1
|
Rapp C, Borg A, Nidetzky B. Interplay of structural preorganization and conformational sampling in UDP-glucuronic acid 4-epimerase catalysis. Nat Commun 2024; 15:3897. [PMID: 38719841 PMCID: PMC11519531 DOI: 10.1038/s41467-024-48281-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/26/2024] [Indexed: 10/30/2024] Open
Abstract
Understanding enzyme catalysis as connected to protein motions is a major challenge. Here, based on temperature kinetic studies combined with isotope effect measurements, we obtain energetic description of C-H activation in NAD-dependent UDP-glucuronic acid C4 epimerase. Approach from the ensemble-averaged ground state (GS) to the transition state-like reactive conformation (TSRC) involves, alongside uptake of heat (Δ H ‡ = 54 kJ mol-1), significant loss in entropy ( - T Δ S ‡ = 20 kJ mol-1; 298 K) and negative activation heat capacity (Δ C p ‡ = -0.64 kJ mol-1 K-1). Thermodynamic changes suggest the requirement for restricting configurational freedom at the GS to populate the TSRC. Enzyme variants affecting the electrostatic GS preorganization reveal active-site interactions important for precise TSRC sampling and H-transfer. Collectively, our study captures thermodynamic effects associated with TSRC sampling and establishes rigid positioning for C-H activation in an enzyme active site that requires conformational flexibility in fulfillment of its natural epimerase function.
Collapse
Affiliation(s)
- Christian Rapp
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, 8010, Graz, Austria
| | - Annika Borg
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, 8010, Graz, Austria
| | - Bernd Nidetzky
- Institute of Biotechnology and Biochemical Engineering, Graz University of Technology, NAWI Graz, 8010, Graz, Austria.
- Austrian Centre of Industrial Biotechnology (acib), 8010, Graz, Austria.
| |
Collapse
|
2
|
Greisman JB, Dalton KM, Brookner DE, Klureza MA, Sheehan CJ, Kim IS, Henning RW, Russi S, Hekstra DR. Perturbative diffraction methods resolve a conformational switch that facilitates a two-step enzymatic mechanism. Proc Natl Acad Sci U S A 2024; 121:e2313192121. [PMID: 38386706 PMCID: PMC10907320 DOI: 10.1073/pnas.2313192121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/18/2023] [Indexed: 02/24/2024] Open
Abstract
Enzymes catalyze biochemical reactions through precise positioning of substrates, cofactors, and amino acids to modulate the transition-state free energy. However, the role of conformational dynamics remains poorly understood due to poor experimental access. This shortcoming is evident with Escherichia coli dihydrofolate reductase (DHFR), a model system for the role of protein dynamics in catalysis, for which it is unknown how the enzyme regulates the different active site environments required to facilitate proton and hydride transfer. Here, we describe ligand-, temperature-, and electric-field-based perturbations during X-ray diffraction experiments to map the conformational dynamics of the Michaelis complex of DHFR. We resolve coupled global and local motions and find that these motions are engaged by the protonated substrate to promote efficient catalysis. This result suggests a fundamental design principle for multistep enzymes in which pre-existing dynamics enable intermediates to drive rapid electrostatic reorganization to facilitate subsequent chemical steps.
Collapse
Affiliation(s)
- Jack B. Greisman
- Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA02138
| | - Kevin M. Dalton
- Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA02138
| | - Dennis E. Brookner
- Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA02138
| | - Margaret A. Klureza
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA02138
| | - Candice J. Sheehan
- Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA02138
| | - In-Sik Kim
- BioCARS, Argonne National Laboratory, The University of Chicago, Lemont, IL60439
| | - Robert W. Henning
- BioCARS, Argonne National Laboratory, The University of Chicago, Lemont, IL60439
| | - Silvia Russi
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA94025
| | - Doeke R. Hekstra
- Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA02138
- School of Engineering & Applied Sciences, Harvard University, Allston, MA02134
| |
Collapse
|
3
|
Smith N, Horswill AR, Wilson MA. X-ray-driven chemistry and conformational heterogeneity in atomic resolution crystal structures of bacterial dihydrofolate reductases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.566054. [PMID: 37986818 PMCID: PMC10659368 DOI: 10.1101/2023.11.07.566054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Dihydrofolate reductase (DHFR) catalyzes the NADPH-dependent reduction of dihydrofolate to tetrahydrofolate. Bacterial DHFRs are targets of several important antibiotics as well as model enzymes for the role of protein conformational dynamics in enzyme catalysis. We collected 0.93 Å resolution X-ray diffraction data from both Bacillus subtilis (Bs) and E. coli (Ec) DHFRs bound to folate and NADP+. These oxidized ternary complexes should not be able to perform chemistry, however electron density maps suggest hydride transfer is occurring in both enzymes. Comparison of low- and high-dose EcDHFR datasets show that X-rays drive partial production of tetrahydrofolate. Hydride transfer causes the nicotinamide moiety of NADP+ to move towards the folate as well as correlated shifts in nearby residues. Higher radiation dose also changes the conformational heterogeneity of Met20 in EcDHFR, supporting a solvent gating role during catalysis. BsDHFR has a different pattern of conformational heterogeneity and an unexpected disulfide bond, illustrating important differences between bacterial DHFRs. This work demonstrates that X-rays can drive hydride transfer similar to the native DHFR reaction and that X-ray photoreduction can be used to interrogate catalytically relevant enzyme dynamics in favorable cases.
Collapse
Affiliation(s)
- Nathan Smith
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, 68588
| | - Alexander R. Horswill
- Department of Immunology & Microbiology, University of Colorado Anschutz School of Medicine, Aurora, CO 80045
| | - Mark A. Wilson
- Department of Biochemistry and Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, 68588
| |
Collapse
|
4
|
Greisman JB, Dalton KM, Brookner DE, Klureza MA, Sheehan CJ, Kim IS, Henning RW, Russi S, Hekstra DR. Resolving conformational changes that mediate a two-step catalytic mechanism in a model enzyme. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.02.543507. [PMID: 37398233 PMCID: PMC10312612 DOI: 10.1101/2023.06.02.543507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Enzymes catalyze biochemical reactions through precise positioning of substrates, cofactors, and amino acids to modulate the transition-state free energy. However, the role of conformational dynamics remains poorly understood due to lack of experimental access. This shortcoming is evident with E. coli dihydrofolate reductase (DHFR), a model system for the role of protein dynamics in catalysis, for which it is unknown how the enzyme regulates the different active site environments required to facilitate proton and hydride transfer. Here, we present ligand-, temperature-, and electric-field-based perturbations during X-ray diffraction experiments that enable identification of coupled conformational changes in DHFR. We identify a global hinge motion and local networks of structural rearrangements that are engaged by substrate protonation to regulate solvent access and promote efficient catalysis. The resulting mechanism shows that DHFR's two-step catalytic mechanism is guided by a dynamic free energy landscape responsive to the state of the substrate.
Collapse
Affiliation(s)
- Jack B. Greisman
- Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA, United States
| | - Kevin M. Dalton
- Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA, United States
| | - Dennis E. Brookner
- Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA, United States
| | - Margaret A. Klureza
- Department of Chemistry & Chemical Biology, Harvard University, Cambridge, MA, United States
| | - Candice J. Sheehan
- Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA, United States
| | - In-Sik Kim
- BioCARS, The University of Chicago, Argonne National Laboratory, Lemont, IL, United States
| | - Robert W. Henning
- BioCARS, The University of Chicago, Argonne National Laboratory, Lemont, IL, United States
| | - Silvia Russi
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA, United States
| | - Doeke R. Hekstra
- Department of Molecular & Cellular Biology, Harvard University, Cambridge, MA, United States
- School of Engineering & Applied Sciences, Harvard University, Allston, MA, United States
| |
Collapse
|
5
|
Allosteric rescue of catalytically impaired ATP phosphoribosyltransferase variants links protein dynamics to active-site electrostatic preorganisation. Nat Commun 2022; 13:7607. [PMID: 36494361 PMCID: PMC9734150 DOI: 10.1038/s41467-022-34960-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 11/11/2022] [Indexed: 12/13/2022] Open
Abstract
ATP phosphoribosyltransferase catalyses the first step of histidine biosynthesis and is controlled via a complex allosteric mechanism where the regulatory protein HisZ enhances catalysis by the catalytic protein HisGS while mediating allosteric inhibition by histidine. Activation by HisZ was proposed to position HisGS Arg56 to stabilise departure of the pyrophosphate leaving group. Here we report active-site mutants of HisGS with impaired reaction chemistry which can be allosterically restored by HisZ despite the HisZ:HisGS interface lying ~20 Å away from the active site. MD simulations indicate HisZ binding constrains the dynamics of HisGS to favour a preorganised active site where both Arg56 and Arg32 are poised to stabilise leaving-group departure in WT-HisGS. In the Arg56Ala-HisGS mutant, HisZ modulates Arg32 dynamics so that it can partially compensate for the absence of Arg56. These results illustrate how remote protein-protein interactions translate into catalytic resilience by restoring damaged electrostatic preorganisation at the active site.
Collapse
|
6
|
Peter MF, Gebhardt C, Mächtel R, Muñoz GGM, Glaenzer J, Narducci A, Thomas GH, Cordes T, Hagelueken G. Cross-validation of distance measurements in proteins by PELDOR/DEER and single-molecule FRET. Nat Commun 2022; 13:4396. [PMID: 35906222 PMCID: PMC9338047 DOI: 10.1038/s41467-022-31945-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 07/11/2022] [Indexed: 11/09/2022] Open
Abstract
Pulsed electron-electron double resonance spectroscopy (PELDOR/DEER) and single-molecule Förster resonance energy transfer spectroscopy (smFRET) are frequently used to determine conformational changes, structural heterogeneity, and inter probe distances in biological macromolecules. They provide qualitative information that facilitates mechanistic understanding of biochemical processes and quantitative data for structural modelling. To provide a comprehensive comparison of the accuracy of PELDOR/DEER and smFRET, we use a library of double cysteine variants of four proteins that undergo large-scale conformational changes upon ligand binding. With either method, we use established standard experimental protocols and data analysis routines to determine inter-probe distances in the presence and absence of ligands. The results are compared to distance predictions from structural models. Despite an overall satisfying and similar distance accuracy, some inconsistencies are identified, which we attribute to the use of cryoprotectants for PELDOR/DEER and label-protein interactions for smFRET. This large-scale cross-validation of PELDOR/DEER and smFRET highlights the strengths, weaknesses, and synergies of these two important and complementary tools in integrative structural biology.
Collapse
Affiliation(s)
- Martin F Peter
- Institute of Structural Biology, University of Bonn, Bonn, Germany
| | - Christian Gebhardt
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Rebecca Mächtel
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Gabriel G Moya Muñoz
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Janin Glaenzer
- Institute of Structural Biology, University of Bonn, Bonn, Germany
| | - Alessandra Narducci
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Gavin H Thomas
- Department of Biology (Area 10), University of York, York, UK
| | - Thorben Cordes
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.
| | | |
Collapse
|
7
|
Zhang L, Isselstein M, Köhler J, Eleftheriadis N, Huisjes NM, Guirao-Ortiz M, Narducci A, Smit JH, Stoffels J, Harz H, Leonhardt H, Herrmann A, Cordes T. Linker Molecules Convert Commercial Fluorophores into Tailored Functional Probes during Biolabelling. Angew Chem Int Ed Engl 2022; 61:e202112959. [PMID: 35146855 PMCID: PMC9305292 DOI: 10.1002/anie.202112959] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Indexed: 12/27/2022]
Abstract
Many life‐science techniques and assays rely on selective labeling of biological target structures with commercial fluorophores that have specific yet invariant properties. Consequently, a fluorophore (or dye) is only useful for a limited range of applications, e.g., as a label for cellular compartments, super‐resolution imaging, DNA sequencing or for a specific biomedical assay. Modifications of fluorophores with the goal to alter their bioconjugation chemistry, photophysical or functional properties typically require complex synthesis schemes. We here introduce a general strategy that allows to customize these properties during biolabelling with the goal to introduce the fluorophore in the last step of biolabelling. For this, we present the design and synthesis of ‘linker’ compounds, that bridge biotarget, fluorophore and a functional moiety via well‐established labeling protocols. Linker molecules were synthesized via the Ugi four‐component reaction (Ugi‐4CR) which facilitates a modular design of linkers with diverse functional properties and bioconjugation‐ and fluorophore attachment moieties. To demonstrate the possibilities of different linkers experimentally, we characterized the ability of commercial fluorophores from the classes of cyanines, rhodamines, carbopyronines and silicon‐rhodamines to become functional labels on different biological targets in vitro and in vivo via thiol‐maleimide chemistry. With our strategy, we showed that the same commercial dye can become a photostable self‐healing dye or a sensor for bivalent ions subject to the linker used. Finally, we quantified the photophysical performance of different self‐healing linker–fluorophore conjugates and demonstrated their applications in super‐resolution imaging and single‐molecule spectroscopy.
Collapse
Affiliation(s)
- Lei Zhang
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152, Planegg-Martinsried, Germany.,Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Michael Isselstein
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152, Planegg-Martinsried, Germany
| | - Jens Köhler
- (DWI) Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany.,& Institute of Technical and Macromolecular Chemistry, (RWTH) Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Nikolaos Eleftheriadis
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Nadia M Huisjes
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152, Planegg-Martinsried, Germany.,Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Miguel Guirao-Ortiz
- Human Biology & Bioimaging, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152, Planegg-Martinsried, Germany
| | - Alessandra Narducci
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152, Planegg-Martinsried, Germany
| | - Jochem H Smit
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Janko Stoffels
- (DWI) Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany.,& Institute of Technical and Macromolecular Chemistry, (RWTH) Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Hartmann Harz
- Human Biology & Bioimaging, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152, Planegg-Martinsried, Germany
| | - Heinrich Leonhardt
- Human Biology & Bioimaging, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152, Planegg-Martinsried, Germany
| | - Andreas Herrmann
- (DWI) Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, 52056, Aachen, Germany.,& Institute of Technical and Macromolecular Chemistry, (RWTH) Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Thorben Cordes
- Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhadernerstr. 2-4, 82152, Planegg-Martinsried, Germany.,Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
8
|
Zhang L, Isselstein M, Köhler J, Eleftheriadis N, Huisjes N, Guirao M, Narducci A, Smit J, Stoffels J, Harz H, Leonhardt H, Herrmann A, Cordes T. Linker Molecules Convert Commercial Fluorophores into Tailored Functional Probes during Bio‐labeling. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lei Zhang
- LMU München: Ludwig-Maximilians-Universitat Munchen Biocenter GERMANY
| | | | - Jens Köhler
- DWI-Leibniz-Institut für Interaktive Materialien: DWI-Leibniz-Institut fur Interaktive Materialien Chemie GERMANY
| | | | - Nadia Huisjes
- RUG: Rijksuniversiteit Groningen Zernike NETHERLANDS
| | - Miguel Guirao
- LMU München: Ludwig-Maximilians-Universitat Munchen Biocenter GERMANY
| | | | - Jochem Smit
- RUG: Rijksuniversiteit Groningen Zernike NETHERLANDS
| | - Janko Stoffels
- DWI-Leibniz-Institut für Interaktive Materialien: DWI-Leibniz-Institut fur Interaktive Materialien Chemistry GERMANY
| | - Hartmann Harz
- LMU München: Ludwig-Maximilians-Universitat Munchen Biocenter GERMANY
| | | | - Andreas Herrmann
- DWI-Leibniz-Institut für Interaktive Materialien: DWI-Leibniz-Institut fur Interaktive Materialien Chemistry GERMANY
| | - Thorben Cordes
- Ludwig-Maximilians-Universitat Munchen Faculty of Biology Großhadernerstr. 2-4 82152 Planegg-Martiensried GERMANY
| |
Collapse
|
9
|
Galenkamp NS, Maglia G. Single-Molecule Sampling of Dihydrofolate Reductase Shows Kinetic Pauses and an Endosteric Effect Linked to Catalysis. ACS Catal 2022; 12:1228-1236. [PMID: 35096468 PMCID: PMC8787752 DOI: 10.1021/acscatal.1c04388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/13/2021] [Indexed: 12/21/2022]
Abstract
![]()
The ability to sample multiple reactions
on the same single enzyme
is important to link rare intermediates with catalysis and to unravel
the role of conformational changes. Despite decades of efforts, however,
the single-molecule characterization of nonfluorogenic enzymes during
multiple catalytic turnovers has been elusive. Here, we show that
nanopore currents allow sampling the dynamic exchange between five
structural intermediates during E. coli dihydrofolate reductase (DHFR) catalysis. We found that an endosteric
effect promotes the binding of the substrate to the enzyme with a
specific hierarchy. The chemical step then switched the enzyme from
the closed to the occluded conformation, which in turn promotes the
release of the reduced cofactor NADP+. Unexpectedly, only
a few reactive complexes lead to catalysis. Furthermore, second-long
catalytic pauses were observed, possibly reflecting an off-path conformation
generated during the reaction. Finally, the free energy from multiple
cofactor binding events were required to release the product and switch
DHFR back to the reactive conformer. This catalytic fueled concerted
mechanism is likely to have evolved to improve the catalytic efficiency
of DHFR under the high concentrations of NADP+ in E. coli and might be a general feature for complex
enzymatic reactions where the binding and release of the products
must be tightly controlled.
Collapse
Affiliation(s)
- Nicole Stéphanie Galenkamp
- Groningen Biomolecular Sciences and Biotechnology (GBB) Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Giovanni Maglia
- Groningen Biomolecular Sciences and Biotechnology (GBB) Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|
10
|
Structural dynamics in the evolution of a bilobed protein scaffold. Proc Natl Acad Sci U S A 2021; 118:2026165118. [PMID: 34845009 PMCID: PMC8694067 DOI: 10.1073/pnas.2026165118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2021] [Indexed: 11/18/2022] Open
Abstract
Proteins conduct numerous complex biological functions by use of tailored structural dynamics. The molecular details of how these emerged from ancestral peptides remains mysterious. How does nature utilize the same repertoire of folds to diversify function? To shed light on this, we analyzed bilobed proteins with a common structural core, which is spread throughout the tree of life and is involved in diverse biological functions such as transcription, enzymatic catalysis, membrane transport, and signaling. We show here that the structural dynamics of the structural core differentiate predominantly via terminal additions during a long-period evolution. This diversifies substrate specificity and, ultimately, biological function. Novel biophysical tools allow the structural dynamics of proteins and the regulation of such dynamics by binding partners to be explored in unprecedented detail. Although this has provided critical insights into protein function, the means by which structural dynamics direct protein evolution remain poorly understood. Here, we investigated how proteins with a bilobed structure, composed of two related domains from the periplasmic-binding protein–like II domain family, have undergone divergent evolution, leading to adaptation of their structural dynamics. We performed a structural analysis on ∼600 bilobed proteins with a common primordial structural core, which we complemented with biophysical studies to explore the structural dynamics of selected examples by single-molecule Förster resonance energy transfer and Hydrogen–Deuterium exchange mass spectrometry. We show that evolutionary modifications of the structural core, largely at its termini, enable distinct structural dynamics, allowing the diversification of these proteins into transcription factors, enzymes, and extracytoplasmic transport-related proteins. Structural embellishments of the core created interdomain interactions that stabilized structural states, reshaping the active site geometry, and ultimately altered substrate specificity. Our findings reveal an as-yet-unrecognized mechanism for the emergence of functional promiscuity during long periods of evolution and are applicable to a large number of domain architectures.
Collapse
|
11
|
Babu CS, Lim C. Influence of solution ionic strength on the stabilities of M20 loop conformations in apo E. coli dihydrofolate reductase. J Chem Phys 2021; 154:195103. [PMID: 34240890 DOI: 10.1063/5.0048968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Interactions among ions and their specific interactions with macromolecular solutes are known to play a central role in biomolecular stability. However, similar effects in the conformational stability of protein loops that play functional roles, such as binding ligands, proteins, and DNA/RNA molecules, remain relatively unexplored. A well-characterized enzyme that has such a functional loop is Escherichia coli dihydrofolate reductase (ecDHFR), whose so-called M20 loop has been observed in three ordered conformations in crystal structures. To explore how solution ionic strengths may affect the M20 loop conformation, we proposed a reaction coordinate that could quantitatively describe the loop conformation and used it to classify the loop conformations in representative ecDHFR x-ray structures crystallized in varying ionic strengths. The Protein Data Bank survey indicates that at ionic strengths (I) below the intracellular ion concentration-derived ionic strength in E. coli (I ≤ 0.237M), the ecDHFR M20 loop tends to adopt open/closed conformations, and rarely an occluded loop state, but when I is >0.237M, the loop tends to adopt closed/occluded conformations. Distance-dependent electrostatic potentials around the most mobile M20 loop region from molecular dynamics simulations of ecDHFR in equilibrated CaCl2 solutions of varying ionic strengths show that high ionic strengths (I = 0.75/1.5M) can preferentially stabilize the loop in closed/occluded conformations. These results nicely correlate with conformations derived from ecDHFR structures crystallized in varying ionic strengths. Altogether, our results suggest caution in linking M20 loop conformations derived from crystal structures solved at ionic strengths beyond that tolerated by E. coli to the ecDHFR function.
Collapse
Affiliation(s)
- C Satheesan Babu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Carmay Lim
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
12
|
Mhashal AR, Major DT. Temperature-Dependent Kinetic Isotope Effects in R67 Dihydrofolate Reductase from Path-Integral Simulations. J Phys Chem B 2021; 125:1369-1377. [PMID: 33522797 PMCID: PMC7883348 DOI: 10.1021/acs.jpcb.0c10318] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/05/2021] [Indexed: 11/28/2022]
Abstract
Calculation of temperature-dependent kinetic isotope effects (KIE) in enzymes presents a significant theoretical challenge. Additionally, it is not trivial to identify enzymes with available experimental accurate intrinsic KIEs in a range of temperatures. In the current work, we present a theoretical study of KIEs in the primitive R67 dihydrofolate reductase (DHFR) enzyme and compare with experimental work. The advantage of R67 DHFR is its significantly lower kinetic complexity compared to more evolved DHFR isoforms. We employ mass-perturbation-based path-integral simulations in conjunction with umbrella sampling and a hybrid quantum mechanics-molecular mechanics Hamiltonian. We obtain temperature-dependent KIEs in good agreement with experiments and ascribe the temperature-dependent KIEs primarily to zero-point energy effects. The active site in the primitive enzyme is found to be poorly preorganized, which allows excessive water access to the active site and results in loosely bound reacting ligands.
Collapse
Affiliation(s)
- Anil R. Mhashal
- Department of Chemistry and Institute
for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Dan Thomas Major
- Department of Chemistry and Institute
for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
13
|
Acceleration of catalysis in dihydrofolate reductase by transient, site-specific photothermal excitation. Proc Natl Acad Sci U S A 2021; 118:2014592118. [PMID: 33468677 DOI: 10.1073/pnas.2014592118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have studied the role of protein dynamics in chemical catalysis in the enzyme dihydrofolate reductase (DHFR), using a pump-probe method that employs pulsed-laser photothermal heating of a gold nanoparticle (AuNP) to directly excite a local region of the protein structure and transient absorbance to probe the effect on enzyme activity. Enzyme activity is accelerated by pulsed-laser excitation when the AuNP is attached close to a network of coupled motions in DHFR (on the FG loop, containing residues 116-132, or on a nearby alpha helix). No rate acceleration is observed when the AuNP is attached away from the network (distal mutant and His-tagged mutant) with pulsed excitation, or for any attachment site with continuous wave excitation. We interpret these results within an energy landscape model in which transient, site-specific addition of energy to the enzyme speeds up the search for reactive conformations by activating motions that facilitate this search.
Collapse
|
14
|
Liang Y, Zeng D, You Y, Ma B, Li X, Chen T. Designing Dihydrofolate Reductase Inhibitors as X-ray Radiosensitizers to Reverse Radioresistance of Cervical Cancer. ACS Med Chem Lett 2020; 11:1421-1428. [PMID: 32676149 DOI: 10.1021/acsmedchemlett.0c00105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/17/2020] [Indexed: 12/13/2022] Open
Abstract
X-ray radiotherapy has been widely used in the treatment of cervical cancer, a common gynecologic malignant tumor. However, the therapeutic efficacy tends to be indistinctive. One major reason for this is amplification of the dihydrofolate reductase (DHFR) gene, which causes an increase in DHFR activity and attenuation of the treatment effect. To solve this problem, we synthesized a series of DHFR inhibitors derived from methotrexate (MTX) analogues as radiotherapy sensitizers. Activity screening revealed that compound 2a exerted the best inhibitory effect toward DHFR activity. In combination with X-ray radiotherapy (4 Gy), 2a showed much more prominent antiproliferative activity on cervical cancer cells than 2a or X-rays alone and revealed higher selectivity and radiosensitization than MTX. In vitro experiments showed that 2a + X-rays significantly induced cell apoptosis, as revealed by the increase in the Sub-G1 population and activation of caspase 3, 8, and 9. The in vivo antitumor effect demonstrated that in the presence of X-rays, 2a effectively suppressed tumor growth and did not cause obvious side effects. In conclusion, as a DHFR inhibitor, 2a successfully reversed the radioresistance problem induced by radiotherapy and greatly promoted the therapeutic effect. This is a promising candidate for tumor treatment that deserves further research and development. This study clearly demonstrates that DHFR inhibitors could be developed as promising radiosensitizers in the treatment of cervical cancer and that further research to improve their activity and potential in future clinical use is deserved.
Collapse
Affiliation(s)
- Yuanwei Liang
- The First Affiliated Hospital and Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Delong Zeng
- The First Affiliated Hospital and Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Yuanyuan You
- The First Affiliated Hospital and Department of Chemistry, Jinan University, Guangzhou 510632, China
- Shenzhen Agricultural Product Quality and Safety Inspection and Testing Center (Guangdong Provincial Key Laboratory of Supervision and Administration of Edible Agricultural Products, Market Supervision Administration), Shenzhen, China
| | - Bin Ma
- The First Affiliated Hospital and Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Xiaoling Li
- The First Affiliated Hospital and Department of Chemistry, Jinan University, Guangzhou 510632, China
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| | - Tianfeng Chen
- The First Affiliated Hospital and Department of Chemistry, Jinan University, Guangzhou 510632, China
| |
Collapse
|
15
|
Babu CS, Lim C. Sensitivity of Functional Loop Conformations on Long-Range Electrostatics: Implications for M20 Loop Dynamics in E. coli Dihydrofolate Reductase. J Chem Theory Comput 2020; 16:2028-2033. [PMID: 32192329 DOI: 10.1021/acs.jctc.9b01285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In E. coli dihydrofolate reductase, unusual conformational motions of a functional M20 loop that interacts with substrate and coenzyme have been construed as evidence for dynamical effects in enzyme catalysis. By computing this loop's conformational free energies in the apoenzyme, we show that it is sensitive to the treatment of long-range electrostatic interactions and the solvation box size in modeling/simulations. These results provide important guidelines for computing reaction/binding free energy profiles of proteins with functional loops.
Collapse
Affiliation(s)
- C Satheesan Babu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Carmay Lim
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan.,Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
| |
Collapse
|
16
|
Johannissen LO, Iorgu AI, Scrutton NS, Hay S. What are the signatures of tunnelling in enzyme-catalysed reactions? Faraday Discuss 2020; 221:367-378. [DOI: 10.1039/c9fd00044e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Computed tunnelling contributions and correlations between apparent activation enthalpy and entropy are explored for the interpretation of enzyme-catalysed H-transfer reactions.
Collapse
Affiliation(s)
- Linus O. Johannissen
- Manchester Institute of Biotechnology (MIB)
- School of Chemistry
- University of Manchester
- Manchester
- UK
| | - Andreea I. Iorgu
- Manchester Institute of Biotechnology (MIB)
- School of Chemistry
- University of Manchester
- Manchester
- UK
| | - Nigel S. Scrutton
- Manchester Institute of Biotechnology (MIB)
- School of Chemistry
- University of Manchester
- Manchester
- UK
| | - Sam Hay
- Manchester Institute of Biotechnology (MIB)
- School of Chemistry
- University of Manchester
- Manchester
- UK
| |
Collapse
|
17
|
Scott AF, Luk LY, Tuñón I, Moliner V, Allemann RK. Heavy Enzymes and the Rational Redesign of Protein Catalysts. Chembiochem 2019; 20:2807-2812. [PMID: 31016852 PMCID: PMC6900096 DOI: 10.1002/cbic.201900134] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Indexed: 11/21/2022]
Abstract
An unsolved mystery in biology concerns the link between enzyme catalysis and protein motions. Comparison between isotopically labelled "heavy" dihydrofolate reductases and their natural-abundance counterparts has suggested that the coupling of protein motions to the chemistry of the catalysed reaction is minimised in the case of hydride transfer. In alcohol dehydrogenases, unnatural, bulky substrates that induce additional electrostatic rearrangements of the active site enhance coupled motions. This finding could provide a new route to engineering enzymes with altered substrate specificity, because amino acid residues responsible for dynamic coupling with a given substrate present as hotspots for mutagenesis. Detailed understanding of the biophysics of enzyme catalysis based on insights gained from analysis of "heavy" enzymes might eventually allow routine engineering of enzymes to catalyse reactions of choice.
Collapse
Affiliation(s)
- Alan F. Scott
- School of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUK
| | - Louis Y.‐P. Luk
- School of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUK
| | - Iñaki Tuñón
- Departament de Química FísicaUniversitat de Valencia46100BurjassotSpain
| | - Vicent Moliner
- Department of Physical and Analytical ChemistryUniversitat Jaume IAvenida de Vicent Sos Baynat, s/n12071CastellonSpain
| | - Rudolf K. Allemann
- School of ChemistryCardiff UniversityMain Building, Park PlaceCardiffCF10 3ATUK
| |
Collapse
|
18
|
Li J, Fortunato G, Lin J, Agarwal PK, Kohen A, Singh P, Cheatum CM. Evolution Conserves the Network of Coupled Residues in Dihydrofolate Reductase. Biochemistry 2019; 58:3861-3868. [PMID: 31423766 PMCID: PMC7296831 DOI: 10.1021/acs.biochem.9b00460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Understanding protein motions and their role in enzymatic reactions is an important and timely topic in enzymology. Protein motions that are involved in the chemical step of catalysis are particularly intriguing but difficult to identify. A global network of coupled residues in Escherichia coli dihydrofolate reductase (E. coli DHFR), which assists in catalyzing the chemical step, has previously been demonstrated through quantum mechanical/molecular mechanical and molecular dynamics simulations as well as bioinformatic analyses. A few specific residues (M42, G121, F125, and I14) were shown to function synergistically with measurements of single-turnover rates and the temperature dependence of intrinsic kinetic isotope effects (KIEsint) of site-directed mutants. This study hypothesizes that the global network of residues involved in the chemical step is evolutionarily conserved and probes homologous residues of the potential global network in human DHFR through measurements of the temperature dependence of KIEsint and computer simulations based on the empirical valence bond method. We study mutants M53W and S145V. Both of these remote residues are homologous to network residues in E. coli DHFR. Non-additive isotope effects on activation energy are observed between M53 and S145, indicating their synergistic effect on the chemical step in human DHFR, which suggests that both of these residues are part of a network affecting the chemical step in enzyme catalysis. This finding supports the hypothesis that human and E. coli DHFR share similar networks, consistent with evolutionary preservation of such networks.
Collapse
Affiliation(s)
- Jiayue Li
- Department of Chemistry, University of Iowa, Iowa City, IA 52242
| | | | - Jennifer Lin
- Department of Chemistry, University of Iowa, Iowa City, IA 52242
| | - Pratul K. Agarwal
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996
| | - Amnon Kohen
- Department of Chemistry, University of Iowa, Iowa City, IA 52242
| | - Priyanka Singh
- Department of Chemistry, University of Iowa, Iowa City, IA 52242
| | | |
Collapse
|
19
|
Ruiz-Pernía JJ, Tuñón I, Moliner V, Allemann RK. Why are some Enzymes Dimers? Flexibility and Catalysis in Thermotoga Maritima Dihydrofolate Reductase. ACS Catal 2019; 9:5902-5911. [PMID: 31289693 PMCID: PMC6614790 DOI: 10.1021/acscatal.9b01250] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Dihydrofolate
reductase from Thermotoga maritima (TmDFHFR) is a
dimeric thermophilic enzyme that catalyzes the hydride
transfer from the cofactor NADPH to dihydrofolate less efficiently
than other DHFR enzymes, such as the mesophilic analogue Escherichia
coli DHFR (EcDHFR). Using QM/MM potentials, we show that
the reduced catalytic efficiency of TmDHFR is most likely due to differences
in the amino acid sequence that stabilize the M20 loop in an open
conformation, which prevents the formation of some interactions in
the transition state and increases the number of water molecules in
the active site. However, dimerization provides two advantages to
the thermophilic enzyme: it protects its structure against denaturation
by reducing thermal fluctuations and it provides a less negative activation
entropy, toning down the increase of the activation free energy with
temperature. Our molecular picture is confirmed by the analysis of
the temperature dependence of enzyme kinetic isotope effects in different
DHFR enzymes.
Collapse
Affiliation(s)
- J. Javier Ruiz-Pernía
- Departamento de Química Física, Universitat de Valencia, 46100 Burjassot, Valencia, Spain
| | - Iñaki Tuñón
- Departamento de Química Física, Universitat de Valencia, 46100 Burjassot, Valencia, Spain
| | - Vicent Moliner
- Departamento de Química Física y Analítica, Universitat Jaume I, 12071 Castellón, Spain
| | - Rudolf K. Allemann
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| |
Collapse
|
20
|
Delgado M, Görlich S, Longbotham JE, Scrutton NS, Hay S, Moliner V, Tuñón I. Convergence of theory and experiment on the role of preorganization, quantum tunneling and enzyme motions into flavoenzyme-catalyzed hydride transfer. ACS Catal 2019; 7:3190-3198. [PMID: 31157122 DOI: 10.1021/acscatal.7b00201] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Hydride transfer is one of the most common reactions catalyzed by enzymatic systems and it has become an object of study due to possible significant quantum tunneling effects. In the present work, we provide a combination of theoretical QM/MM simulations and experimental measurements of the rate constants and kinetic isotopic effects (KIEs) for the hydride transfer reaction catalyzed by morphinone reductase, MR. Quantum mechanical tunneling coefficients, computed in the framework of variational transition-state theory, play a significant role in this reaction, reaching values of 23.8 ± 5.5 for the lightest isotopologue; one of the largest values reported for enzymatic systems. This prediction is supported by the agreement between the theoretically predicted rate constants and the corresponding experimental values. Simulations indicate that the role of protein motions can be satisfactorily described as equilibrium fluctuations along the reaction coordinate, in line with a high degree of preorganization displayed by this enzyme.
Collapse
Affiliation(s)
- Manuel Delgado
- Department
of Physical and Analytical Chemistry, University Jaume I, 12071 Castelló de la Plana, Spain
| | - Stefan Görlich
- Manchester
Institute of Biotechnology and School of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - James E. Longbotham
- Manchester
Institute of Biotechnology and School of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Nigel S. Scrutton
- Manchester
Institute of Biotechnology and School of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Sam Hay
- Manchester
Institute of Biotechnology and School of Chemistry, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Vicent Moliner
- Department
of Physical and Analytical Chemistry, University Jaume I, 12071 Castelló de la Plana, Spain
- Department
of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Iñaki Tuñón
- Department
of Physical Chemistry, University of València, 46100 Burjassot, Spain
| |
Collapse
|
21
|
Mhashal AR, Pshetitsky Y, Cheatum CM, Kohen A, Major DT. Evolutionary Effects on Bound Substrate pKa in Dihydrofolate Reductase. J Am Chem Soc 2018; 140:16650-16660. [DOI: 10.1021/jacs.8b09089] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Anil R. Mhashal
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Yaron Pshetitsky
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | | | - Amnon Kohen
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Dan Thomas Major
- Department of Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
22
|
Roca M, Ruiz-Pernía JJ, Castillo R, Oliva M, Moliner V. Temperature dependence of dynamic, tunnelling and kinetic isotope effects in formate dehydrogenase. Phys Chem Chem Phys 2018; 20:25722-25737. [PMID: 30280169 DOI: 10.1039/c8cp04244f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The origin of the catalytic power of enzymes has been a question of debate for a long time. In this regard, the possible contribution of protein dynamics in enzymatic catalysis has become one of the most controversial topics. In the present work, the hydride transfer step in the formate dehydrogenase (FDH EC 1.2.1.2) enzyme is studied by means of molecular dynamic (MD) simulations with quantum mechanics/molecular mechanics (QM/MM) potentials in order to explore any correlation between dynamics, tunnelling effects and the rate constant. The temperature dependence of the kinetic isotope effects (KIEs), which is one of the few tests that can be studied by experiments and simulations to shed light on this debate, has been computed and the results have been compared with previous experimental data. The classical mechanical free energy barrier and the number of recrossing trajectories seem to be temperature-independent while the quantum vibrational corrections and the tunnelling effects are slightly temperature-dependent over the interval of 5-45 °C. The computed primary KIEs are in very good agreement with previous experimental data, being almost temperature-independent within the standard deviations. The modest dependence on the temperature is due to just the quantum vibrational correction contribution. These results, together with the analysis of the evolution of the collective variables such as the electrostatic potential or the electric field created by the protein on the key atoms involved in the reaction, confirm that while the protein is well preorganised, some changes take place along the reaction that favour the hydride transfer and the product release. Coordinates defining these movements are, in fact, part of the real reaction coordinate.
Collapse
Affiliation(s)
- Maite Roca
- Departament de Química Física i Analítica, Universitat Jaume I, 12071 Castellón, Spain.
| | | | - Raquel Castillo
- Departament de Química Física i Analítica, Universitat Jaume I, 12071 Castellón, Spain.
| | - Mónica Oliva
- Departament de Química Física i Analítica, Universitat Jaume I, 12071 Castellón, Spain.
| | - Vicent Moliner
- Departament de Química Física i Analítica, Universitat Jaume I, 12071 Castellón, Spain.
| |
Collapse
|
23
|
Mhashal AR, Pshetitsky Y, Eitan R, Cheatum CM, Kohen A, Major DT. Effect of Asp122 Mutation on the Hydride Transfer in E. coli DHFR Demonstrates the Goldilocks of Enzyme Flexibility. J Phys Chem B 2018; 122:8006-8017. [PMID: 30040418 DOI: 10.1021/acs.jpcb.8b05556] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Dihydrofolate reductase (DHFR) catalyzes the reduction of dihydrofolate (DHF) to tetrahydrofolate (THF) in the presence of NADPH. The key hydride transfer step in the reaction is facilitated by a combination of enzyme active site preorganization and correlated protein motions in the Michaelis-Menten (E:NADPH:DHF) complex. The present theoretical study employs mutagenesis to examine the relation between structural and functional properties of the enzyme. We mutate Asp122 in Escherichia coli DHFR, which is a conserved amino acid in the DHFR family. The consequent effect of the mutation on enzyme catalysis is examined from an energetic, structural and short-time dynamic perspective. Our investigations suggest that the structural and short-time dynamic perturbations caused by Asp122X mutations (X = Asn, Ser, Ala) are along the reaction coordinate and lower the rate of hydride transfer. Importantly, analysis of the correlated and principle component motions in the enzyme suggest that the mutation alters the coupled motions that are present in the wild-type enzyme. In the case of D122N and D122S, the mutations inhibit coupled motion, whereas in the case of D122A, the mutation enhances coupled motion, although all mutations result in similar rate reduction. These results emphasize a Goldilocks principle of enzyme flexibility, that is, enzymes should neither be too rigid nor too flexible.
Collapse
Affiliation(s)
- Anil R Mhashal
- Department of Chemistry and the Lise Meitner-Minerva Center of Computational Quantum Chemistry , Bar-Ilan University , Ramat-Gan 52900 , Israel
| | - Yaron Pshetitsky
- Department of Chemistry and the Lise Meitner-Minerva Center of Computational Quantum Chemistry , Bar-Ilan University , Ramat-Gan 52900 , Israel
| | - Reuven Eitan
- Department of Chemistry and the Lise Meitner-Minerva Center of Computational Quantum Chemistry , Bar-Ilan University , Ramat-Gan 52900 , Israel
| | - Christopher M Cheatum
- Department of Chemistry , University of Iowa , Iowa City , Iowa 52242 , United States
| | - Amnon Kohen
- Department of Chemistry , University of Iowa , Iowa City , Iowa 52242 , United States
| | - Dan Thomas Major
- Department of Chemistry and the Lise Meitner-Minerva Center of Computational Quantum Chemistry , Bar-Ilan University , Ramat-Gan 52900 , Israel
| |
Collapse
|
24
|
Pu M, Heshmat M, Privalov T. Liberation of H 2 from (o-C 6H 4Me) 3P-H (+) + (-)H-B(p-C 6F 4H) 3 ion-pair: A transition-state in the minimum energy path versus the transient species in Born-Oppenheimer molecular dynamics. J Chem Phys 2018; 147:014303. [PMID: 28688388 DOI: 10.1063/1.4989672] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Using Born-Oppenheimer molecular dynamics (BOMD) with density functional theory, transition-state (TS) calculations, and the quantitative energy decomposition analysis (EDA), we examined the mechanism of H2-liberation from LB-H(+) + (-)H-LA ion-pair, 1, in which the Lewis base (LB) is (o-C6H4Me)3P and the Lewis acid (LA) is B(p-C6F4H)3. BOMD simulations indicate that the path of H2 liberation from the ion-pair 1 goes via the short-lived transient species, LB⋯H2⋯LA, which are structurally reminiscent of the TS-structure in the minimum-energy-path describing the reversible reaction between H2 and (o-C6H4Me)3P/B(p-C6F4H)3 frustrated Lewis pair (FLP). With electronic structure calculations performed on graphics processing units, our BOMD data-set covers more than 1 ns of evolution of the ion-pair 1 at temperature T ≈ 400 K. BOMD simulations produced H2-recombination events with various durations of H2 remaining fully recombined as a molecule within a LB/LA attractive "pocket"-from very short vibrational-time scale to time scales in the range of a few hundred femtoseconds. With the help of perturbational approach to trajectory-propagation over a saddle-area, we directly examined dynamics of H2-liberation. Using EDA, we elucidated interactions between the cationic and anionic fragments in the ion-pair 1 and between the molecular fragments in the TS-structure. We have also considered a model that qualitatively takes into account the potential energy characteristics of H-H recombination and H2-release plus inertia of molecular motion of the (o-C6H4Me)3P/B(p-C6F4H)3 FLP.
Collapse
Affiliation(s)
- Maoping Pu
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Mojgan Heshmat
- Arrhenius Laboratory, Department of Organic Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Timofei Privalov
- Arrhenius Laboratory, Department of Organic Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
25
|
Jones HBL, Crean RM, Matthews C, Troya AB, Danson MJ, Bull SD, Arcus VL, van der Kamp MW, Pudney CR. Uncovering the Relationship between the Change in Heat Capacity for Enzyme Catalysis and Vibrational Frequency through Isotope Effect Studies. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | | | | | | | - Vickery L. Arcus
- School of Science, Faculty of Science and Engineering, University of Waikato, Hamilton 3240, New Zealand
| | - Marc W. van der Kamp
- School of Biochemistry, University of Bristol, Biomedical Sciences Building, University Walk, Bristol BS8 1TD, United Kingdom
| | | |
Collapse
|
26
|
Boehr DD, D'Amico RN, O'Rourke KF. Engineered control of enzyme structural dynamics and function. Protein Sci 2018; 27:825-838. [PMID: 29380452 DOI: 10.1002/pro.3379] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 01/20/2018] [Accepted: 01/24/2018] [Indexed: 12/20/2022]
Abstract
Enzymes undergo a range of internal motions from local, active site fluctuations to large-scale, global conformational changes. These motions are often important for enzyme function, including in ligand binding and dissociation and even preparing the active site for chemical catalysis. Protein engineering efforts have been directed towards manipulating enzyme structural dynamics and conformational changes, including targeting specific amino acid interactions and creation of chimeric enzymes with new regulatory functions. Post-translational covalent modification can provide an additional level of enzyme control. These studies have not only provided insights into the functional role of protein motions, but they offer opportunities to create stimulus-responsive enzymes. These enzymes can be engineered to respond to a number of external stimuli, including light, pH, and the presence of novel allosteric modulators. Altogether, the ability to engineer and control enzyme structural dynamics can provide new tools for biotechnology and medicine.
Collapse
Affiliation(s)
- David D Boehr
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Rebecca N D'Amico
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Kathleen F O'Rourke
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| |
Collapse
|
27
|
Shanmuganatham KK, Wallace RS, Ting-I Lee A, Plapp BV. Contribution of buried distal amino acid residues in horse liver alcohol dehydrogenase to structure and catalysis. Protein Sci 2018; 27:750-768. [PMID: 29271062 DOI: 10.1002/pro.3370] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 01/06/2023]
Abstract
The dynamics of enzyme catalysis range from the slow time scale (∼ms) for substrate binding and conformational changes to the fast time (∼ps) scale for reorganization of substrates in the chemical step. The contribution of global dynamics to catalysis by alcohol dehydrogenase was tested by substituting five different, conserved amino acid residues that are distal from the active site and located in the hinge region for the conformational change or in hydrophobic clusters. X-ray crystallography shows that the structures for the G173A, V197I, I220 (V, L, or F), V222I, and F322L enzymes complexed with NAD+ and an analogue of benzyl alcohol are almost identical, except for small perturbations at the sites of substitution. The enzymes have very similar kinetic constants for the oxidation of benzyl alcohol and reduction of benzaldehyde as compared to the wild-type enzyme, and the rates of conformational changes are not altered. Less conservative substitutions of these amino acid residues, such as G173(V, E, K, or R), V197(G, S, or T), I220(G, S, T, or N), and V222(G, S, or T) produced unstable or poorly expressed proteins, indicating that the residues are critical for global stability. The enzyme scaffold accommodates conservative substitutions of distal residues, and there is no evidence that fast, global dynamics significantly affect the rate constants for hydride transfers. In contrast, other studies show that proximal residues significantly participate in catalysis.
Collapse
Affiliation(s)
- Karthik K Shanmuganatham
- Department of Biochemistry, The University of Iowa, Iowa City, IA, 52242-1109.,Diagnostic Virology Laboratory, USDA, Ames, IA, 50010
| | - Rachel S Wallace
- Department of Biochemistry, The University of Iowa, Iowa City, IA, 52242-1109.,Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, 9054, New Zealand
| | - Ann Ting-I Lee
- Department of Biochemistry, The University of Iowa, Iowa City, IA, 52242-1109.,No 92, Jing Mao 1st Rd., Taichung, Taiwan, 406, Republic of China
| | - Bryce V Plapp
- Department of Biochemistry, The University of Iowa, Iowa City, IA, 52242-1109
| |
Collapse
|
28
|
Atzrodt J, Derdau V, Kerr WJ, Reid M. Deuterium- und tritiummarkierte Verbindungen: Anwendungen in den modernen Biowissenschaften. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201704146] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jens Atzrodt
- Isotope Chemistry and Metabolite Synthesis, Integrated Drug Discovery, Medicinal Chemistry; Industriepark Höchst, G876 65926 Frankfurt Deutschland
| | - Volker Derdau
- Isotope Chemistry and Metabolite Synthesis, Integrated Drug Discovery, Medicinal Chemistry; Industriepark Höchst, G876 65926 Frankfurt Deutschland
| | - William J. Kerr
- Department of Pure and Applied Chemistry, WestCHEM; University of Strathclyde; 295 Cathedral Street Glasgow Scotland G1 1XL Großbritannien
| | - Marc Reid
- Department of Pure and Applied Chemistry, WestCHEM; University of Strathclyde; 295 Cathedral Street Glasgow Scotland G1 1XL Großbritannien
| |
Collapse
|
29
|
Atzrodt J, Derdau V, Kerr WJ, Reid M. Deuterium- and Tritium-Labelled Compounds: Applications in the Life Sciences. Angew Chem Int Ed Engl 2018; 57:1758-1784. [PMID: 28815899 DOI: 10.1002/anie.201704146] [Citation(s) in RCA: 430] [Impact Index Per Article: 61.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/27/2017] [Indexed: 12/19/2022]
Abstract
Hydrogen isotopes are unique tools for identifying and understanding biological and chemical processes. Hydrogen isotope labelling allows for the traceless and direct incorporation of an additional mass or radioactive tag into an organic molecule with almost no changes in its chemical structure, physical properties, or biological activity. Using deuterium-labelled isotopologues to study the unique mass-spectrometric patterns generated from mixtures of biologically relevant molecules drastically simplifies analysis. Such methods are now providing unprecedented levels of insight in a wide and continuously growing range of applications in the life sciences and beyond. Tritium (3 H), in particular, has seen an increase in utilization, especially in pharmaceutical drug discovery. The efforts and costs associated with the synthesis of labelled compounds are more than compensated for by the enhanced molecular sensitivity during analysis and the high reliability of the data obtained. In this Review, advances in the application of hydrogen isotopes in the life sciences are described.
Collapse
Affiliation(s)
- Jens Atzrodt
- Isotope Chemistry and Metabolite Synthesis, Integrated Drug Discovery, Medicinal Chemistry, Industriepark Höchst, G876, 65926, Frankfurt, Germany
| | - Volker Derdau
- Isotope Chemistry and Metabolite Synthesis, Integrated Drug Discovery, Medicinal Chemistry, Industriepark Höchst, G876, 65926, Frankfurt, Germany
| | - William J Kerr
- Department of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, 295 Cathedral Street, Glasgow, Scotland, G1 1XL, UK
| | - Marc Reid
- Department of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, 295 Cathedral Street, Glasgow, Scotland, G1 1XL, UK
| |
Collapse
|
30
|
Roca M, Moliner V, Tuñón I. Origin of Enzymatic Kinetic Isotope Effects in Human Purine Nucleoside Phosphorylase. ACS Catal 2017. [DOI: 10.1021/acscatal.7b04199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- M. Roca
- Departament
de Química Física i Analítica, Universitat Jaume I, 12071 Castelló, Spain
- Departament
de Química Física, Universitat de València, 46100 Burjassot, Spain
| | - V. Moliner
- Departament
de Química Física i Analítica, Universitat Jaume I, 12071 Castelló, Spain
| | - I. Tuñón
- Departament
de Química Física, Universitat de València, 46100 Burjassot, Spain
| |
Collapse
|
31
|
Abstract
What happens inside an enzyme's active site to allow slow and difficult chemical reactions to occur so rapidly? This question has occupied biochemists' attention for a long time. Computer models of increasing sophistication have predicted an important role for electrostatic interactions in enzymatic reactions, yet this hypothesis has proved vexingly difficult to test experimentally. Recent experiments utilizing the vibrational Stark effect make it possible to measure the electric field a substrate molecule experiences when bound inside its enzyme's active site. These experiments have provided compelling evidence supporting a major electrostatic contribution to enzymatic catalysis. Here, we review these results and develop a simple model for electrostatic catalysis that enables us to incorporate disparate concepts introduced by many investigators to describe how enzymes work into a more unified framework stressing the importance of electric fields at the active site.
Collapse
Affiliation(s)
- Stephen D Fried
- Proteins and Nucleic Acid Chemistry Division, Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom;
| | - Steven G Boxer
- Department of Chemistry, Stanford University, Stanford, California 94305;
| |
Collapse
|
32
|
Mhashal AR, Vardi-Kilshtain A, Kohen A, Major DT. The role of the Met 20 loop in the hydride transfer in Escherichia coli dihydrofolate reductase. J Biol Chem 2017; 292:14229-14239. [PMID: 28620051 DOI: 10.1074/jbc.m117.777136] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 05/24/2017] [Indexed: 11/06/2022] Open
Abstract
A key question concerning the catalytic cycle of Escherichia coli dihydrofolate reductase (ecDHFR) is whether the Met20 loop is dynamically coupled to the chemical step during catalysis. A more basic, yet unanswered question is whether the Met20 loop adopts a closed conformation during the chemical hydride transfer step. To examine the most likely conformation of the Met20 loop during the chemical step, we studied the hydride transfer in wild type (WT) ecDHFR using hybrid quantum mechanics-molecular mechanics free energy simulations with the Met20 loop in a closed and disordered conformation. Additionally, we investigated three mutant forms (I14X; X = Val, Ala, Gly) of the enzyme that have increased active site flexibility and donor-acceptor distance dynamics in closed and disordered Met20 loop states. We found that the conformation of the Met20 loop has a dramatic effect on the ordering of active site hydration, although the Met20 loop conformation only has a moderate effect on the hydride transfer rate and donor-acceptor distance dynamics. Finally, we evaluated the pKa of the substrate N5 position in closed and disordered Met20 loop states and found a strong correlation between N5 basicity and the conformation of the Met20 loop.
Collapse
Affiliation(s)
- Anil R Mhashal
- From the Department of Chemistry and the Lise Meitner-Minerva Center of Computational Quantum Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Alexandra Vardi-Kilshtain
- From the Department of Chemistry and the Lise Meitner-Minerva Center of Computational Quantum Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Amnon Kohen
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242
| | - Dan Thomas Major
- From the Department of Chemistry and the Lise Meitner-Minerva Center of Computational Quantum Chemistry, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
33
|
Hughes RL, Johnson LA, Behiry EM, Loveridge EJ, Allemann RK. A Rapid Analysis of Variations in Conformational Behavior during Dihydrofolate Reductase Catalysis. Biochemistry 2017; 56:2126-2133. [PMID: 28368101 DOI: 10.1021/acs.biochem.7b00045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Protein flexibility is central to enzyme catalysis, yet it remains challenging both to predict conformational behavior on the basis of analysis of amino acid sequence and protein structure and to provide the necessary breadth of experimental support to any such predictions. Here a generic and rapid procedure for identifying conformational changes during dihydrofolate reductase (DHFR) catalysis is described. Using DHFR from Escherichia coli (EcDHFR), selective side-chain 13C labeling of methionine and tryptophan residues is shown to be sufficient to detect the closed-to-occluded conformational transition that follows the chemical step in the catalytic cycle, with clear chemical shift perturbations found for both methionine methyl and tryptophan indole groups. In contrast, no such perturbations are seen for the DHFR from the psychrophile Moritella profunda, where the equivalent conformational change is absent. Like EcDHFR, Salmonella enterica DHFR shows experimental evidence of a large-scale conformational change following hydride transfer that relies on conservation of a key hydrogen bonding interaction between the M20 and GH loops, directly comparable to the closed-to-occluded conformational change observed in EcDHFR. For the hyperthermophile Thermotoga maritima, no chemical shift perturbations were observed, suggesting that no major conformational change occurs during the catalytic cycle. In spite of their conserved tertiary structures, DHFRs display variations in conformational sampling that occurs concurrently with catalysis.
Collapse
Affiliation(s)
- Robert L Hughes
- School of Chemistry, Cardiff University , Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Luke A Johnson
- School of Chemistry, Cardiff University , Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Enas M Behiry
- School of Chemistry, Cardiff University , Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - E Joel Loveridge
- School of Chemistry, Cardiff University , Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Rudolf K Allemann
- School of Chemistry, Cardiff University , Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| |
Collapse
|
34
|
Loveridge EJ, Hroch L, Hughes RL, Williams T, Davies RL, Angelastro A, Luk LYP, Maglia G, Allemann RK. Reduction of Folate by Dihydrofolate Reductase from Thermotoga maritima. Biochemistry 2017; 56:1879-1886. [PMID: 28319664 DOI: 10.1021/acs.biochem.6b01268] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mammalian dihydrofolate reductases (DHFRs) catalyze the reduction of folate more efficiently than the equivalent bacterial enzymes do, despite typically having similar efficiencies for the reduction of their natural substrate, dihydrofolate. In contrast, we show here that DHFR from the hyperthermophilic bacterium Thermotoga maritima can catalyze reduction of folate to tetrahydrofolate with an efficiency similar to that of reduction of dihydrofolate under saturating conditions. Nuclear magnetic resonance and mass spectrometry experiments showed no evidence of the production of free dihydrofolate during either the EcDHFR- or TmDHFR-catalyzed reductions of folate, suggesting that both enzymes perform the two reduction steps without release of the partially reduced substrate. Our results imply that the reaction proceeds more efficiently in TmDHFR than in EcDHFR because the more open active site of TmDHFR facilitates protonation of folate. Because T. maritima lives under extreme conditions where tetrahydrofolate is particularly prone to oxidation, this ability to salvage folate may impart an advantage to the bacterium by minimizing the squandering of a valuable cofactor.
Collapse
Affiliation(s)
- E Joel Loveridge
- School of Chemistry, Cardiff University , Main Building, Park Place, Cardiff CF10 3AT, U.K.,Department of Chemistry, Swansea University , Singleton Park, Swansea SA2 8PP, U.K
| | - Lukas Hroch
- School of Chemistry, Cardiff University , Main Building, Park Place, Cardiff CF10 3AT, U.K.,Department of Pharmaceutical Chemistry and Drug Control, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague , Akademika Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic
| | - Robert L Hughes
- School of Chemistry, Cardiff University , Main Building, Park Place, Cardiff CF10 3AT, U.K
| | - Thomas Williams
- School of Chemistry, Cardiff University , Main Building, Park Place, Cardiff CF10 3AT, U.K
| | - Rhidian L Davies
- School of Chemistry, Cardiff University , Main Building, Park Place, Cardiff CF10 3AT, U.K
| | - Antonio Angelastro
- School of Chemistry, Cardiff University , Main Building, Park Place, Cardiff CF10 3AT, U.K
| | - Louis Y P Luk
- School of Chemistry, Cardiff University , Main Building, Park Place, Cardiff CF10 3AT, U.K
| | - Giovanni Maglia
- School of Chemical Sciences, University of Birmingham , Edgbaston, Birmingham B15 2TT, U.K
| | - Rudolf K Allemann
- School of Chemistry, Cardiff University , Main Building, Park Place, Cardiff CF10 3AT, U.K.,School of Chemical Sciences, University of Birmingham , Edgbaston, Birmingham B15 2TT, U.K
| |
Collapse
|
35
|
Świderek K, Arafet K, Kohen A, Moliner V. Benchmarking Quantum Mechanics/Molecular Mechanics (QM/MM) Methods on the Thymidylate Synthase-Catalyzed Hydride Transfer. J Chem Theory Comput 2017; 13:1375-1388. [PMID: 28192669 PMCID: PMC5371049 DOI: 10.1021/acs.jctc.6b01032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Given the ubiquity of hydride-transfer reactions in enzyme-catalyzed processes, identifying the appropriate computational method for evaluating such biological reactions is crucial to perform theoretical studies of these processes. In this paper, the hydride-transfer step catalyzed by thymidylate synthase (TSase) is studied by examining hybrid quantum mechanics/molecular mechanics (QM/MM) potentials via multiple semiempirical methods and the M06-2X hybrid density functional. Calculations of protium and tritium transfer in these reactions across a range of temperatures allowed calculation of the temperature dependence of kinetic isotope effects (KIE). Dynamics and quantum-tunneling effects are revealed to have little effect on the reaction rate, but are significant in determining the KIEs and their temperature dependence. A good agreement with experiments is found, especially when computed for RM1/MM simulations. The small temperature dependence of quantum tunneling corrections and the quasiclassical contribution term cancel each other, while the recrossing transmission coefficient seems to be temperature-independent over the interval of 5-40 °C.
Collapse
Affiliation(s)
- Katarzyna Świderek
- Departament de Química Física i Analítica, Universitat Jaume I , 12071 Castelló, Spain
- Institute of Applied Radiation Chemistry, Lodz University of Technology , 90-924 Lodz, Poland
| | - Kemel Arafet
- Departament de Química Física i Analítica, Universitat Jaume I , 12071 Castelló, Spain
| | - Amnon Kohen
- Department of Chemistry, University of Iowa , Iowa City, Iowa 52242, United States
| | - Vicent Moliner
- Departament de Química Física i Analítica, Universitat Jaume I , 12071 Castelló, Spain
| |
Collapse
|
36
|
Warshel A, Bora RP. Perspective: Defining and quantifying the role of dynamics in enzyme catalysis. J Chem Phys 2017; 144:180901. [PMID: 27179464 DOI: 10.1063/1.4947037] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Enzymes control chemical reactions that are key to life processes, and allow them to take place on the time scale needed for synchronization between the relevant reaction cycles. In addition to general interest in their biological roles, these proteins present a fundamental scientific puzzle, since the origin of their tremendous catalytic power is still unclear. While many different hypotheses have been put forward to rationalize this, one of the proposals that has become particularly popular in recent years is the idea that dynamical effects contribute to catalysis. Here, we present a critical review of the dynamical idea, considering all reasonable definitions of what does and does not qualify as a dynamical effect. We demonstrate that no dynamical effect (according to these definitions) has ever been experimentally shown to contribute to catalysis. Furthermore, the existence of non-negligible dynamical contributions to catalysis is not supported by consistent theoretical studies. Our review is aimed, in part, at readers with a background in chemical physics and biophysics, and illustrates that despite a substantial body of experimental effort, there has not yet been any study that consistently established a connection between an enzyme's conformational dynamics and a significant increase in the catalytic contribution of the chemical step. We also make the point that the dynamical proposal is not a semantic issue but a well-defined scientific hypothesis with well-defined conclusions.
Collapse
Affiliation(s)
- Arieh Warshel
- Department of Chemistry, University of Southern California, SGM 418, 3620 McClintock Avenue, Los Angeles, California 90089, USA
| | - Ram Prasad Bora
- Department of Chemistry, University of Southern California, SGM 418, 3620 McClintock Avenue, Los Angeles, California 90089, USA
| |
Collapse
|
37
|
Luk LYP, Loveridge EJ, Allemann RK. Protein motions and dynamic effects in enzyme catalysis. Phys Chem Chem Phys 2016; 17:30817-27. [PMID: 25854702 DOI: 10.1039/c5cp00794a] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The role of protein motions in promoting the chemical step of enzyme catalysed reactions remains a subject of considerable debate. Here, a unified view of the role of protein dynamics in dihydrofolate reductase catalysis is described. Recently the role of such motions has been investigated by characterising the biophysical properties of isotopically substituted enzymes through a combination of experimental and computational analyses. Together with previous work, these results suggest that dynamic coupling to the chemical coordinate is detrimental to catalysis and may have been selected against during DHFR evolution. The full catalytic power of Nature's catalysts appears to depend on finely tuning protein motions in each step of the catalytic cycle.
Collapse
Affiliation(s)
- Louis Y P Luk
- School of Chemistry, Cardiff University, Park Place, Cardiff, CF10 3AT, UK.
| | - E Joel Loveridge
- School of Chemistry, Cardiff University, Park Place, Cardiff, CF10 3AT, UK.
| | - Rudolf K Allemann
- School of Chemistry, Cardiff University, Park Place, Cardiff, CF10 3AT, UK.
| |
Collapse
|
38
|
Abstract
Path-integral free energy perturbation (PI-FEP) theory is presented to directly determine the ratio of quantum mechanical partition functions of different isotopologs in a single simulation. Furthermore, a double averaging strategy is used to carry out the practical simulation, separating the quantum mechanical path integral exactly into two separate calculations, one corresponding to a classical molecular dynamics simulation of the centroid coordinates, and another involving free-particle path-integral sampling over the classical, centroid positions. An integrated centroid path-integral free energy perturbation and umbrella sampling (PI-FEP/UM, or simply, PI-FEP) method along with bisection sampling was summarized, which provides an accurate and fast convergent method for computing kinetic isotope effects for chemical reactions in solution and in enzymes. The PI-FEP method is illustrated by a number of applications, to highlight the computational precision and accuracy, the rule of geometrical mean in kinetic isotope effects, enhanced nuclear quantum effects in enzyme catalysis, and protein dynamics on temperature dependence of kinetic isotope effects.
Collapse
Affiliation(s)
- J Gao
- Theoretical Chemistry Institute, Jilin University, Changchun, Jilin Province, PR China; University of Minnesota, Minneapolis, MN, United States.
| |
Collapse
|
39
|
Abstract
Advances in computational and experimental methods in enzymology have aided comprehension of enzyme-catalyzed chemical reactions. The main difficulty in comparing computational findings to rate measurements is that the first examines a single energy barrier, while the second frequently reflects a combination of many microscopic barriers. We present here intrinsic kinetic isotope effects and their temperature dependence as a useful experimental probe of a single chemical step in a complex kinetic cascade. Computational predictions are tested by this method for two model enzymes: dihydrofolate reductase and thymidylate synthase. The description highlights the significance of collaboration between experimentalists and theoreticians to develop a better understanding of enzyme-catalyzed chemical conversions.
Collapse
Affiliation(s)
- P Singh
- University of Iowa, Iowa City, IA, United States
| | - Z Islam
- University of Iowa, Iowa City, IA, United States
| | - A Kohen
- University of Iowa, Iowa City, IA, United States.
| |
Collapse
|
40
|
Ruiz-Pernía JJ, Behiry E, Luk LYP, Loveridge EJ, Tuñón I, Moliner V, Allemann RK. Minimization of dynamic effects in the evolution of dihydrofolate reductase. Chem Sci 2016; 7:3248-3255. [PMID: 29997817 PMCID: PMC6006479 DOI: 10.1039/c5sc04209g] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/02/2016] [Indexed: 11/22/2022] Open
Abstract
Protein isotope labeling is a powerful technique to probe functionally important motions in enzyme catalysis and can be applied to investigate the conformational dynamics of proteins. Previous investigations have indicated that dynamic coupling is detrimental to catalysis by dihydrofolate reductase (DHFR) from the mesophile Escherichia coli (EcDHFR). Comparison of DHFRs from organisms adapted to survive at a wide range of temperatures suggests that dynamic coupling in DHFR catalysis has been minimized during evolution; it arises from reorganizational motions needed to facilitate charge transfer events. Contrary to the behaviour observed for the DHFR from the moderate thermophile Geobacillus stearothermophilus (BsDHFR), the chemical transformation catalyzed by the cold-adapted bacterium Moritella profunda (MpDHFR) is only weakly affected by protein isotope substitutions at low temperatures, but the isotopically substituted enzyme is a substantially inferior catalyst at higher, non-physiological temperatures. QM/MM studies revealed that this behaviour is caused by the enzyme's structural sensitivity to temperature changes, which enhances unfavorable dynamic coupling at higher temperatures by promoting additional recrossing trajectories on the transition state dividing surface. We postulate that these motions are minimized by fine-tuning DHFR flexibility through optimization of the free energy surface of the reaction, such that a nearly static reaction-ready configuration with optimal electrostatic properties is maintained under physiological conditions.
Collapse
Affiliation(s)
- J Javier Ruiz-Pernía
- Departament de Química Física i Analítica , Universitat Jaume I , 12071 Castelló , Spain .
| | - Enas Behiry
- School of Chemistry & Cardiff Catalysis Institute , Cardiff University , Park Place , Cardiff , CF10 3AT , UK .
| | - Louis Y P Luk
- School of Chemistry & Cardiff Catalysis Institute , Cardiff University , Park Place , Cardiff , CF10 3AT , UK .
| | - E Joel Loveridge
- School of Chemistry & Cardiff Catalysis Institute , Cardiff University , Park Place , Cardiff , CF10 3AT , UK .
| | - Iñaki Tuñón
- Departament de Química Física , Universitat de València , 46100 Burjassot , Spain .
| | - Vicent Moliner
- Departament de Química Física i Analítica , Universitat Jaume I , 12071 Castelló , Spain .
| | - Rudolf K Allemann
- School of Chemistry & Cardiff Catalysis Institute , Cardiff University , Park Place , Cardiff , CF10 3AT , UK .
| |
Collapse
|
41
|
Dynamical network of residue-residue contacts reveals coupled allosteric effects in recognition, catalysis, and mutation. Proc Natl Acad Sci U S A 2016; 113:4735-40. [PMID: 27071107 DOI: 10.1073/pnas.1523573113] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Detailed understanding of how conformational dynamics orchestrates function in allosteric regulation of recognition and catalysis remains ambiguous. Here, we simulate CypA using multiple-microsecond-long atomistic molecular dynamics in explicit solvent and carry out NMR experiments. We analyze a large amount of time-dependent multidimensional data with a coarse-grained approach and map key dynamical features within individual macrostates by defining dynamics in terms of residue-residue contacts. The effects of substrate binding are observed to be largely sensed at a location over 15 Å from the active site, implying its importance in allostery. Using NMR experiments, we confirm that a dynamic cluster of residues in this distal region is directly coupled to the active site. Furthermore, the dynamical network of interresidue contacts is found to be coupled and temporally dispersed, ranging over 4 to 5 orders of magnitude. Finally, using network centrality measures we demonstrate the changes in the communication network, connectivity, and influence of CypA residues upon substrate binding, mutation, and during catalysis. We identify key residues that potentially act as a bottleneck in the communication flow through the distinct regions in CypA and, therefore, as targets for future mutational studies. Mapping these dynamical features and the coupling of dynamics to function has crucial ramifications in understanding allosteric regulation in enzymes and proteins, in general.
Collapse
|
42
|
Meisner J, Kästner J. Atom Tunneling in Chemistry. Angew Chem Int Ed Engl 2016; 55:5400-13. [DOI: 10.1002/anie.201511028] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 01/08/2016] [Indexed: 01/01/2023]
Affiliation(s)
- Jan Meisner
- Institut für Theoretische Chemie Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| | - Johannes Kästner
- Institut für Theoretische Chemie Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Germany
| |
Collapse
|
43
|
Affiliation(s)
- Jan Meisner
- Institut für Theoretische Chemie Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Deutschland
| | - Johannes Kästner
- Institut für Theoretische Chemie Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Deutschland
| |
Collapse
|
44
|
Francis K, Sapienza PJ, Lee AL, Kohen A. The Effect of Protein Mass Modulation on Human Dihydrofolate Reductase. Biochemistry 2016; 55:1100-6. [PMID: 26813442 DOI: 10.1021/acs.biochem.5b00945] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dihydrofolate reductase (DHFR) from Escherichia coli has long served as a model enzyme with which to elucidate possible links between protein dynamics and the catalyzed reaction. Such physical properties of its human counterpart have not been rigorously studied so far, but recent computer-based simulations suggest that these two DHFRs differ significantly in how closely coupled the protein dynamics and the catalyzed C-H → C hydride transfer step are. To test this prediction, two contemporary probes for studying the effect of protein dynamics on catalysis were combined here: temperature dependence of intrinsic kinetic isotope effects (KIEs), which are sensitive to the physical nature of the chemical step, and protein mass modulation, which slows down fast dynamics (femto- to picosecond time scale) throughout the protein. The intrinsic H/T KIEs of human DHFR, like those of E. coli DHFR, are shown to be temperature-independent in the range from 5 to 45 °C, indicating fast sampling of donor and acceptor distances (DADs) at the reaction's transition state (or tunneling ready state, TRS). Mass modulation of these enzymes through isotopic labeling with (13)C, (15)N, and (2)H at nonexchangeable hydrogens yields an 11% heavier enzyme. The additional mass has no effect on the intrinsic KIEs of the human enzyme. This finding indicates that the mass modulation of the human DHFR affects neither DAD distribution nor the DAD's conformational sampling dynamics. Furthermore, reduction in the enzymatic turnover number and the dissociation rate constant for the product indicate that the isotopic substitution affects kinetic steps that are not the catalyzed C-H → C hydride transfer. The findings are discussed in terms of fast dynamics and their role in catalysis, the comparison of calculations and experiments, and the interpretation of isotopically modulated heavy enzymes in general.
Collapse
Affiliation(s)
- Kevin Francis
- The Department of Chemistry, The University of Iowa , Iowa City, Iowa 52242, United States
| | - Paul J Sapienza
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina , Chapel Hill, North Carolina 27599, United States
| | - Andrew L Lee
- Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina , Chapel Hill, North Carolina 27599, United States
| | - Amnon Kohen
- The Department of Chemistry, The University of Iowa , Iowa City, Iowa 52242, United States
| |
Collapse
|
45
|
Tuñón I, Laage D, Hynes JT. Are there dynamical effects in enzyme catalysis? Some thoughts concerning the enzymatic chemical step. Arch Biochem Biophys 2015; 582:42-55. [PMID: 26087289 PMCID: PMC4560206 DOI: 10.1016/j.abb.2015.06.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 06/05/2015] [Accepted: 06/06/2015] [Indexed: 11/21/2022]
Abstract
We offer some thoughts on the much debated issue of dynamical effects in enzyme catalysis, and more specifically on their potential role in the acceleration of the chemical step. Since the term 'dynamics' has been used with different meanings, we find it useful to first return to the Transition State Theory rate constant, its assumptions and the choices it involves, and detail the various sources of deviations from it due to dynamics (or not). We suggest that much can be learned about the key current questions for enzyme catalysis from prior extensive studies of dynamical and other effects in the case of reactions in solution. We analyze dynamical effects both in the neighborhood of the transition state and far from it, together with the situation when quantum nuclear motion is central to the reaction, and we illustrate our discussion with various examples of enzymatic reactions.
Collapse
Affiliation(s)
- Iñaki Tuñón
- Departamento de Química Física, Universidad de Valencia, Spain.
| | - Damien Laage
- Ecole Normale Supérieure-PSL Research University, Chemistry Department, Sorbonne Universités-UPMC University Paris 06, CNRS UMR 8640 Pasteur, 24 rue Lhomond, 75005 Paris, France.
| | - James T Hynes
- Ecole Normale Supérieure-PSL Research University, Chemistry Department, Sorbonne Universités-UPMC University Paris 06, CNRS UMR 8640 Pasteur, 24 rue Lhomond, 75005 Paris, France; Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309-0215, USA.
| |
Collapse
|
46
|
Bar-Even A, Milo R, Noor E, Tawfik DS. The Moderately Efficient Enzyme: Futile Encounters and Enzyme Floppiness. Biochemistry 2015. [DOI: 10.1021/acs.biochem.5b00621] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Arren Bar-Even
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | | | - Elad Noor
- Institute
of Molecular Systems Biology, ETH Zurich, Auguste-Piccard-Hof 1, CH-8093 Zurich, Switzerland
| | | |
Collapse
|
47
|
Luk LYP, Ruiz-Pernía JJ, Adesina AS, Loveridge EJ, Tuñón I, Moliner V, Allemann RK. Chemical Ligation and Isotope Labeling to Locate Dynamic Effects during Catalysis by Dihydrofolate Reductase. Angew Chem Int Ed Engl 2015; 54:9016-20. [PMID: 26079622 PMCID: PMC4985705 DOI: 10.1002/anie.201503968] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Indexed: 11/21/2022]
Abstract
Chemical ligation has been used to alter motions in specific regions of dihydrofolate reductase from E. coli and to investigate the effects of localized motional changes on enzyme catalysis. Two isotopic hybrids were prepared; one with the mobile N-terminal segment containing heavy isotopes ((2) H, (13) C, (15) N) and the remainder of the protein with natural isotopic abundance, and the other one with only the C-terminal segment isotopically labeled. Kinetic investigations indicated that isotopic substitution of the N-terminal segment affected only a physical step of catalysis, whereas the enzyme chemistry was affected by protein motions from the C-terminal segment. QM/MM studies support the idea that dynamic effects on catalysis mostly originate from the C-terminal segment. The use of isotope hybrids provides insights into the microscopic mechanism of dynamic coupling, which is difficult to obtain with other studies, and helps define the dynamic networks of intramolecular interactions central to enzyme catalysis.
Collapse
Affiliation(s)
- Louis Y P Luk
- School of Chemistry, Cardiff University, Park Place, Cardiff, CF10 3AT (UK)
| | - J Javier Ruiz-Pernía
- Departament de Química Física i Analítica, Universitat Jaume I, 12071 Castelló (Spain)
| | | | - E Joel Loveridge
- School of Chemistry, Cardiff University, Park Place, Cardiff, CF10 3AT (UK)
| | - Iñaki Tuñón
- Departament de Química Física, Universitat de València, 46100 Burjassot (Spain).
| | - Vincent Moliner
- Departament de Química Física i Analítica, Universitat Jaume I, 12071 Castelló (Spain).
| | - Rudolf K Allemann
- School of Chemistry, Cardiff University, Park Place, Cardiff, CF10 3AT (UK).
| |
Collapse
|
48
|
Luk LYP, Ruiz-Pernía JJ, Adesina AS, Loveridge EJ, Tuñón I, Moliner V, Allemann RK. Chemical Ligation and Isotope Labeling to Locate Dynamic Effects during Catalysis by Dihydrofolate Reductase. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201503968] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
49
|
Abstract
![]()
The role of the enzyme’s dynamic motions
in catalysis is at the center of heated contemporary debates among
both theoreticians and experimentalists. Resolving these apparent
disputes is of both intellectual and practical importance: incorporation
of enzyme dynamics could be critical for any calculation of enzymatic
function and may have profound implications for structure-based drug
design and the design of biomimetic catalysts. Analysis of the
literature suggests that while part of the dispute may reflect substantial
differences between theoretical approaches, much of the debate is
semantic. For example, the term “protein dynamics” is
often used by some researchers when addressing motions that are in
thermal equilibrium with their environment, while other researchers
only use this term for nonequilibrium events. The last cases are those
in which thermal energy is “stored” in a specific protein
mode and “used” for catalysis before it can dissipate
to its environment (i.e., “nonstatistical dynamics”).
This terminology issue aside, a debate has arisen among theoreticians
around the roles of nonstatistical vs statistical dynamics in catalysis.
However, the author knows of no experimental findings available today
that examined this question in enzyme catalyzed reactions. Another
source of perhaps nonsubstantial argument might stem from the varying
time scales of enzymatic motions, which range from seconds to femtoseconds.
Motions at different time scales play different roles in the many
events along the catalytic cascade (reactant binding, reprotonation
of reactants, structural rearrangement toward the transition state,
product release, etc.). In several cases, when various experimental
tools have been used to probe catalytic events at differing time scales,
illusory contradictions seem to have emerged. In this Account, recent
attempts to sort the merits of those questions are discussed along
with possible future directions. A possible summary of current
studies could be that enzyme, substrate, and solvent dynamics contribute
to enzyme catalyzed reactions in several ways: first via mutual “induced-fit”
shifting of their conformational ensemble upon binding; then via thermal
search of the conformational space toward the reaction’s transition-state
(TS) and the rare event of the barrier crossing toward products, which
is likely to be on faster time scales then the first and following
events; and finally via the dynamics associated with products release,
which are rate-limiting for many enzymatic reactions. From a chemical
perspective, close to the TS, enzymatic systems seem to stiffen, restricting
motions orthogonal to the chemical coordinate and enabling dynamics
along the reaction coordinate to occur selectively. Studies of how
enzymes evolved to support those efficient dynamics at various time
scales are still in their infancy, and further experiments and calculations
are needed to reveal these phenomena in both enzymes and uncatalyzed
reactions.
Collapse
Affiliation(s)
- Amnon Kohen
- Department of Chemistry, The University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
50
|
Singh P, Abeysinghe T, Kohen A. Linking protein motion to enzyme catalysis. Molecules 2015; 20:1192-209. [PMID: 25591120 PMCID: PMC4341894 DOI: 10.3390/molecules20011192] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 01/07/2015] [Indexed: 12/01/2022] Open
Abstract
Enzyme motions on a broad range of time scales can play an important role in various intra- and intermolecular events, including substrate binding, catalysis of the chemical conversion, and product release. The relationship between protein motions and catalytic activity is of contemporary interest in enzymology. To understand the factors influencing the rates of enzyme-catalyzed reactions, the dynamics of the protein-solvent-ligand complex must be considered. The current review presents two case studies of enzymes—dihydrofolate reductase (DHFR) and thymidylate synthase (TSase)—and discusses the role of protein motions in their catalyzed reactions. Specifically, we will discuss the utility of kinetic isotope effects (KIEs) and their temperature dependence as tools in probing such phenomena.
Collapse
Affiliation(s)
- Priyanka Singh
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA.
| | - Thelma Abeysinghe
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA.
| | - Amnon Kohen
- Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|