1
|
Du J, Cheng X, Zhou X, Shi M, Jiang G, Chen D. Periodic Bonding Behaviors of Actinide Atoms (An = Th-Cm) with Negatively Curved Nanographene. J Phys Chem A 2024; 128:9587-9595. [PMID: 39441667 DOI: 10.1021/acs.jpca.4c04791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The nanographene with negative curvature has been extensively studied due to its interesting properties and potential applications. In the present work, we have performed all-electron scalar relativistic density functional theory (DFT) calculations to understand the periodic interaction mechanisms of actinide atoms (An = Th, Cm) with the TB8C nanographene. The encapsulated complexes (An@TB8C) were formed due to the octagonal vacancy in the TB8C nanographene. TB8C shows fairly high affinity toward An atoms, especially for Th and Pa. AIMD simulations further confirmed the effective trapping of An atom with TB8C. The partial covalent characters of An-C bonds in An@TB8C were revealed through various bond analysis methods. The 6d electrons of An play an important role in the participation of chemical bonds. The delocalization index (DI) is proposed as a useful descriptor in the study of bond strength involving the actinides. Electronic absorption spectra were simulated for further identification in the experiments. The current work has expanded the potential molecular properties and applications of nanographene.
Collapse
Affiliation(s)
- Jiguang Du
- College of Physics, Sichuan University, Chengdu 610065, China
| | - Xiujuan Cheng
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
| | - Xuying Zhou
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
| | - Mingyang Shi
- College of Physics, Sichuan University, Chengdu 610065, China
| | - Gang Jiang
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
| | - Deliang Chen
- School of Physics and Electronic Science, Guizhou Education University, Guiyang 550018, China
| |
Collapse
|
2
|
Kumar V, Dongre SD, Venugopal G, Narayanan A, Babu SS. Tailoring helical ends of π-extended [6]heterohelicenes to control optical, and electrochemical features. Chem Commun (Camb) 2024; 60:11944-11947. [PMID: 39352689 DOI: 10.1039/d4cc03707c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
Abstract
The inherent helical chirality and improved π-stacking capabilities endow helicenes with fascinating photophysical characteristics when decorated with lateral π-extensions. Here, we report the synthesis and physicochemical characterization of expanded hetero[6]helicenes fused with thiadiazole and selenadiazole rings at the helical ends. Comparing these heterohelicenes revealed the impact of the heteroatom-embedded aromatic rings on the excited state and redox features. A small structural variation of the terminal rings from thiadiazole to selenadiazole caused a striking change in the heterohelical nanographenes.
Collapse
Affiliation(s)
- Viksit Kumar
- Organic Chemistry Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune-411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201 002, India
| | - Sangram D Dongre
- Organic Chemistry Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune-411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201 002, India
| | - Geethu Venugopal
- Organic Chemistry Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune-411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201 002, India
| | - Aswini Narayanan
- Organic Chemistry Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune-411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201 002, India
| | - Sukumaran Santhosh Babu
- Organic Chemistry Division, National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune-411008, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201 002, India
| |
Collapse
|
3
|
Borrisov B, Beneventi GM, Fu Y, Qiu ZL, Komber H, Deng QS, Greißel PM, Cadranel A, Guldi DM, Ma J, Feng X. Deep-Saddle-Shaped Nanographene Induced by Four Heptagons: Efficient Synthesis and Properties. J Am Chem Soc 2024; 146:27335-27344. [PMID: 39329237 DOI: 10.1021/jacs.4c09224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
The construction of multiple heptagonal rings in nanographene is the key step for obtaining exotic carbon nanostructures with a negative curvature and intriguing properties. Herein, a novel saddle-shaped nanographene (1) with four embedded heptagons is synthesized via a highly efficient one-shot Scholl reaction from a predesigned oligophenylene precursor. Notably, a quadruple [6]helicene intermediate was also obtained and isolated by controlling the Scholl reaction conditions. Interestingly, the single crystal structures of 1 display a saddle geometry induced by the four embedded heptagons, resulting in a deep curvature with a width of 16.5 Å and a depth of 8.0 Å. Theoretical calculations at the molecular level suggest a weak antiaromatic character of the heptagons in 1. Remarkably, compound 1 exhibits dual fluorescence from S1 and S2. The deep-saddle-shaped geometry in 1 defines host-guest interactions with fullerenes, which were explored in titration experiments and by theoretical methods. The resulting 1@C60 are stable and are subject to an electron transfer from photoexcited 1 to C60. Our current study underscores the influence of heptagon rings on the photophysical, self-assembly, and electron-donating properties of NGs.
Collapse
Affiliation(s)
- Boris Borrisov
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Giovanni M Beneventi
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Yubin Fu
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Zhen-Lin Qiu
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Hartmut Komber
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany
| | - Qing-Song Deng
- State Key Laboratory for Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Phillip M Greißel
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Alejandro Cadranel
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
- CONICET - Universidad de Buenos Aires. Instituto de Química Física de Materiales, Medio Ambiente y Energía (INQUIMAE), Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Dirk M Guldi
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials (ICMM), Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Ji Ma
- College of Materials Science and Optoelectronic Technology & Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Science, 100049 Beijing, P. R. China
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
- Max Planck Institute of Microstructure Physics Weinberg 2, 06120 Halle, Germany
| |
Collapse
|
4
|
Elbert SM, Paine OTA, Kirschbaum T, Schuldt MP, Weber L, Rominger F, Mastalerz M. A Negatively Curved Nanographene with Four Embedded Heptagons. J Am Chem Soc 2024; 146:27324-27334. [PMID: 39329251 DOI: 10.1021/jacs.4c09185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Negatively curved nanographenes are considered as cutouts of three-dimensional fully sp2-hybridized carbon allotropes such as Schwarzites. Here we present the synthesis of a C76 cut-out of the Schwarzite 8-4-1-p proposed by Lenosky et al. and investigate its optical as well as electrochemical properties. Furthermore, supramolecular interactions with fullerenes C60 and C70 were studied.
Collapse
Affiliation(s)
- Sven M Elbert
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 272, 69120 Heidelberg, Germany
| | - Owen T A Paine
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 272, 69120 Heidelberg, Germany
| | - Tobias Kirschbaum
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 272, 69120 Heidelberg, Germany
| | - Moritz P Schuldt
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 272, 69120 Heidelberg, Germany
| | - Laura Weber
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 272, 69120 Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 272, 69120 Heidelberg, Germany
| | - Michael Mastalerz
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 272, 69120 Heidelberg, Germany
| |
Collapse
|
5
|
Zhang XP, Ying SW, Zhang YL, Zhang WX, Shi W, Chen BW, Tian HR, Xu G, Wang SS, Zhang Q, Xie SY, Zheng LS. Decafluorinated and Perfluorinated Warped Nanographenes: Synthesis, Structural Analysis, and Properties. J Am Chem Soc 2024. [PMID: 39367840 DOI: 10.1021/jacs.4c09373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
Fluorination is a useful approach for tailoring the physicochemical properties of nanocarbon materials. However, owing to the violent reactivity of fluorination, achieving edge-perfluorination of nanographene while maintaining its original π-conjugated structure is challenging. Instead of using traditional fluorination, here, we employed a bottom-up strategy involving fluorine preinstallation and synthesized decafluorinated and perfluorinated warped nanographenes (DFWNG and PFWNG, respectively) through a 10-fold Suzuki-Miyaura coupling followed by a harsh Scholl reaction, whereby precisely edge-perfluorinated nanographene with an intact π-conjugated structure was achieved for the first time. X-ray crystallography confirmed the intact π-conjugated structure and more twisted saddle-shaped geometry of PFWNG compared to that of DFWNG. Dynamic study revealed that the 26-ring carbon framework of PFWNG is less flexible than that of DFWNG and the pristine WNG, enabling chirality resolution of PFWNG and facilitating the achievement of CD spectra at -10 °C. The edge-perfluorination of PFWNG resulted in improved solubility, lower lowest unoccupied molecular orbital, and a surface electrostatic potentials/dipole moment direction opposite those of the pristine WNG. Likely owing to its intact π-conjugated structure, PFWNG exhibits comparable electron mobility with well-known PC61BM. Furthermore, perfluorination improves thermal stability and hydrophobicity, making PFWNG suitable for use as a thermostable/hydrophobic n-type semiconductor material. In the future, this fluorination strategy can be used to synthesize other perfluorinated nanocarbon materials, such as perfluorinated graphene nanoribbons and porous nanocarbon.
Collapse
Affiliation(s)
- Xue-Peng Zhang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen 361005, China
| | - Si-Wei Ying
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen 361005, China
| | - Yi-Lu Zhang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen 361005, China
| | - Wen-Xin Zhang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen 361005, China
| | - Wenjie Shi
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen 361005, China
| | - Bin-Wen Chen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen 361005, China
| | - Han-Rui Tian
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen 361005, China
| | - Gan Xu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen 361005, China
| | - Shan-Shan Wang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen 361005, China
| | - Qianyan Zhang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen 361005, China
| | - Su-Yuan Xie
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen 361005, China
| | - Lan-Sun Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Chemistry, Xiamen University, Xiamen 361005, China
| |
Collapse
|
6
|
Liu B, Jin Z, Liu X, Sun L, Yang C, Zhang L. π-extended pyrenes: from an antiaromatic buckybowl to doubly curved nanocarbons with gulf architectures. Chem Sci 2024:d4sc03460k. [PMID: 39328190 PMCID: PMC11421037 DOI: 10.1039/d4sc03460k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024] Open
Abstract
The synthesis of π-extended pyrenes keeps attracting considerable attention. In particular, frameworks containing nonbenzenoid rings might display intriguing properties. Here, we report a practical synthetic pathway to access a new buckybowl (1), which is composed of four five-membered rings externally fused to a pyrene core. The buckybowl 1 exhibits antiaromaticity involving 22 π-electrons, a rapid bowl-to-bowl interconversion, and a small band gap. Furthermore, this buckybowl could be subjected to Scholl cyclodehydrogenation to prepare the doubly curved nanocarbons (2rac and 2meso), which exist as two diastereomers, as demonstrated by X-ray crystal structure determination. Variable temperature 1H NMR measurements reveal that 2meso can isomerize into 2rac under thermal conditions, with an activation free energy of 27.1 kcal mol-1. Both the enantiomers of 2rac can be separated by chiral HPLC and their chiroptical properties are thoroughly examined. In addition, the nanocarbon 2meso with two gulf architectures facilitates host-guest chemistry with a variety of guests, including PDI, TDI, C60 and C70.
Collapse
Affiliation(s)
- Binbin Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Zhengxiong Jin
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Xinyue Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Lanfei Sun
- Shandong North Modern Chemistry Industry Co., Ltd Jinan 252300 P. R. China
| | - Cao Yang
- School of Materials Science and Engineering, The Key Laboratory of Material Processing and Mold of Ministry of Education, Henan Key Laboratory of Advanced Nylon Materials and Application, Zhengzhou University Zhengzhou 450001 P. R. China
| | - Lei Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology Beijing 100029 P. R. China
| |
Collapse
|
7
|
Reinhard D, Schuldt MP, Elbert SM, Ueberricke L, Hengefeld K, Rominger F, Mastalerz M. Substituent Effects in Scholl-Type Reactions of 1,2-Terphenyls to Triphenylenes. Chemistry 2024:e202402821. [PMID: 39253989 DOI: 10.1002/chem.202402821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/11/2024]
Abstract
A series of 3,3''- and 4,4''-dimethoxy terphenyls with different second substituents on their ortho-positions have been synthesized and investigated upon the possibility to be oxidatively cyclodehydrogenated to the corresponding triphenylenes under Scholl-type conditions. The experimentally obtained selectivities were supported and explained by quantum chemical calculations and conclusions on the involved mechanisms (acid catalyzed arenium-ion mechanism (AIM) vs radical cation mechanism) were drawn.
Collapse
Affiliation(s)
- Dennis Reinhard
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 272, 69120, Heidelberg, Germany
| | - Moritz P Schuldt
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 272, 69120, Heidelberg, Germany
| | - Sven M Elbert
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 272, 69120, Heidelberg, Germany
| | - Lucas Ueberricke
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 272, 69120, Heidelberg, Germany
| | - Karsten Hengefeld
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 272, 69120, Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 272, 69120, Heidelberg, Germany
| | - Michael Mastalerz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 272, 69120, Heidelberg, Germany
| |
Collapse
|
8
|
Zhang Z, Zhu H, Gu J, Shi H, Hirose T, Jiang L, Zhu Y, Zhong D, Wang J. Nonplanar Nanographene with a Large Conjugated π-Surface. J Am Chem Soc 2024; 146:24681-24688. [PMID: 39166837 DOI: 10.1021/jacs.4c09167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Conjugated π-surfaces are ubiquitous in molecules and materials. However, large π-surfaces up to a few nanometers in size are difficult to construct in an atomically precise manner. They tend to aggregate because of strong π-π interactions, resulting in notorious problems for both purification and spectroscopic investigations. Here, by contrast, we report the design, synthesis, and full characterizations of a nonplanar nanographene 1, which has a large, precise, and nonstacked π-surface. It is soluble in common organic solvents and allows for thorough investigations. The structure of 1, comprising 85 fused rings with an extended π-surface of 3 nm in size, is unambiguously confirmed by single-crystal X-ray diffraction. Unusual electronic structures, record-high near-infrared absorption, pronounced magnetic shielding, and ultrastrong heteromolecular van der Waals complexations are demonstrated, enabling us to establish a clear structure-property relationship, which has been elusive for decades. These results have broad implications for studying and understanding various phenomena and processes relevant to both discrete and interacting π-surfaces.
Collapse
Affiliation(s)
- Zongchi Zhang
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Han Zhu
- School of Physics, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jiajian Gu
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Haonan Shi
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Takashi Hirose
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Long Jiang
- Instrumental Analysis and Research Center, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yanpeng Zhu
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Dingyong Zhong
- School of Physics, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jiaobing Wang
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
9
|
Guo J, Du F, Yu B, Du P, Li H, Zhang J, Xin H. Heptacyclic aromatic hydrocarbon isomers with two azulene units fused. Chem Sci 2024; 15:12589-12597. [PMID: 39118621 PMCID: PMC11304730 DOI: 10.1039/d4sc02566k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/27/2024] [Indexed: 08/10/2024] Open
Abstract
Azulene, known for its unique electronic properties and structural asymmetry, serves as a promising building block for the design of novel non-benzenoid polycyclic aromatic hydrocarbons (PAHs). Herein, we present the synthesis, characterization, and physical properties of three diazulene-fused heptacyclic aromatic hydrocarbons, 8,17-dioctyldiazuleno[2,1-a:2',1'-h]anthracene (trans configuration), 16,18-dioctyldiazuleno[2,1-a:1',2'-j]anthracene (cis configuration) and 3,18-dioctyldiazuleno[2,1-a:1',2'-i]phenanthrene (zigzag configuration). Three compounds are configurational isomers with different fusing patterns of aromatic rings. All three isomers exhibit pronounced aromaticity, as revealed by nuclear magnetic resonance spectroscopy and theoretical calculations. They exhibit characteristics of both azulene and benzenoid PAHs and are much more stable than their all-benzene analogues. The optical and electrochemical properties of these three isomers were investigated through UV-vis absorption spectra and cyclic voltammetry, revealing distinct behaviors influenced by their molecular configurations. Furthermore, the isomer in trans configuration exhibits promising semiconducting properties with a hole mobility of up to 0.22 cm2 V-1 s-1, indicating its potential in organic electronics applications.
Collapse
Affiliation(s)
- Jianwen Guo
- School of Microelectronics, Shanghai University 201800 Shanghai China
| | - Fangxin Du
- School of Microelectronics, Shanghai University 201800 Shanghai China
| | - Bo Yu
- School of Microelectronics, Shanghai University 201800 Shanghai China
| | - Pengcheng Du
- School of Microelectronics, Shanghai University 201800 Shanghai China
| | - Haoyuan Li
- School of Microelectronics, Shanghai University 201800 Shanghai China
| | - Jianhua Zhang
- School of Microelectronics, Shanghai University 201800 Shanghai China
| | - Hanshen Xin
- School of Microelectronics, Shanghai University 201800 Shanghai China
| |
Collapse
|
10
|
Ohtsuka M, Ghosh K, Yim JCH, Sotome H, Okamoto T, Suda K, Kobori Y, Yokogawa D, Miyasaka H, Crudden CM, Nambo M. Visible-light-induced direct C-H alkylation of polycyclic aromatic hydrocarbons with alkylsulfones. Chem Sci 2024; 15:10592-10599. [PMID: 38994431 PMCID: PMC11234832 DOI: 10.1039/d4sc02577f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/25/2024] [Indexed: 07/13/2024] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are fragments of graphene that have attracted considerable attention as a new class of carbon-based materials. The functionalization of edge positions in PAHs is important to enable the modulation of physical and chemical properties essential for various applications. However, straightforward methods that combine functional group tolerance and regioselectivity remain sought after. Here we report a photochemical approach for the direct alkylation of carbon-hydrogen bonds in PAHs that takes place in a regiospecific manner, an outcome that has never been achieved in related thermal reactions. A reaction mechanism involving a single electron transfer process from photo-excited PAHs to sulfones, and a rationale for the origin of regioselectivity are proposed on the basis of spectroscopic analyses and theoretical calculations.
Collapse
Affiliation(s)
- Motoo Ohtsuka
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa Nagoya Aichi 464-8601 Japan
| | - Koushik Ghosh
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa Nagoya Aichi 464-8601 Japan
| | - Jacky C-H Yim
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa Nagoya Aichi 464-8601 Japan
| | - Hikaru Sotome
- Division of Frontier Materials Science and Centre for Advanced Interdisciplinary Research, Graduate School of Engineering Science, Osaka University 1-3 Machikaneyama Toyonaka Osaka 560-8531 Japan
| | - Tsubasa Okamoto
- Molecular Photoscience Research Center, Kobe University 1-1 Rokkodai-cho, Nada-ku Kobe 657-8501 Japan
- Department of Chemistry, Graduate School of Science, Kobe University 1-1, Rokkodai-cho, Nada-ku Kobe 657-8501 Japan
| | - Kayo Suda
- Graduate School of Arts and Sciences, The University of Tokyo Komaba, Meguro-ku Tokyo 153-8902 Japan
| | - Yasuhiro Kobori
- Molecular Photoscience Research Center, Kobe University 1-1 Rokkodai-cho, Nada-ku Kobe 657-8501 Japan
- Department of Chemistry, Graduate School of Science, Kobe University 1-1, Rokkodai-cho, Nada-ku Kobe 657-8501 Japan
| | - Daisuke Yokogawa
- Graduate School of Arts and Sciences, The University of Tokyo Komaba, Meguro-ku Tokyo 153-8902 Japan
| | - Hiroshi Miyasaka
- Division of Frontier Materials Science and Centre for Advanced Interdisciplinary Research, Graduate School of Engineering Science, Osaka University 1-3 Machikaneyama Toyonaka Osaka 560-8531 Japan
| | - Cathleen M Crudden
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa Nagoya Aichi 464-8601 Japan
- Department of Chemistry, Queen's University Chernoff Hall Kingston Ontario K7L 3N6 Canada
- Carbon to Metal Coating Institute, Queen's University Kingston Ontario K7L 3N6 Canada
| | - Masakazu Nambo
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa Nagoya Aichi 464-8601 Japan
- Department of Chemistry, Graduate School of Science, Nagoya University Furo, Chikusa Nagoya Aichi 464-8601 Japan
| |
Collapse
|
11
|
Suleymanov AA, He Q, Müller P, Swager TM. Highly Contorted Rigid Nitrogen-Rich Nanographene with Four Heptagons. Org Lett 2024; 26:5227-5231. [PMID: 38536955 DOI: 10.1021/acs.orglett.4c00588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Nucleophilic substitution of 9,10-dichlorooctafluoroanthracene with 3,4-diethylpyrrole and subsequent Scholl reaction give the annularly fused decapyrrollyl anthracene. Single crystal X-ray analysis revealed a highly contorted geometry induced by a combination of adjacent heptagons, forming a unique 7-7-6-7-7 topology. The end-to-end twist angle along the acene moiety is 90°. Cyclic voltammetry studies reveal 6-electron oxidation waves. Density functional theory calculations provided further insights into the aromaticity and electronic properties of this highly twisted, nitrogen-rich nanographene. The structural rigidity and high racemization energy barrier have been studied theoretically and experimentally by VT-NMR.
Collapse
Affiliation(s)
- Abdusalom A Suleymanov
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Qilin He
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Peter Müller
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Timothy M Swager
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
12
|
Tanaka Y, Tajima K, Kusumoto R, Kobori Y, Fukui N, Shinokubo H. End-to-End Bent Perylene Bisimide Cyclophanes by Double Sulfur Extrusion. J Am Chem Soc 2024; 146:16332-16339. [PMID: 38813992 PMCID: PMC11177258 DOI: 10.1021/jacs.4c05358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024]
Abstract
Bending inherently planar π-cores consisting of only six-membered rings has traditionally been challenging because a powerful transformation is required to compensate for the significant strain energy associated with bending. Herein, we demonstrate that sulfur extrusion can achieve substantial molecular bending of a perylene structure to form a substructure of a Vögtle belt, a proposed yet hitherto elusive carbon nanotube fragment. Bent perylene bisimide (PBI) derivatives were synthesized through a double-sulfur-extrusion reaction from the corresponding sulfur-containing V-shaped precursors with an internal alkyl tether. The effect of bending the inherently planar PBI core, which is a recent topic of interest for the design of advanced organic electronic and optoelectronic materials, was investigated systematically. Increasing the curvature leads to a red shift in the absorption and emission spectra, while the fluorescence quantum yields remain high. This stands in contrast with the nonemissive features of previously reported nonplanar PBI derivatives based on conjugative tethers. Detailed photophysical measurements indicated that the increasing curvature with shorter alkyl tethers (i) slightly facilitates intersystem crossing and (ii) significantly suppresses the internal conversion in the excited state of the present bent PBI derivatives. The latter characteristics originate from the restricted dynamic motion associated with the charge-transfer (CT) character between the core chromophores and the N-aryl units.
Collapse
Affiliation(s)
- Yuki Tanaka
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering,
and Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Keita Tajima
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering,
and Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| | - Ryota Kusumoto
- Department
of Chemistry, Graduate School of Science, Kobe University, 1-1,
Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
| | - Yasuhiro Kobori
- Department
of Chemistry, Graduate School of Science, Kobe University, 1-1,
Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
- Molecular
Photoscience Research Center, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan
- CREST,
JST, Honcho 4-1-8, Kawaguchi ,Saitama332-0012, Japan
| | - Norihito Fukui
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering,
and Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
- PRESTO,
Japan Science and Technology Agency (JST), Kawaguchi ,Saitama332-0012, Japan
| | - Hiroshi Shinokubo
- Department
of Molecular and Macromolecular Chemistry, Graduate School of Engineering,
and Integrated Research Consortium on Chemical Science (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8603, Japan
| |
Collapse
|
13
|
Qiu S, Valdivia AC, Zhuang W, Hung FF, Che CM, Casado J, Liu J. Nonalternant Nanographenes Containing N-Centered Cyclopenta[ ef]heptalene and Aza[7]Helicene Units. J Am Chem Soc 2024; 146:16161-16172. [PMID: 38720418 DOI: 10.1021/jacs.4c03815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Introducing helical subunits into negatively curved π-systems has a significant effect on both the molecular geometry and photophysical properties; however, the synthesis of these helical π-systems embedded with nonbenzenoid subunits remains challenging due to the high strain deriving from both the curvature and helix. Here, we report a family of nonalternant nanographenes containing a nitrogen (N)-doped cyclopenta[ef]heptalene unit. Among them, CPH-2 and CPH-3 can be viewed as hybrids of benzoannulated cyclopenta[ef]heptalene and aza[7]helicene. The crystal structures revealed a saddle geometry for CPH-1, a saddle-helix hybrid for CPH-2, and a twist-helix hybrid for CPH-3. Experimental measurements and theoretical calculations indicate that the saddle moieties in CPHs undergo flexible conformational changes at room temperature, while the aza[7]helicene subunit exhibits a dramatically increased racemization energy barrier (78.2 kcal mol-1 for CPH-2, 143.2 kcal mol-1 for CPH-3). The combination of the nitrogen lone electron pairs of the N-doped cyclopenta[ef]heptalene unit with the twisted helix fragments results in rich photophysics with distinctive fluorescence and phosphorescence in CPH-1 and CPH-2 and the similar energy fluorescence and phosphorescence in CPH-3. Both enantiopure CPH-2 and CPH-3 display distinct circular dichroism (CD) signals in the UV-vis range. Notably, compared to the reported fully π-extended helical nanographenes, CPH-3 exhibits excellent chiroptical properties with a |gabs| value of 1.0 × 10-2 and a |glum| value of 7.0 × 10-3; these values are among the highest for helical nanographenes.
Collapse
Affiliation(s)
- Shuhai Qiu
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road Hong Kong 999077, China
| | - Abel Cárdenas Valdivia
- Department of Physical Chemistry, Faculty of Science, University of Málaga, Málaga 29071, Spain
| | - Weiwen Zhuang
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road Hong Kong 999077, China
| | - Faan-Fung Hung
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road Hong Kong 999077, China
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road Hong Kong 999077, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, China
| | - Juan Casado
- Department of Physical Chemistry, Faculty of Science, University of Málaga, Málaga 29071, Spain
| | - Junzhi Liu
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road Hong Kong 999077, China
| |
Collapse
|
14
|
Fujimoto K, Izawa S, Yamada K, Yagi S, Inuzuka T, Sanada K, Sakamoto M, Hiramoto M, Takahashi M. Wavily Curved Perylene Diimides: Synthesis, Characterization, and Photovoltaic Properties. Chempluschem 2024; 89:e202300748. [PMID: 38329154 DOI: 10.1002/cplu.202300748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 02/09/2024]
Abstract
Solubility enhancement is a key issue for developing the perylene diimide-based functional materials. Introduction of curved structure proved an effective solubilizing method without employing steric repulsion. In this work, wavily curved perylene diimides were developed as a new family of highly soluble curved perylene diimides. Moreover, their conformational dynamics, aggregating properties, electronic properties, and photovoltaic performances were thoroughly examined in comparison to the previously reported isomer exhibiting an arched curvature. The waved isomer demonstrated heightened rigidity and a greater propensity for aggregation compared to the arched isomer, likely attributed to its more planar structure. Each benzoxepin unit played a role in cancelling out the curvature on the opposite side. While the difference in the molecular curvature did not cause significant alterations in the photophysical and electron-accepting properties, we identified that the modulation of the curved structure is effective in controlling the morphology of the photoelectric conversion layer.
Collapse
Affiliation(s)
- Keisuke Fujimoto
- Department of Applied Chemistry, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, 432-8561, Japan
| | - Seiichiro Izawa
- Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan
- Joining and Welding Research Institute, Osaka University, 11-1, Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Kazuki Yamada
- Department of Applied Chemistry, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, 432-8561, Japan
| | - Sota Yagi
- Department of Applied Chemistry, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, 432-8561, Japan
| | - Toshiyasu Inuzuka
- Division of Instrumental Analysis, Life Science Research Center, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Kazutaka Sanada
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Masami Sakamoto
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Masahiro Hiramoto
- Institute for Molecular Science, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Masaki Takahashi
- Department of Applied Chemistry, Faculty of Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, 432-8561, Japan
| |
Collapse
|
15
|
Zhu Y, Borstelmann J, Bertleff O, Bergner J, Wei Z, Neiss C, Görling A, Kivala M, Petrukhina MA. Unveiling the Multielectron Acceptor Properties of π-Expanded Pyracylene: Reversible Boat to Chair Conversion. J Am Chem Soc 2024; 146:14715-14723. [PMID: 38741481 PMCID: PMC11140751 DOI: 10.1021/jacs.4c02314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
In this work, the chemical reduction of a hybrid pyracylene-hexa-peri-hexabenzocoronene (HPH) nanographene was investigated with different alkali metals (Na, K, Rb) to reveal its remarkable multielectron acceptor abilities. The UV-vis and 1H NMR spectroscopy monitoring of the stepwise reduction reactions supports the existence of all intermediate reduction states up to the hexaanion for HPH. Tuning the experimental conditions enabled the synthesis of the HPH anions with gradually increasing reduction states (up to -5) isolated with different alkali metal ions as crystalline materials. The single-crystal X-ray diffraction structure analysis demonstrates that the highly negatively charged HPH anions (-4 and -5) exhibit a drastic geometry change from boat-shaped (observed in the neutral parent, mono- and dianions) to a chair conformation, which was proved to be fully reversible by NMR spectroscopy. DFT calculations show that this geometry change is induced by an enhanced interaction between the coordinated metal ions and negatively charged HPH core in the chair conformation.
Collapse
Affiliation(s)
- Yikun Zhu
- Department
of Chemistry, University at Albany, State
University of New York, Albany, New York 12222, United States
| | - Jan Borstelmann
- Organisch-Chemisches
Institut, Universität Heidelberg, Im Neuenheimer Feld 270, Heidelberg 69120, Germany
| | - Oliver Bertleff
- Lehrstuhl
für Theoretische Chemie, Friedrich-Alexander
Universität Erlangen-Nürnberg (FAU), Egerlandstraße 3, Erlangen 91058, Germany
| | - John Bergner
- Organisch-Chemisches
Institut, Universität Heidelberg, Im Neuenheimer Feld 270, Heidelberg 69120, Germany
| | - Zheng Wei
- Department
of Chemistry, University at Albany, State
University of New York, Albany, New York 12222, United States
| | - Christian Neiss
- Lehrstuhl
für Theoretische Chemie, Friedrich-Alexander
Universität Erlangen-Nürnberg (FAU), Egerlandstraße 3, Erlangen 91058, Germany
| | - Andreas Görling
- Lehrstuhl
für Theoretische Chemie, Friedrich-Alexander
Universität Erlangen-Nürnberg (FAU), Egerlandstraße 3, Erlangen 91058, Germany
- Erlangen
National High Performance Computing Center (NHR@FAU), Martensstr. 1, Erlangen 91058, Germany
| | - Milan Kivala
- Organisch-Chemisches
Institut, Universität Heidelberg, Im Neuenheimer Feld 270, Heidelberg 69120, Germany
| | - Marina A. Petrukhina
- Department
of Chemistry, University at Albany, State
University of New York, Albany, New York 12222, United States
| |
Collapse
|
16
|
Qin L, Xie J, Wu B, Hong H, Yang S, Ma Z, Li C, Zhang G, Zhang XS, Liu K, Zhang D. Axially Chiral Nonbenzenoid Nanographene with Second Harmonic Generation Property. J Am Chem Soc 2024; 146:12206-12214. [PMID: 38637324 DOI: 10.1021/jacs.4c03007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Chiral nanographenes (NGs) have garnered significant interest as optoelectronic materials in recent years. While helically chiral NGs have been extensively studied, axially chiral NGs have only witnessed limited examples, with no prior reports of axially chiral nonbenzenoid NGs. Herein we report an axially chiral nonbenzenoid nanographene featuring six pentagons and four heptagons. This compound, denoted as 2, was efficiently synthesized via an efficient Pd-catalyzed aryl silane homocoupling reaction. The presence of two bulky 3,5-di-tert-butylphenyl groups around the axis connecting the two nonbenzenoid PAH (AHR) segments endows 2 with atropisomeric chirality and high racemization energy barrier, effectively preventing racemization of both R- and S-enantiomers at room temperature. Optically pure R-2 and S-2 were obtained by chiral HPLC separation, and they exhibit circular dichroism (CD) activity at wavelengths up to 660 nm, one of the longest wavelengths with CD responses reported for the chiral NGs. Interestingly, racemic 2 forms a homoconfiguration π-dimer in the crystal lattice, belonging to the I222 chiral space group. Consequently, this unique structure renders crystals of 2 with a second harmonic generation (SHG) response, distinguishing it from all the reported axially chiral benzenoid NGs. Moreover, R-2 and S-2 also exhibit SHG-CD properties.
Collapse
Affiliation(s)
- Liyuan Qin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jin Xie
- School of Physics, Peking University, Beijing 100871, P. R. China
| | - Botao Wu
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Hao Hong
- School of Physics, Peking University, Beijing 100871, P. R. China
| | - Suyu Yang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Zhuangzhuang Ma
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450000, P. R. China
| | - Cheng Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Guanxin Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Xi-Sha Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Kaihui Liu
- School of Physics, Peking University, Beijing 100871, P. R. China
| | - Deqing Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
17
|
Hu M, Huang J, Shi L, Hua J, Liu L, He J, Ding J. The smallest Schwarzite carbon with only heptagonal carbon rings. Phys Chem Chem Phys 2024; 26:12778-12785. [PMID: 38619587 DOI: 10.1039/d3cp05131e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Carbon materials with full sp2-hybridized buckling is a major challenge pervading fundamental nanoscience and nanotechnology research. Carbon atoms that are sp2 hybridized prefer to form hexagonal rings, such as in carbon nanotubes and graphene, which are low-dimensional materials. The incorporation of heptagonal, octagonal, and/or larger rings into a hexagonal sp2 carbon meshwork has been identified as a strategy for assembling three-dimensional (3D) sp2 carbon crystals, and one of the typical representatives are Schwarzite carbons, which possess a negative surface Gaussian curvature as well as unique physical properties. Herein, a 3D Schwarzite carbon consisting of only sp2-buckled heptagonal carbon rings, which is referred to as Hepta-carbon, is proposed based on first-principles calculations. Hepta-carbon is mechanically and thermodynamically stable, and energetically more favourable than experimental graphdiyne, fullerene C20 and most Schwarzite carbons under ambient conditions. Molecular dynamics simulations indicate that Hepta-carbon exhibits high-temperature thermostability up to 1500 K. Band structure and mechanical property simulations indicate that Hepta-carbon is a semi-metallic material with electron conduction and exhibits impressive mechanical properties such as high strength with quasi-isotropy, high incompressibility similar to diamonds, elastic deformation behaviour under uniaxial stress, and high ductility. Hepta-carbon presents a porous network with a low mass density of 1.84 g cm-3 and connected channels with diameters of 3.3-6.1 Å. Theoretical simulations of gas adsorption energy demonstrate that Hepta-carbon can effectively adsorb and stabilize greenhouse gases, including N2O, CO2, CH4, and SF6.
Collapse
Affiliation(s)
- Meng Hu
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
- Provincial Key Laboratory of Tribology in Advanced Equipment, Jiangsu University, Zhenjiang 212013, China
| | - Junwen Huang
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Lu Shi
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jing Hua
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
- Provincial Key Laboratory of Tribology in Advanced Equipment, Jiangsu University, Zhenjiang 212013, China
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, China
| | - Lingyu Liu
- School of Materials Science and Engineering, Xihua University, Chengdu 610 039, China
- Center for High Pressure Science, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Julong He
- Center for High Pressure Science, State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Jianning Ding
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China
| |
Collapse
|
18
|
Zhang H, Lu CJ, Cai GH, Xi LL, Feng J, Liu RR. Palladium-catalyzed asymmetric carbene coupling en route to inherently chiral heptagon-containing polyarenes. Nat Commun 2024; 15:3353. [PMID: 38637535 PMCID: PMC11026441 DOI: 10.1038/s41467-024-47731-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/10/2024] [Indexed: 04/20/2024] Open
Abstract
Developing facile and direct synthesis routes for enantioselective construction of cyclic π-conjugated molecules is crucial. However, originate chirality from the distorted structure around heptagon-containing polyarenes is largely overlooked, the enantioselective construction of all-carbon heptagon-containing polyarenes remains a challenge. Herein, we present a highly enantioselective synthesis route for fabricating all carbon heptagon-containing polyarenes via palladium-catalyzed carbene-based cross-coupling of benzyl bromides and N-arylsulfonylhydrazones. A wide range of nonplanar, saddle-shaped tribenzocycloheptene derivatives are efficiently prepared in high yields with excellent enantioselectivities using this approach. In addition, stereochemical stability experiments show that these saddle-shaped tribenzocycloheptene derivatives have high inversion barriers.
Collapse
Affiliation(s)
- Huan Zhang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
| | - Chuan-Jun Lu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
| | - Gao-Hui Cai
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
| | - Long-Long Xi
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
| | - Jia Feng
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China
| | - Ren-Rong Liu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
19
|
Liu J, Hong J, Liao Z, Tan J, Liu H, Dmitrieva E, Zhou L, Ren J, Cao XY, Popov AA, Zou Y, Narita A, Hu Y. Negatively Curved Octagon-Incorporated Aza-nanographene and its Assembly with Fullerenes. Angew Chem Int Ed Engl 2024; 63:e202400172. [PMID: 38345140 DOI: 10.1002/anie.202400172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Indexed: 03/01/2024]
Abstract
A negatively curved aza-nanographene (NG) containing two octagons was synthesized by a regioselective and stepwise cyclodehydrogenation procedure, in which a double aza[7]helicene was simultaneously formed as an intermediate. Their saddle-shaped structures with negative curvature were unambiguously confirmed by X-ray crystallography, thereby enabling the exploration of the structure-property relationship by photophysical, electrochemical and conformational studies. Moreover, the assembly of the octagon-embedded aza-NG with fullerenes was probed by fluorescence spectral titration, with record-high binding constants (Ka=9.5×103 M-1 with C60, Ka=3.7×104 M-1 with C70) found among reported negatively curved polycyclic aromatic compounds. The tight association of aza-NG with C60 was further elucidated by X-ray diffraction analysis of their co-crystal, which showed the formation of a 1 : 1 complex with substantial concave-convex interactions.
Collapse
Affiliation(s)
- Jun Liu
- College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, China
| | - Juan Hong
- College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, China
| | - Zhenxing Liao
- College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, China
| | - Jingyun Tan
- Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Haoliang Liu
- Department of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Evgenia Dmitrieva
- Center of Spectroelectrochemistry, Leibniz Institute for Solid State and Materials Research, Helmholtzstrasse 20, 01069, Dresden, Germany
| | - Long Zhou
- College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, China
| | - Jie Ren
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Xiao-Yu Cao
- Department of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Alexey A Popov
- Center of Spectroelectrochemistry, Leibniz Institute for Solid State and Materials Research, Helmholtzstrasse 20, 01069, Dresden, Germany
| | - Yingping Zou
- College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, China
| | - Akimitsu Narita
- Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0495, Japan
| | - Yunbin Hu
- College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, China
| |
Collapse
|
20
|
Biswas K, Chen Q, Obermann S, Ma J, Soler-Polo D, Melidonie J, Barragán A, Sánchez-Grande A, Lauwaet K, Gallego JM, Miranda R, Écija D, Jelínek P, Feng X, Urgel JI. On-Surface Synthesis of Non-Benzenoid Nanographenes Embedding Azulene and Stone-Wales Topologies. Angew Chem Int Ed Engl 2024; 63:e202318185. [PMID: 38299925 DOI: 10.1002/anie.202318185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/02/2024]
Abstract
The incorporation of non-benzenoid motifs in graphene nanostructures significantly impacts their properties, making them attractive for applications in carbon-based electronics. However, understanding how specific non-benzenoid structures influence their properties remains limited, and further investigations are needed to fully comprehend their implications. Here, we report an on-surface synthetic strategy toward fabricating non-benzenoid nanographenes containing different combinations of pentagonal and heptagonal rings. Their structure and electronic properties were investigated via scanning tunneling microscopy and spectroscopy, complemented by computational investigations. After thermal activation of the precursor P on the Au(111) surface, we detected two major nanographene products. Nanographene Aa-a embeds two azulene units formed through oxidative ring-closure of methyl substituents, while Aa-s contains one azulene unit and one Stone-Wales defect, formed by the combination of oxidative ring-closure and skeletal ring-rearrangement reactions. Aa-a exhibits an antiferromagnetic ground state with the highest magnetic exchange coupling reported up to date for a non-benzenoid containing nanographene, coexisting with side-products with closed shell configurations resulted from the combination of ring-closure and ring-rearragement reactions (Ba-a , Ba-s , Bs-a and Bs-s ). Our results provide insights into the single gold atom assisted synthesis of novel NGs containing non-benzenoid motifs and their tailored electronic/magnetic properties.
Collapse
Affiliation(s)
- Kalyan Biswas
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Qifan Chen
- Institute of Physics of the Czech Academy of Science, CZ-16253, Praha, Czech Republic
- Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00, Praha, Czech Republic
| | - Sebastian Obermann
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, D-01069, Dresden, Germany
| | - Ji Ma
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, D-01069, Dresden, Germany
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
| | - Diego Soler-Polo
- Institute of Physics of the Czech Academy of Science, CZ-16253, Praha, Czech Republic
| | - Jason Melidonie
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, D-01069, Dresden, Germany
| | - Ana Barragán
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Ana Sánchez-Grande
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Koen Lauwaet
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco, 28049, Madrid, Spain
| | - José M Gallego
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Cantoblanco, 28049, Madrid, Spain
| | - Rodolfo Miranda
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco, 28049, Madrid, Spain
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - David Écija
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco, 28049, Madrid, Spain
- Unidad de Nanomateriales avanzados, IMDEA Nanoscience, Unidad asociada al CSIC por el ICMM, 28049, Madrid, Spain
| | - Pavel Jelínek
- Institute of Physics of the Czech Academy of Science, CZ-16253, Praha, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Palacký University Olomouc, 771 46, Olomouc, Czech Republic
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, D-01069, Dresden, Germany
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
| | - José I Urgel
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco, 28049, Madrid, Spain
- Unidad de Nanomateriales avanzados, IMDEA Nanoscience, Unidad asociada al CSIC por el ICMM, 28049, Madrid, Spain
| |
Collapse
|
21
|
Wu L, Li Y, Hua X, Ye L, Yuan C, Liu Z, Zhang HL, Shao X. Radical Cation Salts of Hetera-Buckybowls: Polar Crystals, Negative Thermal Expansion and Phase Transition. Angew Chem Int Ed Engl 2024; 63:e202319587. [PMID: 38226832 DOI: 10.1002/anie.202319587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/17/2024]
Abstract
Radical cation salts of π-conjugated polycycles are rich in physical properties. Herein, two kinds of hetera-buckybowls, ethoxy-substituted trithiasumanene (3SEt) and triselenasumanene (3SeEt), are synthesized as electron donors. Galvanostatic oxidation of them affords radical cation salts (3SEt)5 (TTFMPB)3 , (3SeEt)5 (TTFMPB)3 , (3SEt)4 PMA, and (3SeEt)4 PMA, where PMA is Keggin-type phosphomolybdate and TTFMPB is tetrakis[3,5-bis(trifluoromethyl)-phenyl]borate. In these salts, 3SEt/3SeEt are partially charged and show distinct conformation change with the site charge and counter anions. In TTFMPB salts, (TTFMPB)- forms hexagonal channels that accommodate the packing columns of 3SEt/3SeEt. In particular, (3SEt)5 (TTFMPB)3 adopts the R3c space group and is a polar crystal with the columns of 3SEt all in the up-bowl direction. The PMA salts of 3SEt/3SeEt are polar crystals (C2 space group) with 3SEt/3SeEt being planar and forming columnar stacks. (3SeEt)4 PMA shows a structural modulation below 200 K, namely, negative thermal expansion (NTE) of the unit cell volume and enlargement of the intermolecular distances between neighboring 3SeEt molecules. The four salts are semiconductors with an activation energy of 0.18-0.38 eV. The conductivity of (3SeEt)4 PMA shows a reversible transition upon cooling and heating, in accordance to the NTE structural modulation. This work paves the way toward conducting materials based on hetera-buckybowls.
Collapse
Affiliation(s)
- Lingxi Wu
- Research Center for Free Radical Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, 730000, Gansu Province, China
| | - Yecheng Li
- Research Center for Free Radical Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, 730000, Gansu Province, China
| | - Xinqiang Hua
- Research Center for Free Radical Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, 730000, Gansu Province, China
| | - Lei Ye
- Research Center for Free Radical Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, 730000, Gansu Province, China
| | - Chengshan Yuan
- Research Center for Free Radical Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, 730000, Gansu Province, China
| | - Zitong Liu
- Research Center for Free Radical Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, 730000, Gansu Province, China
| | - Hao-Li Zhang
- Research Center for Free Radical Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, 730000, Gansu Province, China
| | - Xiangfeng Shao
- Research Center for Free Radical Chemistry, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Tianshui Southern Road 222, Lanzhou, 730000, Gansu Province, China
| |
Collapse
|
22
|
Ruan L, Luo W, Zhang H, Liu P, Shi Y, An P. Cycl[2,2,4]azine-embedded non-alternant nanographenes containing fused antiaromatic azepine ring. Chem Sci 2024; 15:1511-1519. [PMID: 38274082 PMCID: PMC10806646 DOI: 10.1039/d3sc05515a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024] Open
Abstract
The development of non-alternant nanographenes has attracted considerable attention due to their unique photophysical properties. Herein, we reported a novel aza-doped, non-alternant nanographene (NG) 1 by embedding the cycl[2,2,4]azine unit into the benzenoid NG framework. Single-crystal X-ray diffractometry suggests saddle or twisted nonplanar geometry of the entire backbone of 1 and coplanar conformation of the cycl[2,2,4]azine unit. DFT calculation together with solid structure indicates that NG 1 possesses significant local antiaromaticity in the azepine ring. By oxidative process or trifluoroacetic acid treatment, this nanographene can transform into a mono-radical cation, which was confirmed by UV/Vis absorption, 1H NMR, and electron paramagnetic resonance (EPR) spectroscopy. The antiaromaticity/aromaticity switching of the azepine ring on 1˙+ from 1 enables the high stability of this radical cation, which remained intact for over 1 day. Due to the electron-donating nature of the nitrogen and the unique electronic structure, NG 1 exhibits strong electron-donating properties, as proved by the intermolecular charge transfer towards C60 with a high association constant. Furthermore, selective modification of NG 1 was accomplished by Vilsmeier reaction, and the derivatives 7 and 8 with substituted benzophenone were obtained. The photophysical and electronic properties can be tuned by the introduction of different electronic groups in benzophenone.
Collapse
Affiliation(s)
- Lan Ruan
- School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| | - Wanhua Luo
- School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| | - Haifan Zhang
- School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| | - Peng Liu
- School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| | - Yong Shi
- School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| | - Peng An
- School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University Kunming 650091 P. R. China
| |
Collapse
|
23
|
Khalid MI, Salem MSH, Takizawa S. Synthesis and Structural and Optical Behavior of Dehydrohelicene-Containing Polycyclic Compounds. Molecules 2024; 29:296. [PMID: 38257209 PMCID: PMC10819569 DOI: 10.3390/molecules29020296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Dehydrohelicene-based molecules stand out as highly promising scaffolds and captivating chiroptical materials, characterized by their unique chirality. Their quasi-helical π-conjugated molecular architecture, featuring successively ortho-annulated aromatic rings, endows them with remarkable thermal stability and optical properties. Over the past decade, diverse approaches have emerged for synthesizing these scaffolds, reinvigorating this field, with anticipated increased attention in the coming years. This review provides a comprehensive overview of the historical evolution of dehydrohelicene chemistry since the pioneering work of Zander and Franke in 1969 and highlights recent advancements in the synthesis of various molecules incorporating dehydrohelicene motifs. We elucidate the intriguing structural features and optical merits of these molecules, occasionally drawing comparisons with their helicene or circulene analogs to underscore the significance of the bond between the helical termini.
Collapse
Affiliation(s)
- Md. Imrul Khalid
- SANKEN, Osaka University, Mihogaoka, Ibaraki-shi 567-0047, Osaka, Japan; (M.I.K.); (M.S.H.S.)
- Organic and Carbon Nanomaterials Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan
| | - Mohamed S. H. Salem
- SANKEN, Osaka University, Mihogaoka, Ibaraki-shi 567-0047, Osaka, Japan; (M.I.K.); (M.S.H.S.)
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Shinobu Takizawa
- SANKEN, Osaka University, Mihogaoka, Ibaraki-shi 567-0047, Osaka, Japan; (M.I.K.); (M.S.H.S.)
| |
Collapse
|
24
|
Liu B, Chen M, Liu X, Fu R, Zhao Y, Duan Y, Zhang L. Bespoke Tailoring of Graphenoid Sheets: A Rippled Molecular Carbon Comprising Cyclically Fused Nonbenzenoid Rings. J Am Chem Soc 2023; 145:28137-28145. [PMID: 38095317 DOI: 10.1021/jacs.3c10303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
The incorporation of nonbenzenoid rings into the hexagonal networks of graphenoid nanostructures is of immense importance for electronic, magnetic, and mechanical properties, but the underlying mechanisms of nonbenzenoid ring fusion are rather unexplored. Here, we report the synthesis and characterization of a rippled C84 molecular carbon, which contains 10 nonbenzenoid rings (five-, seven-, and eight-membered rings) that are contiguously fused to give a cyclic geometry. The fused nonbenzenoid rings impart high solubility, configurational stability, multiple reversible redox behaviors, unique aromaticity, and a narrow band gap to the system. Moreover, this carbon nanostructure allows for further functionalization via electrophilic substitution and metalation reactions, enabling access to finely tuned derivatives. Interestingly, both the bowl-shaped and planar conformations of the core in molecular carbon are observed in the solid state. Additionally, this molecular carbon displays ambipolar transport characteristics.
Collapse
Affiliation(s)
- Binbin Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Meng Chen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xinyue Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ruihua Fu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yubo Zhao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuxiao Duan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lei Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
25
|
Zhao M, Chen S, He C, Zhou Y. Synthesis, Structure, and Properties of a Nitrogen-Boron-Nitrogen-Embedded Polycyclic π-System Containing a Pleiaheptalene Framework. Org Lett 2023. [PMID: 38015797 DOI: 10.1021/acs.orglett.3c03311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
A novel polycyclic π-system (1) featuring both a pleiaheptalene framework (a three-fused heptagon system) and nitrogen-boron-nitrogen (NBN) unit was constructed by electrophilic borylation. A combined experimental and computational study demonstrated that 1 has a highly twisted π-backbone with approximate C2 symmetry, which can undergo conformational isomerization at room temperature in contrast to pleiaheptalene. It was also found that 1 can bind the fluoride ion in the solution, which induces changes in the absorption and emission spectra.
Collapse
Affiliation(s)
- Mengna Zhao
- College of Life Science, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Shuaishuai Chen
- College of Life Science, China Jiliang University, Hangzhou, Zhejiang 310018, China
| | - Chun He
- Apeloa Pharmaceutical Co., Ltd., Dongyang, Zhejiang 322118, China
| | - Yifeng Zhou
- College of Life Science, China Jiliang University, Hangzhou, Zhejiang 310018, China
| |
Collapse
|
26
|
Wang MW, Fan W, Li X, Liu Y, Li Z, Jiang W, Wu J, Wang Z. Molecular Carbons: How Far Can We Go? ACS NANO 2023; 17:20734-20752. [PMID: 37889626 DOI: 10.1021/acsnano.3c07970] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
The creation and development of carbon nanomaterials promoted material science significantly. Bottom-up synthesis has emerged as an efficient strategy to synthesize atomically precise carbon nanomaterials, namely, molecular carbons, with various sizes and topologies. Different from the properties of the feasibly obtained mixture of carbon nanomaterials, numerous properties of single-component molecular carbons have been discovered owing to their well-defined structures as well as potential applications in various fields. This Perspective introduces recent advances in molecular carbons derived from fullerene, graphene, carbon nanotube, carbyne, graphyne, and Schwarzite carbon acquired with different synthesis strategies. By selecting a variety of representative examples, we elaborate on the relationship between molecular carbons and carbon nanomaterials. We hope these multiple points of view presented may facilitate further advancement in this field.
Collapse
Affiliation(s)
- Ming-Wei Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Wei Fan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Xiaonan Li
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yujian Liu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zuoyu Li
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Wei Jiang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jishan Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Zhaohui Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
- Laboratory of Flexible Electronic Technology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
27
|
Yuan L, Yang J, Qi S, Liu Y, Tian X, Jia T, Wang Y, Dou C. Diradicaloid Boron-Doped Molecular Carbons Achieved by Pentagon-Fusion. Angew Chem Int Ed Engl 2023:e202314982. [PMID: 37924227 DOI: 10.1002/anie.202314982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/06/2023]
Abstract
Molecular carbons (MCs) are molecular cutouts of carbon materials. Doping with heteroatoms and constructing open-shell structures are two powerful approaches to achieve unexpected and unique properties of MCs. Herein, we disclose a new strategy to design open-shell boron-doped MCs (BMCs), namely by pentagon-fusion of an organoborane π-system. We synthesized two diradicaloid BMC molecules that feature C24 B and C38 B π-skeletons containing a pentagonal ring. A thorough investigation reveals that such pentagon-fusion not only leads to their local antiaromaticity, but also incorporates an internal quinoidal substructure and thereby induces open-shell singlet diradical states. Moreover, their fully fused structures enable efficient π conjugation, which is expanded over the whole frameworks. Consequently, some intriguing physical properties are achieved, such as narrow energy gaps, very broad light absorptions, and superior photothermal capability, along with excellent photostability. Notably, the solid of the C38 B molecule exhibits absorption that covers the range of 300-1200 nm and an efficiency of 93.5 % for solar-driven water evaporation, thus demonstrating the potential of diradicaloid BMCs as high-performance organic photothermal materials.
Collapse
Affiliation(s)
- Liuzhong Yuan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, P. R. China
| | - Jingyuan Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, P. R. China
| | - Shuo Qi
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040, Harbin, P. R. China
| | - Yujia Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, P. R. China
| | - Xinyu Tian
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, P. R. China
| | - Tao Jia
- Key Laboratory of Forest Plant Ecology, Ministry of Education, College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, 150040, Harbin, P. R. China
| | - Yue Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, P. R. China
| | - Chuandong Dou
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, P. R. China
| |
Collapse
|
28
|
Yamada KE, Stepek IA, Matsuoka W, Ito H, Itami K. Synthesis of Heptagon-Containing Polyarenes by Catalytic C-H Activation. Angew Chem Int Ed Engl 2023:e202311770. [PMID: 37902441 DOI: 10.1002/anie.202311770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/13/2023] [Accepted: 10/30/2023] [Indexed: 10/31/2023]
Abstract
Nanocarbons incorporating non-hexagonal aromatic rings - such as five-, seven-, and eight-membered rings - have various intriguing physical properties such as curved structures, unique one-dimensional packing, and promising magnetic, optical, and conductivity properties. Herein, we report an efficient synthetic approach to polycyclic aromatics containing seven-membered rings via a palladium-catalyzed intramolecular Ar-H/Ar-Br coupling. In addition to all-hydrocarbon scaffolds, heteroatom-embedded heptagon-containing polyarenes can be efficiently constructed with this method. Rhodium- and palladium-catalyzed sequential six- and seven-membered ring formations also afford complex heptagon-containing molecular nanocarbons from readily available arylacetylenes and biphenyl boronic acids. Detailed mechanistic analysis by DFT calculations showed the feasibility of seven-membered ring formation by a concerted metalation-deprotonation mechanism. This reaction can serve as a template for the synthesis of a wide range of seven-membered ring-containing molecular nanocarbons.
Collapse
Affiliation(s)
- Keigo E Yamada
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Iain A Stepek
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Wataru Matsuoka
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Hideto Ito
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Kenichiro Itami
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| |
Collapse
|
29
|
Wang K, Rao Y, Xu L, Zhou M, Aratani N, Osuka A, Song J. Post-Installation of Fused Benzoheptagons at the Periphery of NiII Porphyrins: Helical Structures and Conformation-Adjustable Fullerenes Binding. Chemistry 2023; 29:e202301955. [PMID: 37518990 DOI: 10.1002/chem.202301955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/01/2023]
Abstract
Fused-benzoheptagon-installed NiII porphyrins were synthesized by a protocol consisting of (2-formyl)arylation at the meso-position(s) of NiII porphyrins, conversion of formyl group to methoxyethene group by Wittig reaction, and final Bi(OTf)3 -catalyzed cyclization. The structures of these porphyrins have been revealed by X-ray analysis. Owing to the installed heptagon ring(s), these porphyrins show curved structures with conformational flexibility. Dimer has been shown to have a small activation barrier for inversion and to capture C60 and C70 with large association constants with adjustable conformational changes.
Collapse
Affiliation(s)
- Kaisheng Wang
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional molecules of Hunan Province, Hunan Normal University, Changsha, 410081, China
| | - Yutao Rao
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional molecules of Hunan Province, Hunan Normal University, Changsha, 410081, China
| | - Ling Xu
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional molecules of Hunan Province, Hunan Normal University, Changsha, 410081, China
| | - Mingbo Zhou
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional molecules of Hunan Province, Hunan Normal University, Changsha, 410081, China
| | - Naoki Aratani
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama-cho, Ikoma, 630-0192, Japan
| | - Atsuhiro Osuka
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional molecules of Hunan Province, Hunan Normal University, Changsha, 410081, China
| | - Jianxin Song
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), Key Laboratory of the Assembly and Application of Organic Functional molecules of Hunan Province, Hunan Normal University, Changsha, 410081, China
| |
Collapse
|
30
|
Qi Z, Shang H, Ji B, Shi Y, Ye T, Li Y, Xiao J. Heptagon-Embedded Helicene Derivatives: Synthesis, Crystal Structural Analyses, and Circularly Polarized Luminescence. J Org Chem 2023; 88:14550-14558. [PMID: 37812747 DOI: 10.1021/acs.joc.3c01563] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Two pairs of isomers of heptagon-embedded helical arenes (3/6 and 10/13) have been strategically prepared, where the molecular structures of 3 and 13 have been identified through single crystal X-ray diffraction analysis. The effect of the heptagon unit on the physical properties of 3, 6, 10, and 13 is investigated in a comparative manner, and the results indicate that the optical enantiomers of 13 obtained from HPLC exhibit promising chiroptical properties.
Collapse
Affiliation(s)
- Zewei Qi
- College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, P. R. China
| | - Honglin Shang
- Department of Physics, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Bingliang Ji
- College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, P. R. China
| | - Yanwei Shi
- College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, P. R. China
| | - Tongtong Ye
- College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, P. R. China
| | - Yiming Li
- College of Chemistry and Materials Science, Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding 071002, P. R. China
| | | |
Collapse
|
31
|
Yu IF, Wilson JW, Hartwig JF. Transition-Metal-Catalyzed Silylation and Borylation of C-H Bonds for the Synthesis and Functionalization of Complex Molecules. Chem Rev 2023; 123:11619-11663. [PMID: 37751601 DOI: 10.1021/acs.chemrev.3c00207] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
The functionalization of C-H bonds in organic molecules containing functional groups has been one of the holy grails of catalysis. One synthetically important approach to the diverse functionalization of C-H bonds is the catalytic silylation or borylation of C-H bonds, which enables a broad array of downstream transformations to afford diverse structures. Advances in both undirected and directed methods for the transition-metal-catalyzed silylation and borylation of C-H bonds have led to their rapid adoption in early-, mid-, and late-stage of the synthesis of complex molecules. In this Review, we review the application of the transition-metal-catalyzed silylation and borylation of C-H bonds to the synthesis of bioactive molecules, organic materials, and ligands. Overall, we aim to provide a picture of the state of art of the silylation and borylation of C-H bonds as applied to the synthesis and modification of diverse architectures that will spur further application and development of these reactions.
Collapse
Affiliation(s)
- Isaac F Yu
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Jake W Wilson
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - John F Hartwig
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
32
|
Duan Y, Chen M, Hayashi H, Yamada H, Liu X, Zhang L. Buckybowl and its chiral hybrids featuring eight-membered rings and helicene units. Chem Sci 2023; 14:10420-10428. [PMID: 37800001 PMCID: PMC10548505 DOI: 10.1039/d3sc00658a] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/07/2023] [Indexed: 10/07/2023] Open
Abstract
Here we report the synthesis of a novel buckybowl (7) with a high bowl-to-bowl inversion barrier (ΔG‡ = 38 kcal mol-1), which renders the rate of inversion slow enough at room temperature to establish two chiral polycyclic aromatic hydrocarbons (PAHs). By strategic fusion of eight-membered rings to the rim of 7, the chiral hybrids 8 and 9 are synthesized and display helicity and positive and negative curvature, allowing the enantiomers to be configurationally stable and their chiroptical properties are thoroughly examined. Computational and experimental studies reveal the enantiomerization mechanisms for the chiral hybrids and demonstrate that the eight-membered ring strongly affects the conformational stability. Because of its static and doubly curved conformation, 9 shows a high binding affinity towards C60. The OFET performance of 7-9 could be tuned and the hybrids show ambipolar characteristics. Notably, the 9·C60 cocrystal exhibits well-balanced ambipolar performance with electron and hole mobilities of up to 0.19 and 0.11 cm2 V-1 s-1, respectively. This is the first demonstration of a chiral curved PAH and its complex with C60 for organic devices. Our work presents new insight into buckybowl-based design of PAHs with configurational stability and intriguing optoelectronic properties.
Collapse
Affiliation(s)
- Yuxiao Duan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Meng Chen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Hironobu Hayashi
- Division of Materials Science Nara Institute of Science and Technology (NAIST) 8916-5 Takayama-cho Ikoma Nara 630-0192 Japan
| | - Hiroko Yamada
- Division of Materials Science Nara Institute of Science and Technology (NAIST) 8916-5 Takayama-cho Ikoma Nara 630-0192 Japan
| | - Xinyue Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Lei Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology Beijing 100029 P. R. China
| |
Collapse
|
33
|
Li P, Jia Y, Chen P. Design and Synthesis of New Type of Macrocyclic Architectures Used for Optoelectronic Materials and Supramolecular Chemistry. Chemistry 2023; 29:e202300300. [PMID: 37439485 DOI: 10.1002/chem.202300300] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/08/2023] [Accepted: 07/13/2023] [Indexed: 07/14/2023]
Abstract
Supramolecular chemistry has received much attention for decades. Macrocyclic architectures as representative receptors play a vital role in supramolecular chemistry and are applied in many fields such as supramolecular assembly and host-guest recognition. However, the classical macrocycles generally lack functional groups in the scaffolds, which limit their further applications, especially in optoelectronic materials. Therefore, developing a new design principle is not only essential to better understand macrocyclic chemistry and the supramolecular behaviors, but also further expand their applications in many research fields. In recent years, the doping compounds with main-group heteroatoms (B, N, S, O, P) into the carbon-based π-conjugated macrocycles offered a new strategy to build macrocyclic architectures with unique optoelectronic properties. In particular, the energy gaps and redox behavior can be effectively tuned by incorporating heteroatoms into the macrocyclic scaffolds. In this Minireview, we briefly summarize the design and synthesis of new macrocycles, and further discuss the related applications in optoelectronic materials and supramolecular chemistry.
Collapse
Affiliation(s)
- Pengfei Li
- School of Chemistry and Material Engineering, Henan University of Urban Construction, Pingdingshan, 467036, Henan Province, P. R. China
| | - Yawei Jia
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| |
Collapse
|
34
|
Qin L, Huang YY, Wu B, Pan J, Yang J, Zhang J, Han G, Yang S, Chen L, Yin Z, Shu Y, Jiang L, Yi Y, Peng Q, Zhou X, Li C, Zhang G, Zhang XS, Wu K, Zhang D. Diazulenorubicene as a Non-benzenoid Isomer of peri-Tetracene with Two Sets of 5/7/5 Membered Rings Showing Good Semiconducting Properties. Angew Chem Int Ed Engl 2023; 62:e202304632. [PMID: 37338996 DOI: 10.1002/anie.202304632] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 06/22/2023]
Abstract
Non-benzenoid polycyclic aromatic hydrocarbons (PAHs) have received a lot of attention because of their unique optical, electronic, and magnetic properties, but their synthesis remains challenging. Herein, we report a non-benzenoid isomer of peri-tetracene, diazulenorubicene (DAR), with two sets of 5/7/5 membered rings synthesized by a (3+2) annulation reaction. Compared with the precursor containing only 5/7 membered rings, the newly formed five membered rings switch the aromaticity of the original heptagon/pentagon from antiaromatic/aromatic to non-aromatic/antiaromatic respectively, modify the intermolecular packing modes, and lower the LUMO levels. Notably, compound 2 b (DAR-TMS) shows p-type semiconducting properties with a hole mobility up to 1.27 cm2 V-1 s-1 . Moreover, further extension to larger non-benzenoid PAHs with 19 rings was achieved through on-surface chemistry from the DAR derivative with one alkynyl group.
Collapse
Affiliation(s)
- Liyuan Qin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yan-Ying Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Botao Wu
- College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
| | - Jinliang Pan
- College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
| | - Junfang Yang
- School of Chemical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jing Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Guangchao Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Suyu Yang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Liangliang Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Zheng Yin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yilin Shu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Lang Jiang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Yuanping Yi
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Qian Peng
- School of Chemical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiong Zhou
- College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
| | - Cheng Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Guanxin Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
| | - Xi-Sha Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 730000, Lanzhou, China
| | - Kai Wu
- College of Chemistry and Molecular Engineering, Peking University, 100871, Beijing, China
| | - Deqing Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids, CAS Center of Excellence in Molecular Science, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| |
Collapse
|
35
|
Wang C, Deng Z, Phillips DL, Liu J. Extension of Non-alternant Nanographenes Containing Nitrogen-Doped Stone-Thrower-Wales Defects. Angew Chem Int Ed Engl 2023; 62:e202306890. [PMID: 37421410 DOI: 10.1002/anie.202306890] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/10/2023]
Abstract
Non-alternant topologies have attracted considerable attention due to their unique physiochemical characteristics in recent years. Here, three novel topological nanographenes molecular models of nitrogen-doped Stone-Thrower-Wales (S-T-W) defects were achieved through intramolecular direct arylation. Their chemical structures were unambiguously elucidated by single-crystal analysis. Among them, threefold intramolecular direct arylation compound (C42 H21 N) is the largest nanographene bearing a N-doped non-alternant topology to date, in which the non-benzenoid rings account for 83 % of the total molecular skeleton. The absorption maxima of this compound was located in the near-infrared region with a long tail up to 900 nm, which was much longer than those reported for similarly sized N-doped nanographene with six-membered rings (C40 H15 N). In addition, the electronic energy gaps of these series compounds clearly decreased with the introduction of non-alternant topologies (from 2.27 eV to 1.50 eV). It is noteworthy that C42 H21 N possesses such a low energy gap (Eg opt =1.40 eV; Eg cv =1.50 eV), yet is highly stable under ambient conditions. Our work reported herein demonstrates that the non-alternant topology could significantly influence the electronic configurations of nanocarbons, where the introduction of a non-alternanting topology may be an effective way to narrow the energy gap without extending the molecular π-conjugation.
Collapse
Affiliation(s)
- Chang Wang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, China
| | - Ziqi Deng
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| | - David Lee Phillips
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| | - Junzhi Liu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| |
Collapse
|
36
|
Nishimura Y, Harimoto T, Suzuki T, Ishigaki Y. One-Pot Synthesis of Helical Azaheptalene and Chiroptical Switching of an Isolable Radical Cation. Chemistry 2023; 29:e202301759. [PMID: 37280181 DOI: 10.1002/chem.202301759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 06/08/2023]
Abstract
A nitrogen-centered heptalene, azaheptalene, was designed as a representative of a new class of redox-responsive molecules with a large steric strain that originates from the adjacent seven-membered rings. The pentabenzo derivative of azaheptalene was efficiently synthesized by a palladium-catalyzed one-pot reaction of commercially available reagents. Bromination led to mono- and dibrominated derivatives, the latter of which is interconvertible with isolable radical cation species exhibiting near-infrared absorption. Since the azaheptalene skeleton shows configurationally stable helicity with a large torsion angle, enantiomers could be successfully separated. Thus, optically pure azaheptalenes with P- or M-helicity showed strong chiroptical properties (|gabs |≥0.01), which could be changed by an electric potential.
Collapse
Affiliation(s)
- Yuta Nishimura
- Department of Chemistry, Faculty of Science, Hokkaido University, N10 W8, North-ward, 060-0810, Sapporo, Japan
| | - Takashi Harimoto
- Department of Chemistry, Faculty of Science, Hokkaido University, N10 W8, North-ward, 060-0810, Sapporo, Japan
| | - Takanori Suzuki
- Department of Chemistry, Faculty of Science, Hokkaido University, N10 W8, North-ward, 060-0810, Sapporo, Japan
| | - Yusuke Ishigaki
- Department of Chemistry, Faculty of Science, Hokkaido University, N10 W8, North-ward, 060-0810, Sapporo, Japan
| |
Collapse
|
37
|
Li R, Ma B, Li S, Lu C, An P. Chalcogen-doped, ( seco)-hexabenzocoronene-based nanographenes: synthesis, properties, and chalcogen extrusion conversion. Chem Sci 2023; 14:8905-8913. [PMID: 37621425 PMCID: PMC10445433 DOI: 10.1039/d3sc02595k] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/16/2023] [Indexed: 08/26/2023] Open
Abstract
A series of chalcogen-doped nanographenes (NGs) and their oxides are described. Their molecular design is conceptually based on the insertion of different chalcogens into the hexa-peri-hexabenzocoronene (HBC) backbone. All the NGs adopt nonplanar conformations, which would show better solubility compared to planar HBC. Except for the oxygen-doped, saddle-shaped NG, the insertion of large chalcogens like sulfur and selenium leads to a seco-HBC-based, helical geometry. All the three-dimensional structures are unambiguously confirmed by single-crystal X-ray diffractometry. Their photophysical properties including UV-vis absorption, fluorescence, chiroptical, charge distribution, and orbital gaps are investigated experimentally or theoretically. The properties of each structure are significantly affected by the doped chalcogen and its related oxidative state. Notably, upon heating or adding an acid, the selenium-doped NG or its oxide undergoes a selenium extrusion reaction to afford seco-HBC or HBC quantitatively, which can be treated as precursors of hydrocarbon HBCs.
Collapse
Affiliation(s)
- Ranran Li
- School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| | - Bin Ma
- School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| | - Shengtao Li
- School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| | - Chongdao Lu
- School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| | - Peng An
- School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University Kunming 650091 P. R. China
| |
Collapse
|
38
|
Luo H, Wan Q, Choi W, Tsutsui Y, Dmitrieva E, Du L, Phillips DL, Seki S, Liu J. Two-Step Synthesis of B 2 N 2 -Doped Polycyclic Aromatic Hydrocarbon Containing Pentagonal and Heptagonal Rings with Long-Lived Delayed Fluorescence. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301769. [PMID: 37093207 DOI: 10.1002/smll.202301769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/03/2023] [Indexed: 05/03/2023]
Abstract
Pentagon-heptagon embedded polycyclic aromatic hydrocarbons (PAHs) have aroused increasing attention in recent years due to their unique physicochemical properties. Here, for the first time, this report demonstrates a facile method for the synthesis of a novel B2 N2 -doped PAH (BN-2) containing two pairs of pentagonal and heptagonal rings in only two steps. In the solid state of BN-2, two different conformations, including saddle-shaped and up-down geometries, are observed. Through a combined spectroscopic and calculation study, the excited-state dynamics of BN-2 is well-investigated in this current work. The resultant pentagon-heptagon embedded B2 N2 -doped BN-2 displays both prompt fluorescence and long-lived delayed fluorescence components at room temperature, with the triplet excited-state lifetime in the microsecond time region (τ = 19 µs). The triplet-triplet annihilation is assigned as the mechanism for the observed long-lived delayed fluorescence. Computational analyses attributed this observation to the small energy separation between the singlet and triplet excited states, facilitating the intersystem crossing (ISC) process which is further validated by the ultrafast spectroscopic measurements.
Collapse
Affiliation(s)
- Huan Luo
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, China
| | - Qingyun Wan
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| | - Wookjin Choi
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Yusuke Tsutsui
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Evgenia Dmitrieva
- Leibniz Institute for Solid State and Materials Research (IFW) Dresden, Helmholtzstr. 20, 01069, Dresden, Germany
| | - Lili Du
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - David Lee Phillips
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| | - Shu Seki
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Junzhi Liu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| |
Collapse
|
39
|
Diaz-Andres A, Marín-Beloqui J, Wang J, Liu J, Casado J, Casanova D. Rational design of anti-Kasha photoemission from a biazulene core embedded in an antiaromatic/aromatic hybrid. Chem Sci 2023; 14:6420-6429. [PMID: 37325150 PMCID: PMC10266467 DOI: 10.1039/d3sc00405h] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
The violation of the Kasha photoemission rule in organic molecules has intrigued chemists since their discovery, being always of relevance given its connection with unique electronic properties of molecules. However, an understanding of the molecular structure-anti-Kasha property relationship in organic materials has not been well-established, possibly because of the few existing cases available, limiting their prospective exploration and ad hoc design. Here we introduce a novel strategy to design organic emitters from high excited states combining intramolecular J-coupling of anti-Kasha chromophores with the hindering of vibrationally-induced non-radiative decay channels by enforcing molecular rigidity. We apply our approach to the integration of two antiparallel azulene units bridged with one heptalene all inserted into a polycyclic conjugated hydrocarbon (PCH). With the help of quantum chemistry calculations, we identify a suitable PCH embedding structure and predict its anti-Kasha emission from the third high energy excited singlet state. Finally, steady fluorescence and transient absorption spectroscopy studies corroborate the photophysical properties in a recently synthesized chemical derivative with this pre-designed structure.
Collapse
Affiliation(s)
- Aitor Diaz-Andres
- Donostia International Physics Center (DIPC) 20018 Donostia Euskadi Spain
| | - Jose Marín-Beloqui
- Department of Physical Chemistry, University of Malaga Campus de Teatinos s/n 29071 Malaga Spain
| | - Junting Wang
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong China
| | - Junzhi Liu
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong China
| | - Juan Casado
- Department of Physical Chemistry, University of Malaga Campus de Teatinos s/n 29071 Malaga Spain
| | - David Casanova
- Donostia International Physics Center (DIPC) 20018 Donostia Euskadi Spain
- IKERBASQUE - Basque Foundation for Science 48009 Bilbao Euskadi Spain
| |
Collapse
|
40
|
Sharma PK, Babbar A, Mallick D, Das S. Constructing 1-Ethoxyphenanthro[9,10- e]acephenanthrylene for the Synthesis of a Polyaromatic Hydrocarbon Containing a Formal Azulene Unit. J Org Chem 2023; 88:5473-5482. [PMID: 37040656 DOI: 10.1021/acs.joc.2c03103] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
peri-Acenoacenes are attractive synthetic targets, but their non-benzenoid isomeric counterparts were unnoticed. 1-Ethoxyphenanthro[9,10-e]acephenanthrylene 8 was synthesized and converted to azulene-embedded 9, which is a tribenzo-fused non-alternant isomeric motif of peri-anthracenoanthracene. Aromaticity and single-crystal analyses suggested a formal azulene core for 9, which showed a smaller highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) energy gap with a charge-transfer absorption band and brighter fluorescence than 8 (quantum yield (Φ): 9 = 41.8%, 8 = 8.9%). The reduction potentials of 8 and 9 were nearly identical, and the observations were further supported by density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Priyank Kumar Sharma
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| | - Akanksha Babbar
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| | - Dibyendu Mallick
- Department of Chemistry, Presidency University, Kolkata 700073, India
| | - Soumyajit Das
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, Punjab, India
| |
Collapse
|
41
|
Fujishiro K, Morinaka Y, Ono Y, Tanaka T, Scott LT, Ito H, Itami K. Lithium-Mediated Mechanochemical Cyclodehydrogenation. J Am Chem Soc 2023; 145:8163-8175. [PMID: 37011146 DOI: 10.1021/jacs.3c01185] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Cyclodehydrogenation is an essential synthetic method for the preparation of polycyclic aromatic hydrocarbons, polycyclic heteroaromatic compounds, and nanographenes. Among the many examples, anionic cyclodehydrogenation using potassium(0) has attracted synthetic chemists because of its irreplaceable reactivity and utility in obtaining rylene structures from binaphthyl derivatives. However, existing methods are difficult to use in terms of practicality, pyrophoricity, and lack of scalability and applicability. Herein, we report the development of a lithium(0)-mediated mechanochemical anionic cyclodehydrogenation reaction for the first time. This reaction could be easily performed using a conventional and easy-to-handle lithium(0) wire at room temperature, even under air, and the reaction of 1,1'-binaphthyl is complete within 30 min to afford perylene in 94% yield. Using this novel and user-friendly protocol, we investigated substrate scope, reaction mechanism, and gram-scale synthesis. As a result, remarkable applicability and practicality over previous methods, as well as limitations, were comprehensively studied by computational studies and nuclear magnetic resonance analysis. Furthermore, we demonstrated two-, three-, and five-fold cyclodehydrogenations for the synthesis of novel nanographenes. In particular, quinterrylene ([5]rylene or pentarylene), the longest nonsubstituted molecular rylene, was synthesized for the first time.
Collapse
Affiliation(s)
- Kanna Fujishiro
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Yuta Morinaka
- Tokyo Research Center, Organic Materials Research Laboratory, Tosoh Corporation, 2743-1 Hayakawa, Ayase, Kanagawa 252-1123, Japan
| | - Yohei Ono
- Tokyo Research Center, Organic Materials Research Laboratory, Tosoh Corporation, 2743-1 Hayakawa, Ayase, Kanagawa 252-1123, Japan
| | - Tsuyoshi Tanaka
- Tosoh Corporation, 3-8-2 Shiba, Minato-ku, Tokyo 105-8623, Japan
| | - Lawrence T Scott
- Department of Chemistry, University of Nevada, Reno, Nevada 89557-0216, United States
| | - Hideto Ito
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
| | - Kenichiro Itami
- Department of Chemistry, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya 464-8602, Japan
| |
Collapse
|
42
|
Ejlli B, Rominger F, Freudenberg J, Bunz UHF, Müllen K. Ring-Expanding Rearrangement of Benzo-Fused Tris-Cycloheptenylenes towards Nonplanar Polycyclic Aromatic Hydrocarbons. Chemistry 2023; 29:e202203735. [PMID: 36602008 DOI: 10.1002/chem.202203735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/06/2023]
Abstract
A strongly twisted benzo-fused tris-cycloheptenylene, containing three dibenzosuberenone units fused to a common benzene ring, was subjected to Ramirez olefination and subsequent palladium-catalyzed Suzuki-Miyaura cross-coupling with 4-substituted phenylboronic acids. The high steric demand within the overcrowded, benzene-rich benzo-fused tris-cycloheptenylenes enforced an unprecedented 1,2-rearrangement upon π-extension during the Suzuki coupling reaction. According to crystal structure analysis, the resulting negatively curved polycyclic aromatic hydrocarbons consist of two heptagons and one octagon surrounding a central benzene ring as a result of strain release. In the solid state, the materials exhibit a blue to blue-green fluorescence with increased quantum yields and a hypsochromic shift of the emission maxima compared to their respective solutions.
Collapse
Affiliation(s)
- Barbara Ejlli
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.,Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Jan Freudenberg
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany.,InnovationLab, Speyerer Strasse 4, 69115, Heidelberg, Germany
| | - Uwe H F Bunz
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany.,Centre for Advanced Materials, Im Neuenheimer Feld 225, 69120, Heidelberg, Germany
| | - Klaus Müllen
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| |
Collapse
|
43
|
Krzeszewski M, Dobrzycki Ł, Sobolewski AL, Cyrański MK, Gryko DT. Saddle-shaped aza-nanographene with multiple odd-membered rings. Chem Sci 2023; 14:2353-2360. [PMID: 36873850 PMCID: PMC9977460 DOI: 10.1039/d2sc05858h] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/03/2023] [Indexed: 01/05/2023] Open
Abstract
A saddle-shaped aza-nanographene containing a central 1,4-dihydropyrrolo[3,2-b]pyrrole (DHPP) has been prepared via a rationally designed four-step synthetic pathway encompassing intramolecular direct arylation, the Scholl reaction, and finally photo-induced radical cyclization. The target non-alternant, nitrogen-embedded polycyclic aromatic hydrocarbon (PAH) incorporates two abutting pentagons between four adjacent heptagons forming unique 7-7-5-5-7-7 topology. Such a combination of odd-membered-ring defects entails a negative Gaussian curvature within its surface with a significant distortion from planarity (saddle height ≈ 4.3 Å). Its absorption and fluorescence maxima are located in the orange-red region, with weak emission originating from the intramolecular charge-transfer character of a low-energy absorption band. Cyclic voltammetry measurements revealed that this stable under ambient conditions aza-nanographene underwent three fully reversible oxidation steps (two one-electron followed by one two-electron) with an exceptionally low first oxidation potential of E ox1 = -0.38 V (vs. Fc/Fc+).
Collapse
Affiliation(s)
- Maciej Krzeszewski
- Institute of Organic Chemistry, Polish Academy of Sciences Kasprzaka 44-52 01-224 Warsaw Poland
| | - Łukasz Dobrzycki
- Faculty of Chemistry, University of Warsaw Żwirki i Wigury 101 02-089 Warsaw Poland
| | - Andrzej L Sobolewski
- Institute of Physics, Polish Academy of Sciences Al. Lotników 32/46 02-668 Warsaw Poland
| | - Michał K Cyrański
- Faculty of Chemistry, University of Warsaw Żwirki i Wigury 101 02-089 Warsaw Poland
| | - Daniel T Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences Kasprzaka 44-52 01-224 Warsaw Poland
| |
Collapse
|
44
|
Wang J, Gámez FG, Marín-Beloqui J, Diaz-Andres A, Miao X, Casanova D, Casado J, Liu J. Synthesis of a Dicyclohepta[a,g]heptalene-Containing Polycyclic Conjugated Hydrocarbon and the Impact of Non-Alternant Topologies. Angew Chem Int Ed Engl 2023; 62:e202217124. [PMID: 36511094 DOI: 10.1002/anie.202217124] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022]
Abstract
Incorporating non-hexagonal rings into polycyclic conjugated hydrocarbons (PCHs) can significantly affect their electronic and optoelectronic properties and chemical reactivities. Here, we report the first bottom-up synthesis of a dicyclohepta[a,g]heptalene-embedded PCH (1) with four continuous heptagons, which are arranged in a "Z" shape. Compared with its structural isomer bischrysene 1 R with only hexagonal rings, compound 1 presents a distinct antiaromatic character, especially the inner heptalene core, which possesses clear antiaromatic nature. In addition, PCH 1 exhibits a narrower highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) energy gap than its benzenoid contrast 1 R, as verified by experimental measurements and theoretical calculations. Our work reported herein not only provides a new way to synthesize novel PCHs with non-alternant topologies but also offers the possibility to tune their electronic and optical properties.
Collapse
Affiliation(s)
- Junting Wang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Fernando Gordillo Gámez
- Department of Physical Chemistry, University of Malaga, Campus de Teations s/n, 229071, Malaga, Spain
| | - Jose Marín-Beloqui
- Department of Physical Chemistry, University of Malaga, Campus de Teations s/n, 229071, Malaga, Spain
| | - Aitor Diaz-Andres
- Donostia International Physics Center (DIPC), 20018, Donostia, Euskadi, Spain
| | - Xiaohe Miao
- Instrumentation and Service Center for Physical Sciences, Westlake University, Hangzhou, 310024, Zhejiang Province, China
| | - David Casanova
- Donostia International Physics Center (DIPC), 20018, Donostia, Euskadi, Spain.,IKERBASQUE-Basque Foundation for Science, 48009, Bilbao, Euskadi, Spain
| | - Juan Casado
- Department of Physical Chemistry, University of Malaga, Campus de Teations s/n, 229071, Malaga, Spain
| | - Junzhi Liu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
45
|
Synthesis of precisely functionalizable curved nanographenes via graphitization-induced regioselective chlorination in a mechanochemical Scholl Reaction. Nat Commun 2023; 14:803. [PMID: 36781875 PMCID: PMC9925806 DOI: 10.1038/s41467-023-36470-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/02/2023] [Indexed: 02/15/2023] Open
Abstract
While the synthesis of nanographenes has advanced greatly in the past few years, development of their atomically precise functionalization strategies remains rare. The ability to modify the carbon scaffold translates to controlling, adjusting, and adapting molecular properties. Towards this end, here, we show that mechanochemistry is capable of transforming graphitization precursors directly into chlorinated curved nanographenes through a Scholl reaction. The halogenation occurs in a regioselective, high-yielding, and general manner. Density Functional Theory (DFT) calculations suggest that graphitization activates specific edge-positions for chlorination. The chlorine atoms allow for precise chemical modification of the nanographenes through a Suzuki or a nucleophilic aromatic substitution reaction. The edge modification enables modulation of material properties. Among the molecules prepared, corannulene-coronene hybrids and laterally fully π-extended helicenes, heptabenzo[5]superhelicenes, are particularly noteworthy.
Collapse
|
46
|
Abstract
ConspectusUnderstanding and harnessing the properties of nanoscale molecular entities are considered as new frontiers in basic chemistry. In this regard, synthetic nanographene with atomic precision has attracted much attention recently. For instance, taking advantage of the marvelous bonding capability of carbon, flat, curved, ribbon-type, or cone-shaped nanographenes have been prepared in highly controllable and elegant manner, allowing one to explore fascinating molecular architectures with intriguing optical, electrochemical, and magnetic characteristics. This stands in stark contrast to other carbon-rich nanomaterials, such as graphite oxides or carbon quantum dots, which preclude thorough investigations because of complicate structural defects. Undoubtedly, synthetic nanographene contributes strongly to modern aromatic chemistry and represents a vibrant field that may deliver transforming functional materials crucial for optoelectronics, nanotechnologies, and biomedicine.Nonetheless, in many cases, synthesis and characterization of nanographene compounds are highly demanding. Low solubility, high molecular strain, undesired selectivity, as well as incomplete or excessive C-C bond formation are common impediments, that require formidable efforts to control the molecular geometry, to modulate the edge structure, to achieve accurate doping, or to push the upper size boundary. These endeavors are indispensable for establishing structure-property relationships, and lay down foundation for exploring synthetic nanographenes at a high level of sophistications.In this Account, we summarize our contributions to this field by presenting a series of helical synthetic nanographenes, such as hexapole [7]helicene (H7H), nitrogen-doped H7H, hexapole [9]helicene (H9H), superhelicene, and supertwistacene. This kind of giant synthetic nanographene reaches the size domain of carbon quantum dots, albeit has precise atomic structure. It provides a unique platform to study aromatic chemistry and chirality at the nanoscale. We discuss synthetic methods and point out, in particular, the strengths and pitfalls of Scholl oxidation, which are expected to be valuable for making synthetic nanographenes in general. In addition, we illustrate their exciting electrochemical and photophysical performance, which include, but are not limited to, reversible multielectron redox chemistry, record high panchromatic absorption, impressive photothermal behavior, and extremely strong Cotton effect. These unusual characteristics are convincingly traced back to their three-dimensional conjugated architectures, highlighting the critical roles of π-electron delocalization, heteroatom-doping, substitution, and molecular symmetry in determining nanographenes' properties and functions. Lastly, we put forward our understanding on the challenges and opportunities that lies ahead and hope this Account will inspire ever more ambitious achievements from this attractive area of research.
Collapse
Affiliation(s)
- Yanpeng Zhu
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jiaobing Wang
- School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
47
|
Planarization of negatively curved [7] circulene on a graphene monolayer. Chem Phys 2023. [DOI: 10.1016/j.chemphys.2023.111853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
48
|
Reale M, Sciortino A, Cannas M, Maçoas E, David AHG, Cruz CM, Campaña AG, Messina F. Atomically Precise Distorted Nanographenes: The Effect of Different Edge Functionalization on the Photophysical Properties down to the Femtosecond Scale. MATERIALS (BASEL, SWITZERLAND) 2023; 16:835. [PMID: 36676571 PMCID: PMC9867459 DOI: 10.3390/ma16020835] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Nanographenes (NGs) have been attracting widespread interest since they combine peculiar properties of graphene with molecular features, such as bright visible photoluminescence. However, our understanding of the fundamental properties of NGs is still hampered by the high degree of heterogeneity usually characterizing most of these materials. In this context, NGs obtained by atomically precise synthesis routes represent optimal benchmarks to unambiguously relate their properties to well-defined structures. Here we investigate in deep detail the optical response of three curved hexa-peri-hexabenzocoronene (HBC) derivatives obtained by atomically precise synthesis routes. They are constituted by the same graphenic core, characterized by the presence of a heptagon ring determining a saddle distortion of their sp2 network, and differ from each other for slightly different edge functionalization. The quite similar structure allows for performing a direct comparison of their spectroscopic features, from steady-state down to the femtosecond scale, and precisely disentangling the role played by the different edge chemistry.
Collapse
Affiliation(s)
- Marco Reale
- Dipartimento di Fisica e Chimica—Emilio Segrè, Università degli Studi di Palermo, Via Archirafi 36, 90123 Palermo, Italy
| | - Alice Sciortino
- Dipartimento di Fisica e Chimica—Emilio Segrè, Università degli Studi di Palermo, Via Archirafi 36, 90123 Palermo, Italy
- Advanced Technologies Network Center, Università degli Studi di Palermo, Viale delle Scienze Ed. 18/A, 90128 Palermo, Italy
| | - Marco Cannas
- Dipartimento di Fisica e Chimica—Emilio Segrè, Università degli Studi di Palermo, Via Archirafi 36, 90123 Palermo, Italy
| | - Ermelinda Maçoas
- Centro de Química Estrutural e Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa (Portugal), Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Arthur H. G. David
- Department of Organic Chemistry, Unidad de Excelencia de Química (UEQ), Faculty of Sciences, University of Granada, Avda. Fuente Nueva s/n, 18071 Granada, Spain
| | - Carlos M. Cruz
- Department of Organic Chemistry, Unidad de Excelencia de Química (UEQ), Faculty of Sciences, University of Granada, Avda. Fuente Nueva s/n, 18071 Granada, Spain
| | - Araceli G. Campaña
- Department of Organic Chemistry, Unidad de Excelencia de Química (UEQ), Faculty of Sciences, University of Granada, Avda. Fuente Nueva s/n, 18071 Granada, Spain
| | - Fabrizio Messina
- Dipartimento di Fisica e Chimica—Emilio Segrè, Università degli Studi di Palermo, Via Archirafi 36, 90123 Palermo, Italy
- Advanced Technologies Network Center, Università degli Studi di Palermo, Viale delle Scienze Ed. 18/A, 90128 Palermo, Italy
| |
Collapse
|
49
|
Liu G, Liu Y, Zhao C, Li Y, Wang Z, Tian H. Stereoselective Chiral Molecular Carbon Imides Featuring 12-Fold [5]helicenes Around Four Cores. Angew Chem Int Ed Engl 2023; 62:e202214769. [PMID: 36357324 DOI: 10.1002/anie.202214769] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Indexed: 11/12/2022]
Abstract
Despite the great progress in research on molecular carbons containing multiple helicenes around one core, realizing the stereoselectivity of carbons containing multiple helicenes around more cores is still a great challenge. Herein, molecular carbon C204 featuring 12-fold [5]helicenes around four cores was successfully constructed by using nine perylene diimide (PDI) units, and exhibits good solubility and stability. Despite 256 possible stereoisomers caused by the 12-fold [5]helicenes, we only obtained one pair of enantiomers with D3 symmetry. There are four possible pairs of enantiomers with D3 symmetry, namely 7A, 7B, 7C and 7D. Theoretical and experimental results verify that the obtained structure belongs to 7C, which has the lowest energy. The enantiomers can also be separated by chiral HPLC. These results suggest that choosing PDIs as building blocks can not only improve the solubility and stability but also realize the stereoselectivity and chirality of molecular carbons.
Collapse
Affiliation(s)
- Guogang Liu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yujian Liu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Chengxi Zhao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yan Li
- School of Chemistry, Beihang University, Beijing, 100191, China
| | - Zhaohui Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
50
|
Dauvergne G, Naubron JV, Giorgi M, Bugaut X, Rodriguez J, Carissan Y, Coquerel Y. Enantiospecific Syntheses of Congested Atropisomers through Chiral Bis(aryne) Synthetic Equivalents. Chemistry 2022; 28:e202202473. [PMID: 35943888 PMCID: PMC10087792 DOI: 10.1002/chem.202202473] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Indexed: 12/13/2022]
Abstract
The synthetic equivalents of the enantiopure binaphthyl bis(aryne) atropisomers derived from BINOL (1,1'-bi-2,2'-naphtol) featuring a stereogenic axis vicinal to the two reactive triple bonds can be generated for the first time in solution in an enantiospecific manner. Using a two-step sequence based on the bidirectional [4+2] cycloaddition of furan derivatives followed by an aromatizative deoxygenation reaction, several 9,9'-bianthracenyl-based atropisomers could be prepared enantiospecifically in high enantiomeric purity. Alternatively, bidirectional reactions with anthracene, 2-bromostyrene, and perylene as the arynophiles afforded very congested bis(benzotriptycene), bis(tetraphene) and bis(anthra[1,2,3,4-ghi]perylene) nanocarbon atropisomers in equally high enantiomeric purity. In complement, cross reactions with two different arynophiles revealed possible. The unusual atropisomer prototypes described in this study open the way to enantiopure nanographene atropisomers designed for functions.
Collapse
Affiliation(s)
| | | | - Michel Giorgi
- Aix Marseille Univ, CNRS, Centrale Marseille, FSCM, Marseille, France
| | - Xavier Bugaut
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Jean Rodriguez
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Yannick Carissan
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Yoann Coquerel
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| |
Collapse
|