1
|
Lovinger GJ, Sak MH, Jacobsen EN. Catalysis of an S N2 pathway by geometric preorganization. Nature 2024; 632:1052-1059. [PMID: 39025123 DOI: 10.1038/s41586-024-07811-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/10/2024] [Indexed: 07/20/2024]
Abstract
Bimolecular nucleophilic substitution (SN2) mechanisms occupy a central place in the historical development and teaching of the field of organic chemistry1. Despite the importance of SN2 pathways in synthesis, catalytic control of ionic SN2 pathways is rare and notably uncommon even in biocatalysis2,3, reflecting the fact that any electrostatic interaction between a catalyst and the reacting ion pair necessarily stabilizes its charge and, by extension, reduces polar reactivity. Nucleophilic halogenase enzymes navigate this tradeoff by desolvating and positioning the halide nucleophile precisely on the SN2 trajectory, using geometric preorganization to compensate for the attenuation of nucleophilicity4. Here we show that a small-molecule (646 Da) hydrogen-bond-donor catalyst accelerates the SN2 step of an enantioselective Michaelis-Arbuzov reaction by recapitulating the geometric preorganization principle used by enzymes. Mechanistic and computational investigations show that the hydrogen-bond donor diminishes the reactivity of the chloride nucleophile yet accelerates the rate-determining dealkylation step by reorganizing both the phosphonium cation and the chloride anion into a geometry that is primed to enter the SN2 transition state. This new enantioselective Arbuzov reaction affords highly enantioselective access to an array of H-phosphinates, which are in turn versatile P-stereogenic building blocks amenable to myriad derivatizations. This work constitutes, to our knowledge, the first demonstration of catalytic enantiocontrol of the phosphonium dealkylation step, establishing a new platform for the synthesis of P-stereogenic compounds.
Collapse
Affiliation(s)
- Gabriel J Lovinger
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Marcus H Sak
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Eric N Jacobsen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
2
|
Chen F, Chen Y, Chang XY, He D, Yang Q, Wang DZ, Xu C, Yu P, Xing X. Polarizability matters in enantio-selection. Nat Commun 2024; 15:3394. [PMID: 38649371 PMCID: PMC11035643 DOI: 10.1038/s41467-024-47813-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 03/22/2024] [Indexed: 04/25/2024] Open
Abstract
The prevalence of chirality, or, handedness in biological world is a fundamental phenomenon and a characteristic hallmark of life. Thus, understanding the origin of enantio-selection, i.e., the sense and magnitude of asymmetric induction, has been a long-pursued goal in asymmetric catalysis. Herein, we demonstrated a polarizability-derived electronic effect that was shown to be capable of rationalizing a broad range of stereochemical observations made in the field of asymmetric catalysis. This effect provided a consistent enantio-control model for the prediction of major enantiomers formed in a ruthenium-catalyzed asymmetric transfer hydrogenations of ketones. Direct and quantitative linear free energy relationships between substrates' local polarizabilities and observed enantio-selectivity were also revealed in three widely known asymmetric catalytic systems covering both reductions and oxidations. This broadly applicable polarizability-based electronic effect, in conjunction with conventional wisdom mainly leveraging on steric effect considerations, should aid rational design of enantio-selective processes for better production of chiral substances.
Collapse
Affiliation(s)
- Fumin Chen
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yu Chen
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiao-Yong Chang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Dongxu He
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qingjing Yang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | | | - Chen Xu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Peiyuan Yu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Xiangyou Xing
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
3
|
Rubel CZ, He WJ, Wisniewski SR, Engle KM. Benchtop Nickel Catalysis Invigorated by Electron-Deficient Diene Ligands. Acc Chem Res 2024; 57:312-326. [PMID: 38236260 DOI: 10.1021/acs.accounts.3c00638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
ConspectusDue to the rarity of precious metals like palladium, nickel catalysis is becoming an increasingly important player in organic synthesis, especially for the formation of bonds with sp3-hybridized carbon centers. Traditionally, catalytic processes involving active Ni(0) species have relied on Ni(COD)2 or in situ reduction of Ni(II) salts. However, Ni(COD)2 is an air- and temperature-sensitive material that requires use in an inert-atmosphere glovebox, and in situ reduction protocols of Ni(II) salts using metallic or organometallic reductants add additional complications to reaction development.This Account chronicles the development of air-stable Ni(0) precursors as replacements for Ni(COD)2 or in situ reduction. Based on Schrauzer's seminal discovery of Ni(COD)(DQ) as an air-stable zerovalent organonickel complex, our research laboratories at Scripps Research and Bristol Myers Squibb have developed a class of precatalysts based on the Ni(COD)(EDD) (EDD = electron-deficient diene) framework, relying on the steric and electronic properties of the supporting diene to render the metal center stable to air, moisture, and even silica gel but reactive to ligand substitution and redox changes.The stable Ni(0) complexes can be accessed through ligand exchange with Ni(COD)2, through reduction of Ni(acac)2 using DIBAL-H, or electrochemically via cathodic reduction of Ni(acac)2 to Ni(COD)2, followed by addition of an EDD ligand in one pot. As a toolkit, the complexes demonstrate reactivity that is equivalent or enhanced compared to Ni(COD)2, catalyzing C-C and C-N cross-couplings, Miyaura borylations, C-H activations, and other transformations. Since the initial report on Ni(COD)(DQ), its reactivity in C(sp2)-CN activation, metallophotoredox, and electric field-induced cross-coupling have also been demonstrated.By incorporating the precatalyst toolkit into reaction discovery campaigns, our laboratories have been able to perform C(sp3)-S(alkyl) couplings and metallonitrenoid carboamination, both of which represent challenging transformations that were inaccessible with traditional phosphine, nitrogen, or electron-deficient olefin ligands. Computational and experimental studies demonstrate how the quinone ligands are hemilabile, adopting η1(O)-bound geometries to relieve steric strain or stabilize transition states and intermediates; redox-active, able to transiently oxidize the metal center; and electron-withdrawing or -donating, depending on metal oxidation state and coordination geometry. These studies show how the ligands enable key steps in catalysis beyond imparting air-stability.Since our report documenting the catalytic activity of Ni(COD)(DQ), many other laboratories have also observed unique reactivity with this precatalyst. Ni(COD)(DQ) was found to offer superior reactivity to Ni(COD)2 in C-N cross coupling to form N,N-diaryl sulfonamides and in preparation of biaryls from aryl halides and benzene through a Ni-mediated, base-assisted homolytic aromatic substitution.
Collapse
Affiliation(s)
- Camille Z Rubel
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - Wen-Ji He
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, California 92037, United States
| | - Steven R Wisniewski
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Keary M Engle
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, California 92037, United States
| |
Collapse
|
4
|
Sun C, Li T. Chiral Carboxylic Acids as Organic Catalysts for Asymmetric Reactions. ChemistrySelect 2023. [DOI: 10.1002/slct.202300010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Cuiyun Sun
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education Guizhou University Guiyang 550025 China
| | - Tingting Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education Guizhou University Guiyang 550025 China
| |
Collapse
|
5
|
Ghosh S, Changotra A, Petrone DA, Isomura M, Carreira EM, Sunoj RB. Role of Noncovalent Interactions in Inducing High Enantioselectivity in an Alcohol Reductive Deoxygenation Reaction Involving a Planar Carbocationic Intermediate. J Am Chem Soc 2023; 145:2884-2900. [PMID: 36695526 DOI: 10.1021/jacs.2c10975] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The involvement of planar carbocation intermediates is generally considered undesirable in asymmetric catalysis due to the difficulty in gaining facial control and their intrinsic stability issues. Recently, suitably designed chiral catalyst(s) have enabled a guided approach of nucleophiles to one of the prochiral faces of carbocations affording high enantiocontrol. Herein, we present the vital mechanistic insights from our comprehensive density functional theory (B3LYP-D3) study on a chiral Ir-phosphoramidite-catalyzed asymmetric reductive deoxygenation of racemic tertiary α-substituted allenylic alcohols. The catalytic transformation relies on the synergistic action of a phosphoramidite-modified Ir catalyst and Bi(OTf)3, first leading to the formation of an Ir-π-allenyl carbocation intermediate through a turn-over-determining SN1 ionization, followed by a face-selective hydride transfer from a Hantzsch ester analogue to yield an enantioenriched product. Bi(OTf)3 was found to promote a significant number of ionic interactions as well as noncovalent interactions (NCIs) with the catalyst and the substrates (allenylic alcohol and Hantzsch ester), thus providing access to a lower energy route as compared to the pathways devoid of Bi(OTf)3. In the nucleophilic addition, the chiral induction was found to depend on the number and efficacy of such key NCIs. The curious case of reversal of enantioselectivity, when the α-substituent of the allenyl alcohol is changed from methyl to cyclopropyl, was identified to originate from a change in mechanism from an enantioconvergent pathway (α-methyl) to a dynamic kinetic asymmetric transformation (α-cyclopropyl). These molecular insights could lead to newer strategies to tame tertiary carbocations in enantioselective reactions using suitable combinations of catalysts and additives.
Collapse
Affiliation(s)
- Supratim Ghosh
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Avtar Changotra
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - David A Petrone
- Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zürich, 8093 Zürich, Switzerland.,Department of Process Research & Development, Merck & Co., Inc., MRL, Rahway, New Jersey 07065, United States
| | - Mayuko Isomura
- Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | - Erick M Carreira
- Department of Chemistry and Applied Biosciences, Laboratory of Organic Chemistry, ETH Zürich, 8093 Zürich, Switzerland
| | - Raghavan B Sunoj
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
6
|
Samha MH, Wahlman JLH, Read JA, Werth J, Jacobsen EN, Sigman MS. Exploring Structure-Function Relationships of Aryl Pyrrolidine-Based Hydrogen-Bond Donors in Asymmetric Catalysis Using Data-Driven Techniques. ACS Catal 2022; 12:14836-14845. [PMID: 36816226 PMCID: PMC9937582 DOI: 10.1021/acscatal.2c04824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Hydrogen bond-based organocatalysts rely on networks of attractive noncovalent interactions (NCIs) to impart enantioselectivity. As a specific example, aryl pyrrolidine substituted urea, thiourea, and squaramide organocatalysts function cooperatively through hydrogen bonding and difficult-to-predict NCIs as a function of the reaction partners. To uncover the synergistic effect of the structural components of this catalyst class, we applied data science tools to study various model reactions using a derivatized, aryl pyrrolidine-based, hydrogen-bond donor (HBD) catalyst library. Through a combination of experimentally collected data and data mined from previous reports, statistical models were constructed, illuminating the general features necessary for high enantioselectivity. A distinct dependence on the identity of the electrophilic reaction partner and HBD catalyst is observed, suggesting that a general interaction is conserved throughout the reactions analyzed. The resulting models also demonstrate predictive capability by the successful improvement of a previously reported reaction using out-of-sample reaction components. Overall, this study highlights the power of data science in exploring mechanistic hypotheses in asymmetric HBD catalysis and provides a prediction platform applicable in future reaction optimization.
Collapse
Affiliation(s)
- Mohammad H. Samha
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Julie L. H. Wahlman
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Jacquelyne A. Read
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States; Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Jacob Werth
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Eric N. Jacobsen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Matthew S. Sigman
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
7
|
Wagen CC, Jacobsen EN. Evidence for Oxonium Ions in Ethereal "Hydrogen Chloride". Org Lett 2022; 24:8826-8831. [PMID: 36450043 PMCID: PMC9879297 DOI: 10.1021/acs.orglett.2c03622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Although solutions of hydrogen chloride in ethereal solvents like diethyl ether or dioxane are commonly employed in the laboratory, the solution structure of these reagents has yet to be firmly established. Here, we analyze solutions of ethereal hydrogen chloride or deuterium chloride in toluene, in dichloromethane, or in the absence of a co-solvent by in situ infrared spectroscopy. The resulting spectra are inconsistent with free HCl or often-proposed 1:1 HCl-ether complexes but closely match the predicted spectra of oxonium ions generated via protonation of diethyl ether. Molecular dynamics simulation of the oxonium chloride complexes provides evidence for an outer-sphere contact ion pair. These results suggest new approaches for tuning the acidity of strong Brønsted acids in organic solvents and demonstrate the importance of conducting spectroscopic measurements under reaction-relevant conditions.
Collapse
Affiliation(s)
- Corin C. Wagen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Eric N. Jacobsen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
8
|
Gillespie J, Fanourakis A, Phipps RJ. Strategies That Utilize Ion Pairing Interactions to Exert Selectivity Control in the Functionalization of C-H Bonds. J Am Chem Soc 2022; 144:18195-18211. [PMID: 36178308 PMCID: PMC9562467 DOI: 10.1021/jacs.2c08752] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Indexed: 11/30/2022]
Abstract
Electrostatic attraction between two groups of opposite charge, typically known as ion-pairing, offers unique opportunities for the design of systems to enable selectivity control in chemical reactions. Catalysis using noncovalent interactions is an established and vibrant research area, but it is noticeable that hydrogen bonding interactions are still the main interaction of choice in system design. Opposite charges experience the powerful force of Coulombic attraction and have the ability to exert fundamental influence on the outcome of reactions that involve charged reagents, intermediates or catalysts. In this Perspective, we will examine how ion-pairing interactions have been used to control selectivity in C-H bond functionalization processes. This broad class of reactions provides an interesting and thought-provoking lens through which to examine the application of ion-pairing design strategies because it is one that encompasses great mechanistic diversity, poses significant selectivity challenges, and perhaps most importantly is of immense interest to synthetic chemists in both industry and academia. We survey reactions that proceed via radical and ionic mechanisms alongside those that involve transition metal catalysis and will deal with control of site-selectivity and enantioselectivity. We anticipate that as this emerging area develops, it will become an ever-more important design strategy for selectivity control.
Collapse
Affiliation(s)
| | | | - Robert J. Phipps
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
9
|
Rozentsveig IB, Nikonova VS, Manuilov VV, Ushakov IA, Borodina TN, Smirnov VI, Korchevin NA. Heterocyclization of Bis(2-chloroprop-2-en-1-yl)sulfide in Hydrazine Hydrate–KOH: Synthesis of Thiophene and Pyrrole Derivatives. Molecules 2022; 27:molecules27206785. [PMID: 36296380 PMCID: PMC9609936 DOI: 10.3390/molecules27206785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/30/2022] Open
Abstract
The article is devoted to heterocyclization of bis(2-chloroprop-2-en-1-yl)sulfide which proceeds in hydrazine hydrate–alkali medium and leads to formation of thiophene and pyrrole derivatives: previously described 4,5,9,10-tetrahydrocycloocta[1,2-c;5,8-c’]dithiophene, as well as unknown hydrazone of 5-methylidene-3-methyldihydrothiophen-2-one and 1-amino-2-(propynylsulfanylpropenylsulfanyl)-3,5-dimethylpyrrole. Tentative mechanisms for the formation of the heterocyclic products are discussed. Obtained hydrazone of 5-methylidene-3-methyldihydrothiophen-2-one was used for the synthesis of a range of azine derivatives and in oxidation process with SeO2. The found reactions open up expedient approaches to the formation of various hardly accessible thiophene and pyrrole compounds from 2,3-dichloropropene and elemental sulfur as starting reagents.
Collapse
Affiliation(s)
- Igor B. Rozentsveig
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., 664033 Irkutsk, Russia
- Chemistry Department, Irkutsk State University, Karl Marx Str., 1, 664003 Irkutsk, Russia
- Correspondence:
| | - Valentina S. Nikonova
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., 664033 Irkutsk, Russia
| | - Victor V. Manuilov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., 664033 Irkutsk, Russia
| | - Igor A. Ushakov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., 664033 Irkutsk, Russia
| | - Tatyana N. Borodina
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., 664033 Irkutsk, Russia
| | - Vladimir I. Smirnov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., 664033 Irkutsk, Russia
| | - Nikolay A. Korchevin
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., 664033 Irkutsk, Russia
| |
Collapse
|
10
|
Kutateladze DA, Wagen CC, Jacobsen EN. Chloride-Mediated Alkene Activation Drives Enantioselective Thiourea and Hydrogen Chloride Co-Catalyzed Prins Cyclizations. J Am Chem Soc 2022; 144:15812-15824. [PMID: 35994741 PMCID: PMC9437134 DOI: 10.1021/jacs.2c06688] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The mechanism of chiral hydrogen-bond donor (HBD) and hydrogen chloride (HCl) co-catalyzed Prins cyclizations was analyzed through a combination of experimental and computational methods and revealed to involve an unexpected and previously unrecognized mode of alkene activation. Kinetic and spectroscopic studies support the participation of a catalytically active HCl·HBD complex that displays reduced Brønsted acidity relative to HCl alone. Nevertheless, rate acceleration relative to the HCl-catalyzed background reaction as well as high levels of enantioselectivity are achieved. This inverse Brønsted correlation is ascribed to chloride-mediated substrate activation in the rate-limiting and enantiodetermining cyclization transition state. Density functional theory (DFT) calculations, distortion-interaction analysis, and quasiclassical dynamics simulations support a stepwise mechanism in which rate acceleration and enantioselectivity are achieved through the precise positioning of the chloride anion within the active site of the chiral thiourea to enhance the nucleophilicity of the alkene and provide transition-state stabilization through local electric field effects. This mode of selective catalysis through anion positioning likely has general implications for the design of enantioselective Brønsted acid-catalyzed reactions involving π-nucleophiles.
Collapse
Affiliation(s)
| | | | - Eric N. Jacobsen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
11
|
Lee S, Chung W. Enantioselective halogenation via asymmetric
phase‐transfer
catalysis. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sunggi Lee
- Department of Physics and Chemistry DGIST Daegu Republic of Korea
| | - Won‐jin Chung
- Department of Chemistry GIST Gwangju Republic of Korea
| |
Collapse
|
12
|
Li ZQ, Cao Y, Kang T, Engle KM. Electrophilic Sulfur Reagent Design Enables Directed syn-Carbosulfenylation of Unactivated Alkenes. J Am Chem Soc 2022; 144:7189-7197. [PMID: 35436110 DOI: 10.1021/jacs.1c13252] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A multi-component approach to structurally complex organosulfur products is described via the nickel-catalyzed 1,2-carbosulfenylation of unactivated alkenes with organoboron nucleophiles and tailored organosulfur electrophiles. The key to the development of this transformation is the identification of a modular N-alkyl-N-(arylsulfenyl)arenesulfonamide family of sulfur electrophiles. Tuning the electronic and steric properties of the leaving group in these reagents controls pathway selectivity, favoring three-component coupling and suppressing side reactions, as examined via computational studies. The unique syn-stereoselectivity differs from traditional electrophilic sulfenyl transfer processes involving a thiiranium ion intermediate and arises from the directed arylnickel(I) migratory insertion mechanism, as elucidated through reaction kinetics and control experiments. Reactivity and regioselectivity are facilitated by a collection of monodentate, weakly coordinating native directing groups, including sulfonamides, alcohols, amines, amides, and azaheterocycles.
Collapse
Affiliation(s)
- Zi-Qi Li
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Yilin Cao
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Taeho Kang
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Keary M Engle
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
13
|
Pupo G, Gouverneur V. Hydrogen Bonding Phase-Transfer Catalysis with Alkali Metal Fluorides and Beyond. J Am Chem Soc 2022; 144:5200-5213. [PMID: 35294171 PMCID: PMC9084554 DOI: 10.1021/jacs.2c00190] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Phase-transfer catalysis (PTC) is one of the most powerful catalytic manifolds for asymmetric synthesis. Chiral cationic or anionic PTC strategies have enabled a variety of transformations, yet studies on the use of insoluble inorganic salts as nucleophiles for the synthesis of enantioenriched molecules have remained elusive. A long-standing challenge is the development of methods for asymmetric carbon-fluorine bond formation from readily available and cost-effective alkali metal fluorides. In this Perspective, we describe how H-bond donors can provide a solution through fluoride binding. We use examples, primarily from our own research, to discuss how hydrogen bonding interactions impact fluoride reactivity and the role of H-bond donors as phase-transfer catalysts to bring solid-phase alkali metal fluorides in solution. These studies led to hydrogen bonding phase-transfer catalysis (HB-PTC), a new concept in PTC, originally crafted for alkali metal fluorides but offering opportunities beyond enantioselective fluorination. Looking ahead, the unlimited options that one can consider to diversify the H-bond donor, the inorganic salt, and the electrophile, herald a new era in phase-transfer catalysis. Whether abundant inorganic salts of lattice energy significantly higher than those studied to date could be considered as nucleophiles, e.g., CaF2, remains an open question, with solutions that may be found through synergistic PTC catalysis or beyond PTC.
Collapse
Affiliation(s)
- Gabriele Pupo
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Véronique Gouverneur
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
14
|
Albanese KI, Leaver-Fay A, Treacy JW, Park R, Houk KN, Kuhlman B, Waters ML. Comparative Analysis of Sulfonium-π, Ammonium-π, and Sulfur-π Interactions and Relevance to SAM-Dependent Methyltransferases. J Am Chem Soc 2022; 144:2535-2545. [PMID: 35108000 PMCID: PMC8923077 DOI: 10.1021/jacs.1c09902] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the measurement and analysis of sulfonium-π, thioether-π, and ammonium-π interactions in a β-hairpin peptide model system, coupled with computational investigation and PDB analysis. These studies indicated that the sulfonium-π interaction is the strongest and that polarizability contributes to the stronger interaction with sulfonium relative to ammonium. Computational studies demonstrate that differences in solvation of the trimethylsulfonium versus the trimethylammonium group also contribute to the stronger sulfonium-π interaction. In comparing sulfonium-π versus sulfur-π interactions in proteins, analysis of SAM- and SAH-bound enzymes in the PDB suggests that aromatic residues are enriched in close proximity to the sulfur of both SAM and SAH, but the populations of aromatic interactions of the two cofactors are not significantly different, with the exception of the Me-π interactions in SAM, which are the most prevalent interaction in SAM but are not possible for SAH. This suggests that the weaker interaction energies due to loss of the cation-π interaction in going from SAM to SAH may contribute to turnover of the cofactor.
Collapse
Affiliation(s)
- Katherine I. Albanese
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599
| | - Andrew Leaver-Fay
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599
| | - Joseph W. Treacy
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, 90095-1569
| | - Rodney Park
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599
| | - K. N. Houk
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, 90095-1569
| | - Brian Kuhlman
- Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599
| | - Marcey L. Waters
- Department of Chemistry, CB 3290, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599
| |
Collapse
|
15
|
Chan YC, Sak MH, Frank SA, Miller SJ. Tunable and Cooperative Catalysis for Enantioselective Pictet-Spengler Reaction with Varied Nitrogen-Containing Heterocyclic Carboxaldehydes. Angew Chem Int Ed Engl 2021; 60:24573-24581. [PMID: 34487418 PMCID: PMC8556314 DOI: 10.1002/anie.202109694] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/24/2021] [Indexed: 01/16/2023]
Abstract
Herein we report an organocatalytic enantioselective functionalization of heterocyclic carboxaldehydes via the Pictet-Spengler reaction. Through careful pairing of novel squaramide and Brønsted acid catalysts, our method tolerates a breadth of heterocycles, enabling preparation of a series of heterocycle conjugated β-(tetrahydro)carbolines in good yield and enantioselectivity. Careful selection of carboxylic acid co-catalyst is essential for toleration of a variety of regioisomeric heterocycles. Utility is demonstrated via the three-step stereoselective preparation of pyridine-containing analogues of potent selective estrogen receptor downregulator and U.S. FDA approved drug Tadalafil.
Collapse
Affiliation(s)
- Yuk-Cheung Chan
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
| | - Marcus H Sak
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
| | - Scott A Frank
- Synthetic Molecule Design and Development, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Scott J Miller
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
| |
Collapse
|
16
|
Chan Y, Sak MH, Frank SA, Miller SJ. Tunable and Cooperative Catalysis for Enantioselective Pictet‐Spengler Reaction with Varied Nitrogen‐Containing Heterocyclic Carboxaldehydes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Yuk‐Cheung Chan
- Department of Chemistry Yale University New Haven CT 06520 USA
| | - Marcus H. Sak
- Department of Chemistry Yale University New Haven CT 06520 USA
| | - Scott A. Frank
- Synthetic Molecule Design and Development Eli Lilly and Company Indianapolis IN 46285 USA
| | - Scott J. Miller
- Department of Chemistry Yale University New Haven CT 06520 USA
| |
Collapse
|
17
|
Mao JH, Wang YB, Yang L, Xiang SH, Wu QH, Cui Y, Lu Q, Lv J, Li S, Tan B. Organocatalyst-controlled site-selective arene C-H functionalization. Nat Chem 2021; 13:982-991. [PMID: 34373595 DOI: 10.1038/s41557-021-00750-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 06/08/2021] [Indexed: 02/08/2023]
Abstract
Over the past three decades, organocatalysis has emerged as a powerful catalysis platform and has gradually been incorporated into the routine synthetic toolbox to obtain chiral molecules. However, its application in the site- and enantioselective functionalization of inactive aryl C-H bonds remains in its infancy. Here, we present an organocatalyst-controlled para-selective arene C-H functionalization strategy that addresses this issue, which remains an enduring challenge in arene functionalization chemistry. By emulating enzyme catalysis, the chiral phosphoric acid catalyst offers an ideal chiral environment for stereoinduction, and the projecting substituents give control of chemo- and site-selectivity. Various types of nucleophile are compatible with this method, affording more than 100 para-selective adducts with stereodefined carbon centres or axes in viable molecular contexts. This protocol is expected to provide a general strategy for para-selective functionalization of arene C-H bonds in a controlled manner.
Collapse
Affiliation(s)
- Jian-Hui Mao
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, China
| | - Yong-Bin Wang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, China.
| | - Limin Yang
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
| | - Shao-Hua Xiang
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China
| | - Quan-Hao Wu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, China
| | - Yuan Cui
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, China
| | - Qian Lu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, China
| | - Jie Lv
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, China
| | - Shaoyu Li
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China
| | - Bin Tan
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
18
|
Kikuchi J, Terada M. Enantioconvergent Substitution Reactions of Racemic Electrophiles by Organocatalysis. Chemistry 2021; 27:10215-10225. [PMID: 33783887 DOI: 10.1002/chem.202100439] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Indexed: 12/17/2022]
Abstract
Over the past decades, the development of enantioselective catalysis using organocatalysts has evolved into an active research field and a number of enantioselective transformations have been established. However, despite their being a highly desirable process for the synthesis of organic molecules in an enantioenriched form, the enantioconvergent substitution reactions of racemic electrophiles using organocatalysts still present several challenges. Although intrinsic difficulties in the catalytic stereocontrol abound due to the initial chiral information of racemic electrophiles, in recent years, mechanistically diverse enantioconvergent processes have been intensively investigated in organocatalysis. This Minireview focuses on recent achievements in the development of enantioconvergent substitution reactions of racemic electrophiles using organocatalysts. The contents are classified on the basis of the mechanistic types of enantioconvergent processes.
Collapse
Affiliation(s)
- Jun Kikuchi
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Masahiro Terada
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| |
Collapse
|
19
|
Strassfeld DA, Algera RF, Wickens ZK, Jacobsen EN. A Case Study in Catalyst Generality: Simultaneous, Highly-Enantioselective Brønsted- and Lewis-Acid Mechanisms in Hydrogen-Bond-Donor Catalyzed Oxetane Openings. J Am Chem Soc 2021; 143:9585-9594. [PMID: 34152759 PMCID: PMC8564877 DOI: 10.1021/jacs.1c03992] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Generality in asymmetric catalysis can be manifested in dramatic and valuable ways, such as high enantioselectivity across a wide assortment of substrates in a given reaction (broad substrate scope) or as applicability of a given chiral framework across a variety of mechanistically distinct reactions (privileged catalysts). Reactions and catalysts that display such generality hold special utility, because they can be applied broadly and sometimes even predictably in new applications. Despite the great value of such systems, the factors that underlie generality are not well understood. Here, we report a detailed investigation of an asymmetric hydrogen-bond-donor catalyzed oxetane opening with TMSBr that is shown to possess unexpected mechanistic generality. Careful analysis of the role of adventitious protic impurities revealed the participation of competing pathways involving addition of either TMSBr or HBr in the enantiodetermining, ring-opening event. The optimal catalyst induces high enantioselectivity in both pathways, thereby achieving precise stereocontrol in fundamentally different mechanisms under the same conditions and with the same chiral framework. The basis for that generality is analyzed using a combination of experimental and computational methods, which indicate that proximally localized catalyst components cooperatively stabilize and precisely orient dipolar enantiodetermining transition states in both pathways. Generality across different mechanisms is rarely considered in catalyst discovery efforts, but we suggest that it may play a role in the identification of so-called privileged catalysts.
Collapse
Affiliation(s)
- Daniel A Strassfeld
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Russell F Algera
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Zachary K Wickens
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Eric N Jacobsen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
20
|
Ronchi E, Paradine SM, Jacobsen EN. Enantioselective, Catalytic Multicomponent Synthesis of Homoallylic Amines Enabled by Hydrogen-Bonding and Dispersive Interactions. J Am Chem Soc 2021; 143:7272-7278. [PMID: 33949857 PMCID: PMC8547772 DOI: 10.1021/jacs.1c03024] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We report a one-step catalytic, enantioselective method for the preparation of homoallylic N-Boc amines directly from acetals. Reactive iminium ion intermediates are generated in situ through the combination of an acetal, a chiral thiourea catalyst, trialkylsilyl triflate, and N-Boc carbamate and are subsequently trapped by a variety of allylsilane nucleophiles. No homoallylic ether byproducts are detected, consistent with allylation of the iminium intermediate being highly favored over allylation of the intermediate oxocarbenium ion. Acetals derived from aromatic aldehydes possessing a variety of functional groups and substitution patterns yield homoallylic amines with excellent levels of enantiomeric enrichment. Experimental and computational data are consistent with an anchoring hydrogen-bond interaction between the protioiminium ion and the amide of the catalyst in the enantiodetermining transition state, and with stereodifferentiation achieved through specific noncovalent interactions (NCIs) with the catalyst pyrenyl moiety. Evidence is provided that the key NCI in the major pathway is a π-stacking interaction, contrasting with the cation-π interactions invoked in previously studied reactions promoted by the same family of aryl-pyrrolidino-H-bond-donor catalysts.
Collapse
Affiliation(s)
| | | | - Eric N. Jacobsen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, 02138, United States
| |
Collapse
|
21
|
Chegondi R, Patel SM, Maurya S, Donthoju A. Organocatalytic Enantioselective Desymmetrization of Prochiral 2,2‐Disubstituted Cyclic 1,3‐Diones. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100180] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Rambabu Chegondi
- Department of Organic Synthesis and Process Chemistry CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | | | - Sundaram Maurya
- Department of Organic Synthesis and Process Chemistry CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Ashok Donthoju
- Department of Organic Synthesis and Process Chemistry CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Hyderabad 500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
22
|
Gaviña D, Escolano M, Torres J, Alzuet‐Piña G, Sánchez‐Roselló M, Pozo C. Organocatalytic Enantioselective Friedel‐Crafts Alkylation Reactions of Pyrroles. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100313] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Daniel Gaviña
- Department of Organic Chemistry University of Valencia E-46100 Burjassot Spain
| | - Marcos Escolano
- Department of Organic Chemistry University of Valencia E-46100 Burjassot Spain
| | - Javier Torres
- Department of Organic Chemistry University of Valencia E-46100 Burjassot Spain
| | - Gloria Alzuet‐Piña
- Department of Inorganic Chemistry University of Valencia E-46100 Burjassot Spain
| | | | - Carlos Pozo
- Department of Organic Chemistry University of Valencia E-46100 Burjassot Spain
| |
Collapse
|
23
|
Matador E, Iglesias-Sigüenza J, Monge D, Merino P, Fernández R, Lassaletta JM. Enantio- and Diastereoselective Nucleophilic Addition of N-tert-Butylhydrazones to Isoquinolinium Ions through Anion-Binding Catalysis. Angew Chem Int Ed Engl 2021; 60:5096-5101. [PMID: 33045143 DOI: 10.1002/anie.202012861] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Indexed: 12/13/2022]
Abstract
A highly enantio- and diastereoselective thiourea-catalyzed dearomatization of isoquinolines employing N-tert-butylhydrazones as neutral α-azo carbanions and masked acyl anion equivalents has been developed. Experimental and computational data supports the generation of highly ordered complexes wherein the chloride behaves as a template for the catalyst, the hydrazone reagent, and the isoquinolinium cation, providing excellent stereocontrol in the formation of two contiguous stereogenic centers. The ensuing selective and high-yielding transformations provide appealing dihydroisoquinoline derivatives.
Collapse
Affiliation(s)
- Esteban Matador
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/ Prof. García González 1, 41012, Sevilla, Spain
| | - Javier Iglesias-Sigüenza
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/ Prof. García González 1, 41012, Sevilla, Spain
| | - David Monge
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/ Prof. García González 1, 41012, Sevilla, Spain
| | - Pedro Merino
- Instituto de BiocomputaciónyFísica de Sistemas Complejos (BIFI), Universidad de Zaragoza-CSIC, 50009, Zaragoza, Spain
| | - Rosario Fernández
- Departamento de Química Orgánica, Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/ Prof. García González 1, 41012, Sevilla, Spain
| | - José M Lassaletta
- Instituto de Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO-CINQA), C/ Américo Vespucio 49, 41092, Sevilla, Spain
| |
Collapse
|
24
|
Li M, Zhang S, Zhang X, Wang Y, Chen J, Tao Y, Wang X. Unimolecular Anion‐Binding Catalysts for Selective Ring‐Opening Polymerization of
O
‐carboxyanhydrides. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202011352] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Maosheng Li
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Shuai Zhang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Xiaoyong Zhang
- Department of Chemistry KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Yanchao Wang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Jinlong Chen
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Youhua Tao
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Xianhong Wang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| |
Collapse
|
25
|
Li M, Zhang S, Zhang X, Wang Y, Chen J, Tao Y, Wang X. Unimolecular Anion‐Binding Catalysts for Selective Ring‐Opening Polymerization of
O
‐carboxyanhydrides. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/anie.202011352] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Maosheng Li
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Shuai Zhang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Xiaoyong Zhang
- Department of Chemistry KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Yanchao Wang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Jinlong Chen
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Youhua Tao
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Xianhong Wang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Changchun 130022 P. R. China
| |
Collapse
|
26
|
Pölloth B, Sibi MP, Zipse H. The Size-Accelerated Kinetic Resolution of Secondary Alcohols. Angew Chem Int Ed Engl 2021; 60:774-778. [PMID: 33090615 PMCID: PMC7821155 DOI: 10.1002/anie.202011687] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Indexed: 12/17/2022]
Abstract
The factors responsible for the kinetic resolution of alcohols by chiral pyridine derivatives have been elucidated by measurements of relative rates for a set of substrates with systematically growing aromatic side chains using accurate competitive linear regression analysis. Increasing the side chain size from phenyl to pyrenyl results in a rate acceleration of more than 40 for the major enantiomer. Based on this observation a new catalyst with increased steric bulk has been designed that gives enantioselectivity values of up to s=250. Extensive conformational analysis of the relevant transition states indicates that alcohol attack to the more crowded side of the acyl-catalyst intermediate is favoured due to stabilizing CH-π-stacking interactions. Experimental and theoretical results imply that enantioselectivity enhancements result from accelerating the transformation of the major enantiomer through attractive non-covalent interactions (NCIs) rather than retarding the transformation of the minor isomer through repulsive steric forces.
Collapse
Affiliation(s)
- Benjamin Pölloth
- Department of ChemistryLMU MünchenButenandtstr. 5–1381377MunichGermany
| | - Mukund P. Sibi
- Department of Chemistry and BiochemistryNorth Dakota State UniversityFargoND58108USA
| | - Hendrik Zipse
- Department of ChemistryLMU MünchenButenandtstr. 5–1381377MunichGermany
| |
Collapse
|
27
|
Sattar F, Feng Z, Zou H, Ye H, Zhang Y, You L. Dynamic covalent bond constrained ureas for multimode fluorescence switching, thermally induced emission, and chemical signaling cascades. Org Chem Front 2021. [DOI: 10.1039/d1qo00500f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A combination of organic ureas and dynamic covalent chemistry was demonstrated for multistate switching, thermally induced fluorescence, and signaling cascades.
Collapse
Affiliation(s)
- Fazli Sattar
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Zelin Feng
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Hanxun Zou
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Hebo Ye
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| | - Yi Zhang
- School of Materials Science and Energy Engineering
- Foshan University
- Foshan
- China
| | - Lei You
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou
- China
| |
Collapse
|
28
|
Tang M, Han S, Huang S, Huang S, Xie LG. Carbosulfenylation of Alkenes with Organozinc Reagents and Dimethyl(methylthio)sulfonium Trifluoromethanesulfonate. Org Lett 2020; 22:9729-9734. [PMID: 33253584 DOI: 10.1021/acs.orglett.0c03810] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The electrophilic alkylthiolation of alkenes, initiated by dimethyl(methylthio)sulfonium salts and the subsequent addition of various heteronucleophilies has been well-established. Regarding the use of carbon nucleophiles, however, only carefully designed sp-type carbon sources have been successfully applied. We herein present our findings on the methylthiolation of alkenes with dimethyl(methylthio)sulfonium trifluoromethanesulfonate, followed by carbon-carbon bond formation in the presence of organozinc reagents, thus achieving a catalyst-free protocol toward to the carbosulfenylation of alkenes.
Collapse
Affiliation(s)
- Meizhong Tang
- School of Chemistry and Materials Science, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Shuxiong Han
- School of Chemistry and Materials Science, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Shenglan Huang
- School of Chemistry and Materials Science, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Lan-Gui Xie
- School of Chemistry and Materials Science, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing Normal University, Nanjing 210023, People's Republic of China
| |
Collapse
|
29
|
Gaeta C, La Manna P, De Rosa M, Soriente A, Talotta C, Neri P. Supramolecular Catalysis with Self‐Assembled Capsules and Cages: What Happens in Confined Spaces. ChemCatChem 2020. [DOI: 10.1002/cctc.202001570] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Carmine Gaeta
- Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno Via Giovanni Paolo II I 84084 Fisciano, Salerno Italy
| | - Pellegrino La Manna
- Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno Via Giovanni Paolo II I 84084 Fisciano, Salerno Italy
| | - Margherita De Rosa
- Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno Via Giovanni Paolo II I 84084 Fisciano, Salerno Italy
| | - Annunziata Soriente
- Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno Via Giovanni Paolo II I 84084 Fisciano, Salerno Italy
| | - Carmen Talotta
- Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno Via Giovanni Paolo II I 84084 Fisciano, Salerno Italy
| | - Placido Neri
- Dipartimento di Chimica e Biologia “A. Zambelli”, Università di Salerno Via Giovanni Paolo II I 84084 Fisciano, Salerno Italy
| |
Collapse
|
30
|
Matador E, Iglesias‐Sigüenza J, Monge D, Merino P, Fernández R, Lassaletta JM. Enantio‐ and Diastereoselective Nucleophilic Addition of
N
‐
tert
‐Butylhydrazones to Isoquinolinium Ions through Anion‐Binding Catalysis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012861] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Esteban Matador
- Departamento de Química Orgánica Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA) C/ Prof. García González 1 41012 Sevilla Spain
| | - Javier Iglesias‐Sigüenza
- Departamento de Química Orgánica Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA) C/ Prof. García González 1 41012 Sevilla Spain
| | - David Monge
- Departamento de Química Orgánica Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA) C/ Prof. García González 1 41012 Sevilla Spain
| | - Pedro Merino
- Instituto de BiocomputaciónyFísica de Sistemas Complejos (BIFI) Universidad de Zaragoza-CSIC 50009 Zaragoza Spain
| | - Rosario Fernández
- Departamento de Química Orgánica Universidad de Sevilla and Centro de Innovación en Química Avanzada (ORFEO-CINQA) C/ Prof. García González 1 41012 Sevilla Spain
| | - José M. Lassaletta
- Instituto de Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO-CINQA) C/ Américo Vespucio 49 41092 Sevilla Spain
| |
Collapse
|
31
|
Auria‐Luna F, Mohammadi S, Divar M, Gimeno MC, Herrera RP. Asymmetric Fluorination Reactions promoted by Chiral Hydrogen Bonding‐based Organocatalysts. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000848] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Fernando Auria‐Luna
- Laboratorio de Organocatálisis Asimétrica. Departamento de Química Orgánica. Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) CSIC- Universidad de Zaragoza. C/ Pedro Cerbuna 12 50009 Zaragoza Spain)
| | - Somayeh Mohammadi
- Medicinal & Natural Products Chemistry Research Center Shiraz University of Medical Sciences. 7134853734 Shiraz (Iran)
| | - Masoumeh Divar
- Medicinal & Natural Products Chemistry Research Center Shiraz University of Medical Sciences. 7134853734 Shiraz (Iran)
| | - M. Concepción Gimeno
- Departamento de Química Inorgánica. Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) CSIC- Universidad de Zaragoza. C/ Pedro Cerbuna 12 50009 Zaragoza Spain)
| | - Raquel P. Herrera
- Laboratorio de Organocatálisis Asimétrica. Departamento de Química Orgánica. Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) CSIC- Universidad de Zaragoza. C/ Pedro Cerbuna 12 50009 Zaragoza Spain)
| |
Collapse
|
32
|
Pölloth B, Sibi MP, Zipse H. Die größenbeschleunigte kinetische Racematspaltung sekundärer Alkohole. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011687] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Benjamin Pölloth
- Department Chemie LMU München Butenandtstraße 5–13 81377 München Deutschland
| | - Mukund P. Sibi
- Department of Chemistry and Biochemistry North Dakota State University Fargo ND 58108 USA
| | - Hendrik Zipse
- Department Chemie LMU München Butenandtstraße 5–13 81377 München Deutschland
| |
Collapse
|
33
|
Matviitsuk A, Panger JL, Denmark SE. Katalytische enantioselektive Sulfenofunktionalisierung von Alkenen: Entwicklung und aktuelle Fortschritte. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Anastassia Matviitsuk
- Roger Adams Laboratory Department of Chemistry University of Illinois Urbana Illinois 61801 USA
| | - Jesse L. Panger
- Roger Adams Laboratory Department of Chemistry University of Illinois Urbana Illinois 61801 USA
| | - Scott E. Denmark
- Roger Adams Laboratory Department of Chemistry University of Illinois Urbana Illinois 61801 USA
| |
Collapse
|
34
|
Matviitsuk A, Panger JL, Denmark SE. Catalytic, Enantioselective Sulfenofunctionalization of Alkenes: Development and Recent Advances. Angew Chem Int Ed Engl 2020; 59:19796-19819. [PMID: 32452077 PMCID: PMC7936392 DOI: 10.1002/anie.202005920] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Indexed: 12/13/2022]
Abstract
The last decade has witnessed a burgeoning of new methods for the enantioselective vicinal difunctionalization of alkenes initiated by electrophilic sulfenyl group transfer. The addition of sulfenium ions to alkenes results in the generation of chiral, non-racemic thiiranium ions. These highly reactive intermediates are susceptible to attack by a myriad of nucleophiles in a stereospecific ring-opening event to afford anti 1,2-sulfenofunctionalized products. The practical application of sulfenium ion transfer has been enabled by advances in the field of Lewis base catalysis. This Review will chronicle the initial discovery and characterization of thiiranium ion intermediates followed by the determination of their configurational stability and the challenges of developing enantioselective variants. Once the framework for the reactivity and stability of thiiranium ions has been established, a critical analysis of pioneering studies will be presented. Finally, a comprehensive discussion of modern synthetic applications will be categorized around the type of nucleophile employed for sulfenofunctionalization.
Collapse
Affiliation(s)
- Anastassia Matviitsuk
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois, 61801, USA
| | - Jesse L Panger
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois, 61801, USA
| | - Scott E Denmark
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois, 61801, USA
| |
Collapse
|
35
|
Kikuchi J, Takano K, Ota Y, Umemiya S, Terada M. Chiral Brønsted Acid Catalyzed Enantioconvergent Propargylic Substitution Reaction of Racemic Secondary Propargylic Alcohols with Thiols. Chemistry 2020; 26:11124-11128. [PMID: 32274831 DOI: 10.1002/chem.202001609] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Indexed: 11/08/2022]
Abstract
Despite the significant progress of the enantioselective reaction using chiral catalysts, the enantioselective nucleophilic substitution reaction at the chiral sp3 -hybridized carbon atom of a racemic electrophile has not been largely explored. Herein, we report the enantioconvergent propargylic substitution reaction of racemic propargylic alcohols with thiols using chiral bis-phosphoric acid as the chiral Brønsted acid catalyst. The substitution products were formed in high yields with high enantioselectivities in most cases. The cation-stabilizing effect of the sulfur functional group introduced at the alkynyl terminus is the key to achieving the efficient enantioconvergent process, in which chiral information originating from not only the racemic stereogenic center but also the formed contact ion pair is completely eliminated from the present system.
Collapse
Affiliation(s)
- Jun Kikuchi
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Kyohei Takano
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Yusuke Ota
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Shigenobu Umemiya
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Masahiro Terada
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| |
Collapse
|
36
|
Kang Z, Shou J, Xing D, Hu W. Rh(II)/Ag(I)-Cocatalyzed Three-Component Reaction via S N1/S N1'-Type Trapping of Oxonium Ylide with the Nicholas Intermediate. J Org Chem 2020; 85:9850-9862. [PMID: 32618194 DOI: 10.1021/acs.joc.0c01162] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A Rh(II)/Ag(I)-cocatalyzed three-component reaction of propargylic alcohol-Co2(CO)6 complexes with diazo compounds and benzyl alcohols is described, which represents the first trapping process of oxonium ylides with carbocations via the SN1/SN1'-type pathway. This transformation provides an efficient approach for construction of dicobalt hexacarbonyl-complexed 3,3-disubstituted oxindoles. Further derivatization of the product, initiated by the deprivation of the dicobalt species, gives the 3,3-disubstituted oxindoles with the ene alkynyl group and the privileged spirooxindole-vinyldihydropyran structure.
Collapse
Affiliation(s)
- Zhenghui Kang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jiayi Shou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Dong Xing
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| | - Wenhao Hu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.,Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China
| |
Collapse
|
37
|
Kutateladze DA, Strassfeld DA, Jacobsen EN. Enantioselective Tail-to-Head Cyclizations Catalyzed by Dual-Hydrogen-Bond Donors. J Am Chem Soc 2020; 142:6951-6956. [PMID: 32223127 PMCID: PMC7293861 DOI: 10.1021/jacs.0c02665] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Chiral urea derivatives are shown to catalyze enantioselective tail-to-head cyclization reactions of neryl chloride analogues. Experimental data are consistent with a mechanism in which π-participation by the nucleophilic olefin facilitates chloride ionization and thereby circumvents simple elimination pathways. Kinetic and computational studies support a cooperative mode of catalysis wherein two molecules of the urea catalyst engage the substrate and induce enantioselectivity through selective transition state stabilization.
Collapse
Affiliation(s)
| | | | - Eric N. Jacobsen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
38
|
Kennedy CR, Choi BY, Reeves MGR, Jacobsen EN. Enantioselective Catalysis of an Anionic Oxy-Cope Rearrangement Enabled by Synergistic Ion Binding. Isr J Chem 2020; 60:461-474. [PMID: 33132416 PMCID: PMC7592710 DOI: 10.1002/ijch.201900168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/20/2020] [Indexed: 01/09/2023]
Abstract
Charge-accelerated rearrangements present interesting challenges to enantioselective catalysis, due in large part to the competing requirements for maximizing reactivity (ion-pair separation) and stereochemical communication. Herein, we describe application of a synergistic ion-binding strategy to catalyze the anionic oxy-Cope rearrangement of a symmetric bis-styrenyl allyl alcohol in up to 75:25 e.r. Structure-reactivity-selectivity relationship studies, including linear free-energy-relationship analyses, with bifunctional urea catalysts indicate that H-bonding and cation-binding interactions act cooperatively to promote the chemo- and enantioselective [3,3]-rearrangement. Implications for catalyst designs applicable to other transformations involving oxyanionic intermediates are discussed.
Collapse
Affiliation(s)
- C Rose Kennedy
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Bo Young Choi
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Mary-Grace R Reeves
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| | - Eric N Jacobsen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138
| |
Collapse
|
39
|
Miyazaki Y, Zhou B, Tsuji H, Kawatsura M. Nickel-Catalyzed Asymmetric Friedel-Crafts Propargylation of 3-Substituted Indoles with Propargylic Carbonates Bearing an Internal Alkyne Group. Org Lett 2020; 22:2049-2053. [PMID: 32073861 DOI: 10.1021/acs.orglett.0c00465] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The nickel-catalyzed highly enantioselective Friedel-Crafts propargylation of 3-substituted indoles with propargylic carbonates bearing an internal alkyne group was developed. A wide array of the propargylic carbonates as well as 3-substituted indoles can be applicable to the asymmetric nickel catalysis, providing the corresponding chiral C-3 propargylated indolenine derivatives bearing two vicinal chiral centers in up to 89% yield with up to >99% ee and 94:6 dr (24 examples).
Collapse
Affiliation(s)
- Yusuke Miyazaki
- Department of Chemistry, College of Humanities & Sciences, Nihon University, Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan
| | - Biao Zhou
- Department of Chemistry, College of Humanities & Sciences, Nihon University, Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan
| | - Hiroaki Tsuji
- Department of Chemistry, College of Humanities & Sciences, Nihon University, Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan
| | - Motoi Kawatsura
- Department of Chemistry, College of Humanities & Sciences, Nihon University, Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan
| |
Collapse
|
40
|
Portis B, Mirchi A, Hasan MH, Khansari ME, Johnson CR, Leszczynski J, Tandon R, Alamgir Hossain M. Cleft‐Induced Ditopic Binding of Spherical Halides with a Hexaurea Receptor. ChemistrySelect 2020. [DOI: 10.1002/slct.201903950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Bobby Portis
- Department: Chemistry and Biochemistry Institution: Jackson State University 1400 J R Lynch Street Jackson MS 39217 USA
| | - Ali Mirchi
- Department: Chemistry and Biochemistry Institution: Jackson State University 1400 J R Lynch Street Jackson MS 39217 USA
| | - Mohammad H. Hasan
- Department: Microbiology and Immunology, Institution University of Mississippi Medical Center Jackson MS 39216 USA
| | - Maryam Emami Khansari
- Department: Chemistry and Biochemistry Institution: Jackson State University 1400 J R Lynch Street Jackson MS 39217 USA
| | - Corey R. Johnson
- Department: Chemistry and Biochemistry Institution: Jackson State University 1400 J R Lynch Street Jackson MS 39217 USA
| | - Jerzy Leszczynski
- Department: Chemistry and Biochemistry Institution: Jackson State University 1400 J R Lynch Street Jackson MS 39217 USA
| | - Ritesh Tandon
- Department: Microbiology and Immunology, Institution University of Mississippi Medical Center Jackson MS 39216 USA
| | - Md. Alamgir Hossain
- Department: Chemistry and Biochemistry Institution: Jackson State University 1400 J R Lynch Street Jackson MS 39217 USA
| |
Collapse
|
41
|
Smajlagic I, Guest M, Durán R, Herrera B, Dudding T. Mechanistic Insight toward Understanding the Role of Charge in Thiourea Organocatalysis. J Org Chem 2020; 85:585-593. [PMID: 31790584 DOI: 10.1021/acs.joc.9b02682] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pyranylation and glycosylation are pivotal for accessing a myriad of natural products, pharmaceuticals, and drug candidates. Catalytic approaches for enabling these transformations are of utmost importance and integral to advancing this area of synthesis. In exploring this chemical space, a combined experimental and computational mechanistic study of pyranylation and 2-deoxygalactosylation catalyzed by a cationic thiourea organocatalyst is reported. To this end, a thiourea-cyclopropenium organocatalyst was employed as a model system in combination with an arsenal of mechanistic techniques, including 13C kinetic isotope effect experiments, deuterated labeling studies, variable-temperature 1H NMR spectroscopy, and density functional theory calculations. From these studies, two distinct reaction pathways were identified for this transformation corresponding to either dual hydrogen bond (H-bond) activation or Brønsted acid catalysis. The former involving thiourea orchestrated bifurcated hydrogen bonding proceeded in an asynchronous concerted fashion. In contrast, the latter stepwise mechanism involving Brønsted acid catalysis hinged upon the formation of an oxocarbenium intermediate accompanied by subsequent alcohol addition.
Collapse
Affiliation(s)
- Ivor Smajlagic
- Brock University , 1812 Sir Isaac Brock Way , St. Catharines , ON L2S 3A1 , Canada
| | - Matt Guest
- Brock University , 1812 Sir Isaac Brock Way , St. Catharines , ON L2S 3A1 , Canada
| | - Rocío Durán
- Laboratorio de Química Teórica Computacional (QTC), Departamento de Química-Física, Facultad de Química y de Farmacia , Pontificia Universidad Católica de Chile , Av. Vicuña Mackenna 4860 , Macul, Santiago , Chile
| | - Barbara Herrera
- Laboratorio de Química Teórica Computacional (QTC), Departamento de Química-Física, Facultad de Química y de Farmacia , Pontificia Universidad Católica de Chile , Av. Vicuña Mackenna 4860 , Macul, Santiago , Chile
| | - Travis Dudding
- Brock University , 1812 Sir Isaac Brock Way , St. Catharines , ON L2S 3A1 , Canada
| |
Collapse
|
42
|
Borrel J, Pisella G, Waser J. Copper-Catalyzed Oxyalkynylation of C–S Bonds in Thiiranes and Thiethanes with Hypervalent Iodine Reagents. Org Lett 2019; 22:422-427. [DOI: 10.1021/acs.orglett.9b04157] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Julien Borrel
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCSO, BCH 1402, 1015 Lausanne, Switzerland
| | - Guillaume Pisella
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCSO, BCH 1402, 1015 Lausanne, Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCSO, BCH 1402, 1015 Lausanne, Switzerland
| |
Collapse
|
43
|
Smajlagic I, Carlson B, Rosano N, Foy H, Dudding T. Charge-enhanced thiourea catalysts as hydrogen bond donors for Friedel‒Crafts Alkylations. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.130757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
44
|
Baráth E, Mejía E. Ein Fest der Wissenschaft inmitten der Natur: Die 54. Bürgenstock‐Konferenz. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Eszter Baráth
- Department ChemieZentralforschungsinstitut für KatalyseTechnische Universität München Lichtenbergstraße 4 85748 Garching Deutschland
| | - Esteban Mejía
- Leibniz-Institut für Katalyse (LIKAT) Albert-Einstein-Straße 29a 18059 Rostock Deutschland
| |
Collapse
|
45
|
Baráth E, Mejía E. A Celebration of Science amidst Nature: The 54th Bürgenstock Conference. Angew Chem Int Ed Engl 2019; 58:17107-17113. [PMID: 31441577 DOI: 10.1002/anie.201906781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Eszter Baráth
- Department of Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Esteban Mejía
- Leibniz Institute for Catalysis (LIKAT), Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| |
Collapse
|
46
|
Discolo CA, Touney EE, Pronin SV. Catalytic Asymmetric Radical–Polar Crossover Hydroalkoxylation. J Am Chem Soc 2019; 141:17527-17532. [DOI: 10.1021/jacs.9b10645] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Christopher A. Discolo
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Eric E. Touney
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Sergey V. Pronin
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
47
|
Bendelsmith AJ, Kim SC, Wasa M, Roche SP, Jacobsen EN. Enantioselective Synthesis of α-Allyl Amino Esters via Hydrogen-Bond-Donor Catalysis. J Am Chem Soc 2019; 141:11414-11419. [PMID: 31280564 PMCID: PMC7293823 DOI: 10.1021/jacs.9b05556] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We report a chiral-squaramide-catalyzed enantio- and diastereoselective synthesis of α-allyl amino esters. The optimized protocol provides access to N-carbamoyl-protected amino esters via nucleophilic allylation of readily accessible α-chloro glycinates. A variety of useful α-allyl amino esters were prepared, including crotylated products bearing vicinal stereocenters that are inaccessible through enolate alkylation, with high enantioselectivity (up to 97% ee) and diastereoselectivity (>10:1). The reactions display first-order kinetic dependence on both the α-chloro glycinate and the nucleophile, consistent with rate-limiting C-C bond formation. Computational analysis of the uncatalyzed reaction predicts an energetically inaccessible iminium intermediate, and a lower energy concerted SN2 mechanism.
Collapse
Affiliation(s)
- Andrew J Bendelsmith
- Department of Chemistry & Chemical Biology , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Seohyun Chris Kim
- Department of Chemistry & Chemical Biology , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Masayuki Wasa
- Department of Chemistry & Chemical Biology , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Stéphane P Roche
- Department of Chemistry & Biochemistry , Florida Atlantic University , Boca Raton , Florida 33431 , United States
| | - Eric N Jacobsen
- Department of Chemistry & Chemical Biology , Harvard University , Cambridge , Massachusetts 02138 , United States
| |
Collapse
|
48
|
Wang J, Liu Y, Mao X, Shi N, Zhang X, Wang H, Fan Y, Wang M. Two Trinuclear Cu
II
Complexes: Effect of Phosphonate Ligand on the Magnetic Property and Electrocatalytic Reactivity for Water Oxidation. Chem Asian J 2019; 14:2685-2693. [DOI: 10.1002/asia.201900531] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/24/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Jin‐Miao Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of EducationCollege of Chemistry and Chemical EngineeringOcean University of China Qingdao Shandong 266100 P. R. China
| | - Ya‐Rong Liu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of EducationCollege of Chemistry and Chemical EngineeringOcean University of China Qingdao Shandong 266100 P. R. China
| | - Xue‐Yang Mao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of EducationCollege of Chemistry and Chemical EngineeringOcean University of China Qingdao Shandong 266100 P. R. China
| | - Ning‐Ning Shi
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of EducationCollege of Chemistry and Chemical EngineeringOcean University of China Qingdao Shandong 266100 P. R. China
| | - Xia Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of EducationCollege of Chemistry and Chemical EngineeringOcean University of China Qingdao Shandong 266100 P. R. China
| | - Hui‐Sheng Wang
- Key Laboratory for Green Chemical Process of Ministry of EducationSchool of Chemistry and Environmental EngineeringWuhan Institute of Technology Wuhan 430074 P. R. China
| | - Yu‐Hua Fan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of EducationCollege of Chemistry and Chemical EngineeringOcean University of China Qingdao Shandong 266100 P. R. China
| | - Mei Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of EducationCollege of Chemistry and Chemical EngineeringOcean University of China Qingdao Shandong 266100 P. R. China
| |
Collapse
|
49
|
Maji B. Stereoselective Haliranium, Thiiranium and Seleniranium Ion‐Triggered Friedel–Crafts‐Type Alkylations for Polyene Cyclizations. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900028] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Biswajit Maji
- Department of ChemistryIndira Gandhi National Tribal University Amarkantak – 484886 Madhya Pradesh India
| |
Collapse
|
50
|
Lorion MM, Kaplaneris N, Son J, Kuniyil R, Ackermann L. Late‐Stage Peptide Diversification through Cobalt‐Catalyzed C−H Activation: Sequential Multicatalysis for Stapled Peptides. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201811668] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mélanie M. Lorion
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Tammanstr. 2 37077 Göttingen Germany
| | - Nikolaos Kaplaneris
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Tammanstr. 2 37077 Göttingen Germany
| | - Jongwoo Son
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Tammanstr. 2 37077 Göttingen Germany
| | - Rositha Kuniyil
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Tammanstr. 2 37077 Göttingen Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare ChemieGeorg-August-Universität Tammanstr. 2 37077 Göttingen Germany
- DZHK (German Center for Cardiovascular Research) Germany
| |
Collapse
|