Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, the Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology, the Graduate School at Shenzhen, Tsinghua University, Shenzhen, and Shenzhen Technology and Engineering Laboratory for Personalized Cancer Diagnostics and Therapeutics, PO Box 518000, P. R. China [2] Bioinformatics and Drug Design Group, Department of Pharmacy, and Center for Computational Science and Engineering, National University of Singapore, Singapore 117543 [3] Innovative Drug Research Centre and College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, P. R. China
| | - Chu Qin
- 1] Bioinformatics and Drug Design Group, Department of Pharmacy, and Center for Computational Science and Engineering, National University of Singapore, Singapore 117543 [2] NUS Graduate School for Integrative Sciences and Engineering, Singapore 117456
| | - Cheng Zhang
- Bioinformatics and Drug Design Group, Department of Pharmacy, and Center for Computational Science and Engineering, National University of Singapore, Singapore 117543
| | - Shangying Chen
- Bioinformatics and Drug Design Group, Department of Pharmacy, and Center for Computational Science and Engineering, National University of Singapore, Singapore 117543
| | - Peng Zhang
- Bioinformatics and Drug Design Group, Department of Pharmacy, and Center for Computational Science and Engineering, National University of Singapore, Singapore 117543
| | - Cunlong Zhang
- Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, the Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology, the Graduate School at Shenzhen, Tsinghua University, Shenzhen, and Shenzhen Technology and Engineering Laboratory for Personalized Cancer Diagnostics and Therapeutics, PO Box 518000, P. R. China
| | - Chunyan Tan
- Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, the Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology, the Graduate School at Shenzhen, Tsinghua University, Shenzhen, and Shenzhen Technology and Engineering Laboratory for Personalized Cancer Diagnostics and Therapeutics, PO Box 518000, P. R. China
| | - Chunmei Gao
- Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, the Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology, the Graduate School at Shenzhen, Tsinghua University, Shenzhen, and Shenzhen Technology and Engineering Laboratory for Personalized Cancer Diagnostics and Therapeutics, PO Box 518000, P. R. China
| | - Zhe Chen
- Zhejiang Key Laboratory of Gastro-intestinal Pathophysiology, Zhejiang Hospital of Traditional Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou, P. R. China
| | - Yuyang Jiang
- Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, the Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology, the Graduate School at Shenzhen, Tsinghua University, Shenzhen, and Shenzhen Technology and Engineering Laboratory for Personalized Cancer Diagnostics and Therapeutics, PO Box 518000, P. R. China
| | - Yu Zong Chen
- 1] Department of Pharmacology and Pharmaceutical Sciences, School of Medicine, Tsinghua University, the Ministry-Province Jointly Constructed Base for State Key Lab-Shenzhen Key Laboratory of Chemical Biology, the Graduate School at Shenzhen, Tsinghua University, Shenzhen, and Shenzhen Technology and Engineering Laboratory for Personalized Cancer Diagnostics and Therapeutics, PO Box 518000, P. R. China [2] Bioinformatics and Drug Design Group, Department of Pharmacy, and Center for Computational Science and Engineering, National University of Singapore, Singapore 117543 [3] NUS Graduate School for Integrative Sciences and Engineering, Singapore 117456
| |
Collapse
|
35
|
Gao Y, Kodadek T. Direct comparison of linear and macrocyclic compound libraries as a source of protein ligands. ACS COMBINATORIAL SCIENCE 2015; 17:190-5. [PMID: 25623285 PMCID: PMC4356041 DOI: 10.1021/co500161c] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
There has been much discussion of
the potential desirability of
macrocyclic molecules for the development of tool compounds and drug
leads. But there is little experimental data comparing otherwise equivalent
macrocyclic and linear compound libraries as a source of protein ligands.
In this Letter, we probe this point in the context of peptoid libraries.
Bead-displayed libraries of macrocyclic and linear peptoids containing
four variable positions and 0–2 fixed residues, to vary the
ring size, were screened against streptavidin and the affinity of
every hit for the target was measured. The data show that macrocyclization
is advantageous, but only when the ring contains 17 atoms, not 20
or 23 atoms. This technology will be useful for conducting direct
comparisons between many different types of chemical libraries to
determine their relative utility as a source of protein ligands.
Collapse
Affiliation(s)
- Yu Gao
- Departments of Chemistry
and Cancer Biology, The Scripps Research Institute, 130 Scripps
Way, Jupiter, Florida 33458, United States
| | - Thomas Kodadek
- Departments of Chemistry
and Cancer Biology, The Scripps Research Institute, 130 Scripps
Way, Jupiter, Florida 33458, United States
| |
Collapse
|
36
|
Recognition of antigen-specific B-cell receptors from chronic lymphocytic leukemia patients by synthetic antigen surrogates. ACTA ACUST UNITED AC 2014; 21:1670-9. [PMID: 25467125 DOI: 10.1016/j.chembiol.2014.10.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 09/11/2014] [Accepted: 10/02/2014] [Indexed: 12/23/2022]
Abstract
In patients with chronic lymphocytic leukemia (CLL), a single neoplastic antigen-specific B cell accumulates and overgrows other B cells, leading to immune deficiency. CLL is often treated with drugs that ablate all B cells, leading to further weakening of humoral immunity, and a more focused therapeutic strategy capable of targeting only the pathogenic B cells would represent a significant advance. One approach to this would be to develop synthetic surrogates of the CLL antigens allowing differentiation of the CLL cells and healthy B cells in a patient. Here, we describe nonpeptidic molecules capable of targeting antigen-specific B cell receptors with good affinity and selectivity using a combinatorial library screen. We demonstrate that our hit compounds act as synthetic antigen surrogates and recognize CLL cells and not healthy B cells. Additionally, we argue that the technology we developed can be used to identify other classes of antigen surrogates.
Collapse
|
37
|
Collins I, Jones AM. Diversity-oriented synthetic strategies applied to cancer chemical biology and drug discovery. Molecules 2014; 19:17221-55. [PMID: 25350364 PMCID: PMC6270883 DOI: 10.3390/molecules191117221] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/13/2014] [Accepted: 10/17/2014] [Indexed: 12/22/2022] Open
Abstract
How can diversity-oriented strategies for chemical synthesis provide chemical tools to help shape our understanding of complex cancer pathways and progress anti-cancer drug discovery efforts? This review (surveying the literature from 2003 to the present) considers the applications of diversity-oriented synthesis (DOS), biology-oriented synthesis (BIOS) and associated strategies to cancer biology and drug discovery, summarising the syntheses of novel and often highly complex scaffolds from pluripotent or synthetically versatile building blocks. We highlight the role of diversity-oriented synthetic strategies in producing new chemical tools to interrogate cancer biology pathways through the assembly of relevant libraries and their application to phenotypic and biochemical screens. The use of diversity-oriented strategies to explore structure-activity relationships in more advanced drug discovery projects is discussed. We show how considering appropriate and variable focus in library design has provided a spectrum of DOS approaches relevant at all stages in anti-cancer drug discovery.
Collapse
Affiliation(s)
- Ian Collins
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SM2 5NG, UK.
| | - Alan M Jones
- Division of Chemistry and Environmental Science, School of Science and the Environment, Faculty of Science and Engineering, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester M1 5GD, UK.
| |
Collapse
|
38
|
Kodadek T. Chemical tools to monitor and manipulate the adaptive immune system. CHEMISTRY & BIOLOGY 2014; 21:1066-74. [PMID: 25237855 PMCID: PMC4171709 DOI: 10.1016/j.chembiol.2014.07.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 07/14/2014] [Accepted: 07/25/2014] [Indexed: 12/20/2022]
Abstract
The ability to monitor and manipulate antigen-specific immune responses would have a major impact on several areas of biology and medicine. In this perspective, I consider pharmacological methods to do this, with a focus on the development of abiological "antigen surrogates" capable of binding to the antigen-binding sites of antibodies and B cell receptors with high affinity and selectivity. I describe the application of combinatorial library screening to identify antigen surrogates for monoclonal antibodies of therapeutic interest using chronic lymphocytic leukemia as an example. Furthermore, I discuss the use of multiplexed assays for the quantification of antigen surrogate-antibody complexes as diagnostic tools and antigen surrogate discovery via serum screening. Although antigen surrogates are a fairly new concept, I argue that they will open new avenues for both basic and clinical research and that major advances can be expected over the next few years.
Collapse
MESH Headings
- Adaptive Immunity
- Antibodies/immunology
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/therapeutic use
- Antigen-Antibody Complex/chemistry
- Antigens/chemistry
- Antigens/immunology
- Antigens/metabolism
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Quantum Dots/chemistry
- Recombinant Proteins/biosynthesis
- Recombinant Proteins/genetics
- Recombinant Proteins/therapeutic use
- Small Molecule Libraries/chemistry
Collapse
Affiliation(s)
- Thomas Kodadek
- Departments of Chemistry and Cancer Biology, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458, USA.
| |
Collapse
|
39
|
Synthetic fermentation of bioactive non-ribosomal peptides without organisms, enzymes or reagents. Nat Chem 2014; 6:877-84. [DOI: 10.1038/nchem.2048] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 07/28/2014] [Indexed: 12/28/2022]
|
40
|
Morimoto J, Sarkar M, Kenrick S, Kodadek T. Dextran as a generally applicable multivalent scaffold for improving immunoglobulin-binding affinities of peptide and peptidomimetic ligands. Bioconjug Chem 2014; 25:1479-91. [PMID: 25073654 PMCID: PMC4140544 DOI: 10.1021/bc500226j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
![]()
Molecules able to bind the antigen-binding
sites of antibodies
are of interest in medicine and immunology. Since most antibodies
are bivalent, higher affinity recognition can be achieved through
avidity effects in which a construct containing two or more copies
of the ligand engages both arms of the immunoglobulin simultaneously.
This can be achieved routinely by immobilizing antibody ligands at
high density on solid surfaces, such as ELISA plates, but there is
surprisingly little literature on scaffolds that routinely support
bivalent binding of antibody ligands in solution, particularly for
the important case of human IgG antibodies. Here we show that the
simple strategy of linking two antigens with a polyethylene glycol
(PEG) spacer long enough to span the two arms of an antibody results
in higher affinity binding in some, but not all, cases. However, we
found that the creation of multimeric constructs in which several
antibody ligands are displayed on a dextran polymer reliably provides
much higher affinity binding than is observed with the monomer in
all cases tested. Since these dextran conjugates are simple to construct,
they provide a general and convenient strategy to transform modest
affinity antibody ligands into high affinity probes. An additional
advantage is that the antibody ligands occupy only a small number
of the reactive sites on the dextran, so that molecular cargo can
be attached easily, creating molecules capable of delivering this
cargo to cells displaying antigen-specific receptors.
Collapse
Affiliation(s)
- Jumpei Morimoto
- Departments of Chemistry and Cancer Biology, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | | | | | | |
Collapse
|
41
|
Potential pharmacological chaperones targeting cancer-associated MCL-1 and Parkinson disease-associated α-synuclein. Proc Natl Acad Sci U S A 2014; 111:11007-12. [PMID: 25024216 DOI: 10.1073/pnas.1320556111] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pharmacological chaperones are small molecules that bind to proteins and stabilize them against thermal denaturation or proteolytic degradation, as well as assist or prevent certain protein-protein assemblies. These activities are being exploited for the development of treatments for diseases caused by protein instability and/or aberrant protein-protein interactions, such as those found in certain forms of cancers and neurodegenerative diseases. However, designing or discovering pharmacological chaperones for specific targets is challenging because of the relatively featureless protein target surfaces, the lack of suitable chemical libraries, and the shortage of efficient high-throughput screening methods. In this study, we attempted to address all these challenges by synthesizing a diverse library of small molecules that mimic protein α-helical secondary structures commonly found in protein-protein interaction surfaces. This was accompanied by establishing a facile "on-bead" high-throughput screening method that allows for rapid and efficient discovery of potential pharmacological chaperones and for identifying novel chaperones/inhibitors against a cancer-associated protein, myeloid cell leukemia 1 (MCL-1), and a Parkinson disease-associated protein, α-synuclein. Our data suggest that the compounds and methods described here will be useful tools for the development of pharmaceuticals for complex-disease targets that are traditionally deemed "undruggable."
Collapse
|
42
|
Teng P, Zhang X, Wu H, Qiao Q, Sebti SM, Cai J. Identification of novel inhibitors that disrupt STAT3-DNA interaction from a γ-AApeptide OBOC combinatorial library. Chem Commun (Camb) 2014; 50:8739-42. [PMID: 24964402 DOI: 10.1039/c4cc03909b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
From a γ-AApeptide-based one-bead-one-compound (OBOC) combinatorial library, we identified γ-AApeptides that can selectively inhibit STAT3-DNA interaction and suppress the expression levels of STAT3 target genes in intact cells. Our results demonstrate that in addition to the SH2 domain, the DNA binding domain of STAT3 is targetable for the development of a new generation of anti-cancer therapeutics.
Collapse
Affiliation(s)
- Peng Teng
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, Tampa, FL 33620, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Doran TM, Gao Y, Mendes K, Dean S, Simanski S, Kodadek T. Utility of redundant combinatorial libraries in distinguishing high and low quality screening hits. ACS COMBINATORIAL SCIENCE 2014; 16:259-70. [PMID: 24749624 PMCID: PMC4053090 DOI: 10.1021/co500030f] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Large
one-bead one-compound (OBOC) combinatorial libraries can
be constructed relatively easily by solid-phase split and pool synthesis.
The use of resins with hydrophilic surfaces, such as TentaGel, allows
the beads to be used directly in screens for compounds that bind selectively
to labeled proteins, nucleic acids, or other biomolecules. However,
we have found that this method, while useful, has a high false positive
rate. In other words, beads that are scored as hits often display
compounds that prove to be poor ligands for the target of interest
when they are resynthesized and carried through validation trials.
This results in a significant waste of time and resources in cases
where putative hits cannot be validated without resynthesis. Here,
we report that this problem can be largely eliminated through the
use of redundant OBOC libraries, where more than one bead displaying
the same compound is present in the screen. We show that compounds
isolated more than once are likely to be high quality ligands for
the target of interest, whereas compounds isolated only once have
a much higher likelihood of being poor ligands. While the use of redundant
libraries does limit the number of unique compounds that can be screened
at one time in this format, the overall savings in time, effort, and
materials makes this a more efficient route to the isolation of useful
ligands for biomolecules.
Collapse
Affiliation(s)
- Todd M. Doran
- Departments
of Chemistry and Cancer Biology, The Scripps Research Institute, 130
Scripps Way, Jupiter, Florida 33458, United States
| | - Yu Gao
- Departments
of Chemistry and Cancer Biology, The Scripps Research Institute, 130
Scripps Way, Jupiter, Florida 33458, United States
| | - Kimberly Mendes
- OPKO Health, Inc., 555 Heritage
Drive, Jupiter, Florida 33458, United States
| | - Sonja Dean
- OPKO Health, Inc., 555 Heritage
Drive, Jupiter, Florida 33458, United States
| | - Scott Simanski
- Departments
of Chemistry and Cancer Biology, The Scripps Research Institute, 130
Scripps Way, Jupiter, Florida 33458, United States
| | - Thomas Kodadek
- Departments
of Chemistry and Cancer Biology, The Scripps Research Institute, 130
Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
44
|
Culf AS, Čuperlović-Culf M, Léger DA, Decken A. Small head-to-tail macrocyclic α-peptoids. Org Lett 2014; 16:2780-3. [PMID: 24797336 DOI: 10.1021/ol501102b] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A convenient and efficient methodology for the head-to-tail macrocyclization of small 3-mer, 4-mer, and 5-mer α-peptoid acids (9-, 12-, and 15-atom N-substituted glycine oligomers) is described. The cyclic trimer has a ccc amide sequence in the crystal structure, whereas the tetramer has ctct and the pentamer has ttccc stereochemistry. NMR analysis reveals rigid structures in solution. These synthetic macrocycles may prove useful in medicinal and materials applications.
Collapse
Affiliation(s)
- Adrian S Culf
- Atlantic Cancer Research Institute , 35 Providence Street, Moncton, NB E1C 8X3, Canada
| | | | | | | |
Collapse
|
45
|
Vanderstichele H, Kodadek T. Roadblocks for integration of novel biomarker concepts into clinical routine: the peptoid approach. ALZHEIMERS RESEARCH & THERAPY 2014; 6:23. [PMID: 25031636 PMCID: PMC4055076 DOI: 10.1186/alzrt253] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In the field of Alzheimer’s disease, the development of novel biomarker assays is critically needed to improve the early diagnosis of the disease, to estimate the risk of developing the disease, to predict the rate of cognitive decline, and to monitor the response or effectiveness of a therapy. The molecular mechanisms of the disease are becoming more evident. This basic knowledge has yet to be translated into novel biomarker tools with a clinical value for general use by the community. There is therefore high interest in evaluating new technological approaches beside the classical immunoassay approach. The present paper discusses the hypothesis that there might be an adaptive immune response, unique to Alzheimer’s disease, which can be visualized by the presence in body fluids of antibodies against specific analytes. Current technologies to identify such antibodies are reviewed. In addition, the major challenges to transfer discovery results of the novel antibody-based biomarker assays to a clinically relevant test will be discussed.
Collapse
Affiliation(s)
| | - Thomas Kodadek
- Department of Chemistry, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA ; Department of Cancer Biology, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| |
Collapse
|
46
|
Rafferty RJ, Hicklin RW, Maloof KA, Hergenrother PJ. Synthesis of complex and diverse compounds through ring distortion of abietic acid. Angew Chem Int Ed Engl 2013; 53:220-4. [PMID: 24273016 DOI: 10.1002/anie.201308743] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Indexed: 11/11/2022]
Abstract
Many compound screening collections are populated by members that possess a low degree of structural complexity. In an effort to generate compounds that are both complex and diverse, we have developed a strategy that uses natural products as a starting point for complex molecule synthesis. Herein we apply this complexity-to-diversity approach to abietic acid, an abundant natural product used commercially in paints, varnishes, and lacquers. From abietic acid we synthesize a collection of complex (as assessed by fraction of sp(3) -hybridized carbons and number of stereogenic centers) and diverse (as assessed by Tanimoto analysis) small molecules. The 84 compounds constructed herein, and those created through similar efforts, should find utility in a variety of biological screens.
Collapse
Affiliation(s)
- Ryan J Rafferty
- Department of Chemistry, University of Illinois at Urbana-Champaign, 261 RAL, Box 36-5, 600 S. Mathews, Urbana, IL 61801 (USA)
| | | | | | | |
Collapse
|
47
|
Rafferty RJ, Hicklin RW, Maloof KA, Hergenrother PJ. Synthesis of Complex and Diverse Compounds through Ring Distortion of Abietic Acid. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201308743] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
48
|
Biogenetically inspired synthesis and skeletal diversification of indole alkaloids. Nat Chem 2013; 6:57-64. [PMID: 24345948 DOI: 10.1038/nchem.1798] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 10/11/2013] [Indexed: 02/07/2023]
Abstract
To access architecturally complex natural products, chemists usually devise a customized synthetic strategy for constructing a single target skeleton. In contrast, biosynthetic assembly lines often employ divergent intramolecular cyclizations of a polyunsaturated common intermediate to produce diverse arrays of scaffolds. With the aim of integrating such biogenetic strategies, we show the development of an artificial divergent assembly line generating unprecedented numbers of scaffold variations of terpenoid indole alkaloids. This approach not only allows practical access to multipotent intermediates, but also enables systematic diversification of skeletal, stereochemical and functional group properties without structural simplification of naturally occurring alkaloids. Three distinct modes of [4+2] cyclizations and two types of redox-mediated annulations provided divergent access to five skeletally distinct scaffolds involving iboga-, aspidosperma-, andranginine- and ngouniensine-type skeletons and a non-natural variant within six to nine steps from tryptamine. The efficiency of our approach was demonstrated by successful total syntheses of (±)-vincadifformine, (±)-andranginine and (-)-catharanthine.
Collapse
|
49
|
Suwal S, Kodadek T. Synthesis of libraries of peptidomimetic compounds containing a 2-oxopiperazine unit in the main chain. Org Biomol Chem 2013; 11:2088-92. [PMID: 23440085 DOI: 10.1039/c3ob27476d] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Peptoid libraries have been shown to be a useful source of protein-binding agents. However, simple linear peptoids lack conformational constraints, which may limit their binding affinity for proteins. Here we report facile chemistry for the assembly of 2-oxopiperazine rings into the main chain of peptoid-like oligomers, thus rigidifying the structure. This modified sub-monomer synthesis is suitable for the creation of high quality combinatorial libraries.
Collapse
Affiliation(s)
- Sujit Suwal
- Department of Chemistry, The Scripps Research Institute, Scripps Florida, 130 Scripps Way, Jupiter, FL 33458, USA
| | | |
Collapse
|
50
|
Wu H, Li Y, Bai G, Niu Y, Qiao Q, Tipton JD, Cao C, Cai J. γ-AApeptide-based small-molecule ligands that inhibit Aβ aggregation. Chem Commun (Camb) 2013; 50:5206-8. [PMID: 24158240 DOI: 10.1039/c3cc46685j] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We report the design, synthesis, characterization and evaluation of a novel class of γ-AApeptide one-bead-one-compound (OBOC) library, from which a small γ-AApeptide was identified to effectively prevent and disassemble Aβ aggregation.
Collapse
Affiliation(s)
- Haifan Wu
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, Tampa, FL 33620, USA.
| | | | | | | | | | | | | | | |
Collapse
|