1
|
Reißenweber L, Uhl E, Hampel F, Mayer P, Dube H. Directionality Reversal and Shift of Rotational Axis in a Hemithioindigo Macrocyclic Molecular Motor. J Am Chem Soc 2024; 146:23387-23397. [PMID: 39109636 PMCID: PMC11345773 DOI: 10.1021/jacs.4c06377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/22/2024]
Abstract
Molecular motors are central driving units for nanomachinery, and control of their directional motions is of fundamental importance for their functions. Light-driven variants use easy to provide, easy to dose, and waste-free fuel with high energy content, making them particularly interesting for applications. Typically, light-driven molecular motors work via rotations around dedicated chemical bonds where the directionality of the rotation is dictated by the steric effects of asymmetry in close vicinity to the rotation axis. In this work, we show how unidirectional rotation around a virtual axis can be realized by reprogramming a molecular motor. To this end, a classical light-driven motor is restricted by macrocyclization, and its intrinsic directional rotation is transformed into a directional rotation of the macrocyclic chain in the opposite direction. Further, solvent polarity changes allow to toggle the function of this molecular machine between a directional motor and a nondirectional photoswitch. In this way, a new concept for the design of molecular motors is delivered together with elaborate control over their motions and functions by simple solvent changes. The possibility of sensing the environmental polarity and correspondingly adjusting the directionality of motions opens up a next level of control and responsiveness to light-driven nanoscopic motors.
Collapse
Affiliation(s)
- Lilli Reißenweber
- Department
of Chemistry and Pharmacy, Friedrich-Alexander-Universität
Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Edgar Uhl
- Department
of Chemistry and Munich Center for Integrated Protein Science CIPSM, Ludwig-Maximilians-Universität München, D-81377 Munich, Germany
| | - Frank Hampel
- Department
of Chemistry and Pharmacy, Friedrich-Alexander-Universität
Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Peter Mayer
- Department
of Chemistry and Munich Center for Integrated Protein Science CIPSM, Ludwig-Maximilians-Universität München, D-81377 Munich, Germany
| | - Henry Dube
- Department
of Chemistry and Pharmacy, Friedrich-Alexander-Universität
Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| |
Collapse
|
2
|
Naghim A, Rodriguez J, Chuzel O, Chouraqui G, Bonne D. Enantioselective Synthesis of Heteroatom-Linked Non-Biaryl Atropisomers. Angew Chem Int Ed Engl 2024; 63:e202407767. [PMID: 38748462 DOI: 10.1002/anie.202407767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Indexed: 06/16/2024]
Abstract
Atropisomers hold significant fascination, not only for their prevalence in natural compounds but also for their biological importance and wide-ranging applications as chiral materials, ligands, and organocatalysts. While biaryl and heterobiaryl atropisomers are commonly studied, the enantioselective synthesis of less abundant heteroatom-linked non-biaryl atropisomers presents a formidable challenge in modern organic synthesis. Unlike classical atropisomers, these molecules allow rotation around two bonds, resulting in low barriers to enantiomerization through concerted bond rotations. In recent years the discovery of new configurationally stable rare non-biaryl scaffolds such as aryl amines, aryl ethers and aryl sulfones as well as innovative methodologies to control their configuration have been disclosed in the literature and constitute the topic of this minireview.
Collapse
Affiliation(s)
- Abdelati Naghim
- Aix Marseille Université, CNRS, Centrale Méditerranée, iSm2, 13397, Marseille, France
| | - Jean Rodriguez
- Aix Marseille Université, CNRS, Centrale Méditerranée, iSm2, 13397, Marseille, France
| | - Olivier Chuzel
- Aix Marseille Université, CNRS, Centrale Méditerranée, iSm2, 13397, Marseille, France
| | - Gaëlle Chouraqui
- Aix Marseille Université, CNRS, Centrale Méditerranée, iSm2, 13397, Marseille, France
| | - Damien Bonne
- Aix Marseille Université, CNRS, Centrale Méditerranée, iSm2, 13397, Marseille, France
| |
Collapse
|
3
|
Schmidt TA, Hutskalova V, Sparr C. Atroposelective catalysis. Nat Rev Chem 2024; 8:497-517. [PMID: 38890539 DOI: 10.1038/s41570-024-00618-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2024] [Indexed: 06/20/2024]
Abstract
Atropisomeric compounds-stereoisomers that arise from the restricted rotation about a single bond-have attracted widespread attention in recent years due to their immense potential for applications in a variety of fields, including medicinal chemistry, catalysis and molecular nanoscience. This increased interest led to the invention of new molecular motors, the incorporation of atropisomers into drug discovery programmes and a wide range of novel atroposelective reactions, including those that simultaneously control multiple stereogenic axes. A diverse set of synthetic methodologies, which can be grouped into desymmetrizations, (dynamic) kinetic resolutions, cross-coupling reactions and de novo ring formations, is available for the catalyst-controlled stereoselective synthesis of various atropisomer classes. In this Review, we generalize the concepts for the catalyst-controlled stereoselective synthesis of atropisomers within these categories with an emphasis on recent advancements and underdeveloped atropisomeric scaffolds beyond stereogenic C(sp2)-C(sp2) axes. We also discuss more complex systems with multiple stereogenic axes or higher-order stereogenicity.
Collapse
Affiliation(s)
- Tanno A Schmidt
- Department of Chemistry, University of Basel, Basel, Switzerland
| | | | - Christof Sparr
- Department of Chemistry, University of Basel, Basel, Switzerland.
| |
Collapse
|
4
|
Jin L, Li Y, Mao Y, He XB, Lu Z, Zhang Q, Shi BF. Chiral dinitrogen ligand enabled asymmetric Pd/norbornene cooperative catalysis toward the assembly of C-N axially chiral scaffolds. Nat Commun 2024; 15:4908. [PMID: 38851721 PMCID: PMC11162495 DOI: 10.1038/s41467-024-48582-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/07/2024] [Indexed: 06/10/2024] Open
Abstract
C - N axially chiral compounds have recently attracted significant interest among synthetic chemistry community due to their widespread application in pharmaceuticals, advanced materials and organic synthesis. Although the emerging asymmetric Catellani reaction offers great opportunity for their modular and efficient preparation, the only operative chiral NBE strategy to date requires using half stoichiometric amount of chiral NBE and 2,6-disubstituted bromoarenes as electrophiles. We herein report an efficient assembly of C-N axially chiral scaffolds through a distinct chiral ligand strategy. The crucial chiral source, a biimidazoline (BiIM) chiral dinitrogen ligand, is used in relatively low loading and permits the use of less bulky bromoarenes. The method also features the use of feedstock plain NBE, high reactivity, good enantioselectivity, ease of operation and scale-up. Applications in the preparation of chiral optoelectronic material candidates featuring two C-N chiral axes and a chiral ligand for asymmetric C-H activation have also been demonstrated.
Collapse
Affiliation(s)
- Liang Jin
- Department of Chemistry, Zhejiang University, Hangzhou, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Ya Li
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Yihui Mao
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Xiao-Bao He
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Zhan Lu
- Department of Chemistry, Zhejiang University, Hangzhou, China
| | - Qi Zhang
- Department of Chemistry, Zhejiang University, Hangzhou, China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China.
| | - Bing-Feng Shi
- Department of Chemistry, Zhejiang University, Hangzhou, China.
| |
Collapse
|
5
|
Borsley S, Leigh DA, Roberts BMW. Molecular Ratchets and Kinetic Asymmetry: Giving Chemistry Direction. Angew Chem Int Ed Engl 2024; 63:e202400495. [PMID: 38568047 DOI: 10.1002/anie.202400495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Indexed: 05/03/2024]
Abstract
Over the last two decades ratchet mechanisms have transformed the understanding and design of stochastic molecular systems-biological, chemical and physical-in a move away from the mechanical macroscopic analogies that dominated thinking regarding molecular dynamics in the 1990s and early 2000s (e.g. pistons, springs, etc), to the more scale-relevant concepts that underpin out-of-equilibrium research in the molecular sciences today. Ratcheting has established molecular nanotechnology as a research frontier for energy transduction and metabolism, and has enabled the reverse engineering of biomolecular machinery, delivering insights into how molecules 'walk' and track-based synthesisers operate, how the acceleration of chemical reactions enables energy to be transduced by catalysts (both motor proteins and synthetic catalysts), and how dynamic systems can be driven away from equilibrium through catalysis. The recognition of molecular ratchet mechanisms in biology, and their invention in synthetic systems, is proving significant in areas as diverse as supramolecular chemistry, systems chemistry, dynamic covalent chemistry, DNA nanotechnology, polymer and materials science, molecular biology, heterogeneous catalysis, endergonic synthesis, the origin of life, and many other branches of chemical science. Put simply, ratchet mechanisms give chemistry direction. Kinetic asymmetry, the key feature of ratcheting, is the dynamic counterpart of structural asymmetry (i.e. chirality). Given the ubiquity of ratchet mechanisms in endergonic chemical processes in biology, and their significance for behaviour and function from systems to synthesis, it is surely just as fundamentally important. This Review charts the recognition, invention and development of molecular ratchets, focussing particularly on the role for which they were originally envisaged in chemistry, as design elements for molecular machinery. Different kinetically asymmetric systems are compared, and the consequences of their dynamic behaviour discussed. These archetypal examples demonstrate how chemical systems can be driven inexorably away from equilibrium, rather than relax towards it.
Collapse
Affiliation(s)
- Stefan Borsley
- Department of Chemistry, The University of Manchester, Oxford Road, M13 9PL, Manchester, United Kingdom
| | - David A Leigh
- Department of Chemistry, The University of Manchester, Oxford Road, M13 9PL, Manchester, United Kingdom
| | - Benjamin M W Roberts
- Department of Chemistry, The University of Manchester, Oxford Road, M13 9PL, Manchester, United Kingdom
| |
Collapse
|
6
|
Zwick P, Troncossi A, Borsley S, Vitorica-Yrezabal IJ, Leigh DA. Stepwise Operation of a Molecular Rotary Motor Driven by an Appel Reaction. J Am Chem Soc 2024; 146:4467-4472. [PMID: 38319727 PMCID: PMC10885133 DOI: 10.1021/jacs.3c10266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
To date, only a small number of chemistries and chemical fueling strategies have been successfully used to operate artificial molecular motors. Here, we report the 360° directionally biased rotation of phenyl groups about a C-C bond, driven by a stepwise Appel reaction sequence. The motor molecule consists of a biaryl-embedded phosphine oxide and phenol, in which full rotation around the biaryl bond is blocked by the P-O oxygen atom on the rotor being too bulky to pass the oxygen atom on the stator. Treatment with SOCl2 forms a cyclic oxyphosphonium salt (removing the oxygen atom of the phosphine oxide), temporarily linking the rotor with the stator. Conformational exchange via ring flipping then allows the rotor and stator to twist back and forth past the previous limit of rotation. Subsequently, the ring opening of the tethered intermediate with a chiral alcohol occurs preferentially through a nucleophilic attack on one face. Thus, the original phosphine oxide is reformed with net directional rotation about the biaryl bond over the course of the two-step reaction sequence. Each repetition of SOCl2-chiral alcohol additions generates another directionally biased rotation. Using the same reaction sequence on a derivative of the motor molecule that forms atropisomers rather than fully rotating 360° results in enantioenrichment, suggesting that, on average, the motor molecule rotates in the "wrong" direction once every three fueling cycles. The interconversion of phosphine oxides and cyclic oxyphosphonium groups to form temporary tethers that enable a rotational barrier to be overcome directionally adds to the strategies available for generating chemically fueled kinetic asymmetry in molecular systems.
Collapse
Affiliation(s)
- Patrick Zwick
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Axel Troncossi
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Stefan Borsley
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | | | - David A Leigh
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
7
|
Baucom JC, Agyemang NB, Trelles T, Gallicchio E, Murelli RP. Studies on the Configurational Stability of Tropolone-Ketone-, Ester-, and Aldehyde-Based Chiral Axes. J Org Chem 2024; 89:541-552. [PMID: 38133833 DOI: 10.1021/acs.joc.3c02286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Recent studies have revealed that tropolone-amide aryl C-C(O) rotational barriers are dramatically higher than those of analogous benzamide-based systems, and as a result, they have an increased likelihood of displaying high configurational stability. Studies on other tropolone-based chiral axes are important to assess the generality of this phenomenon. Herein, we describe a series of studies on the rotational barriers of tropolone-ketone, tropolone-ester, and tropolone-aldehyde chiral axes. These studies are complemented with computational modeling of the dynamics of these and analogous benzenoid variants to illuminate the impact that tropolone may have on aryl-C(O) configurational stability.
Collapse
Affiliation(s)
- John-Charles Baucom
- Department of Chemistry and Biochemistry, Brooklyn College, The City University of New York, Brooklyn, New York 11210, United States
- PhD Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Nana B Agyemang
- Department of Chemistry and Biochemistry, Brooklyn College, The City University of New York, Brooklyn, New York 11210, United States
- PhD Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Theresa Trelles
- Department of Chemistry and Biochemistry, Brooklyn College, The City University of New York, Brooklyn, New York 11210, United States
| | - Emilio Gallicchio
- Department of Chemistry and Biochemistry, Brooklyn College, The City University of New York, Brooklyn, New York 11210, United States
- PhD Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
- PhD Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Ryan P Murelli
- Department of Chemistry and Biochemistry, Brooklyn College, The City University of New York, Brooklyn, New York 11210, United States
- PhD Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
- PhD Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| |
Collapse
|
8
|
Baluna A, Dommaschk M, Groh B, Kassem S, Leigh DA, Tetlow DJ, Thomas D, Varela López L. Switched "On" Transient Fluorescence Output from a Pulsed-Fuel Molecular Ratchet. J Am Chem Soc 2023; 145:27113-27119. [PMID: 38047919 PMCID: PMC10722508 DOI: 10.1021/jacs.3c11290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 12/05/2023]
Abstract
We report the synthesis and operation of a molecular energy ratchet that transports a crown ether from solution onto a thread, along the axle, over a fluorophore, and off the other end of the thread back into bulk solution, all in response to a single pulse of a chemical fuel (CCl3CO2H). The fluorophore is a pyrene residue whose fluorescence is normally prevented by photoinduced electron transfer (PET) to a nearby N-methyltriazolium group. However, crown ether binding to the N-methyltriazolium site inhibits the PET, switching on pyrene fluorescence under UV irradiation. Each pulse of fuel results in a single ratchet cycle of transient fluorescence (encompassing threading, transport to the N-methyltriazolium site, and then dethreading), with the onset of the fluorescent time period determined by the amount of fuel in each pulse and the end-point determined by the concentration of the reagents for the disulfide exchange reaction. The system provides a potential alternative signaling approach for artificial molecular machines that read symbols from sequence-encoded molecular tapes.
Collapse
Affiliation(s)
- Andrei
S. Baluna
- Department of Chemistry, University
of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
| | - Marcel Dommaschk
- Department of Chemistry, University
of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
| | - Burkhard Groh
- Department of Chemistry, University
of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
| | - Salma Kassem
- Department of Chemistry, University
of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
| | - David A. Leigh
- Department of Chemistry, University
of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
| | - Daniel J. Tetlow
- Department of Chemistry, University
of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
| | - Dean Thomas
- Department of Chemistry, University
of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
| | - Loli Varela López
- Department of Chemistry, University
of Manchester, Oxford Road, Manchester, M13 9PL, U.K.
| |
Collapse
|
9
|
Dong Z, Ma X, Yu Y, Gu X, Zhao D. The Effect of Intramolecular Hydrogen Bonds on the Rotational Barriers of the Biaryl C-C Axis. Chemistry 2023; 29:e202302292. [PMID: 37548253 DOI: 10.1002/chem.202302292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/04/2023] [Accepted: 08/06/2023] [Indexed: 08/08/2023]
Abstract
Axially chiral compounds are attracting more attention recently. Although hydrogen bonds are reported as a vital weak force that influences the properties of compounds, the effect of intramolecular hydrogen bonds on the atropisomerization of the Caryl -Caryl single bonds has not yet been well quantitatively investigated. Here, a series of axially chiral biaryl compounds were synthesized to study the effect of hydrogen bonds on the rotational barriers of the biaryl C-C axis. Experimental studies demonstrated that the rotational barrier of hydrogen bonding biaryl 9 was significantly lower (46.7 kJ mol-1 ) than biaryl 10 without hydrogen bonds. Furthermore, theoretical studies revealed that the intramolecular hydrogen bond stabilized the transition state (TS) of tri-ortho-substituted biaryl 9, relieving the steric repulsion in the TS. We believe that this study will provide chemists with a deeper understanding of the atropisomerization process of axially chiral biaryl compounds.
Collapse
Affiliation(s)
- Zheng Dong
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xiaoqiang Ma
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yueyang Yu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xubin Gu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Depeng Zhao
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
10
|
Kee Cheng J, Tan B. Chiral Phosphoric Acid-Catalyzed Enantioselective Synthesis of Axially Chiral Compounds Involving Indole Derivatives. CHEM REC 2023; 23:e202300147. [PMID: 37358342 DOI: 10.1002/tcr.202300147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/02/2023] [Indexed: 06/27/2023]
Abstract
Indoles are one of the most ubiquitous subclass of N-heterocycles and are increasingly incorporated to design new axially chiral scaffolds. The rich profile of reactivity and N-H functionality allow chemical derivatization for enhanced medicinal, material and catalytic properties. Although asymmetric C-C coupling of two arenes gives the most direct access of axially chiral biaryl scaffolds, this chemistry has been the remit of metal catalysis and works efficiently on limited substrates. Our group has devoted special interest in devising novel organocatalytic arylation reactions to fabricate biaryl atropisomers. In this realm, indoles and derivatives have been reliably used as the arylation partners in combination with azoarenes, nitrosonapthalenes and quinone derivatives. Their efficient interaction with chiral phosphoric acid catalyst as well as the tunability of electronics and sterics have enabled excellent control of stereo-, chemo- and regioselectivity to furnish diverse scaffolds. In addition, indoles could act as nucleophiles in desymmetrization of 1,2,4-triazole-3,5-diones. This account provides a succinct illustration of these developments.
Collapse
Affiliation(s)
- Jun Kee Cheng
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Bin Tan
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
11
|
Arjun V, Jeganmohan M. Chiral Transient Ligand Enabled Enantioselective Synthesis of Atropisomers Decorated with Unactivated Olefins via a Palladium-Catalyzed C-H Olefination. Org Lett 2023; 25:7606-7611. [PMID: 37843003 DOI: 10.1021/acs.orglett.3c02721] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Herein, atroposelective synthesis of axially chiral biaryls with unactivated olefins by a palladium-catalyzed C-H olefination using a chiral transient directing group strategy has been disclosed. This protocol is well compatible with a variety of biaryl-2-aldehydes as well as various olefins such as allyl sulfonamides and allyl sulfones to provide the atroposelective olefinated products in synthetically useful yields with excellent enantioselectivities up to >99% ee. In addition, a wide number of axially chiral biaryl alcohols were synthesized by the simple diversification of the products in excellent enantioselectivity.
Collapse
Affiliation(s)
- Vadivel Arjun
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Masilamani Jeganmohan
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
12
|
Roos CB, Chiang CH, Murray LAM, Yang D, Schulert L, Narayan ARH. Stereodynamic Strategies to Induce and Enrich Chirality of Atropisomers at a Late Stage. Chem Rev 2023; 123:10641-10727. [PMID: 37639323 DOI: 10.1021/acs.chemrev.3c00327] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Enantiomers, where chirality arises from restricted rotation around a single bond, are atropisomers. Due to the unique nature of the origins of their chirality, synthetic strategies to access these compounds in an enantioselective manner differ from those used to prepare enantioenriched compounds containing point chirality arising from an unsymmetrically substituted carbon center. In particular stereodynamic transformations, such as dynamic kinetic resolutions, thermodynamic dynamic resolutions, and deracemizations, which rely on the ability to racemize or interconvert enantiomers, are a promising set of transformations to prepare optically pure compounds in the late stage of a synthetic sequence. Translation of these synthetic approaches from compounds with point chirality to atropisomers requires an expanded toolbox for epimerization/racemization and provides an opportunity to develop a new conceptual framework for the enantioselective synthesis of these compounds.
Collapse
|
13
|
Bilancioni M, Esposito M, Penocchio E. A [3]-catenane non-autonomous molecular motor model: Geometric phase, no-pumping theorem, and energy transduction. J Chem Phys 2023; 158:224104. [PMID: 37310874 DOI: 10.1063/5.0151625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/17/2023] [Indexed: 06/15/2023] Open
Abstract
We study a model of a synthetic molecular motor-a [3]-catenane consisting of two small macrocycles mechanically interlocked with a bigger one-subjected to time-dependent driving using stochastic thermodynamics. The model presents nontrivial features due to the two interacting small macrocycles but is simple enough to be treated analytically in limiting regimes. Among the results obtained, we find a mapping into an equivalent [2]-catenane that reveals the implications of the no-pumping theorem stating that to generate net motion of the small macrocycles, both energies and barriers need to change. In the adiabatic limit (slow driving), we fully characterize the motor's dynamics and show that the net motion of the small macrocycles is expressed as a surface integral in parameter space, which corrects previous erroneous results. We also analyze the performance of the motor subjected to step-wise driving protocols in the absence and presence of an applied load. Optimization strategies for generating large currents and maximizing free energy transduction are proposed. This simple model provides interesting clues into the working principles of non-autonomous molecular motors and their optimization.
Collapse
Affiliation(s)
- Massimo Bilancioni
- Department of Physics and Materials Science, University of Luxembourg, Luxembourg City 1511, Luxembourg
| | - Massimiliano Esposito
- Department of Physics and Materials Science, University of Luxembourg, Luxembourg City 1511, Luxembourg
| | - Emanuele Penocchio
- Department of Physics and Materials Science, University of Luxembourg, Luxembourg City 1511, Luxembourg
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
14
|
Singhania A, Kalita S, Chettri P, Ghosh S. Accounts of applied molecular rotors and rotary motors: recent advances. NANOSCALE ADVANCES 2023; 5:3177-3208. [PMID: 37325522 PMCID: PMC10262963 DOI: 10.1039/d3na00010a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023]
Abstract
Molecular machines are nanoscale devices capable of performing mechanical works at molecular level. These systems could be a single molecule or a collection of component molecules that interrelate with one another to produce nanomechanical movements and resulting performances. The design of the components of molecular machine with bioinspired traits results in various nanomechanical motions. Some known molecular machines are rotors, motors, nanocars, gears, elevators, and so on based on their nanomechanical motion. The conversion of these individual nanomechanical motions to collective motions via integration into suitable platforms yields impressive macroscopic output at varied sizes. Instead of limited experimental acquaintances, the researchers demonstrated several applications of molecular machines in chemical transformation, energy conversion, gas/liquid separation, biomedical use, and soft material fabrication. As a result, the development of new molecular machines and their applications has accelerated over the previous two decades. This review highlights the design principles and application scopes of several rotors and rotary motor systems because these machines are used in real applications. This review also offers a systematic and thorough overview of current advancements in rotary motors, providing in-depth knowledge and predicting future problems and goals in this area.
Collapse
Affiliation(s)
- Anup Singhania
- Natural Product Chemistry Group, Chemical Sciences & Technology Division, CSIR-North East Institute of Science & Technology Jorhat 785006 Assam India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Sudeshna Kalita
- Natural Product Chemistry Group, Chemical Sciences & Technology Division, CSIR-North East Institute of Science & Technology Jorhat 785006 Assam India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Prerna Chettri
- Natural Product Chemistry Group, Chemical Sciences & Technology Division, CSIR-North East Institute of Science & Technology Jorhat 785006 Assam India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Subrata Ghosh
- Natural Product Chemistry Group, Chemical Sciences & Technology Division, CSIR-North East Institute of Science & Technology Jorhat 785006 Assam India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
15
|
Da BC, Wang YB, Cheng JK, Xiang SH, Tan B. Organocatalytic Atroposelective Cross-Coupling of 1-Azonaphthalenes and 2-Naphthols. Angew Chem Int Ed Engl 2023:e202303128. [PMID: 37186009 DOI: 10.1002/anie.202303128] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/17/2023]
Abstract
Atroposelective cross-coupling is one of the most appealing routes to construct axially chiral binaphthyl molecules due to the modular and succinct nature. Although transition-metal-catalyzed cross-couplings offer reliable synthetic means, alternative reaction modes that could be applied to broader substrate range without their pre-functionalization is highly desirable. Herein we show that the application of chiral Brønsted acid catalyst as organocatalyst could accomplish cross-coupling of 1-azonaphthalenes and 2-naphthols with high efficiency, exclusive C4-selectivity as well as excellent enantioselectivity and functional group compatibility. The identification of acylimidazolinone auxiliary for azo activating group, effective remote catalyst control and arene resonance effect synergistically play key roles in the development of this method. The utility is further demonstrated by transformations of the products into other binaphthyl compounds with perfectly retained axial chirality.
Collapse
Affiliation(s)
- Bing-Chao Da
- Southern University of Science and Technology, Chemistry, CHINA
| | - Yong-Bin Wang
- Southern University of Science and Technology, Chemistry, CHINA
| | - Jun Kee Cheng
- Southern University of Science and Technology, Chemistry, CHINA
| | - Shao-Hua Xiang
- Southern University of Science and Technology, Chemistry, No 1088, Xueyuan Rd., Nanshan District, 518055, Shenzhen, CHINA
| | | |
Collapse
|
16
|
Pang X, He H, Zhao K, Zhang N, Zhong Q. Ultrafast nonadiabatic photoisomerization dynamics study of molecular motor based on the synthetic indanylidene-ppyrrolinium frameworks. Chem Phys Lett 2023. [DOI: 10.1016/j.cplett.2023.140439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
17
|
Srivastava G, Štacko P, Mendieta-Moreno JI, Edalatmanesh S, Kistemaker JCM, Heideman GH, Zoppi L, Parschau M, Feringa BL, Ernst KH. Driving a Third Generation Molecular Motor with Electrons Across a Surface. ACS NANO 2023; 17:3931-3938. [PMID: 36794964 DOI: 10.1021/acsnano.2c12340] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Excitation of single molecules with electrons tunneling between a sharp metallic tip of a scanning tunneling microscope and a metal surface is one way to study and control dynamics of molecules on surfaces. Electron tunneling induced dynamics may lead to hopping, rotation, molecular switching, or chemical reactions. Molecular motors that convert rotation of subgroups into lateral movement on a surface can in principle also be driven by tunneling electrons. For such surface-bound motor molecules the efficiency of motor action with respect to electron dose is still not known. Here, the response of a molecular motor containing two rotor units in the form of overcrowded alkene groups to inelastic electron tunneling has been examined on a Cu(111) surface in ultrahigh vacuum at 5 K. Upon vibrational excitation, switching between different molecular conformations is observed, including conversion of enantiomeric states of chiral conformations. Tunneling at energies in the range of electronic excitations causes activation of motor action and movement across the surface. The expected unidirectional rotation of the two rotor units causes forward movements but with a low degree of translational directionality.
Collapse
Affiliation(s)
- Gitika Srivastava
- Molecular Surface Science and Coating Technology Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Peter Štacko
- Centre for Systems Chemistry, Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
| | - Jesús I Mendieta-Moreno
- Nanosurf Laboratory, Institute of Physics, The Czech Academy of Sciences, Cukrovarnická 10, 162 00 Prague, Czech Republic
| | - Shayan Edalatmanesh
- Nanosurf Laboratory, Institute of Physics, The Czech Academy of Sciences, Cukrovarnická 10, 162 00 Prague, Czech Republic
| | - Jos C M Kistemaker
- Centre for Systems Chemistry, Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
| | - G Henrieke Heideman
- Centre for Systems Chemistry, Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
| | - Laura Zoppi
- Molecular Surface Science and Coating Technology Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Manfred Parschau
- Molecular Surface Science and Coating Technology Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| | - Ben L Feringa
- Centre for Systems Chemistry, Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands
| | - Karl-Heinz Ernst
- Molecular Surface Science and Coating Technology Laboratory, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, 8600 Dübendorf, Switzerland
- Nanosurf Laboratory, Institute of Physics, The Czech Academy of Sciences, Cukrovarnická 10, 162 00 Prague, Czech Republic
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
18
|
Choppin S, Wencel-Delord J. Sulfoxide-Directed or 3d-Metal Catalyzed C-H Activation and Hypervalent Iodines as Tools for Atroposelective Synthesis. Acc Chem Res 2023; 56:189-202. [PMID: 36705934 DOI: 10.1021/acs.accounts.2c00573] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
ConspectusThe expanding applications of atropisomeric compounds combined with the growing diversity of such chiral molecules translate into an urgent need for innovative synthetic strategies allowing their rapid, efficient, and sustainable synthesis. Recently, the C-H activation approach has provided new opportunities for synthesizing axially chiral compounds. The two complementary approaches allowing implementation of the C-H activation methodology toward the synthesis of the chiral molecules imply either ortho-functionalization of the preexisting prochiral or atropo-unstable biaryl substrates or direct C-H arylation of sterically encumbered aromatics. The first approach required the preinstallation of a directing group on a biaryl precursor, which drastically limits the diversity of thus generated products. To tackle this important synthetic limitation, we have envisioned using a chiral sulfoxide as both directing group and chiral auxiliary. Indeed, in addition to efficiently coordinating the Pd-catalyst thus allowing chiral induction, the sulfoxide moiety can be easily removed, via the sulfoxide/lithium exchange, after the C-H activation step, thus guaranteeing an almost unlimited postdiversification of the atropisomeric products. The efficiency and generality of this concept could be illustrated by developing atropo-diastereoselective oxidative Heck reaction, direct acetoxylation, and iodination, as well as direct arylation. Besides, the synthetic utility of this methodology was demonstrated by designing an expedient synthesis of a direct steganone precursor. This unique transformation also allowed us to build up unprecedented triaryl scaffolds with two perfectly controlled chiral axes, original chiral skeletons for new ligand design. While considering the atroposelective direct arylations, the clear antagonism between the harsh reaction conditions frequently required for the coupling of two sterically hindered compounds and the atropo-stability of the new product, resulted in the scarcity of such transformations. To solve this fundamental challenge, we have focused on the application of a low-valent cobalt catalyst, prompted to catalyze C-H activation of indoles at the C2 position under extremely mild reaction conditions (room temperature). Accordingly, atroposelective C2-arylation of indoles could be achieved using an original carbene ligand and delivering the uncommon atropoisomerically pure indoles in excellent yields and enantioselectivities. Detailed combined experimental and theoretical mechanistic studies shed light on the mechanism of this transformation, providing strong evidence regarding the origin of the enantioselectivity. Finally, the antagonism between steric hindrance required to guarantee the atropo-stability of a molecule and harsh reaction conditions required to couple two partners is a strong limitation not only for the development of atroposelective C-H arylation reaction but also for the development of direct synthesis of the C-N axially chiral compounds. Despite the long history and incredible advances achieved in Ullmann-Goldberg and Buchwald-Hartwig couplings, atroposelective versions of such transformations have remained unprecedented until recently. Our idea to tackle this challenging issue consisted in using hypervalent iodines as highly reactive coupling partners, thus allowing the desired N-arylations to occur at room temperature. This hypothesis could be validated by reporting first atropo-diastereoselective Cu-catalyzed N-arylation, using sulfoxide λ3-iodanes as the coupling partners. Subsequently, the enantioselective version of this atroposelective N-arylation was successfully established by using a chiral Cu-complex bearing a BOX ligand. In conclusion, we report herein designing tailored-made solutions to provide new synthetic strategies to construct the atropisomeric molecules, including biaryls and C-N axially chiral molecules.
Collapse
Affiliation(s)
- Sabine Choppin
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM. 25 rue Becquerel, 67087 Strasbourg, France
| | - Joanna Wencel-Delord
- Laboratoire d'Innovation Moléculaire et Applications (UMR CNRS 7042), Université de Strasbourg/Université de Haute Alsace, ECPM. 25 rue Becquerel, 67087 Strasbourg, France
| |
Collapse
|
19
|
Cation controlled rotation in anionic pillar[5]arenes and its application for fluorescence switch. Nat Commun 2023; 14:590. [PMID: 36737437 PMCID: PMC9898256 DOI: 10.1038/s41467-023-36131-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
Controlling molecular motion is one of hot topics in the field of chemistry. Molecular rotors have wide applications in building nanomachines and functional materials, due to their controllable rotations. Hence, the development of novel rotor systems, controlled by external stimuli, is desirable. Pillar[n]arenes, a class of macrocycles, have a unique planar chirality, in which two stable conformational isomers pR and pS would interconvert by oxygen-through-the-annulus rotations of their hydroquinone rings. We observe the differential kinetic traits of planar chirality transformation in sodium carboxylate pillar[5]arene (WP5-Na) and ammonium carboxylate pillar[5]arene (WP5-NH4), which inspire us to construct a promising rotary platform in anionic pillar[5]arenes (WP5) skeletons. Herein, we demonstrate the non-negligible effect of counter cations on rotational barriers of hydroquinone rings in WP5, which enables a cation grease/brake rotor system. Applications of this tunable rotor system as fluorescence switch and anti-counterfeiting ink are further explored.
Collapse
|
20
|
Atropoenantioselective synthesis of heterobiaryl N-oxides via dynamic kinetic resolution. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1402-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Baker KM, Agostino CJ, Orloff EA, Battistoni LD, Hughes RR, McHugh EM, Shaw MP, Nafie J, Mulcahy SP. Design, Synthesis, and Physicochemical Studies of Configurationally Stable β-Carboline Atropisomers. J Org Chem 2022; 87:14068-14077. [PMID: 36174244 DOI: 10.1021/acs.joc.2c01675] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Axially chiral atropisomers have energetic barriers to rotation, ΔGrot, that prevent racemization of the respective enantiomers. We used computational modeling to develop a suite of 10 bio-inspired 1-aryl-β-carbolines with varying ΔGrot, from which a strong structure-activity relationship was observed for 2-substituted-1-naphthyl substituents. We then synthesized two of these atropisomers, 1d and 1f, by a four-step racemic synthesis and resolved the enantiomers via chiral chromatography. Racemization studies revealed experimental ΔGrot values of 39.5 and 33.0 kcal/mol for 1d and 1f, respectively, which were consistent with our computational results. These atropisomers exhibited long half-lives, which allowed for their physicochemical characterization and stereochemical assignment via UV-vis spectroscopy, fluorescence spectroscopy, electronic circular dichroism, and vibrational circular dichroism.
Collapse
Affiliation(s)
- Kristen M Baker
- Providence College, 1 Cunningham Square, Providence, Rhode Island02918, United States
| | - Colby J Agostino
- Providence College, 1 Cunningham Square, Providence, Rhode Island02918, United States
| | - Emily A Orloff
- Providence College, 1 Cunningham Square, Providence, Rhode Island02918, United States
| | - Lorenzo D Battistoni
- Providence College, 1 Cunningham Square, Providence, Rhode Island02918, United States
| | - Riley R Hughes
- Providence College, 1 Cunningham Square, Providence, Rhode Island02918, United States
| | - Erin M McHugh
- Providence College, 1 Cunningham Square, Providence, Rhode Island02918, United States
| | - Michael P Shaw
- Providence College, 1 Cunningham Square, Providence, Rhode Island02918, United States
| | - Jordan Nafie
- BioTools, Inc., 17546 Bee Line Highway, Jupiter, Florida33478, United States
| | - Seann P Mulcahy
- Providence College, 1 Cunningham Square, Providence, Rhode Island02918, United States
| |
Collapse
|
22
|
Mondal A, Toyoda R, Costil R, Feringa BL. Chemically Driven Rotatory Molecular Machines. Angew Chem Int Ed Engl 2022; 61:e202206631. [PMID: 35852813 PMCID: PMC9826306 DOI: 10.1002/anie.202206631] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Indexed: 01/11/2023]
Abstract
Molecular machines are at the frontier of biology and chemistry. The ability to control molecular motion and emulating the movement of biological systems are major steps towards the development of responsive and adaptive materials. Amazing progress has been seen for the design of molecular machines including light-induced unidirectional rotation of overcrowded alkenes. However, the feasibility of inducing unidirectional rotation about a single bond as a result of chemical conversion has been a challenging task. In this Review, an overview of approaches towards the design, synthesis, and dynamic properties of different classes of atropisomers which can undergo controlled switching or rotation under the influence of a chemical stimulus is presented. They are categorized as molecular switches, rotors, motors, and autonomous motors according to their type of response. Furthermore, we provide a future perspective and challenges focusing on building sophisticated molecular machines.
Collapse
Affiliation(s)
- Anirban Mondal
- Stratingh Institute for Chemistry University of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Ryojun Toyoda
- Stratingh Institute for Chemistry University of GroningenNijenborgh 49747 AGGroningenThe Netherlands
- Department of ChemistryGraduate School of ScienceTohoku University6-3 Aramaki-Aza-AobaAobaku, Sendai980-8578Japan
| | - Romain Costil
- Stratingh Institute for Chemistry University of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Ben L. Feringa
- Stratingh Institute for Chemistry University of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| |
Collapse
|
23
|
Bai XF, Cui YM, Cao J, Xu LW. Atropisomers with Axial and Point Chirality: Synthesis and Applications. Acc Chem Res 2022; 55:2545-2561. [PMID: 36083117 DOI: 10.1021/acs.accounts.2c00417] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Enantiopure atropisomers have become increasingly important in asymmetric synthesis and catalysis, pharmaceutical science, and material science since the discovery of inherent features of axial chirality originating from rotational restriction. Despite the advances made in this field to date, it remains highly desirable to construct structurally diverse atropisomers with potentially useful functions. We propose superposition to match axial and point chirality as a potentially useful strategy to access structurally complex and diverse building blocks for organic synthesis and pharmaceutical science because merging atropisomeric backbones with one or more extra chiral elements can topologically broaden three-dimensional environments to create complex scaffolds with multiple tunable parameters. Over the past decade, we have successfully implemented a strategic design for the superposition of axial and point chirality to develop a series of enantiopure atropisomers and have utilized the synergistic functions of these molecules to enhance chirality transfer in various catalytic asymmetric transformations.In this Account, we present several novel atropisomers with superposed axial and point chirality developed in our laboratory. In our studies, this superposition strategy was used to design and synthesize both biaryl and non-biaryl atropisomers from commercially available chiral sources. Consequently, these atropisomers were used to demonstrate the importance of the synergetic functions of axial and point chirality in specific enantioselective reactions. For example, aromatic amide-derived atropisomers, simplified as Xing-Phos arrays, were broadly employed in Ag-catalyzed [3 + 2] cycloaddition by a series of reactions of aldiminoesters with activated alkenes and imines, as well as being used as chiral solvating agents for the discrimination of optically active mandelic acid derivatives. Considering the powerful potential of non-biaryl atropisomers for asymmetric catalysis, we also explored the transition-metal-catalyzed enantioselective construction of a novel backbone of non-biaryl atropisomers (Ar-alkene, Ar-N axis) bearing both axial and point chirality for the design and synthesis of chiral ligands and functional molecules.The studies presented herein are expected to stimulate further research efforts on the development of functional atropisomers by superposition of matching axial and point chirality. In addition to tunable electron and stereohindrance effects, the synergy between matching chiral elements of axial/point chirality and functional groups is proven to be a special function that cannot be ignored for promoting reactivity and chirality-transfer efficiency in enantioselective synthesis. Consequently, our novel types of scaffolds with superposed axial and point chirality that are capable of versatile coordination with various metal catalysts in asymmetric catalysis highlight the power of the superposition of matching axial and point chirality for the construction of synthetically useful atropisomers.
Collapse
Affiliation(s)
- Xing-Feng Bai
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, P. R. China
| | - Yu-Ming Cui
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, P. R. China
| | - Jian Cao
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, P. R. China
| | - Li-Wen Xu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education and Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318, Yuhangtang Road, Hangzhou 311121, P. R. China
| |
Collapse
|
24
|
Yu Gitlina A, Fadaei-Tirani F, Ruggi A, Plaice C, Severin K. Acid-base-induced fac → mer isomerization of luminescent iridium(iii) complexes. Chem Sci 2022; 13:10370-10374. [PMID: 36277648 PMCID: PMC9473533 DOI: 10.1039/d2sc02808e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/21/2022] [Indexed: 11/21/2022] Open
Abstract
Luminescent Ir(C^N)3 complexes (C^N = cyclometalated arylpyridine ligand) exist in the form of two stable isomers with distinct photophysical and electrochemical properties: fac and mer. Herein, we show that fac-Ir(C^N)3 complexes can be converted into the thermodynamically less stable mer forms by a consecutive reaction with first acid and then base. The chemically induced isomerization is fast, quantitative, and stereoselective, and it can be inversed by light. The new isomerization process opens the possibility to use highly luminescent Ir(C^N)3 complexes as molecular switches.
Collapse
Affiliation(s)
- Anastasia Yu Gitlina
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Farzaneh Fadaei-Tirani
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Albert Ruggi
- Département de Chimie, Université de Fribourg 1700 Fribourg Switzerland
| | - Carolina Plaice
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Kay Severin
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
25
|
Wang G, Huang J, Zhang L, Han J, Zhang X, Huang J, Fu Z, Huang W. N-heterocyclic carbene-catalyzed atroposelective synthesis of axially chiral 5-aryl 2-pyrones from enals. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1327-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
26
|
Mo K, Zhang Y, Dong Z, Yang Y, Ma X, Feringa BL, Zhao D. Intrinsically unidirectional chemically fuelled rotary molecular motors. Nature 2022; 609:293-298. [PMID: 35793710 DOI: 10.1038/s41586-022-05033-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/28/2022] [Indexed: 12/24/2022]
Abstract
Biological systems mainly utilize chemical energy to fuel autonomous molecular motors, enabling the system to be driven out of equilibrium1. Taking inspiration from rotary motors such as the bacterial flagellar motor2 and adenosine triphosphate synthase3, and building on the success of light-powered unidirectional rotary molecular motors4-6, scientists have pursued the design of synthetic molecular motors solely driven by chemical energy7-13. However, designing artificial rotary molecular motors operating autonomously using a chemical fuel and simultaneously featuring the intrinsic structural design elements to allow full 360° unidirectional rotary motion like adenosine triphosphate synthase remains challenging. Here we show that a homochiral biaryl Motor-3, with three distinct stereochemical elements, is a rotary motor that undergoes repetitive and unidirectional 360° rotation of the two aryl groups around a single-bond axle driven by a chemical fuel. It undergoes sequential ester cyclization, helix inversion and ring opening, and up to 99% unidirectionality is realized over the autonomous rotary cycle. The molecular rotary motor can be operated in two modes: synchronized motion with pulses of a chemical fuel and acid-base oscillations; and autonomous motion in the presence of a chemical fuel under slightly basic aqueous conditions. This rotary motor design with intrinsic control over the direction of rotation, simple chemical fuelling for autonomous motion and near-perfect unidirectionality illustrates the potential for future generations of multicomponent machines to perform mechanical functions.
Collapse
Affiliation(s)
- Ke Mo
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yu Zhang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Zheng Dong
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yuhang Yang
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Xiaoqiang Ma
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands. .,SCNU-UG International Joint Laboratory of Molecular Science and Displays, National Center for International Research on Green Optoelectronics, South China Normal University, Guangzhou, China.
| | - Depeng Zhao
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
27
|
Benny R, Sahoo D, George A, De S. Recent Advances in Fuel-Driven Molecular Switches and Machines. ChemistryOpen 2022; 11:e202200128. [PMID: 36071446 PMCID: PMC9452441 DOI: 10.1002/open.202200128] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/16/2022] [Indexed: 11/22/2022] Open
Abstract
The molecular switches and machines arena has entered a new phase in which molecular machines operate under out-of-equilibrium conditions using appropriate fuel. Unlike the equilibrium version, the dissipative off-equilibrium machines necessitate only one stimulus input to complete each cycle and decrease chemical waste. Such a modus operandi would set significant steps towards mimicking the natural machines and may offer a platform for advancing new applications by providing temporal control. This review summarises the recent progress and blueprint of autonomous fuel-driven off-equilibrium molecular switches and machines.
Collapse
Affiliation(s)
- Renitta Benny
- School of ChemistryIndian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM)Thiruvananthapuram695551India
| | - Diptiprava Sahoo
- School of ChemistryIndian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM)Thiruvananthapuram695551India
| | - Ajith George
- School of ChemistryIndian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM)Thiruvananthapuram695551India
| | - Soumen De
- School of ChemistryIndian Institute of Science Education and Research Thiruvananthapuram (IISER-TVM)Thiruvananthapuram695551India
| |
Collapse
|
28
|
Mondal A, Toyoda R, Costil R, Feringa BL. Chemically Driven Rotatory Molecular Machines. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Anirban Mondal
- University of Groningen: Rijksuniversiteit Groningen Stratingh Institute for Chemistry NETHERLANDS
| | - Ryojun Toyoda
- University of Groningen: Rijksuniversiteit Groningen Stratingh Institute for Chmistry NETHERLANDS
| | - Romain Costil
- University of Groningen: Rijksuniversiteit Groningen Stratingh Institute for Chemistry NETHERLANDS
| | - Ben L Feringa
- University of Groningen Stratingh Institute for Chemistry, Faculty of Science and Engineering Nijenborgh 4 9747 AG Groningen NETHERLANDS
| |
Collapse
|
29
|
Bach NN, Josef V, Maid H, Dube H. Active Mechanical Threading by a Molecular Motor. Angew Chem Int Ed Engl 2022; 61:e202201882. [PMID: 35146857 PMCID: PMC9314141 DOI: 10.1002/anie.202201882] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Indexed: 12/15/2022]
Abstract
Molecular motors transform external energy input into directional motions and offer exquisite precision for nano‐scale manipulations. To make full use of molecular motor capacities, their directional motions need to be transmitted and used for powering downstream molecular events. Here we present a macrocyclic molecular motor structure able to perform repetitive molecular threading of a flexible tetraethylene glycol chain through the macrocycle. This mechanical threading event is actively powered by the motor and leads to a direct translation of the unidirectional motor rotation into unidirectional translation motion (chain versus ring). The mechanism of the active mechanical threading is elucidated and the actual threading step is identified as a combined helix inversion and threading event. The established molecular machine function resembles the crucial step of macroscopic weaving or sewing processes and therefore offers a first entry point to a “molecular knitting” counterpart.
Collapse
Affiliation(s)
- Nicolai N Bach
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Chemistry and Pharmacy, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Verena Josef
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Chemistry and Pharmacy, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Harald Maid
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Chemistry and Pharmacy, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Henry Dube
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Chemistry and Pharmacy, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| |
Collapse
|
30
|
Bao L, Huang L, Guo H, Gao HJ. Construction and physical properties of low-dimensional structures for nanoscale electronic devices. Phys Chem Chem Phys 2022; 24:9082-9117. [PMID: 35383791 DOI: 10.1039/d1cp05981e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Over the past decades, construction of nanoscale electronic devices with novel functionalities based on low-dimensional structures, such as single molecules and two-dimensional (2D) materials, has been rapidly developed. To investigate their intrinsic properties for versatile functionalities of nanoscale electronic devices, it is crucial to precisely control the structures and understand the physical properties of low-dimensional structures at the single atomic level. In this review, we provide a comprehensive overview of the construction of nanoelectronic devices based on single molecules and 2D materials and the investigation of their physical properties. For single molecules, we focus on the construction of single-molecule devices, such as molecular motors and molecular switches, by precisely controlling their self-assembled structures on metal substrates and charge transport properties. For 2D materials, we emphasize their spin-related electrical transport properties for spintronic device applications and the role that interfaces among 2D semiconductors, contact electrodes, and dielectric substrates play in the electrical performance of electronic, optoelectronic, and memory devices. Finally, we discuss the future research direction in this field, where we can expect a scientific breakthrough.
Collapse
Affiliation(s)
- Lihong Bao
- Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, P. R. China. .,Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, P. R. China
| | - Li Huang
- Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| | - Hui Guo
- Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| | - Hong-Jun Gao
- Institute of Physics & University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, P. R. China. .,Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, P. R. China
| |
Collapse
|
31
|
Controlling forward and backward rotary molecular motion on demand. Nat Commun 2022; 13:2124. [PMID: 35440652 PMCID: PMC9019045 DOI: 10.1038/s41467-022-29820-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/18/2022] [Indexed: 11/23/2022] Open
Abstract
Synthetic molecular machines hold tremendous potential to revolutionize chemical and materials sciences. Their autonomous motion controlled by external stimuli allows to develop smart materials whose properties can be adapted on command. For the realisation of more complex molecular machines, it is crucial to design building blocks whose properties can be controlled by multiple orthogonal stimuli. A major challenge is to reversibly switch from forward to backward and again forward light-driven rotary motion using external stimuli. Here we report a push-pull substituted photo-responsive overcrowded alkene whose function can be toggled between that of a unidirectional 2nd generation rotary motor and a molecular switch depending on its protonation and the polarity of its environment. With its simplicity in design, easy preparation, outstanding stability and orthogonal control of distinct forward and backward motions, we believe that the present concept paves the way for creating more advanced molecular machines. Being able to control motion at the molecular level is vital for many future developments in the molecular sciences. Here, the authors report the controlled forward and backward rotation of a molecular motor guided by external stimuli.
Collapse
|
32
|
Borsley S, Kreidt E, Leigh DA, Roberts BMW. Autonomous fuelled directional rotation about a covalent single bond. Nature 2022; 604:80-85. [PMID: 35388198 DOI: 10.1038/s41586-022-04450-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/20/2022] [Indexed: 11/09/2022]
Abstract
Biology operates through autonomous chemically fuelled molecular machinery1, including rotary motors such as adenosine triphosphate synthase2 and the bacterial flagellar motor3. Chemists have long sought to create analogous molecular structures with chemically powered, directionally rotating, components4-17. However, synthetic motor molecules capable of autonomous 360° directional rotation about a single bond have proved elusive, with previous designs lacking either autonomous fuelling7,10,12 or directionality6. Here we show that 1-phenylpyrrole 2,2'-dicarboxylic acid18,19 (1a) is a catalysis-driven20,21 motor that can continuously transduce energy from a chemical fuel9,20-27 to induce repetitive 360° directional rotation of the two aromatic rings around the covalent N-C bond that connects them. On treatment of 1a with a carbodiimide21,25-27, intramolecular anhydride formation between the rings and the anhydride's hydrolysis both occur incessantly. Both reactions are kinetically gated28-30 causing directional bias. Accordingly, catalysis of carbodiimide hydration by the motor molecule continuously drives net directional rotation around the N-C bond. The directionality is determined by the handedness of both an additive that accelerates anhydride hydrolysis and that of the fuel, and is easily reversed additive31. More than 97% of fuel molecules are consumed through the chemical engine cycle24 with a directional bias of up to 71:29 with a chirality-matched fuel and additive. In other words, the motor makes a 'mistake' in direction every three to four turns. The 26-atom motor molecule's simplicity augurs well for its structural optimization and the development of derivatives that can be interfaced with other components for the performance of work and tasks32-36.
Collapse
Affiliation(s)
- Stefan Borsley
- Department of Chemistry, University of Manchester, Manchester, UK
| | - Elisabeth Kreidt
- Department of Chemistry, University of Manchester, Manchester, UK
| | - David A Leigh
- Department of Chemistry, University of Manchester, Manchester, UK. .,School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.
| | | |
Collapse
|
33
|
Amano S, Esposito M, Kreidt E, Leigh DA, Penocchio E, Roberts BMW. Insights from an information thermodynamics analysis of a synthetic molecular motor. Nat Chem 2022; 14:530-537. [PMID: 35301472 DOI: 10.1038/s41557-022-00899-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 01/28/2022] [Indexed: 12/11/2022]
Abstract
Information is physical, a realization that has transformed the physics of measurement and communication. However, the flow between information, energy and mechanics in chemical systems remains largely unexplored. Here we analyse a minimalist autonomous chemically driven molecular motor in terms of information thermodynamics, a framework that quantitatively relates information to other thermodynamic parameters. The treatment reveals how directional motion is generated by free energy transfer from chemical to mechanical (conformational and/or co-conformational) processes by 'energy flow' and 'information flow'. It provides a thermodynamic level of understanding of molecular motors that is general, complements previous analyses based on kinetics and has practical implications for machine design. In line with kinetic analysis, we find that power strokes do not affect the directionality of chemically driven machines. However, we find that power strokes can modulate motor velocity, the efficiency of free energy transfer and the number of fuel molecules consumed per cycle. This may help explain the role of such (co-)conformational changes in biomachines and illustrates the interplay between energy and information in chemical systems.
Collapse
Affiliation(s)
- Shuntaro Amano
- Department of Chemistry, University of Manchester, Manchester, UK
| | - Massimiliano Esposito
- Department of Physics and Materials Science, University of Luxembourg, Luxembourg City, Luxembourg
| | - Elisabeth Kreidt
- Department of Chemistry, University of Manchester, Manchester, UK
| | - David A Leigh
- Department of Chemistry, University of Manchester, Manchester, UK.
| | - Emanuele Penocchio
- Department of Physics and Materials Science, University of Luxembourg, Luxembourg City, Luxembourg.
| | | |
Collapse
|
34
|
Bach NN, Josef V, Maid H, Dube H. Active Mechanical Threading by a Molecular Motor. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Nicolai N. Bach
- FAU: Friedrich-Alexander-Universitat Erlangen-Nurnberg Chemistry and Pharmacy GERMANY
| | - Verena Josef
- FAU: Friedrich-Alexander-Universitat Erlangen-Nurnberg Chemistry and Pharmacy GERMANY
| | - Harald Maid
- FAU: Friedrich-Alexander-Universitat Erlangen-Nurnberg Chemistry and Pharmacy GERMANY
| | - Henry Dube
- Friedrich-Alexander-Universitat Erlangen-Nurnberg Chemistry and Pharmacy Nikolaus-Fiebiger-Str. 10 91058 Erlangen GERMANY
| |
Collapse
|
35
|
Goswami A, Saha S, Elramadi E, Ghosh A, Schmittel M. Off-Equilibrium Speed Control of a Multistage Molecular Rotor: 2-Fold Chemical Fueling by Acid or Silver(I). J Am Chem Soc 2021; 143:14926-14935. [PMID: 34478277 DOI: 10.1021/jacs.1c08005] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Driving conformational motion in defined off-equilibrium oscillations can be achieved using chemical fuels. When the ultrafast turnstile 1 (k298> 1012 Hz) was fueled with 2-cyano-2-phenylpropanoic acid (Fuel 1), the diprotonated rotor [H2(1)]2+ (k298 = 84.0 kHz) formed as a transient regaining the dynamics of the initial turnstile after consumption of the fuel (135 min). Upon addition of silver(I) (Fuel 2) to turnstile 1, the metastable rotor [Ag2(1)]2+ (k298 = 1.57 Hz) was initially furnished, but due to a consequentially triggered SN2 reaction, the Ag+ ions were consumed as insoluble AgBr along with regeneration of 1 (within 3 h). The off-equilibrium fast ⇆ slow rotor conversions fueled by acid and silver(I) were directly monitored by fluorescence and 1H NMR. In addition, metal ion exchange was fueled enabling off-equilibrium oscillations between rotors [Li2(1)]2+ ⇆ [Ag2(1)]2+. In the end, both sustainability and efficiency of the process were increased in unison by using the interfering proton waste in the formation of a [2]pseudorotaxane.
Collapse
Affiliation(s)
- Abir Goswami
- Organische Chemie I, Center of Micro- and Nanochemistry and Engineering, University of Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Suchismita Saha
- Organische Chemie I, Center of Micro- and Nanochemistry and Engineering, University of Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Emad Elramadi
- Organische Chemie I, Center of Micro- and Nanochemistry and Engineering, University of Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Amit Ghosh
- Organische Chemie I, Center of Micro- and Nanochemistry and Engineering, University of Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| | - Michael Schmittel
- Organische Chemie I, Center of Micro- and Nanochemistry and Engineering, University of Siegen, Adolf-Reichwein-Str. 2, D-57068 Siegen, Germany
| |
Collapse
|
36
|
Das K, Gabrielli L, Prins LJ. Chemically Fueled Self-Assembly in Biology and Chemistry. Angew Chem Int Ed Engl 2021; 60:20120-20143. [PMID: 33704885 PMCID: PMC8453758 DOI: 10.1002/anie.202100274] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/12/2021] [Indexed: 12/23/2022]
Abstract
Life is a non-equilibrium state of matter maintained at the expense of energy. Nature uses predominantly chemical energy stored in thermodynamically activated, but kinetically stable, molecules. These high-energy molecules are exploited for the synthesis of other biomolecules, for the activation of biological machinery such as pumps and motors, and for the maintenance of structural order. Knowledge of how chemical energy is transferred to biochemical processes is essential for the development of artificial systems with life-like processes. Here, we discuss how chemical energy can be used to control the structural organization of organic molecules. Four different strategies have been identified according to a distinguishable physical-organic basis. For each class, one example from biology and one from chemistry are discussed in detail to illustrate the practical implementation of each concept and the distinct opportunities they offer. Specific attention is paid to the discussion of chemically fueled non-equilibrium self-assembly. We discuss the meaning of non-equilibrium self-assembly, its kinetic origin, and strategies to develop synthetic non-equilibrium systems.
Collapse
Affiliation(s)
- Krishnendu Das
- Department of Chemical Sciences|University of PadovaVia Marzolo 135131PadovaItaly
| | - Luca Gabrielli
- Department of Chemical Sciences|University of PadovaVia Marzolo 135131PadovaItaly
| | - Leonard J. Prins
- Department of Chemical Sciences|University of PadovaVia Marzolo 135131PadovaItaly
| |
Collapse
|
37
|
Nakashima K, Petek A, Hori Y, Georgiev A, Hirashima SI, Matsushima Y, Yordanov D, Miura T, Antonov L. Acylhydrazone Subunits as a Proton Cargo Delivery System in 7-Hydroxyquinoline. Chemistry 2021; 27:11559-11566. [PMID: 34137094 DOI: 10.1002/chem.202101650] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Indexed: 12/13/2022]
Abstract
The reimagined concept of long-range tautomeric proton transfer using crane subunits is shown by designing and synthesising two new acylhydrazones containing a 7-hydroxyquinoline (7-OHQ) platform. The acylhydrazone subunits attached to the 7-OHQ at the 8th position act as crane arms for delivering proton cargo to the quinoline nitrogen. Light-induced tautomerization to their keto forms leads to Z/E isomerization of the C=C axle bond, followed by proton delivery to the quinoline nitrogen by the formation of covalent or hydrogen bonds. The axle's being either an imine or ketimine bond is the structural difference between the studied compounds. The -CH3 group in the latter provides steric strain, resulting in different proton transport pathways. Both compounds show long thermal stability in the switched state, which creates a tuneable action of bidirectional proton cargo transport by using different wavelengths of irradiation. Upon the addition of acid, the quinoline nitrogen is protonated; this results in E/Z configuration switching of the acylhydrazone subunits. This was proven by single-crystal X-ray structure analysis and NMR spectroscopy.
Collapse
Affiliation(s)
- Kosuke Nakashima
- Department of Pharmaceutical Chemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Anton Petek
- Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489, Berlin, Germany
| | - Yutaro Hori
- Department of Pharmaceutical Chemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Anton Georgiev
- Department of Organic Chemistry, University of Chemical Technology and Metallurgy, 8 St. Kliment Ohridski blvd, 1756, Sofia, Bulgaria.,Institute of Optical Materials and Technologies, Bulgarian Academy of Sciences, Acad. G. Bonchev avenue, bldg. 109, 1113, Sofia, Bulgaria
| | - Shin-Ichi Hirashima
- Department of Pharmaceutical Chemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Yasuyuki Matsushima
- Department of Pharmaceutical Chemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Dancho Yordanov
- Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko chaussee blvd, 1784, Sofia, Bulgaria.,Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev avenue, bldg. 9, Sofia, 1113, Bulgaria
| | - Tsuyoshi Miura
- Department of Pharmaceutical Chemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Liudmil Antonov
- Institute of Electronics, Bulgarian Academy of Sciences, 72 Tzarigradsko chaussee blvd, 1784, Sofia, Bulgaria
| |
Collapse
|
38
|
Maier J, Weller T, Thelakkat M, Köhler J. Long-term switching of single photochromic triads based on dithienylcyclopentene and fluorophores at cryogenic temperatures. J Chem Phys 2021; 155:014901. [PMID: 34241405 DOI: 10.1063/5.0056815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Photochromic molecules can be reversibly converted between two bistable forms by light. These systems have been intensively studied for applications as molecular memories, sensing devices, or super-resolution optical microscopy. Here, we study the long-term switching behavior of single photochromic triads under oxygen-free conditions at 10 K. The triads consist of a photochromic unit that is covalently linked to two strong fluorophores that were employed for monitoring the light-induced conversions of the switch via changes in the fluorescence intensity from the fluorophores. As dyes we use either perylene bisimide or boron-dipyrromethen, and as photochromic switch we use dithienylcyclopentene (DCP). Both types of triads showed high fatigue resistance allowing for up to 6000 switching cycles of a single triad corresponding to time durations in the order of 80 min without deterioration. Long-term analysis of the switching cycles reveals that the probability that an intensity change in the emission from the dyes can be assigned to an externally stimulated conversion of the DCP (rather than to stochastic blinking of the dye molecules) amounts to 0.7 ± 0.1 for both types of triads. This number is far too low for optical data storage using single triads and implications concerning the miniaturization of optical memories based on such systems will be discussed. Yet, together with the high fatigue resistance, this number is encouraging for applications in super-resolution optical microscopy on frozen biological samples.
Collapse
Affiliation(s)
- Johannes Maier
- Spectroscopy of Soft Matter, University of Bayreuth, 95440 Bayreuth, Germany
| | - Tina Weller
- Applied Functional Materials, University of Bayreuth, 95440 Bayreuth, Germany
| | - Mukundan Thelakkat
- Applied Functional Materials, University of Bayreuth, 95440 Bayreuth, Germany
| | - Jürgen Köhler
- Spectroscopy of Soft Matter, University of Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|
39
|
Komiya N, Ikeshita M, Tosaki K, Sato A, Itami N, Naota T. Catalytic Enantioselective Rotation of Watermill‐Shaped Dinuclear Pd Complexes. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Naruyoshi Komiya
- Department of Chemistry, Graduate School of Engineering Science Osaka University Machikaneyama, Toyonaka, Osaka 560-8531 Japan
- Chemistry Laboratory The Jikei University School of Medicine Kokuryo, Chofu, Tokyo 182-8570 Japan
| | - Masahiro Ikeshita
- Department of Chemistry, Graduate School of Engineering Science Osaka University Machikaneyama, Toyonaka, Osaka 560-8531 Japan
| | - Koichi Tosaki
- Department of Chemistry, Graduate School of Engineering Science Osaka University Machikaneyama, Toyonaka, Osaka 560-8531 Japan
| | - Atsushi Sato
- Department of Chemistry, Graduate School of Engineering Science Osaka University Machikaneyama, Toyonaka, Osaka 560-8531 Japan
| | - Nao Itami
- Department of Chemistry, Graduate School of Engineering Science Osaka University Machikaneyama, Toyonaka, Osaka 560-8531 Japan
| | - Takeshi Naota
- Department of Chemistry, Graduate School of Engineering Science Osaka University Machikaneyama, Toyonaka, Osaka 560-8531 Japan
| |
Collapse
|
40
|
Kunstmann-Olsen C, Belić D, Bradley DF, Danks SP, Diaz Fernandez YA, Grzelczak MP, Hill AP, Qiao X, Raval R, Sorzabal-Bellido I, Brust M. Ion shuttling between emulsion droplets by crown ether modified gold nanoparticles. NANOSCALE ADVANCES 2021; 3:3136-3144. [PMID: 34124578 PMCID: PMC8168925 DOI: 10.1039/d1na00009h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
Selective unidirectional transport of barium ions between droplets in a water-in-chloroform emulsion is demonstrated. Gold nanoparticles (GNPs) modified with a thiolated crown ether act as barium ion complexing shuttles that carry the ions from one population of droplets (source) to another (target). This process is driven by a steep barium ion concentration gradient between source and target droplets. The concentration of barium ions in the target droplets is kept low at all times by the precipitation of insoluble barium sulfate. A potential role of electrostatically coupled secondary processes that maintain the electroneutrality of the emulsion droplets is discussed. Charging of the GNP metal cores by electron transfer in the presence of the Fe(ii)/Fe(iii) redox couple appears to affect the partitioning of the GNPs between the water droplets and the chloroform phase. Processes have been monitored and studied by optical microscopy, Raman spectroscopy, cryogenic scanning electron microscopy (cryo-SEM) and zeta potential. The shuttle action of the GNPs has further been demonstrated electrochemically in a model system.
Collapse
Affiliation(s)
| | - Domagoj Belić
- University of Liverpool, Department of Chemistry Crown Street Liverpool L69 7ZD UK
| | - Dan F Bradley
- University of Liverpool, Department of Chemistry Crown Street Liverpool L69 7ZD UK
| | - Stephen P Danks
- University of Liverpool, Department of Chemistry Crown Street Liverpool L69 7ZD UK
| | - Yuri A Diaz Fernandez
- University of Liverpool, Department of Chemistry, Open Innovation Hub for Antimicrobial Surfaces, Surface Science Research Centre Liverpool L69 3BX UK
| | - Marcin P Grzelczak
- University of Liverpool, Department of Chemistry Crown Street Liverpool L69 7ZD UK
| | - Alexander P Hill
- University of Liverpool, Department of Chemistry Crown Street Liverpool L69 7ZD UK
| | - Xiaohang Qiao
- University of Liverpool, Department of Chemistry Crown Street Liverpool L69 7ZD UK
| | - Rasmita Raval
- University of Liverpool, Department of Chemistry Crown Street Liverpool L69 7ZD UK
| | - Ioritz Sorzabal-Bellido
- University of Liverpool, Department of Chemistry, Open Innovation Hub for Antimicrobial Surfaces, Surface Science Research Centre Liverpool L69 3BX UK
| | - Mathias Brust
- University of Liverpool, Department of Chemistry Crown Street Liverpool L69 7ZD UK
| |
Collapse
|
41
|
Das K, Gabrielli L, Prins LJ. Chemically Fueled Self‐Assembly in Biology and Chemistry. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100274] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Krishnendu Das
- Department of Chemical Sciences
- University of Padova Via Marzolo 1 35131 Padova Italy
| | - Luca Gabrielli
- Department of Chemical Sciences
- University of Padova Via Marzolo 1 35131 Padova Italy
| | - Leonard J. Prins
- Department of Chemical Sciences
- University of Padova Via Marzolo 1 35131 Padova Italy
| |
Collapse
|
42
|
Cheng JK, Xiang SH, Li S, Ye L, Tan B. Recent Advances in Catalytic Asymmetric Construction of Atropisomers. Chem Rev 2021; 121:4805-4902. [PMID: 33775097 DOI: 10.1021/acs.chemrev.0c01306] [Citation(s) in RCA: 402] [Impact Index Per Article: 134.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Atropisomerism is a stereochemical behavior portrayed by three-dimensional molecules that bear rotationally restricted σ bond. Akin to the well-represented point-chiral molecules, atropisomerically chiral compounds are finding increasing utilities in many disciplines where molecular asymmetry is influential. This provides steady demand on atroposelective synthesis, where numerous synthetic pursuits have been rewarded with conceptually novel and streamlined methods while expanding the structural diversity of atropisomers. This review summarizes key achievements in stereoselective preparation of biaryl, heterobiaryl, and nonbiaryl atropisomers documented between 2015 and 2020. Emphasis is placed on the synthetic strategies for each structural class, while examples are cited to illustrate the potential applications of the accessed atropochiral targets.
Collapse
Affiliation(s)
- Jun Kee Cheng
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shao-Hua Xiang
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China.,Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shaoyu Li
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China.,Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
| | - Liu Ye
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China.,Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bin Tan
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
43
|
Hou J, Mondal A, Long G, de Haan L, Zhao W, Zhou G, Liu D, Broer DJ, Chen J, Feringa BL. Photo-responsive Helical Motion by Light-Driven Molecular Motors in a Liquid-Crystal Network. Angew Chem Int Ed Engl 2021; 60:8251-8257. [PMID: 33511680 PMCID: PMC8048625 DOI: 10.1002/anie.202016254] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Indexed: 12/16/2022]
Abstract
Controlling sophisticated motion by molecular motors is a major goal on the road to future actuators and soft robotics. Taking inspiration from biological motility and mechanical functions common to artificial machines, responsive small molecules have been used to achieve macroscopic effects, however, translating molecular movement along length scales to precisely defined linear, twisting and rotary motions remain particularly challenging. Here, we present the design, synthesis and functioning of liquid‐crystal network (LCN) materials with intrinsic rotary motors that allow the conversion of light energy into reversible helical motion. In this responsive system the photochemical‐driven molecular motor has a dual function operating both as chiral dopant and unidirectional rotor amplifying molecular motion into a controlled and reversible left‐ or right‐handed macroscopic twisting movement. By exploiting the dynamic chirality, directionality of motion and shape change of a single motor embedded in an LC‐network, complex mechanical motions including bending, walking and helical motion, in soft polymer materials are achieved which offers fascinating opportunities toward inherently photo‐responsive materials.
Collapse
Affiliation(s)
- Jiaxin Hou
- SCNU-UG International Joint Laboratory of Molecular Science and DisplaysNational Center for International Research on Green OptoelectronicsSouth China Normal UniversityGuangzhou510006China
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Anirban Mondal
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| | - Guiying Long
- SCNU-UG International Joint Laboratory of Molecular Science and DisplaysNational Center for International Research on Green OptoelectronicsSouth China Normal UniversityGuangzhou510006China
| | - Laurens de Haan
- SCNU-TUE Joint lab of Device Integrated Responsive Materials (DIRM)Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper DisplaysSouth China Academy of Advanced OptoelectronicsSouth China Normal UniversityGuangzhou510006China
- Stimuli-responsive Functional Materials and DevicesDepartment of Chemical Engineering and ChemistryEindhoven University of TechnologyDen Dolech 2, 5600MBEindhovenThe Netherlands
| | - Wei Zhao
- SCNU-TUE Joint lab of Device Integrated Responsive Materials (DIRM)Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper DisplaysSouth China Academy of Advanced OptoelectronicsSouth China Normal UniversityGuangzhou510006China
| | - Guofu Zhou
- SCNU-UG International Joint Laboratory of Molecular Science and DisplaysNational Center for International Research on Green OptoelectronicsSouth China Normal UniversityGuangzhou510006China
- SCNU-TUE Joint lab of Device Integrated Responsive Materials (DIRM)Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper DisplaysSouth China Academy of Advanced OptoelectronicsSouth China Normal UniversityGuangzhou510006China
| | - Danqing Liu
- SCNU-TUE Joint lab of Device Integrated Responsive Materials (DIRM)Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper DisplaysSouth China Academy of Advanced OptoelectronicsSouth China Normal UniversityGuangzhou510006China
- Stimuli-responsive Functional Materials and DevicesDepartment of Chemical Engineering and ChemistryEindhoven University of TechnologyDen Dolech 2, 5600MBEindhovenThe Netherlands
| | - Dirk J. Broer
- SCNU-TUE Joint lab of Device Integrated Responsive Materials (DIRM)Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper DisplaysSouth China Academy of Advanced OptoelectronicsSouth China Normal UniversityGuangzhou510006China
- Stimuli-responsive Functional Materials and DevicesDepartment of Chemical Engineering and ChemistryEindhoven University of TechnologyDen Dolech 2, 5600MBEindhovenThe Netherlands
| | - Jiawen Chen
- SCNU-UG International Joint Laboratory of Molecular Science and DisplaysNational Center for International Research on Green OptoelectronicsSouth China Normal UniversityGuangzhou510006China
| | - Ben L. Feringa
- SCNU-UG International Joint Laboratory of Molecular Science and DisplaysNational Center for International Research on Green OptoelectronicsSouth China Normal UniversityGuangzhou510006China
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747AGGroningenThe Netherlands
| |
Collapse
|
44
|
Hou J, Mondal A, Long G, Haan L, Zhao W, Zhou G, Liu D, Broer DJ, Chen J, Feringa BL. Photo‐responsive Helical Motion by Light‐Driven Molecular Motors in a Liquid‐Crystal Network. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016254] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Jiaxin Hou
- SCNU-UG International Joint Laboratory of Molecular Science and Displays National Center for International Research on Green Optoelectronics South China Normal University Guangzhou 510006 China
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Anirban Mondal
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| | - Guiying Long
- SCNU-UG International Joint Laboratory of Molecular Science and Displays National Center for International Research on Green Optoelectronics South China Normal University Guangzhou 510006 China
| | - Laurens Haan
- SCNU-TUE Joint lab of Device Integrated Responsive Materials (DIRM) Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays South China Academy of Advanced Optoelectronics South China Normal University Guangzhou 510006 China
- Stimuli-responsive Functional Materials and Devices Department of Chemical Engineering and Chemistry Eindhoven University of Technology Den Dolech 2, 5600 MB Eindhoven The Netherlands
| | - Wei Zhao
- SCNU-TUE Joint lab of Device Integrated Responsive Materials (DIRM) Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays South China Academy of Advanced Optoelectronics South China Normal University Guangzhou 510006 China
| | - Guofu Zhou
- SCNU-UG International Joint Laboratory of Molecular Science and Displays National Center for International Research on Green Optoelectronics South China Normal University Guangzhou 510006 China
- SCNU-TUE Joint lab of Device Integrated Responsive Materials (DIRM) Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays South China Academy of Advanced Optoelectronics South China Normal University Guangzhou 510006 China
| | - Danqing Liu
- SCNU-TUE Joint lab of Device Integrated Responsive Materials (DIRM) Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays South China Academy of Advanced Optoelectronics South China Normal University Guangzhou 510006 China
- Stimuli-responsive Functional Materials and Devices Department of Chemical Engineering and Chemistry Eindhoven University of Technology Den Dolech 2, 5600 MB Eindhoven The Netherlands
| | - Dirk J. Broer
- SCNU-TUE Joint lab of Device Integrated Responsive Materials (DIRM) Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays South China Academy of Advanced Optoelectronics South China Normal University Guangzhou 510006 China
- Stimuli-responsive Functional Materials and Devices Department of Chemical Engineering and Chemistry Eindhoven University of Technology Den Dolech 2, 5600 MB Eindhoven The Netherlands
| | - Jiawen Chen
- SCNU-UG International Joint Laboratory of Molecular Science and Displays National Center for International Research on Green Optoelectronics South China Normal University Guangzhou 510006 China
| | - Ben L. Feringa
- SCNU-UG International Joint Laboratory of Molecular Science and Displays National Center for International Research on Green Optoelectronics South China Normal University Guangzhou 510006 China
- Stratingh Institute for Chemistry University of Groningen Nijenborgh 4 9747 AG Groningen The Netherlands
| |
Collapse
|
45
|
Kariyawasam LS, Hossain MM, Hartley CS. The Transient Covalent Bond in Abiotic Nonequilibrium Systems. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014678] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | - C. Scott Hartley
- Department of Chemistry & Biochemistry Miami University Oxford OH 45056 USA
| |
Collapse
|
46
|
Kariyawasam LS, Hossain MM, Hartley CS. The Transient Covalent Bond in Abiotic Nonequilibrium Systems. Angew Chem Int Ed Engl 2021; 60:12648-12658. [PMID: 33264456 DOI: 10.1002/anie.202014678] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Indexed: 12/20/2022]
Abstract
Biochemical systems accomplish many critical functions with by operating out-of-equilibrium using the energy of chemical fuels. The formation of a transient covalent bond is a simple but very effective tool in designing analogous reaction networks. This Minireview focuses on the fuel chemistries that have been used to generate transient bonds in recent demonstrations of abiotic nonequilibrium systems (i.e., systems that do not make use of biological components). Fuel reactions are divided into two fundamental classifications depending on whether the fuel contributes structural elements to the activated state, a distinction that dictates how they can be used. Reported systems are further categorized by overall fuel reaction (e.g., hydrolysis of alkylating agents, carbodiimide hydration) and illustrate how similar chemistry can be used to effect a wide range of nonequilibrium behavior, ranging from self-assembly to the operation of molecular machines.
Collapse
Affiliation(s)
- Lasith S Kariyawasam
- Department of Chemistry & Biochemistry, Miami University, Oxford, OH, 45056, USA
| | | | - C Scott Hartley
- Department of Chemistry & Biochemistry, Miami University, Oxford, OH, 45056, USA
| |
Collapse
|
47
|
Carmona JA, Rodríguez-Franco C, Fernández R, Hornillos V, Lassaletta JM. Atroposelective transformation of axially chiral (hetero)biaryls. From desymmetrization to modern resolution strategies. Chem Soc Rev 2021; 50:2968-2983. [DOI: 10.1039/d0cs00870b] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Atroposelective transformations of (hetero)biaryls are classified into desymmetrization, kinetic resolution, dynamic kinetic resolution, and dynamic kinetic asymmetric transformation depending on the nature and behavior of the starting material.
Collapse
Affiliation(s)
- José A. Carmona
- Instituto de Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- C/Américo Vespucio, 49
- 41092 Sevilla
- Spain
| | - Carlos Rodríguez-Franco
- Instituto de Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- C/Américo Vespucio, 49
- 41092 Sevilla
- Spain
| | - Rosario Fernández
- Departamento de Química Orgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- Universidad de Sevilla
- 41012 Sevilla
- Spain
| | - Valentín Hornillos
- Instituto de Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- C/Américo Vespucio, 49
- 41092 Sevilla
- Spain
| | - José M. Lassaletta
- Instituto de Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO-CINQA)
- C/Américo Vespucio, 49
- 41092 Sevilla
- Spain
| |
Collapse
|
48
|
Chen H, Tang X, Ye H, Wang X, Zheng H, Hai Y, Cao X, You L. Effects of n → π* Orbital Interactions on Molecular Rotors: The Control and Switching of Rotational Pathway and Speed. Org Lett 2020; 23:231-235. [PMID: 33351640 DOI: 10.1021/acs.orglett.0c03969] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The role of n → π* orbital interactions in the rotational pathway and barrier of biaryl-based molecular rotors was elucidated through a combined experimental and computational study. The n → π* interaction in the transition state can lead to the acceleration of rotors. The competition between the n → π* interaction and hydrogen bonding further enabled the reversal of the pathway and greasing/braking the rotor in response to acid/base stimuli, thereby creating a switchable molecular rotor.
Collapse
Affiliation(s)
- Hang Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Xiao Tang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005,China
| | - Hebo Ye
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Xinchang Wang
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005,China
| | - Hao Zheng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Yu Hai
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyu Cao
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005,China
| | - Lei You
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
49
|
Kelber JB, Bensalah-Ledoux A, Zahouani S, Baguenard B, Schaaf P, Chaumont A, Guy S, Jierry L. Reversible Soft Mechanochemical Control of Biaryl Conformations through Crosslinking in a 3D Macromolecular Network. Angew Chem Int Ed Engl 2020; 59:23283-23290. [PMID: 32857901 DOI: 10.1002/anie.202010604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Indexed: 11/11/2022]
Abstract
Tuning the dihedral angle (DA) of axially chiral compounds can impact biological activity, catalyst efficiency, molecular motor performance, or chiroptical properties. Herein, we report gradual, controlled, and reversible changes in molecular conformation of a covalently linked binaphthyl moiety within a 3D polymeric network by application of a macroscopic stretching force. We managed direct observation of DA changes by measuring the circular dichroism signal of an optically pure BINOL-crosslinked elastomer network. Stretching the elastomer resulted in a widening of the DA between naphthyl rings when the BINOL was doubly grafted to the elastomer network; no effect was observed when a single naphthyl ring of the BINOL was grafted to the elastomer network. We have determined that ca. 170 % extension of the elastomers led to the transfer of a mechanical force to the BINOL moiety of 2.5 kcal mol-1 Å-1 (ca. 175 pN) in magnitude and results in the opening of the DA of BINOL up to 130°.
Collapse
Affiliation(s)
- Julien B Kelber
- Université de Strasbourg, CNRS, Institut Charles Sadron (UPR22), 23 rue du Loess, BP 84047, 67034, Strasbourg Cedex 2, France
| | - Amina Bensalah-Ledoux
- Université Claude Bernard Lyon 1, Université de Lyon, CNRS, Institut Lumière Matière (UMR5306), 69622, Lyon, France
| | - Sarah Zahouani
- Université de Strasbourg, CNRS, Institut Charles Sadron (UPR22), 23 rue du Loess, BP 84047, 67034, Strasbourg Cedex 2, France
| | - Bruno Baguenard
- Université Claude Bernard Lyon 1, Université de Lyon, CNRS, Institut Lumière Matière (UMR5306), 69622, Lyon, France
| | - Pierre Schaaf
- Université de Strasbourg, CNRS, Institut Charles Sadron (UPR22), 23 rue du Loess, BP 84047, 67034, Strasbourg Cedex 2, France.,Institut National de la Santé et de la Recherche Médicale, INSERM Unité 1121, 11 rue Humann, 67085, Strasbourg Cedex, France.,Université de Strasbourg Faculté de Chirurgie Dentaire, 8 rue Sainte Elisabeth, 67000, Strasbourg, France
| | - Alain Chaumont
- Université de Strasbourg, Faculté de Chimie, UMR7140, 1 rue Blaise Pascal, 67008, Strasbourg Cedex, France
| | - Stephan Guy
- Université Claude Bernard Lyon 1, Université de Lyon, CNRS, Institut Lumière Matière (UMR5306), 69622, Lyon, France
| | - Loïc Jierry
- Université de Strasbourg, CNRS, Institut Charles Sadron (UPR22), 23 rue du Loess, BP 84047, 67034, Strasbourg Cedex 2, France
| |
Collapse
|
50
|
Kelber JB, Bensalah‐Ledoux A, Zahouani S, Baguenard B, Schaaf P, Chaumont A, Guy S, Jierry L. Reversible Soft Mechanochemical Control of Biaryl Conformations through Crosslinking in a 3D Macromolecular Network. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Julien B. Kelber
- Université de Strasbourg CNRS, Institut Charles Sadron (UPR22) 23 rue du Loess, BP 84047 67034 Strasbourg Cedex 2 France
| | - Amina Bensalah‐Ledoux
- Université Claude Bernard Lyon 1 Université de Lyon CNRS, Institut Lumière Matière (UMR5306) 69622 Lyon France
| | - Sarah Zahouani
- Université de Strasbourg CNRS, Institut Charles Sadron (UPR22) 23 rue du Loess, BP 84047 67034 Strasbourg Cedex 2 France
| | - Bruno Baguenard
- Université Claude Bernard Lyon 1 Université de Lyon CNRS, Institut Lumière Matière (UMR5306) 69622 Lyon France
| | - Pierre Schaaf
- Université de Strasbourg CNRS, Institut Charles Sadron (UPR22) 23 rue du Loess, BP 84047 67034 Strasbourg Cedex 2 France
- Institut National de la Santé et de la Recherche Médicale INSERM Unité 1121 11 rue Humann 67085 Strasbourg Cedex France
- Université de Strasbourg Faculté de Chirurgie Dentaire 8 rue Sainte Elisabeth 67000 Strasbourg France
| | - Alain Chaumont
- Université de Strasbourg Faculté de Chimie UMR7140 1 rue Blaise Pascal 67008 Strasbourg Cedex France
| | - Stephan Guy
- Université Claude Bernard Lyon 1 Université de Lyon CNRS, Institut Lumière Matière (UMR5306) 69622 Lyon France
| | - Loïc Jierry
- Université de Strasbourg CNRS, Institut Charles Sadron (UPR22) 23 rue du Loess, BP 84047 67034 Strasbourg Cedex 2 France
| |
Collapse
|