1
|
Hou J, Zhu Q, Weng XJ, Shao X, Dong X, Wang HT, Zhou XF, Tian Y. Prediction of Cyclic O 6 Molecules Stabilized by Helium under Pressure. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2415517. [PMID: 39853964 DOI: 10.1002/advs.202415517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/11/2025] [Indexed: 01/26/2025]
Abstract
Oxygen usually exists in the form of diatomic molecules at ambient conditions. At high pressure, it undergoes a series of phase transitions from diatomic O2 to O8 cluster and ultimately dissociates into a polymeric O4 spiral chain structure. Intriguingly, the commonly found cyclic hexameric molecules in other group VIA elements (e.g., S6 and Se6) are never reported in the bulk oxygen. Through extensive computational crystal structure search, herein it is reported that such hexameric O6 molecules can exist in a stable compound HeO3 above 1.9 TPa. The first-principles calculations reveal that, during the reaction by mixing oxygen with helium, the insertion of helium does not only expand the lattice volume, but also relieves the electron lone pair repulsion among diatomic O2, and thus significantly promoting the formation of cyclic O6 molecules. Furthermore, the transition pathway calculations demonstrate that molecular O2 is dissociated first, and then six oxygen atoms form a polymeric digital 2-shaped intermediate O6. Subsequently, each unstable intermediate O6 decomposes into two intermedia O3 trimers. Finally, O3 trimers transform into cyclic O6 molecules at high pressure. This study expands the known molecular forms of oxygen and suggests a route to the synthesis of intriguing cyclic O6 molecules.
Collapse
Affiliation(s)
- Jingyu Hou
- Center for High-Pressure Science, State Key Laboratory of Metastable Materials Science and Technology, School of Science, Yanshan University, Qinhuangdao, 066004, China
- Key Laboratory of Weak-Light Nonlinear Photonics, School of Physics, Nankai University, Tianjin, 300071, China
| | - Qiang Zhu
- Department of Mechanical Engineering and Engineering Science, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Xiao-Ji Weng
- Center for High-Pressure Science, State Key Laboratory of Metastable Materials Science and Technology, School of Science, Yanshan University, Qinhuangdao, 066004, China
| | - Xi Shao
- Center for High-Pressure Science, State Key Laboratory of Metastable Materials Science and Technology, School of Science, Yanshan University, Qinhuangdao, 066004, China
| | - Xiao Dong
- Key Laboratory of Weak-Light Nonlinear Photonics, School of Physics, Nankai University, Tianjin, 300071, China
| | - Hui-Tian Wang
- National Laboratory of Solid-State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Xiang-Feng Zhou
- Center for High-Pressure Science, State Key Laboratory of Metastable Materials Science and Technology, School of Science, Yanshan University, Qinhuangdao, 066004, China
- Key Laboratory of Weak-Light Nonlinear Photonics, School of Physics, Nankai University, Tianjin, 300071, China
| | - Yongjun Tian
- Center for High-Pressure Science, State Key Laboratory of Metastable Materials Science and Technology, School of Science, Yanshan University, Qinhuangdao, 066004, China
| |
Collapse
|
2
|
Liu SJ, Lei ZS, Chen MR, Song T, Liu ZJ, Sun XW. Investigation on Melting Curves and Phase Diagrams for CaO 3 Using Deep Learning Potentials. J Phys Chem A 2024; 128:9476-9485. [PMID: 39423322 DOI: 10.1021/acs.jpca.4c03074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Melting in the deep rocky parts of planets plays an important role in geological processes such as planet formation, seismicity, magnetic field generation, thermal convection, and crustal evolution. Such processes are the key way to understanding the dynamics of planetary interiors and the history as well as mechanisms of planetary evolution. We herein investigate the melting curves and pressure-temperature (P-T)-phase diagrams for CaO3, a candidate mineral for the lower mantle, by means of the deep learning potential model. Using first-principles, molecular dynamics, and quasi-harmonic approximation, the reliability of the deep learning potential model is verified by calculating the high-temperature and high-pressure equations of state and phase transition pressures for the orthorhombic and tetragonal structures of CaO3 described by space groups Aea2 and P4̅21m, respectively. The melting temperatures of 975, 850, and 755 K at zero pressure are obtained by the single-phase, void, and two-phase methods, respectively, and their melting temperatures are analyzed by the radial distribution function and mean-square displacement to analyze the melting process. Finally, the melting phase diagrams of CaO3 at 0-135 GPa were obtained by the two-phase method.
Collapse
Affiliation(s)
- Shuai-Jun Liu
- School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Zhen-Shuai Lei
- College of Science, Wuhan University of Technology, Wuhan 430079, China
| | - Meng-Ru Chen
- School of Mechanical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Ting Song
- School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Zi-Jiang Liu
- School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Xiao-Wei Sun
- School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070, China
| |
Collapse
|
3
|
Zhang P, Ding Y, Cui W, Hao J, Shi J, Li Y. Unveiling unconventional CH4-Xe compounds and their thermodynamic properties at extreme conditions. J Chem Phys 2024; 161:014501. [PMID: 38949593 DOI: 10.1063/5.0218769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/07/2024] [Indexed: 07/02/2024] Open
Abstract
Inert gases (e.g., He and Xe) can exhibit chemical activity at high pressure, reacting with other substances to form compounds of unexpected chemical stoichiometry. This work combines first-principles calculations and crystal structure predictions to propose four unexpected stable compounds of CH4Xe3, (CH4)2Xe, (CH4)3Xe, and (CH4)3Xe2 at pressure ranges from 2 to 100 GPa. All structures are composed of isolated Xe atoms and CH4 molecules except for (CH4)3Xe2, which comprises a polymerization product, C3H8, and hydrogen molecules. Ab initio molecular dynamics simulations indicate that pressure plays a very important role in the different temperature driving state transitions of CH4-Xe compounds. At lower pressures, the compounds follow the state transition of solid-plastic-fluid phases with increasing temperature, while at higher pressures, the stronger Xe-C interaction induces the emergence of a superionic state for CH4Xe3 and (CH4)3Xe2 as temperature increases. These results not only expand the family of CH4-Xe compounds, they also contribute to models of the structures and evolution of planetary interiors.
Collapse
Affiliation(s)
- Pan Zhang
- Laboratory of Quantum Functional Materials Design and Application, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China
- School of Sciences, Xinjiang Institute of Technology, Akesu 843100, China
| | - Yuelong Ding
- Laboratory of Quantum Functional Materials Design and Application, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China
| | - Wenwen Cui
- Laboratory of Quantum Functional Materials Design and Application, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China
| | - Jian Hao
- Laboratory of Quantum Functional Materials Design and Application, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China
| | - Jingming Shi
- Laboratory of Quantum Functional Materials Design and Application, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China
| | - Yinwei Li
- Laboratory of Quantum Functional Materials Design and Application, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physical Science and Information Technology of Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
4
|
Wang M, Kuzovnikov MA, Binns J, Li X, Peña-Alvarez M, Hermann A, Gregoryanz E, Howie RT. Synthesis and characterization of XeAr2 under high pressure. J Chem Phys 2023; 159:134508. [PMID: 37795788 DOI: 10.1063/5.0158742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/13/2023] [Indexed: 10/06/2023] Open
Abstract
The binary Xe-Ar system has been studied in a series of high pressure diamond anvil cell experiments up to 60 GPa at 300 K. In-situ x-ray powder diffraction and Raman spectroscopy indicate the formation of a van der Waals compound, XeAr2, at above 3.5 GPa. Powder x-ray diffraction analysis demonstrates that XeAr2 adopts a Laves MgZn2-type structure with space group P63/mmc and cell parameters a = 6.595 Å and c = 10.716 Å at 4 GPa. Density functional theory calculations support the structure determination, with agreement between experimental and calculated Raman spectra. Our DFT calculations suggest that XeAr2 would remain stable without a structural transformation or decomposition into elemental Xe and Ar up to at least 80 GPa.
Collapse
Affiliation(s)
- Mengnan Wang
- Centre for Science at Extreme Conditions and School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Mikhail A Kuzovnikov
- Centre for Science at Extreme Conditions and School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Jack Binns
- Center for High Pressure Science and Technology Advanced Research, Shanghai, China
| | - Xiaofeng Li
- College of Physics and Electronic Information, Luoyang Normal University, Luoyang, China
| | - Miriam Peña-Alvarez
- Centre for Science at Extreme Conditions and School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Andreas Hermann
- Centre for Science at Extreme Conditions and School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
| | - Eugene Gregoryanz
- Centre for Science at Extreme Conditions and School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
- Center for High Pressure Science and Technology Advanced Research, Shanghai, China
- Key Laboratory of Materials Physics, Institute of Solid State Physics, CAS, Hefei, China
| | - Ross T Howie
- Centre for Science at Extreme Conditions and School of Physics and Astronomy, University of Edinburgh, Edinburgh, United Kingdom
- Center for High Pressure Science and Technology Advanced Research, Shanghai, China
| |
Collapse
|
5
|
Sui M, Liu S, Wang P, Zou N, Dong Q, Zhou M, Niu S, Yue L, Zhao Z, Guo L, Liu B, Liu R, Xu Y, Yao Z, Liu B. High-pressure synthesis of fully sp 2-hybridized polymeric nitrogen layer in potassium supernitride. Sci Bull (Beijing) 2023:S2095-9273(23)00412-7. [PMID: 37438156 DOI: 10.1016/j.scib.2023.06.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/14/2023]
Abstract
Searching for fully sp2-hybridized layered structures is of fundamental importance because of their fascinating physical properties and potential to host topologically non-trivial electronic states. However, the synthesis of fully sp2-hybridized layered polymeric nitrogen structures remains a challenging work because of their low stability. Here, we report the synthesis of a fully sp2-hybridized layered polymeric nitrogen structure featuring fused 18-membered rings in potassium supernitride (K2N16) under high-pressure and high-temperature conditions. Bader charge analysis reveals that the potassium atomic layer stabilizes the unique sp2-hybridized polymeric nitrogen layers through the charge transfer effect in K2N16. The calculation of electronic structure indicates that K2N16 is a topological semimetal with multiple Dirac points and hosts higher-order Dirac fermions with cubic dispersion, which are contributed by the sp2-hybridized polymeric nitrogen layers arranged in P6/mcc symmetry. The high-pressure synthesis of the fully sp2-hybridized polymeric nitrogen layered structure provides promising prospects for exploring novel topological materials with effective stabilization routes.
Collapse
Affiliation(s)
- Minghong Sui
- State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China
| | - Shuang Liu
- State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China
| | - Peng Wang
- State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China.
| | - Nianlong Zou
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
| | - Qing Dong
- State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China; Institute for High Pressure, Department of Physics, Hanyang University, Seoul 04763, Republic of Korea
| | - Miao Zhou
- State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China
| | - Shifeng Niu
- State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China
| | - Lei Yue
- State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China
| | - Zitong Zhao
- State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China
| | - Linlin Guo
- State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China
| | - Bo Liu
- State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China
| | - Ran Liu
- State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China
| | - Yong Xu
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China
| | - Zhen Yao
- State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China.
| | - Bingbing Liu
- State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China.
| |
Collapse
|
6
|
Tu H, Pan L, Qi H, Zhang S, Li F, Sun C, Wang X, Cui T. Ultrafast dynamics under high-pressure. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 35:253002. [PMID: 36898154 DOI: 10.1088/1361-648x/acc376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
High-pressure is a mechanical method to regulate the structure and internal interaction of materials. Therefore, observation of properties' change can be realized in a relatively pure environment. Furthermore, high-pressure affects the delocalization of wavefunction among materials' atoms and thus their dynamics process. Dynamics results are essential data for understanding the physical and chemical characteristics, which is valuable for materials application and development. Ultrafast spectroscopy is a powerful tool to investigate dynamics process and becoming a necessary characterization method for materials investigation. The combination of high-pressure with ultrafast spectroscopy in the nanocosecond∼femtosecond scale enables us to investigate the influence of the enhanced interaction between particles on the physical and chemical properties of materials, such as energy transfer, charge transfer, Auger recombination, etc. Base on this point of view, this review summarizes recent progress in the ultrafast dynamics under high-pressure for various materials, in which new phenomena and new mechanisms are observed. In this review, we describe in detail the principles ofin situhigh pressure ultrafast dynamics probing technology and its field of application. On this basis, the progress of the study of dynamic processes under high-pressure in different material systems is summarized. An outlook onin situhigh-pressure ultrafast dynamics research is also provided.
Collapse
Affiliation(s)
- Hongyu Tu
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, People's Republic of China
| | - Lingyun Pan
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, People's Republic of China
| | - Hongjian Qi
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, People's Republic of China
| | - Shuhao Zhang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, People's Republic of China
| | - Fangfei Li
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, People's Republic of China
| | - Chenglin Sun
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, People's Republic of China
| | - Xin Wang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, People's Republic of China
| | - Tian Cui
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, People's Republic of China
| |
Collapse
|
7
|
Li J, Geng Y, Xu Z, Zhang P, Garbarino G, Miao M, Hu Q, Wang X. Mechanochemistry and the Evolution of Ionic Bonds in Dense Silver Iodide. JACS AU 2023; 3:402-408. [PMID: 36873701 PMCID: PMC9975826 DOI: 10.1021/jacsau.2c00550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 06/18/2023]
Abstract
External mechanical stress alters the nature of chemical bonds and triggers novel reactions, providing interesting synthetic protocols to supplement traditional solvent- or thermo-based chemical approaches. The mechanisms of mechanochemistry have been well studied in organic materials made of a carbon-centered polymeric framework and covalence force field. They convert stress into anisotropic strain which will engineer the length and strength of targeted chemical bonds. Here, we show that by compressing silver iodide in a diamond anvil cell, the external mechanical stress weakens the Ag-I ionic bonds and activate the global diffusion of super-ions. In contrast to conventional mechanochemistry, mechanical stress imposes unbiased influence on the ionicity of chemical bonds in this archetypal inorganic salt. Our combined synchrotron X-ray diffraction experiment and first-principles calculation demonstrate that upon the critical point of ionicity, the strong ionic Ag-I bonds break down, leading to the recovery of elemental solids from a decomposition reaction. Instead of densification, our results reveal the mechanism of an unexpected decomposition reaction through hydrostatic compression and suggest the sophisticated chemistry of simple inorganic compounds under extreme conditions.
Collapse
Affiliation(s)
- Jianfu Li
- School
of Physics and Electronic Information, Yantai
University, Yantai264005, P.R. China
| | - Yanlei Geng
- School
of Physics and Electronic Information, Yantai
University, Yantai264005, P.R. China
| | - Zhenzhen Xu
- School
of Physics and Electronic Information, Yantai
University, Yantai264005, P.R. China
| | - Pinhua Zhang
- School
of Physics and Electronic Engineering, Linyi
University, Linyi276005, P.R. China
| | - Gaston Garbarino
- European
Synchrotron Radiation Facility (ESRF), Grenoble38000, France
| | - Maosheng Miao
- Department
of Chemistry and Biochemistry, California
State University, Northridge, California91330, United States
| | - Qingyang Hu
- Center
for High Pressure Science and Technology Advanced Research, Beijing100094, P.R. China
| | - Xiaoli Wang
- School
of Physics and Electronic Information, Yantai
University, Yantai264005, P.R. China
| |
Collapse
|
8
|
Childs C, Smith D, Smith GA, Ellison P, Sneed D, Hinton J, Siska E, Pigott JS, Rod E, O'Donnell W, Salem R, Sturtevant B, Scharff RJ, Velisavljevic N, Park C, Salamat A. CO 2 laser heating system for in situ radial x-ray absorption at 16-BM-D at the Advanced Photon Source. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:083901. [PMID: 36050120 DOI: 10.1063/5.0086642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
We present a portable CO2 laser heating system for in situ x-ray absorption spectroscopy (XAS) studies at 16-BM-D (High Pressure Collaborative Access Team, Advanced Photon Source, Argonne National Laboratory). Back scattering optical measurements are made possible by the implementation of a Ge beamsplitter. Optical pyrometry is conducted in the near-infrared, and our temperature measurements are free of chromatic aberration due to the implementation of the peak-scaling method [A. Kavner and W. R. Panero, Phys. Earth Planet. Inter. 143-144, 527-539 (2004) and A. Kavner and C. Nugent, Rev. Sci. Instrum. 79, 024902 (2008)] and mode scrambling of the input signal. Laser power stabilization is established using electronic feedback, providing a steady power over second timescales [Childs et al., Rev. Sci. Instrum. 91, 103003 (2020)]-crucial for longer XAS collections. Examples of in situ high pressure-temperature extended x-ray absorption fine structure measurements of ZrO2 are presented to demonstrate this new capability.
Collapse
Affiliation(s)
- Christian Childs
- Department of Physics and Astronomy, University of Nevada Las Vegas, Las Vegas, Nevada 89154, USA
| | - Dean Smith
- Nevada Extreme Conditions Laboratory, University of Nevada, Las Vegas, Las Vegas, Nevada 89154, USA
| | - G Alexander Smith
- Nevada Extreme Conditions Laboratory, University of Nevada, Las Vegas, Las Vegas, Nevada 89154, USA
| | - Paul Ellison
- Department of Physics and Astronomy, University of Nevada Las Vegas, Las Vegas, Nevada 89154, USA
| | - Daniel Sneed
- Department of Physics and Astronomy, University of Nevada Las Vegas, Las Vegas, Nevada 89154, USA
| | - Jasmine Hinton
- Department of Physics and Astronomy, University of Nevada Las Vegas, Las Vegas, Nevada 89154, USA
| | - Emily Siska
- Nevada Extreme Conditions Laboratory, University of Nevada, Las Vegas, Las Vegas, Nevada 89154, USA
| | - Jeffrey S Pigott
- Shock and Detonation Physics (M-9), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - Eric Rod
- HPCAT, X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - William O'Donnell
- Department of Physics and Astronomy, University of Nevada Las Vegas, Las Vegas, Nevada 89154, USA
| | - Ran Salem
- Physics Department, Nuclear Research Center Negev, P.O. Box 9001, Beer-Sheva 84190, Israel
| | - Blake Sturtevant
- Shock and Detonation Physics (M-9), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | - R Jason Scharff
- Mission Support and Test Services, LLC, North Las Vegas, Nevada 89030, USA
| | - Nenad Velisavljevic
- HPCAT, X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Changyong Park
- HPCAT, X-ray Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Ashkan Salamat
- Department of Physics and Astronomy, University of Nevada Las Vegas, Las Vegas, Nevada 89154, USA
| |
Collapse
|
9
|
Tian Y, Tse JS, Liu G, Liu H. Predicted crystal structures of xenon and alkali metals under high pressures. Phys Chem Chem Phys 2022; 24:18119-18123. [PMID: 35881443 DOI: 10.1039/d2cp02657k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The pressure-induced reaction between xenon (Xe) and other non-inert gas elements and the resultant crystal structures have attracted great interest. In this work, we carried out extensive simulations on the crystal structures of Xe-alkali metal (Xe-AM) systems under high pressures. Among all predicted compounds, KXe and RbXe are found to become stable at a pressure of ∼16 GPa by adopting a cubic symmetry of space group Pm3̄m. The stabilization of KXe and RbXe requires slightly lower pressure compared with that of previously reported CsXe (25 GPa), interestingly, which is in contrast to the electronegativity order of the AMs and unexpected. Our simulations also indicate that all predicted Xe compounds contain negatively charged Xe. Moreover, our in-depth analysis indicates that the occupation of AM d-orbitals plays a critical role in stabilizing these Xe-bearing compounds. These results shed light on the understanding of the reaction between Xe and AMs and the formation mechanism of the resultant crystal structures.
Collapse
Affiliation(s)
- Yifan Tian
- State Key Laboratory of Superhard Materials and International Center for Computational Method & Software, College of Physics, Jilin University, Changchun 130012, China.
| | - John S Tse
- State Key Laboratory of Superhard Materials and International Center for Computational Method & Software, College of Physics, Jilin University, Changchun 130012, China. .,Physics and Engineering Physics Department, University of Saskatchewan, S7N 5E2, Canada
| | - Guangtao Liu
- State Key Laboratory of Superhard Materials and International Center for Computational Method & Software, College of Physics, Jilin University, Changchun 130012, China.
| | - Hanyu Liu
- State Key Laboratory of Superhard Materials and International Center for Computational Method & Software, College of Physics, Jilin University, Changchun 130012, China.
| |
Collapse
|
10
|
Hadean isotopic fractionation of xenon retained in deep silicates. Nature 2022; 606:713-717. [PMID: 35732758 DOI: 10.1038/s41586-022-04710-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 03/31/2022] [Indexed: 11/09/2022]
Abstract
Our understanding of atmosphere formation essentially relies on noble gases and their isotopes, with xenon (Xe) being a key tracer of the early planetary stages. A long-standing issue, however, is the origin of atmospheric depletion in Xe1 and its light isotopes for the Earth2 and Mars3. Here we report that feldspar and olivine samples confined at high pressures and high temperature with diluted Xe and krypton (Kr) in air or nitrogen are enriched in heavy Xe isotopes by +0.8 to +2.3‰ per AMU, and strongly enriched in Xe over Kr. The upper +2.3‰ per AMU value is a minimum because quantitative trapping of unreacted Xe, either in bubbles or adsorbed on the samples, is likely. In light of these results, we propose a scenario solving the missing Xe problem that involves multiple magma ocean stage events at the proto-planetary stage, combined with atmospheric loss. Each of these events results in trapping of Xe at depth and preferential retention of its heavy isotopes. In the case of the Earth, the heavy Xe fraction was later added to the secondary CI chondritic atmosphere through continental erosion and/or recycling of a Hadean felsic crust.
Collapse
|
11
|
Dong X, Oganov AR, Cui H, Zhou XF, Wang HT. Electronegativity and chemical hardness of elements under pressure. Proc Natl Acad Sci U S A 2022; 119:e2117416119. [PMID: 35238642 PMCID: PMC8915985 DOI: 10.1073/pnas.2117416119] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/21/2022] [Indexed: 11/18/2022] Open
Abstract
SignificanceOver the years, many unusual chemical phenomena have been discovered at high pressures, yet our understanding of them is still very fragmentary. Our paper addresses this from the fundamental level by exploring the key chemical properties of atoms-electronegativity and chemical hardness-as a function of pressure. We have made an appropriate modification to the definition of Mulliken electronegativity to extend its applicability to high pressures. The change in atomic properties, which we observe, allows us to provide a unified framework explaining (and predicting) many chemical phenomena and the altered behavior of many elements under pressure.
Collapse
Affiliation(s)
- Xiao Dong
- Key Laboratory of Weak-Light Nonlinear Photonics and School of Physics, Nankai University, Tianjin 300071, China
| | - Artem R. Oganov
- Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Moscow 121205, Russia
| | - Haixu Cui
- College of Physics and Materials Science, Tianjin Normal University, Tianjin 300387, China
| | - Xiang-Feng Zhou
- Center for High-Pressure Science, State Key Laboratory of Metastable Materials Science and Technology, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Hui-Tian Wang
- National Laboratory of Solid-State Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
12
|
Thermophysical properties of helium and hydrogen mixtures under high pressure predicted by ab-initio calculations: Implications for Saturn and Jupiter planets. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2021.111430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Miao M, Sun Y, Liu H, Ma Y. Open questions on the high-pressure chemistry of the noble gases. Commun Chem 2022; 5:15. [PMID: 36697665 PMCID: PMC9814957 DOI: 10.1038/s42004-022-00631-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/18/2022] [Indexed: 01/28/2023] Open
Affiliation(s)
- Maosheng Miao
- grid.253563.40000 0001 0657 9381Department of Chemistry and Biochemistry, California State University, Northridge, CA 91330 USA
| | - Yuanhui Sun
- grid.253563.40000 0001 0657 9381Department of Chemistry and Biochemistry, California State University, Northridge, CA 91330 USA
| | - Hanyu Liu
- grid.64924.3d0000 0004 1760 5735International Center for Computational Method & Software and State Key Laboratory of Superhard Materials, College of Physics, Jilin University, 130012 Changchun, China ,grid.64924.3d0000 0004 1760 5735International Center of Future Science, Jilin University, 130012 Changchun, China
| | - Yanming Ma
- grid.64924.3d0000 0004 1760 5735International Center for Computational Method & Software and State Key Laboratory of Superhard Materials, College of Physics, Jilin University, 130012 Changchun, China ,grid.64924.3d0000 0004 1760 5735International Center of Future Science, Jilin University, 130012 Changchun, China
| |
Collapse
|
14
|
Xu M, Li Y, Ma Y. Materials by design at high pressures. Chem Sci 2022; 13:329-344. [PMID: 35126967 PMCID: PMC8729811 DOI: 10.1039/d1sc04239d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/08/2021] [Indexed: 01/29/2023] Open
Abstract
Pressure, a fundamental thermodynamic variable, can generate two essential effects on materials. First, pressure can create new high-pressure phases via modification of the potential energy surface. Second, pressure can produce new compounds with unconventional stoichiometries via modification of the compositional landscape. These new phases or compounds often exhibit exotic physical and chemical properties that are inaccessible at ambient pressure. Recent studies have established a broad scope for developing materials with specific desired properties under high pressure. Crystal structure prediction methods and first-principles calculations can be used to design materials and thus guide subsequent synthesis plans prior to any experimental work. A key example is the recent theory-initiated discovery of the record-breaking high-temperature superhydride superconductors H3S and LaH10 with critical temperatures of 200 K and 260 K, respectively. This work summarizes and discusses recent progress in the theory-oriented discovery of new materials under high pressure, including hydrogen-rich superconductors, high-energy-density materials, inorganic electrides, and noble gas compounds. The discovery of the considered compounds involved substantial theoretical contributions. We address future challenges facing the design of materials at high pressure and provide perspectives on research directions with significant potential for future discoveries.
Collapse
Affiliation(s)
- Meiling Xu
- Laboratory of Quantum Functional Materials Design and Application, School of Physics and Electronic Engineering, Jiangsu Normal University Xuzhou 221116 China
| | - Yinwei Li
- Laboratory of Quantum Functional Materials Design and Application, School of Physics and Electronic Engineering, Jiangsu Normal University Xuzhou 221116 China
| | - Yanming Ma
- State Key Laboratory of Superhard Materials & International Center for Computational Method and Software, College of Physics, Jilin University Changchun 130012 China
- International Center of Future Science, Jilin University Changchun 130012 China
| |
Collapse
|
15
|
Yang L, Zhang Y, Chen Y, Zhong X, Wang D, Lang J, Qu X, Yang J. Unconventional Stoichiometries of Na-O Compounds at High Pressures. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7650. [PMID: 34947246 PMCID: PMC8707189 DOI: 10.3390/ma14247650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/04/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022]
Abstract
It has been realized that the stoichiometries of compounds may change under high pressure, which is crucial in the discovery of novel materials. This work uses systematic structure exploration and first-principles calculations to consider the stability of different stoichiometries of Na-O compounds with respect to pressure and, thus, construct a high-pressure stability field and convex hull diagram. Four previously unknown stoichiometries (NaO5, NaO4, Na4O, and Na3O) are predicted to be thermodynamically stable. Four new phases (P2/m and Cmc21 NaO2 and Immm and C2/m NaO3) of known stoichiometries are also found. The O-rich stoichiometries show the remarkable features of all the O atoms existing as quasimolecular O2 units and being metallic. Calculations of the O-O bond lengths and Bader charges are used to explore the electronic properties and chemical bonding of the O-rich compounds. The Na-rich compounds stabilized at extreme pressures (P > 200 GPa) are electrides with strong interstitial electron localization. The C2/c phase of Na3O is found to be a zero-dimensional electride with an insulating character. The Cmca phase of Na4O is a one-dimensional metallic electride. These findings of new compounds with unusual chemistry might stimulate future experimental and theoretical investigations.
Collapse
Affiliation(s)
- Lihua Yang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, National Demonstration Center for Experimental Physics Education, College of Physics, Jilin Normal University, Siping 136000, China; (L.Y.); (Y.Z.); (X.Z.); (D.W.); (J.L.)
- State Key Laboratory of Integrated Optoelectronics, College of Materials Science and Engineering, Jilin University, Changchun 130012, China
| | - Yukai Zhang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, National Demonstration Center for Experimental Physics Education, College of Physics, Jilin Normal University, Siping 136000, China; (L.Y.); (Y.Z.); (X.Z.); (D.W.); (J.L.)
| | - Yanli Chen
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, National Demonstration Center for Experimental Physics Education, College of Physics, Jilin Normal University, Siping 136000, China; (L.Y.); (Y.Z.); (X.Z.); (D.W.); (J.L.)
| | - Xin Zhong
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, National Demonstration Center for Experimental Physics Education, College of Physics, Jilin Normal University, Siping 136000, China; (L.Y.); (Y.Z.); (X.Z.); (D.W.); (J.L.)
| | - Dandan Wang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, National Demonstration Center for Experimental Physics Education, College of Physics, Jilin Normal University, Siping 136000, China; (L.Y.); (Y.Z.); (X.Z.); (D.W.); (J.L.)
| | - Jihui Lang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, National Demonstration Center for Experimental Physics Education, College of Physics, Jilin Normal University, Siping 136000, China; (L.Y.); (Y.Z.); (X.Z.); (D.W.); (J.L.)
| | - Xin Qu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, National Demonstration Center for Experimental Physics Education, College of Physics, Jilin Normal University, Siping 136000, China; (L.Y.); (Y.Z.); (X.Z.); (D.W.); (J.L.)
| | - Jinghai Yang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, National Demonstration Center for Experimental Physics Education, College of Physics, Jilin Normal University, Siping 136000, China; (L.Y.); (Y.Z.); (X.Z.); (D.W.); (J.L.)
| |
Collapse
|
16
|
Agnarelli L, Prots Y, Burkhardt U, Schmidt M, Koželj P, Leithe-Jasper A, Grin Y. Mg 3Pt 2: Anionic Chains in a Eu 3Ga 2-Type Structure. Inorg Chem 2021; 60:13681-13690. [PMID: 34428036 PMCID: PMC8424623 DOI: 10.1021/acs.inorgchem.1c01995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
![]()
The binary phase Mg3Pt2 was prepared by direct
reaction between the elements or by spark-plasma synthesis starting
with MgH2 and PtCl2. The compound crystallizes
in the monoclinic space group C2/c with a = 7.2096(3) Å, b =
7.1912(4) Å, c = 6.8977(3) Å, and β
= 106.072(3)° and is isotypic to Eu3Ga2. Analysis of the electron density within the quantum theory of atoms
in molecules shows a significant charge transfer from Mg to Pt in
agreement with the electronegativity difference. Further study of
the chemical bonding with the electron localizability approach reveals
the formation of Pt chains stabilized by a complex system of multicenter
interactions involving Mg and Pt species. The metallic character of
Mg3Pt2 is confirmed by electronic structure
calculations and physical measurements. Mg3Pt2 is a new phase in the Mg−Pt
system with a crystal structure built up by anionic Pt chains, which
are stabilized by an interplay of multiatomic bonding interactions
of Mg with Pt. Mg3Pt2 is a metallic diamagnet.
Collapse
Affiliation(s)
- Laura Agnarelli
- Max-Planck-Institut für Chemische Physik fester Stoffe, Dresden 01187, Germany
| | - Yurii Prots
- Max-Planck-Institut für Chemische Physik fester Stoffe, Dresden 01187, Germany
| | - Ulrich Burkhardt
- Max-Planck-Institut für Chemische Physik fester Stoffe, Dresden 01187, Germany
| | - Marcus Schmidt
- Max-Planck-Institut für Chemische Physik fester Stoffe, Dresden 01187, Germany
| | - Primož Koželj
- Max-Planck-Institut für Chemische Physik fester Stoffe, Dresden 01187, Germany
| | | | - Yuri Grin
- Max-Planck-Institut für Chemische Physik fester Stoffe, Dresden 01187, Germany
| |
Collapse
|
17
|
Zhang J, Liu H, Ma Y, Chen C. Direct H-He chemical association in superionic FeO2H2He at Deep-Earth conditions. Natl Sci Rev 2021; 9:nwab168. [PMID: 35928982 PMCID: PMC9344844 DOI: 10.1093/nsr/nwab168] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 11/13/2022] Open
Abstract
Hydrogen and helium are known to play crucial roles in geological and astrophysical environments; however, they are inert toward each other across wide pressure-temperature (P-T) conditions. Given their prominent presence and influence on the formation and evolution of celestial bodies, it is of fundamental interest to explore the nature of interactions between hydrogen and helium. Using an advanced crystal structure search method, we have identified a quaternary compound FeO2H2He stabilized in a wide range of P-T conditions. Ab initio molecular dynamics simulations further reveal a novel superionic state of FeO2H2He hosting liquid-like diffusive hydrogen in the FeO2He sublattice, creating a conducive environment for H-He chemical association, at P-T conditions corresponding to the Earth's lowest mantle regions. To our surprise, this chemically facilitated coalescence of otherwise immiscible molecular species highlights a promising avenue for exploring this long-sought but hitherto unattainable state of matter. This finding raises strong prospects for exotic H-He mixtures inside Earth and possibly also in other astronomical bodies.
Collapse
Affiliation(s)
- Jurong Zhang
- International Center for Computational Method and Software & State Key Laboratory of Superhard Materials & Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China
- Shandong Provincial Engineering and Technical Center of Light Manipulations & Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China
| | - Hanyu Liu
- International Center for Computational Method and Software & State Key Laboratory of Superhard Materials & Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China
- International Center of Future Science, Jilin University, Changchun 130012, China
| | - Yanming Ma
- International Center for Computational Method and Software & State Key Laboratory of Superhard Materials & Key Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China
- International Center of Future Science, Jilin University, Changchun 130012, China
| | - Changfeng Chen
- Department of Physics and Astronomy, University of Nevada, Las Vegas, NV 89154, USA
| |
Collapse
|
18
|
Cerantola V, Rosa AD, Konôpková Z, Torchio R, Brambrink E, Rack A, Zastrau U, Pascarelli S. New frontiers in extreme conditions science at synchrotrons and free electron lasers. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:274003. [PMID: 33930892 DOI: 10.1088/1361-648x/abfd50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
Synchrotrons and free electron lasers are unique facilities to probe the atomic structure and electronic properties of matter at extreme thermodynamical conditions. In this context, 'matter at extreme pressures and temperatures' was one of the science drivers for the construction of low emittance 4th generation synchrotron sources such as the Extremely Brilliant Source of the European Synchrotron Radiation Facility and hard x-ray free electron lasers, such as the European x-ray free electron laser. These new user facilities combine static high pressure and dynamic shock compression experiments to outstanding high brilliance and submicron beams. This combination not only increases the data-quality but also enlarges tremendously the accessible pressure, temperature and density space. At the same time, the large spectrum of available complementary x-ray diagnostics for static and shock compression studies opens unprecedented insights into the state of matter at extremes. The article aims at highlighting a new horizon of scientific opportunities based on the synergy between extremely brilliant synchrotrons and hard x-ray free electron lasers.
Collapse
Affiliation(s)
- Valerio Cerantola
- European X-ray Free-Electron Laser, Holzkoppel 4, 22869 Schenefeld, Germany
| | | | - Zuzana Konôpková
- European X-ray Free-Electron Laser, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Raffaella Torchio
- ESRF-The European Synchrotron, 71 Avenue des Martyrs, Grenoble 38000, France
| | - Erik Brambrink
- European X-ray Free-Electron Laser, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Alexander Rack
- ESRF-The European Synchrotron, 71 Avenue des Martyrs, Grenoble 38000, France
| | - Ulf Zastrau
- European X-ray Free-Electron Laser, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Sakura Pascarelli
- European X-ray Free-Electron Laser, Holzkoppel 4, 22869 Schenefeld, Germany
| |
Collapse
|
19
|
Ceppatelli M, Scelta D, Serrano-Ruiz M, Dziubek K, Garbarino G, Jacobs J, Mezouar M, Bini R, Peruzzini M. High pressure synthesis of phosphine from the elements and the discovery of the missing (PH 3) 2H 2 tile. Nat Commun 2020; 11:6125. [PMID: 33257669 PMCID: PMC7705733 DOI: 10.1038/s41467-020-19745-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 10/14/2020] [Indexed: 11/09/2022] Open
Abstract
High pressure reactivity of phosphorus and hydrogen is relevant to fundamental chemistry, energy conversion and storage, and materials science. Here we report the synthesis of (PH3)2H2, a crystalline van der Waals (vdW) compound (I4cm) made of PH3 and H2 molecules, in a Diamond Anvil Cell by direct catalyst-free high pressure (1.2 GPa) and high temperature (T ≲ 1000 K) chemical reaction of black phosphorus and liquid hydrogen, followed by room T compression above 3.5 GPa. Group 15 elements were previously not known to form H2-containing vdW compounds of their molecular hydrides. The observation of (PH3)2H2, identified by synchrotron X-ray diffraction and vibrational spectroscopy (FTIR, Raman), therefore represents the discovery of a previously missing tile, specifically corresponding to P for pnictogens, in the ability of non-metallic elements to form such compounds. Significant chemical implications encompass reactivity of the elements under extreme conditions, with the observation of the P analogue of the Haber-Bosch reaction for N, fundamental bond theory, and predicted high pressure superconductivity in P-H systems.
Collapse
Affiliation(s)
- Matteo Ceppatelli
- LENS, European Laboratory for Non-linear Spectroscopy, Via N. Carrara 1, I-50019, Firenze, Sesto Fiorentino, Italy.
- ICCOM-CNR, Institute of Chemistry of OrganoMetallic Compounds, National Research Council of Italy, Via Madonna del Piano 10, I-50019, Firenze, Sesto Fiorentino, Italy.
| | - Demetrio Scelta
- LENS, European Laboratory for Non-linear Spectroscopy, Via N. Carrara 1, I-50019, Firenze, Sesto Fiorentino, Italy
- ICCOM-CNR, Institute of Chemistry of OrganoMetallic Compounds, National Research Council of Italy, Via Madonna del Piano 10, I-50019, Firenze, Sesto Fiorentino, Italy
| | - Manuel Serrano-Ruiz
- ICCOM-CNR, Institute of Chemistry of OrganoMetallic Compounds, National Research Council of Italy, Via Madonna del Piano 10, I-50019, Firenze, Sesto Fiorentino, Italy
| | - Kamil Dziubek
- LENS, European Laboratory for Non-linear Spectroscopy, Via N. Carrara 1, I-50019, Firenze, Sesto Fiorentino, Italy
- ICCOM-CNR, Institute of Chemistry of OrganoMetallic Compounds, National Research Council of Italy, Via Madonna del Piano 10, I-50019, Firenze, Sesto Fiorentino, Italy
| | - Gaston Garbarino
- ESRF, European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000, Grenoble, France
| | - Jeroen Jacobs
- ESRF, European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000, Grenoble, France
| | - Mohamed Mezouar
- ESRF, European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000, Grenoble, France
| | - Roberto Bini
- LENS, European Laboratory for Non-linear Spectroscopy, Via N. Carrara 1, I-50019, Firenze, Sesto Fiorentino, Italy
- ICCOM-CNR, Institute of Chemistry of OrganoMetallic Compounds, National Research Council of Italy, Via Madonna del Piano 10, I-50019, Firenze, Sesto Fiorentino, Italy
- Dipartimento di Chimica "Ugo Schiff" dell'Università degli Studi di Firenze, Via della Lastruccia 3, I-50019, Firenze, Sesto Fiorentino, Italy
| | - Maurizio Peruzzini
- ICCOM-CNR, Institute of Chemistry of OrganoMetallic Compounds, National Research Council of Italy, Via Madonna del Piano 10, I-50019, Firenze, Sesto Fiorentino, Italy
| |
Collapse
|
20
|
Miao M. Noble Gases in Solid Compounds Show a Rich Display of Chemistry With Enough Pressure. Front Chem 2020; 8:570492. [PMID: 33251181 PMCID: PMC7674853 DOI: 10.3389/fchem.2020.570492] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/16/2020] [Indexed: 11/13/2022] Open
Abstract
In this review, we summarize the rapid progress that has been made in the study of noble gas chemistry in solid compounds under high pressure. Thanks to the recent development of first-principles crystal structure search methods, many new noble gas compounds have been predicted and some have been synthesized. Strikingly, almost all types of chemical roles and interactions are found or predicted in these high-pressure noble gas compounds, ranging from cationic and anionic noble gases to covalent bonds between noble gas atoms, and to hydrogen bond-like noble gas bonds. Besides, the recently discovered He insertion reactions reveal a unique chemical force that displays no local chemical bonding, providing evidence that research into noble gas reactions can advance the frontier of chemistry at the very basic level.
Collapse
Affiliation(s)
- Maosheng Miao
- Department of Chemistry and Biochemistry, California State University Northridge, Northridge, CA, United States
| |
Collapse
|
21
|
Peng F, Song X, Liu C, Li Q, Miao M, Chen C, Ma Y. Xenon iron oxides predicted as potential Xe hosts in Earth's lower mantle. Nat Commun 2020; 11:5227. [PMID: 33067445 PMCID: PMC7568531 DOI: 10.1038/s41467-020-19107-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 09/25/2020] [Indexed: 12/03/2022] Open
Abstract
An enduring geological mystery concerns the missing xenon problem, referring to the abnormally low concentration of xenon compared to other noble gases in Earth's atmosphere. Identifying mantle minerals that can capture and stabilize xenon has been a great challenge in materials physics and xenon chemistry. Here, using an advanced crystal structure search algorithm in conjunction with first-principles calculations we find reactions of xenon with recently discovered iron peroxide FeO2, forming robust xenon-iron oxides Xe2FeO2 and XeFe3O6 with significant Xe-O bonding in a wide range of pressure-temperature conditions corresponding to vast regions in Earth's lower mantle. Calculated mass density and sound velocities validate Xe-Fe oxides as viable lower-mantle constituents. Meanwhile, Fe oxides do not react with Kr, Ar and Ne. It means that if Xe exists in the lower mantle at the same pressures as FeO2, xenon-iron oxides are predicted as potential Xe hosts in Earth's lower mantle and could provide the repository for the atmosphere's missing Xe. These findings establish robust materials basis, formation mechanism, and geological viability of these Xe-Fe oxides, which advance fundamental knowledge for understanding xenon chemistry and physics mechanisms for the possible deep-Earth Xe reservoir.
Collapse
Affiliation(s)
- Feng Peng
- College of Physics and Electronic Information & Henan Key Laboratory of Electromagnetic Transformation and Detection, Luoyang Normal University, 471022, Luoyang, China
- Department of Chemistry and Biochemistry, California State University Northridge, Northridge, CA, 91330-8262, USA
| | - Xianqi Song
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, 130012, Changchun, China
- Innovation Center for Computational Methods & Software, College of Physics, Jilin University, 130012, Changchun, China
| | - Chang Liu
- Innovation Center for Computational Methods & Software, College of Physics, Jilin University, 130012, Changchun, China
- International Center of Future Science, Jilin University, 130012, Changchun, China
- Key Laboratory of Automobile Materials of MOE and Department of Materials Science, College of Materials Science and Engineering, Jilin University, 130012, Changchun, China
| | - Quan Li
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, 130012, Changchun, China.
- Innovation Center for Computational Methods & Software, College of Physics, Jilin University, 130012, Changchun, China.
- International Center of Future Science, Jilin University, 130012, Changchun, China.
- Key Laboratory of Automobile Materials of MOE and Department of Materials Science, College of Materials Science and Engineering, Jilin University, 130012, Changchun, China.
| | - Maosheng Miao
- Department of Chemistry and Biochemistry, California State University Northridge, Northridge, CA, 91330-8262, USA
| | - Changfeng Chen
- Department of Physics and Astronomy, University of Nevada, Las Vegas, NV, 89154, USA.
| | - Yanming Ma
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, 130012, Changchun, China.
- Innovation Center for Computational Methods & Software, College of Physics, Jilin University, 130012, Changchun, China.
- International Center of Future Science, Jilin University, 130012, Changchun, China.
| |
Collapse
|
22
|
Wang Y, Xu M, Yang L, Yan B, Qin Q, Shao X, Zhang Y, Huang D, Lin X, Lv J, Zhang D, Gou H, Mao HK, Chen C, Ma Y. Pressure-stabilized divalent ozonide CaO 3 and its impact on Earth's oxygen cycles. Nat Commun 2020; 11:4702. [PMID: 32943627 PMCID: PMC7499259 DOI: 10.1038/s41467-020-18541-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 08/25/2020] [Indexed: 11/16/2022] Open
Abstract
High pressure can drastically alter chemical bonding and produce exotic compounds that defy conventional wisdom. Especially significant are compounds pertaining to oxygen cycles inside Earth, which hold key to understanding major geological events that impact the environment essential to life on Earth. Here we report the discovery of pressure-stabilized divalent ozonide CaO3 crystal that exhibits intriguing bonding and oxidation states with profound geological implications. Our computational study identifies a crystalline phase of CaO3 by reaction of CaO and O2 at high pressure and high temperature conditions; ensuing experiments synthesize this rare compound under compression in a diamond anvil cell with laser heating. High-pressure x-ray diffraction data show that CaO3 crystal forms at 35 GPa and persists down to 20 GPa on decompression. Analysis of charge states reveals a formal oxidation state of -2 for ozone anions in CaO3. These findings unravel the ozonide chemistry at high pressure and offer insights for elucidating prominent seismic anomalies and oxygen cycles in Earth's interior. We further predict multiple reactions producing CaO3 by geologically abundant mineral precursors at various depths in Earth's mantle.
Collapse
Affiliation(s)
- Yanchao Wang
- State Key Lab of Superhard Materials & International Center for Computational Method and Software, College of Physics, Jilin University, Changchun, 130012, China
| | - Meiling Xu
- School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou, 221116, China
| | - Liuxiang Yang
- Center for High Pressure Science and Technology Advanced Research, Beijing, 100094, China
| | - Bingmin Yan
- Center for High Pressure Science and Technology Advanced Research, Beijing, 100094, China
| | - Qin Qin
- Center for High Pressure Science and Technology Advanced Research, Beijing, 100094, China
| | - Xuecheng Shao
- State Key Lab of Superhard Materials & International Center for Computational Method and Software, College of Physics, Jilin University, Changchun, 130012, China
| | - Yunwei Zhang
- State Key Lab of Superhard Materials & International Center for Computational Method and Software, College of Physics, Jilin University, Changchun, 130012, China
| | - Dajian Huang
- Center for High Pressure Science and Technology Advanced Research, Beijing, 100094, China
| | - Xiaohuan Lin
- Center for High Pressure Science and Technology Advanced Research, Beijing, 100094, China
| | - Jian Lv
- State Key Lab of Superhard Materials & International Center for Computational Method and Software, College of Physics, Jilin University, Changchun, 130012, China
| | - Dongzhou Zhang
- Hawai'i Institute of Geophysics and Planetology, School of Ocean and Earth Science and Technology, University of Hawai'i at Manoa, Honolulu, HI, 96822, USA
| | - Huiyang Gou
- Center for High Pressure Science and Technology Advanced Research, Beijing, 100094, China.
| | - Ho-Kwang Mao
- Center for High Pressure Science and Technology Advanced Research, Beijing, 100094, China
- Geophysical Laboratory, Carnegie Institution of Washington, Washington, DC, 20015, USA
| | - Changfeng Chen
- Department of Physics and Astronomy, University of Nevada, Las Vegas, NV, 89154, USA.
| | - Yanming Ma
- State Key Lab of Superhard Materials & International Center for Computational Method and Software, College of Physics, Jilin University, Changchun, 130012, China.
- International Center of Future Science, Jilin University, Changchun, 130012, China.
| |
Collapse
|
23
|
|
24
|
A Practical Review of the Laser-Heated Diamond Anvil Cell for University Laboratories and Synchrotron Applications. CRYSTALS 2020. [DOI: 10.3390/cryst10060459] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the past couple of decades, the laser-heated diamond anvil cell (combined with in situ techniques) has become an extensively used tool for studying pressure-temperature-induced evolution of various physical (and chemical) properties of materials. In this review, the general challenges associated with the use of the laser-heated diamond anvil cells are discussed together with the recent progress in the use of this tool combined with synchrotron X-ray diffraction and absorption spectroscopy.
Collapse
|
25
|
Britvin SN. Xenon in oxide frameworks: at the crossroads between inorganic chemistry and planetary science. Dalton Trans 2020; 49:5778-5782. [PMID: 32246760 DOI: 10.1039/d0dt00318b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The chemistry of noble gases was for a long time dominated by fluoride-bearing compounds of xenon. However, the last two decades have brought new insights into the chemistry of xenon oxides and oxysalts, including insights involving a novel type of non-covalent interaction (aerogen bonding), discoveries of new xenon oxides, oxide perovskite frameworks and evidence for an abrupt increase of xenon reactivity under extreme pressure-temperature conditions. The complex implementation of these findings could facilitate the development of explanations for long-standing interdisciplinary problems, such as the depletion of heavy noble gases in contemporary planetary atmospheres - the cosmochemical enigma known as the "missing xenon" paradox.
Collapse
Affiliation(s)
- Sergey N Britvin
- Department of Crystallography, Institute of Earth Sciences, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 St. Petersburg, Russia.
| |
Collapse
|
26
|
Wang X, Liu X. High pressure: a feasible tool for the synthesis of unprecedented inorganic compounds. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00477d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
After a simple classification of inorganic materials synthesized at high-temperature and high-pressure, this tutorial reviews the important research results in the field of high-temperature and high-pressure inorganic synthesis in the past 5 years.
Collapse
Affiliation(s)
- Xuerong Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Xiaoyang Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| |
Collapse
|
27
|
Dewaele A, Rosa AD, Guignot N. Argon-neon binary diagram and ArNe 2 Laves phase. J Chem Phys 2019; 151:124708. [PMID: 31575214 DOI: 10.1063/1.5119419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Mixtures of argon and neon have been experimentally studied under high pressure. One stoichiometric compound, with ArNe2 composition, is observed in this system. It is a Laves phase with a hexagonal MgZn2 structure, stable up to at least 65 GPa, the highest pressure reached in the experiments. Its equation of state follows closely the one of an ideal Ar+2Ne mixture. The binary phase diagram of the Ar-Ne system resembles the diagram predicted for hard sphere mixtures with a similar atomic radius ratio, suggesting that no electronic interactions appear in this system in this pressure range. ArNe2 can be a convenient quasihydrostatic pressure transmitting medium under moderate pressure.
Collapse
|
28
|
Bai Y, Liu Z, Botana J, Yan D, Lin HQ, Sun J, Pickard CJ, Needs RJ, Miao MS. Electrostatic force driven helium insertion into ammonia and water crystals under pressure. Commun Chem 2019. [DOI: 10.1038/s42004-019-0204-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
29
|
Yan XZ, Chen YM, Geng HY. Prediction of the Reactivity of Argon with Xenon under High Pressures. ACS OMEGA 2019; 4:13640-13644. [PMID: 31497681 PMCID: PMC6713989 DOI: 10.1021/acsomega.9b00638] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/13/2019] [Indexed: 06/10/2023]
Abstract
Pressure significantly modifies the microscopic interactions in the condense phase, leading to new patterns of bonding and unconventional chemistry. Using unbiased structure searching techniques combined with first-principles calculations, we demonstrate the reaction of argon with xenon at a pressure as low as 1.1 GPa, producing a novel van der Waals compound XeAr2. This compound is a wide-gap insulator and crystallizes in a MgCu2-type Laves phase structure. The calculations of phonon spectra and formation enthalpy indicate that XeAr2 would be stable without any phase transition or decomposition at least up to 500 GPa.
Collapse
Affiliation(s)
- Xiao Z. Yan
- National
Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, CAEP, P.O.
Box 919-102, Mianyang 621900, Sichuan, People’s Republic
of China
- School
of Science, Jiangxi University of Science
and Technology, Ganzhou 341000, Jiangxi, People’s
Republic of China
| | - Yang M. Chen
- National
Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, CAEP, P.O.
Box 919-102, Mianyang 621900, Sichuan, People’s Republic
of China
- School
of Science, Jiangxi University of Science
and Technology, Ganzhou 341000, Jiangxi, People’s
Republic of China
| | - Hua Y. Geng
- National
Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, CAEP, P.O.
Box 919-102, Mianyang 621900, Sichuan, People’s Republic
of China
| |
Collapse
|
30
|
Sneed D, Kearney JSC, Smith D, Smith JS, Park C, Salamat A. Probing disorder in high-pressure cubic tin (IV) oxide: a combined X-ray diffraction and absorption study. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:1245-1252. [PMID: 31274450 DOI: 10.1107/s1600577519003904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 03/21/2019] [Indexed: 06/09/2023]
Abstract
The transparent conducting oxide, SnO2, is a promising optoelectronic material with predicted tailorable properties via pressure-mediated band gap opening. While such electronic properties are typically modeled assuming perfect crystallinity, disordering of the O sublattice under pressure is qualitatively known. Here a quantitative approach is thus employed, combining extended X-ray absorption fine-structure (EXAFS) spectroscopy with X-ray diffraction, to probe the extent of Sn-O bond anharmonicities in the high-pressure cubic (Pa\bar{3}) SnO2 - formed as a single phase and annealed by CO2 laser heating to 2648 ± 41 K at 44.5 GPa. This combinational study reveals and quantifies a large degree of disordering in the O sublattice, while the Sn lattice remains ordered. Moreover, this study describes implementation of direct laser heating of non-metallic samples by CO2 laser alongside EXAFS, and the high quality of data which may be achieved at high pressures in a diamond anvil cell when appropriate thermal annealing is applied.
Collapse
Affiliation(s)
- Daniel Sneed
- Department of Physics and Astronomy, and HiPSEC, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - John S C Kearney
- Department of Physics and Astronomy, and HiPSEC, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Dean Smith
- Department of Physics and Astronomy, and HiPSEC, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Jesse S Smith
- HPCAT, X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Changyong Park
- HPCAT, X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Ashkan Salamat
- Department of Physics and Astronomy, and HiPSEC, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| |
Collapse
|
31
|
Wang Y, Zhang X, Jiang S, Geballe ZM, Pakornchote T, Somayazulu M, Prakapenka VB, Greenberg E, Goncharov AF. Helium-hydrogen immiscibility at high pressures. J Chem Phys 2019; 150:114504. [DOI: 10.1063/1.5086270] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Yu Wang
- Key Laboratory of Materials Physics and Center for Energy Matter in Extreme Environments, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
| | - Xiao Zhang
- Key Laboratory of Materials Physics and Center for Energy Matter in Extreme Environments, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
| | - Shuqing Jiang
- Key Laboratory of Materials Physics and Center for Energy Matter in Extreme Environments, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Zachary M. Geballe
- Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Road, Washington, District of Columbia 20015, USA
| | - Teerachote Pakornchote
- Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Road, Washington, District of Columbia 20015, USA
- Department of Physics, Chulalongkorn University, Bangkok 10330, Thailand
| | - Maddury Somayazulu
- Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Road, Washington, District of Columbia 20015, USA
| | - Vitali B. Prakapenka
- Center for Advanced Radiations Sources, University of Chicago, Chicago, Illinois 60637, USA
| | - Eran Greenberg
- Center for Advanced Radiations Sources, University of Chicago, Chicago, Illinois 60637, USA
| | - Alexander F. Goncharov
- Key Laboratory of Materials Physics and Center for Energy Matter in Extreme Environments, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- University of Science and Technology of China, Hefei, Anhui 230026, People’s Republic of China
- Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Road, Washington, District of Columbia 20015, USA
| |
Collapse
|
32
|
Ground-state structure of semiconducting and superconducting phases in xenon carbides at high pressure. Sci Rep 2019; 9:2459. [PMID: 30792456 PMCID: PMC6385371 DOI: 10.1038/s41598-019-39176-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 01/21/2019] [Indexed: 11/08/2022] Open
Abstract
The ‘missing Xe paradox’ is one of the phenomena at the Earth’s atmosphere. Studying the ‘missing Xe paradox’ will provide insights into a chemical reaction of Xe with C. We search the ground–state structure candidates of xenon carbides using the Universal Structure Predictor: Evolutionary Xtallography (USPEX) code, which has been successfully applied to a variety of systems. We predict that XeC2 is the most stable among the convex hull. We find that the I\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\bar{4}$$\end{document}4¯2m structure of XeC2 is the semiconducting phase. Accurate electronic structures of tetragonal XeC2 have been calculated using a hybrid density functionals HSE06, which gives larger more accurate band gap than a GGA–PBE exchange-correlation functional. Specifically, we find that the I\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\bar{4}$$\end{document}4¯2m structure of XeC2 is a dynamically stable structure at high pressure. We also predict that the P6/mmm structure of XeC2 is the superconducting phase with a critical temperature of 38 K at 200 GPa. The ground-state structure of xenon carbides is of critical importance for understanding in the missing Xe. We discuss the inference of the stable structures of XeC2. The accumulation of electrons between Xe and C led to the stability by investigating electron localization function (ELF).
Collapse
|
33
|
Turnbull R, Donnelly ME, Wang M, Peña-Alvarez M, Ji C, Dalladay-Simpson P, Mao HK, Gregoryanz E, Howie RT. Reactivity of Hydrogen-Helium and Hydrogen-Nitrogen Mixtures at High Pressures. PHYSICAL REVIEW LETTERS 2018; 121:195702. [PMID: 30468616 DOI: 10.1103/physrevlett.121.195702] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/17/2018] [Indexed: 06/09/2023]
Abstract
Through a series of Raman spectroscopy studies, we investigate the behavior of hydrogen-helium and hydrogen-nitrogen mixtures at high pressure across a wide range of concentrations. We find that there is no evidence of chemical association or increased miscibility of hydrogen and helium in the solid state up to pressures of 250 GPa at 300 K. In contrast, we observe the formation of concentration-dependent N_{2}-H_{2} van der Waals solids, which react to form N-H bonded compounds above 50 GPa. Through this combined study, we can demonstrate that the recently reported chemical association of H_{2}-He can be attributed to significant N_{2} contamination and subsequent formation of N_{2}-H_{2} compounds.
Collapse
Affiliation(s)
- Robin Turnbull
- School of Physics and Astronomy and Centre for Science at Extreme Conditions, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
| | - Mary-Ellen Donnelly
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, People's Republic of China
| | - Mengnan Wang
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, People's Republic of China
| | - Miriam Peña-Alvarez
- School of Physics and Astronomy and Centre for Science at Extreme Conditions, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
| | - Cheng Ji
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, People's Republic of China
- High Pressure Collaborative Access Team, Geophysical Laboratory, Carnegie Institution of Washington, Argonne, Illinois 60439, USA
| | - Philip Dalladay-Simpson
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, People's Republic of China
| | - Ho-Kwang Mao
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, People's Republic of China
| | - Eugene Gregoryanz
- School of Physics and Astronomy and Centre for Science at Extreme Conditions, University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, People's Republic of China
| | - Ross T Howie
- Center for High Pressure Science and Technology Advanced Research, Shanghai 201203, People's Republic of China
| |
Collapse
|
34
|
Fornasini P, Grisenti R, Irifune T, Shinmei T, Mathon O, Pascarelli S, Rosa AD. Bond compressibility and bond Grüneisen parameters of CdTe. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:245402. [PMID: 29714173 DOI: 10.1088/1361-648x/aac188] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Extended x-ray absorption fine structure (EXAFS) at the Cd K edge and diffraction patterns have been measured on CdTe as a function of pressure from 100 kPa (1 bar) to 5 GPa using a cell with nano-polycrystalline diamond anvils and an x-ray focussing scanning spectrometer. Three phases-zincblende (ZB), mixed cinnabar-ZB and rocksalt (RS)-are well distinguished in different pressure intervals. The bond compressibility measured by EXAFS in the ZB phase is slightly smaller than the one measured by diffraction and decreases significantly faster when the pressure increases; the difference is attributed to the effect of relative vibrations perpendicular to the Cd-Te bond. The parallel mean square relative displacement (MSRD) decreases, the perpendicular MSRD increases when the pressure increases, leading to an increasing anisotropy of relative atomic vibrations. A constant-temperature bond Grüneisen parameter (GP) has been evaluated for the ZB phase and compared with the constant-pressure bond GP measured in a previous experiment; an attempt is made to connect the bond GPs measured by EXAFS and the more familiar thermodynamic GP and mode GPs; the comparisons suggest the inadequacy of the quasi-harmonic approximation to deal with the local vibrational properties sampled by EXAFS.
Collapse
Affiliation(s)
- P Fornasini
- Dipartimento di Fisica-Università di Trento, Via Sommarive 14, I-38123 Povo (Trento), Italy
| | | | | | | | | | | | | |
Collapse
|
35
|
Bykov M, Bykova E, Koemets E, Fedotenko T, Aprilis G, Glazyrin K, Liermann HP, Ponomareva AV, Tidholm J, Tasnádi F, Abrikosov IA, Dubrovinskaia N, Dubrovinsky L. High-Pressure Synthesis of a Nitrogen-Rich Inclusion Compound ReN8
⋅x
N2
with Conjugated Polymeric Nitrogen Chains. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201805152] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Maxim Bykov
- Bayerisches Geoinstitute; University of Bayreuth; Universitätstrasse 30 95440 Bayreuth Germany
| | - Elena Bykova
- Photon Sciences; Deutsches Elektronen Synchrotron (DESY); Notkestrasse 85 22607 Hamburg Germany
| | - Egor Koemets
- Bayerisches Geoinstitute; University of Bayreuth; Universitätstrasse 30 95440 Bayreuth Germany
| | - Timofey Fedotenko
- Bayerisches Geoinstitute; University of Bayreuth; Universitätstrasse 30 95440 Bayreuth Germany
| | - Georgios Aprilis
- Material Physics and Technology at Extreme Conditions; Laboratory of Crystallography; University of Bayreuth; Universitätstrasse 30 95440 Bayreuth Germany
| | - Konstantin Glazyrin
- Photon Sciences; Deutsches Elektronen Synchrotron (DESY); Notkestrasse 85 22607 Hamburg Germany
| | - Hanns-Peter Liermann
- Photon Sciences; Deutsches Elektronen Synchrotron (DESY); Notkestrasse 85 22607 Hamburg Germany
| | - Alena V. Ponomareva
- Materials Modeling and Development Laboratory; National University of Science and Technology “MISIS”; Moscow 119049 Russia
| | - Johan Tidholm
- Department of Physics, Chemistry and Biology (IFM); Linköping University; Linköping SE-58183 Sweden
| | - Ferenc Tasnádi
- Department of Physics, Chemistry and Biology (IFM); Linköping University; Linköping SE-58183 Sweden
| | - Igor A. Abrikosov
- Department of Physics, Chemistry and Biology (IFM); Linköping University; Linköping SE-58183 Sweden
| | - Natalia Dubrovinskaia
- Material Physics and Technology at Extreme Conditions; Laboratory of Crystallography; University of Bayreuth; Universitätstrasse 30 95440 Bayreuth Germany
| | - Leonid Dubrovinsky
- Bayerisches Geoinstitute; University of Bayreuth; Universitätstrasse 30 95440 Bayreuth Germany
| |
Collapse
|
36
|
Bykov M, Bykova E, Koemets E, Fedotenko T, Aprilis G, Glazyrin K, Liermann HP, Ponomareva AV, Tidholm J, Tasnádi F, Abrikosov IA, Dubrovinskaia N, Dubrovinsky L. High-Pressure Synthesis of a Nitrogen-Rich Inclusion Compound ReN8
⋅x
N2
with Conjugated Polymeric Nitrogen Chains. Angew Chem Int Ed Engl 2018; 57:9048-9053. [DOI: 10.1002/anie.201805152] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Maxim Bykov
- Bayerisches Geoinstitute; University of Bayreuth; Universitätstrasse 30 95440 Bayreuth Germany
| | - Elena Bykova
- Photon Sciences; Deutsches Elektronen Synchrotron (DESY); Notkestrasse 85 22607 Hamburg Germany
| | - Egor Koemets
- Bayerisches Geoinstitute; University of Bayreuth; Universitätstrasse 30 95440 Bayreuth Germany
| | - Timofey Fedotenko
- Bayerisches Geoinstitute; University of Bayreuth; Universitätstrasse 30 95440 Bayreuth Germany
| | - Georgios Aprilis
- Material Physics and Technology at Extreme Conditions; Laboratory of Crystallography; University of Bayreuth; Universitätstrasse 30 95440 Bayreuth Germany
| | - Konstantin Glazyrin
- Photon Sciences; Deutsches Elektronen Synchrotron (DESY); Notkestrasse 85 22607 Hamburg Germany
| | - Hanns-Peter Liermann
- Photon Sciences; Deutsches Elektronen Synchrotron (DESY); Notkestrasse 85 22607 Hamburg Germany
| | - Alena V. Ponomareva
- Materials Modeling and Development Laboratory; National University of Science and Technology “MISIS”; Moscow 119049 Russia
| | - Johan Tidholm
- Department of Physics, Chemistry and Biology (IFM); Linköping University; Linköping SE-58183 Sweden
| | - Ferenc Tasnádi
- Department of Physics, Chemistry and Biology (IFM); Linköping University; Linköping SE-58183 Sweden
| | - Igor A. Abrikosov
- Department of Physics, Chemistry and Biology (IFM); Linköping University; Linköping SE-58183 Sweden
| | - Natalia Dubrovinskaia
- Material Physics and Technology at Extreme Conditions; Laboratory of Crystallography; University of Bayreuth; Universitätstrasse 30 95440 Bayreuth Germany
| | - Leonid Dubrovinsky
- Bayerisches Geoinstitute; University of Bayreuth; Universitätstrasse 30 95440 Bayreuth Germany
| |
Collapse
|
37
|
Binns J, Dalladay-Simpson P, Wang M, Gregoryanz E, Howie RT. Enhanced Reactivity of Lithium and Copper at High Pressure. J Phys Chem Lett 2018; 9:3149-3153. [PMID: 29787271 DOI: 10.1021/acs.jpclett.8b01350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
High pressure can profoundly affect the electronic structure and reactivity, creating compounds between elements that do not react at ambient conditions. Lithium is known to react with gold and silver; however, no copper compounds are known to date. By compressing mixtures of the elements in diamond-anvil cells, compounds of lithium and copper have been synthesized and characterized by X-ray diffraction for the first time. Pressures as low as 1 GPa lead to the formation of a complex layered phase LiCu, displaying two-dimensional kagomé lattice layers of Cu atoms. With increasing pressure, the layered Cu-Cu bonding is replaced by linear chains of Cu atoms in the high-pressure phase Li2Cu. Here we show the powerful effects of even modest pressures on the reactivity of lithium, leading to structures of remarkable complexity and low-dimensional transition metal bonding.
Collapse
Affiliation(s)
- Jack Binns
- Center for High Pressure Science & Technology Advanced Research (HPSTAR) , Shanghai 201203 , People's Republic of China
| | - Philip Dalladay-Simpson
- Center for High Pressure Science & Technology Advanced Research (HPSTAR) , Shanghai 201203 , People's Republic of China
| | - Mengnan Wang
- Center for High Pressure Science & Technology Advanced Research (HPSTAR) , Shanghai 201203 , People's Republic of China
| | - Eugene Gregoryanz
- Center for High Pressure Science & Technology Advanced Research (HPSTAR) , Shanghai 201203 , People's Republic of China
- Centre for Science at Extreme Conditions and School of Physics and Astronomy , University of Edinburgh , Edinburgh EH9 3JZ , United Kingdom
| | - Ross T Howie
- Center for High Pressure Science & Technology Advanced Research (HPSTAR) , Shanghai 201203 , People's Republic of China
| |
Collapse
|
38
|
Liu Z, Botana J, Hermann A, Valdez S, Zurek E, Yan D, Lin HQ, Miao MS. Reactivity of He with ionic compounds under high pressure. Nat Commun 2018; 9:951. [PMID: 29507302 PMCID: PMC5838161 DOI: 10.1038/s41467-018-03284-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 02/02/2018] [Indexed: 11/26/2022] Open
Abstract
Until very recently, helium had remained the last naturally occurring element that was known not to form stable solid compounds. Here we propose and demonstrate that there is a general driving force for helium to react with ionic compounds that contain an unequal number of cations and anions. The corresponding reaction products are stabilized not by local chemical bonds but by long-range Coulomb interactions that are significantly modified by the insertion of helium atoms, especially under high pressure. This mechanism also explains the recently discovered reactivity of He and Na under pressure. Our work reveals that helium has the propensity to react with a broad range of ionic compounds at pressures as low as 30 GPa. Since most of the Earth’s minerals contain unequal numbers of positively and negatively charged atoms, our work suggests that large quantities of He might be stored in the Earth’s lower mantle. Helium was long thought to be unable to form stable solid compounds, until a recent discovery that helium reacts with sodium at high pressure. Here, the authors demonstrate the driving force for helium reactivity, showing that it can form new compounds under pressure without forming any local chemical bonds.
Collapse
Affiliation(s)
- Zhen Liu
- Beijing Computational Science Research Centre, Beijing, 100193, China.,Department of Physics, Beijing Normal University, Beijing, 100875, China.,Department of Chemistry and Biochemistry, California State University Northridge, Northridge, CA, 91330-8262, USA
| | - Jorge Botana
- Beijing Computational Science Research Centre, Beijing, 100193, China.,Department of Chemistry and Biochemistry, California State University Northridge, Northridge, CA, 91330-8262, USA
| | - Andreas Hermann
- Centre for Science at Extreme Conditions and SUPA, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, EH9 3FD, UK
| | - Steven Valdez
- Department of Chemistry and Biochemistry, California State University Northridge, Northridge, CA, 91330-8262, USA
| | - Eva Zurek
- Department of Chemistry, State University of New York at Buffalo, Buffalo, NY, 14260-3000, USA
| | - Dadong Yan
- Department of Physics, Beijing Normal University, Beijing, 100875, China
| | - Hai-Qing Lin
- Beijing Computational Science Research Centre, Beijing, 100193, China
| | - Mao-Sheng Miao
- Beijing Computational Science Research Centre, Beijing, 100193, China. .,Department of Chemistry and Biochemistry, California State University Northridge, Northridge, CA, 91330-8262, USA.
| |
Collapse
|
39
|
Stavrou E, Yao Y, Goncharov AF, Lobanov SS, Zaug JM, Liu H, Greenberg E, Prakapenka VB. Synthesis of Xenon and Iron-Nickel Intermetallic Compounds at Earth's Core Thermodynamic Conditions. PHYSICAL REVIEW LETTERS 2018; 120:096001. [PMID: 29547323 DOI: 10.1103/physrevlett.120.096001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Indexed: 06/08/2023]
Abstract
Using in situ synchrotron x-ray diffraction and Raman spectroscopy in concert with first principles calculations we demonstrate the synthesis of stable Xe(Fe,Fe/Ni)_{3} and XeNi_{3} compounds at thermodynamic conditions representative of Earth's core. Surprisingly, in the case of both the Xe-Fe and Xe-Ni systems Fe and Ni become highly electronegative and can act as oxidants. The results indicate the changing chemical properties of elements under extreme conditions by documenting that electropositive at ambient pressure elements could gain electrons and form anions.
Collapse
Affiliation(s)
- Elissaios Stavrou
- Lawrence Livermore National Laboratory, Physical and Life Sciences Directorate, Livermore, California 94550, USA
| | - Yansun Yao
- Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon Saskatchewan S7N 5E2, Canada
- Canadian Light Source, Saskatoon, Saskatchewan S7N 2V3, Canada
| | - Alexander F Goncharov
- Key Laboratory of Materials Physics and Center for Energy Matter in Extreme Environments, Chinese Academy of Sciences, Hefei 230031, China
- Geophysical Laboratory, Carnegie Institution of Washington, Washington, D.C. 20015, USA
- University of Science and Technology of China, Hefei 230026, China
| | - Sergey S Lobanov
- Geophysical Laboratory, Carnegie Institution of Washington, Washington, D.C. 20015, USA
- Sobolev Institute of Geology and Mineralogy, Siberian Branch Russian Academy of Science, Novosibirsk 630090, Russia
| | - Joseph M Zaug
- Lawrence Livermore National Laboratory, Physical and Life Sciences Directorate, Livermore, California 94550, USA
| | - Hanyu Liu
- Geophysical Laboratory, Carnegie Institution of Washington, Washington, D.C. 20015, USA
| | - Eran Greenberg
- Center for Advanced Radiation Sources, University of Chicago, Chicago, Illinois 60637, USA
| | - Vitali B Prakapenka
- Center for Advanced Radiation Sources, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
40
|
Banerjee D, Simon CM, Elsaidi SK, Haranczyk M, Thallapally PK. Xenon Gas Separation and Storage Using Metal-Organic Frameworks. Chem 2018. [DOI: 10.1016/j.chempr.2017.12.025] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
41
|
Abstract
The diamond anvil cell (DAC) is considered one of the dominant devices to generate ultrahigh static pressure. The development of the DAC technique has enabled researchers to explore rich high-pressure science in the multimegabar pressure range. Here, we investigated the behavior of the DAC up to 400 GPa, which is the accepted pressure limit of a conventional DAC. By using a submicrometer synchrotron X-ray beam, double cuppings of the beveled diamond anvils were observed experimentally. Details of pressure loading, distribution, gasket-thickness variation, and diamond anvil deformation were studied to understand the generation of ultrahigh pressures, which may improve the conventional DAC techniques.
Collapse
|
42
|
Kantor I, Marini C, Mathon O, Pascarelli S. A laser heating facility for energy-dispersive X-ray absorption spectroscopy. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:013111. [PMID: 29390671 DOI: 10.1063/1.5010345] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A double-sided laser heating setup for diamond anvil cells installed on the ID24 beamline of the ESRF is presented here. The setup geometry is specially adopted for the needs of energy-dispersive X-ray absorption spectroscopic (XAS) studies of materials under extreme pressure and temperature conditions. We illustrate the performance of the facility with a study on metallic nickel at 60 GPa. The XAS data provide the temperature of the melting onset and quantitative information on the structural parameters of the first coordination shell in the hot solid up to melting.
Collapse
Affiliation(s)
- I Kantor
- ESRF-The European Synchrotron, CS40220, 38043 Grenoble Cedex 9, France
| | - C Marini
- ESRF-The European Synchrotron, CS40220, 38043 Grenoble Cedex 9, France
| | - O Mathon
- ESRF-The European Synchrotron, CS40220, 38043 Grenoble Cedex 9, France
| | - S Pascarelli
- ESRF-The European Synchrotron, CS40220, 38043 Grenoble Cedex 9, France
| |
Collapse
|
43
|
High-Pressure Reactivity of Kr and F2—Stabilization of Krypton in the +4 Oxidation State. CRYSTALS 2017. [DOI: 10.3390/cryst7110329] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
44
|
Abstract
The interior structure of the giant ice planets Uranus and Neptune, but also of newly discovered exoplanets, is loosely constrained, because limited observational data can be satisfied with various interior models. Although it is known that their mantles comprise large amounts of water, ammonia, and methane ices, it is unclear how these organize themselves within the planets-as homogeneous mixtures, with continuous concentration gradients, or as well-separated layers of specific composition. While individual ices have been studied in great detail under pressure, the properties of their mixtures are much less explored. We show here, using first-principles calculations, that the 2:1 ammonia hydrate, (H2O)(NH3)2, is stabilized at icy planet mantle conditions due to a remarkable structural evolution. Above 65 GPa, we predict it will transform from a hydrogen-bonded molecular solid into a fully ionic phase O2-([Formula: see text])2, where all water molecules are completely deprotonated, an unexpected bonding phenomenon not seen before. Ammonia hemihydrate is stable in a sequence of ionic phases up to 500 GPa, pressures found deep within Neptune-like planets, and thus at higher pressures than any other ammonia-water mixture. This suggests it precipitates out of any ammonia-water mixture at sufficiently high pressures and thus forms an important component of icy planets.
Collapse
|
45
|
Niwa K, Matsuzaki F, Hasegawa M. Synthesis, crystal structure and phase transition of a Xe-N 2 compound at high pressure: experimental indication of orbital interaction between xenon and nitrogen. Phys Chem Chem Phys 2016; 19:59-63. [PMID: 27942633 DOI: 10.1039/c6cp06552j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The van der Waals compound Xe(N2)2 with a C15 Laves structure was successfully synthesised at pressures greater than 4.4 GPa. We found that, at 10 GPa, the structure reversibly transforms from a cubic to a tetragonal phase. Further compression results in changes of Xe-N compound, which could result in the enhancement of orbital interactions between the xenon and nitrogen atoms.
Collapse
Affiliation(s)
- K Niwa
- Department of Crystalline Materials Science, Nagoya University Furo-cho, Chikusa-ku, Nagoya Aichi 464-8603, Japan
| | - F Matsuzaki
- Department of Crystalline Materials Science, Nagoya University Furo-cho, Chikusa-ku, Nagoya Aichi 464-8603, Japan
| | - M Hasegawa
- Department of Crystalline Materials Science, Nagoya University Furo-cho, Chikusa-ku, Nagoya Aichi 464-8603, Japan
| |
Collapse
|
46
|
Howie RT, Turnbull R, Binns J, Frost M, Dalladay-Simpson P, Gregoryanz E. Formation of xenon-nitrogen compounds at high pressure. Sci Rep 2016; 6:34896. [PMID: 27748357 PMCID: PMC5066244 DOI: 10.1038/srep34896] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 09/19/2016] [Indexed: 01/21/2023] Open
Abstract
Molecular nitrogen exhibits one of the strongest known interatomic bonds, while xenon possesses a closed-shell electronic structure: a direct consequence of which renders both chemically unreactive. Through a series of optical spectroscopy and x-ray diffraction experiments, we demonstrate the formation of a novel van der Waals compound formed from binary Xe-N2 mixtures at pressures as low as 5 GPa. At 300 K and 5 GPa Xe(N2)2-I is synthesised, and if further compressed, undergoes a transition to a tetragonal Xe(N2)2-II phase at 14 GPa; this phase appears to be unexpectedly stable at least up to 180 GPa even after heating to above 2000 K. Raman spectroscopy measurements indicate a distinct weakening of the intramolecular bond of the nitrogen molecule above 60 GPa, while transmission measurements in the visible and mid-infrared regime suggest the metallisation of the compound at ~100 GPa.
Collapse
Affiliation(s)
- Ross T Howie
- Center for High Pressure Science &Technology Advanced Research, Shanghai, 201203, P.R. China
| | - Robin Turnbull
- Centre for Science at Extreme Conditions and School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Jack Binns
- Center for High Pressure Science &Technology Advanced Research, Shanghai, 201203, P.R. China
| | - Mungo Frost
- Centre for Science at Extreme Conditions and School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Philip Dalladay-Simpson
- Center for High Pressure Science &Technology Advanced Research, Shanghai, 201203, P.R. China
| | - Eugene Gregoryanz
- Centre for Science at Extreme Conditions and School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
47
|
Britvin SN, Kashtanov SA, Krivovichev SV, Chukanov NV. Xenon in Rigid Oxide Frameworks: Structure, Bonding and Explosive Properties of Layered Perovskite K4Xe3O12. J Am Chem Soc 2016; 138:13838-13841. [DOI: 10.1021/jacs.6b09056] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sergey N. Britvin
- Department
of Crystallography, Saint-Petersburg State University, Universitetskaya
Nab. 7/9, 199034 St. Petersburg, Russia
| | - Sergei A. Kashtanov
- Institute
of Problems of Chemical Physics, Russian Academy of Sciences, 142432 Chernogolovka, Russia
| | - Sergey V. Krivovichev
- Department
of Crystallography, Saint-Petersburg State University, Universitetskaya
Nab. 7/9, 199034 St. Petersburg, Russia
| | - Nikita V. Chukanov
- Institute
of Problems of Chemical Physics, Russian Academy of Sciences, 142432 Chernogolovka, Russia
| |
Collapse
|