1
|
Lachguar A, Ye CZ, Kelly SN, Jeanneau E, Del Rosal I, Maron L, Veyre L, Thieuleux C, Arnold J, Camp C. CO 2 cleavage by tantalum/M (M = iridium, osmium) heterobimetallic complexes. Chem Commun (Camb) 2024; 60:7878-7881. [PMID: 38984492 PMCID: PMC11271703 DOI: 10.1039/d4cc02207f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024]
Abstract
A novel Ta/Os heterobimetallic complex, [Ta(CH2tBu)3(μ-H)3OsCp*], 2, is prepared by protonolysis of Ta(CHtBu)(CH2tBu)3 with Cp*OsH5. Treatment of 2 and its iridium analogue [Ta(CH2tBu)3(μ-H)2IrCp*], 1, with CO2 under mild conditions reveal the efficient cleavage of CO2, driven by the formation of a tantalum oxo species in conjunction with CO transfer to the osmium or iridium fragments, to form Cp*Ir(CO)H2 and Cp*Os(CO)H3, respectively. This bimetallic reactivity diverges from more classical CO2 insertion into metal-X (X = metal, hydride, alkyl) bonds.
Collapse
Affiliation(s)
- Abdelhak Lachguar
- Laboratory of Catalysis, Polymerization, Processes and Materials (CP2M UMR 5128) CNRS, Universite Claude Bernard Lyon 1, CPE-Lyon, Institut de Chimie de Lyon, 43 Bvd du 11 Novembre 1918, 69616 Villeurbanne, France.
| | - Christopher Z Ye
- Department of Chemistry, University of California, Berkeley, California 94720, USA.
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Sheridon N Kelly
- Department of Chemistry, University of California, Berkeley, California 94720, USA.
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Erwann Jeanneau
- Centre de Diffractométrie Henri Longchambon, Universite Claude Bernard Lyon 1, 5 Rue de la Doua, 69100 Villeurbanne, France
| | - Iker Del Rosal
- Université de Toulouse, CNRS, INSA, UPS, UMR5215, LCPNO, 135 Avenue de Rangueil, F-31077 Toulouse, France
| | - Laurent Maron
- Université de Toulouse, CNRS, INSA, UPS, UMR5215, LCPNO, 135 Avenue de Rangueil, F-31077 Toulouse, France
| | - Laurent Veyre
- Laboratory of Catalysis, Polymerization, Processes and Materials (CP2M UMR 5128) CNRS, Universite Claude Bernard Lyon 1, CPE-Lyon, Institut de Chimie de Lyon, 43 Bvd du 11 Novembre 1918, 69616 Villeurbanne, France.
| | - Chloé Thieuleux
- Laboratory of Catalysis, Polymerization, Processes and Materials (CP2M UMR 5128) CNRS, Universite Claude Bernard Lyon 1, CPE-Lyon, Institut de Chimie de Lyon, 43 Bvd du 11 Novembre 1918, 69616 Villeurbanne, France.
| | - John Arnold
- Department of Chemistry, University of California, Berkeley, California 94720, USA.
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Clément Camp
- Laboratory of Catalysis, Polymerization, Processes and Materials (CP2M UMR 5128) CNRS, Universite Claude Bernard Lyon 1, CPE-Lyon, Institut de Chimie de Lyon, 43 Bvd du 11 Novembre 1918, 69616 Villeurbanne, France.
| |
Collapse
|
2
|
He X, Pan X, Xiong C, Zhang Y, Hong D, Fang H, Cui P. Rare-Earth Metalloligands for Low -Valent Cobalt Complexes: Fine Electronic Tuning via Co→RE Dative Interactions. Inorg Chem 2024; 63:8155-8162. [PMID: 38651290 DOI: 10.1021/acs.inorgchem.4c00367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Rare-earth metalloligand supported low-valent cobalt complexes were synthesized by utilizing a small-sized heptadentate phosphinomethylamine LsNH3 and a large-sized arene-anchored hexadentate phosphinomethylamine LlArH3 ligand precursors. The RE(III)-Co(-I)-N2 (RE = Sc, Lu, Y, Gd, La) complexes containing rare-earth metals including the smallest Sc and largest La were characterized by multinuclear NMR spectroscopy, X-ray diffraction analysis, electrochemistry, and computational studies. The Co(-I)→RE(III) dative interactions were all polarized with major contributions from the 3dz2 orbital of the cobalt center, which was slightly affected by the identity of rare-earth metalloligands. The IR spectroscopic data and redox potentials obtained from cyclic voltammetry revealed that the electronic property of the Co(-I) center was finely tuned by the rare-earth metalloligand, which was revealed by variation of the ligand systems containing LsN, LmN, and LlAr. Unlike the direct alteration of the electronic property of metal center via an ancillary ligand, such a series of rare-earth metalloligand represents a smooth strategy to tune the electronic property of transition metals.
Collapse
Affiliation(s)
- Xiuyan He
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, 189 S. Jiuhua Road, Wuhu, Anhui 241002, P. R. China
| | - Xiaowei Pan
- School of Materials Science and Engineering, Tianjin Key Lab for Rare Earth Materials and Applications, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Tianjin 300350, P. R. China
| | - Chunyan Xiong
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, 189 S. Jiuhua Road, Wuhu, Anhui 241002, P. R. China
| | - Yun Zhang
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, 189 S. Jiuhua Road, Wuhu, Anhui 241002, P. R. China
| | - Dongjing Hong
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, 189 S. Jiuhua Road, Wuhu, Anhui 241002, P. R. China
| | - Huayi Fang
- School of Materials Science and Engineering, Tianjin Key Lab for Rare Earth Materials and Applications, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Tianjin 300350, P. R. China
| | - Peng Cui
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, 189 S. Jiuhua Road, Wuhu, Anhui 241002, P. R. China
| |
Collapse
|
3
|
Ma L, Pan X, Hong D, Fang H, Cui P. A scandium metalloligand supported Ni(0) complex with a heterobimetallocycle: versatile reactivity with unsaturated bonds. Chem Commun (Camb) 2024; 60:4222-4225. [PMID: 38525969 DOI: 10.1039/d4cc00547c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
A N2-bridged tetranuclear Sc(III)-Ni(0) complex featuring a Ni → Sc interaction and a 4-membered [Sc-N-C-Ni] ring was synthesized and characterized. Bimetallic reactivity was demonstrated via reactions with a series of unsaturated compounds containing NC, CN, CC, CO and NN bonds.
Collapse
Affiliation(s)
- Lei Ma
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, S 189, Jiuhua Road, Wuhu, Anhui 241002, P. R. China.
| | - Xiaowei Pan
- School of Materials Science and Engineering, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Tianjin 300350, P. R. China.
| | - Dongjing Hong
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, S 189, Jiuhua Road, Wuhu, Anhui 241002, P. R. China.
| | - Huayi Fang
- School of Materials Science and Engineering, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Tianjin 300350, P. R. China.
| | - Peng Cui
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, S 189, Jiuhua Road, Wuhu, Anhui 241002, P. R. China.
| |
Collapse
|
4
|
Haidinger A, Dilly CI, Fischer RC, Svatunek D, Uher JM, Hlina JA. To Bond or Not to Bond: Metal-Metal Interaction in Heterobimetallic Rare-Earth Metal-Silver Complexes. Inorg Chem 2023; 62:17713-17720. [PMID: 37851537 PMCID: PMC10618923 DOI: 10.1021/acs.inorgchem.3c02377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Indexed: 10/20/2023]
Abstract
The reaction of 2,4-tBu2-6-(PPh2)PhOH (HOArP) with silver(I) triflate in a 3:1 molar ratio gave the mononuclear coinage metal complex (HOArP-κP)3AgIOTf (1). Treatment of HOArP with LnIII[N(SiMe3)2]3 (Ln = La, Sm, Y, Yb) in a 3:1 molar ratio yielded the mononuclear rare-earth metal complexes LnIII(OArP-κ2O,P)3 (2-Ln). The heterobimetallic rare-earth metal-silver complexes LnIII(OTf)(μ-OArP-1κ1O,2κ1P)3AgI (3-Ln) were prepared from monometallic precursors by reactions of equimolar amounts of 1 with LnIII[N(SiMe3)2]3 or 2-Ln with silver(I) triflate, respectively. The compounds were characterized by NMR, ultraviolet-visible (UV-vis), and infrared (IR) spectroscopy, single-crystal X-ray diffraction, elemental analysis, and the effective magnetic moments of the paramagnetic complexes were determined via the Evans NMR method. Computational studies were conducted on 3-La and 3-Y.
Collapse
Affiliation(s)
- Alexandra Haidinger
- Institute
of Inorganic Chemistry, Graz University
of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Christina I. Dilly
- Institute
of Inorganic Chemistry, Graz University
of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Roland C. Fischer
- Institute
of Inorganic Chemistry, Graz University
of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Dennis Svatunek
- Institute
of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Johanna M. Uher
- Institute
of Inorganic Chemistry, Graz University
of Technology, Stremayrgasse 9, 8010 Graz, Austria
| | - Johann A. Hlina
- Institute
of Chemistry, Inorganic Chemistry, University
of Graz, Schubertstraße 1, 8010 Graz, Austria
| |
Collapse
|
5
|
Sun X, Shen J, Rajeshkumar T, Maron L, Zhu C. Heterometallic Clusters with Cerium-Transition-Metal Bonding Supported by Nitrogen-Phosphorus Ligands. Inorg Chem 2023; 62:16077-16083. [PMID: 37733482 DOI: 10.1021/acs.inorgchem.3c02259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Ligands are known to play a crucial role in the construction of complexes with metal-metal bonds. Compared with metal-metal bonds involving d-block transition metals, knowledge of the metal-metal bonds involving f-block rare-earth metals still lags far behind. Herein, we report a series of complexes with cerium-transition-metal bonds, which are supported by two kinds of nitrogen-phosphorus ligands N[CH2CH2NHPiPr2]3 (VI) and PyNHCH2PPh2 (VII). The reactions of zerovalent group 10 metal precursors, Pd(PPh3)4 and Pt(PPh3)4, with the cerium complex supported by VI generate heterometallic clusters [N{CH2CH2NPiPr2}3Ce(μ-M)]2 (M = Pd, 2 and M = Pt, 3) featuring four Ce-M bonds; meanwhile, the bimetallic species [(PyNCH2PPh2)3Ce-M] (M = Ni, 5; M = Pd, 6; and M = Pt, 7) with a single Ce-M bond were isolated from the reactions of the cerium precursor 4 supported by VII with Ni(COD)2, Pd(PPh3)4, or Pt(PPh3)4, respectively. These complexes represent the first example of species with an RE-M bond between Ce and group 10 metals, and 2 and 3 contain the largest number of RE-M donor/acceptor interactions ever to have been observed in a molecule.
Collapse
Affiliation(s)
- Xiong Sun
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- School of Environmental Engineering, Wuxi University, Wuxi 214105, China
| | - Jinghang Shen
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Thayalan Rajeshkumar
- LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Laurent Maron
- LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Congqing Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
6
|
Cemortan V, Simler T, Moutet J, Jaoul A, Clavaguéra C, Nocton G. Structure and bonding patterns in heterometallic organometallics with linear Ln-Pd-Ln motifs. Chem Sci 2023; 14:2676-2685. [PMID: 36908951 PMCID: PMC9993901 DOI: 10.1039/d2sc06933d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 01/20/2023] [Indexed: 01/22/2023] Open
Abstract
Complexes with short intermetallic distances between transition metal fragments and lanthanide (Ln) fragments are fascinating objects of study, owing to the ambiguity of the nature of the interaction. The addition of the divalent lanthanide fragments Cp*2Ln(OEt2) (Ln = Sm or Yb) to a Pd(ii) complex bearing the deprotonated form of the redox-active, non-symmetrical ligand, 2-pyrimidin-2-yl-1H-benzimidazole (Hbimpm), leads to two isostructural complexes, of the general formula (Cp*2Ln)2[μ-Pd(pyridyl)2] (Ln = Sm (4) and Yb (5)). These adducts have interesting features, such as unique linear Ln-Pd-Ln arrangements and short Ln-Pd distances, which deviate from the expected lanthanide contraction. A mixed computational and spectroscopic study into the formation of these adducts gathers important clues as to their formation. At the same time, thorough characterization of these complexes establishes the +3 oxidation state of all the involved Ln centers. Detailed theoretical computations demonstrate that the apparent deviation from lanthanide contraction is not due to any difference in the intermetallic interaction between the Pd and the Ln, but that the fragments are joined together by electrostatic interactions and dispersive forces. This conclusion contrasts with the findings about a third complex, Cp*2Yb(μ-Me)2PdCp* (6), formed during the reaction, which also possesses a short Yb-Pd distance. Studies at the CASSCF level of theory on this complex show several orbitals containing significant interactions between the 4f and 4d manifolds of the metals. This demonstrates the need for methodical and careful analyses in gauging the intermetallic interaction and the inadequacy of empirical metrics in describing such phenomena.
Collapse
Affiliation(s)
- Valeriu Cemortan
- LCM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris Route de Saclay Palaiseau 91120 France .,Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000 Orsay 91405 France
| | - Thomas Simler
- LCM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris Route de Saclay Palaiseau 91120 France
| | - Jules Moutet
- LCM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris Route de Saclay Palaiseau 91120 France
| | - Arnaud Jaoul
- LCM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris Route de Saclay Palaiseau 91120 France
| | - Carine Clavaguéra
- Université Paris-Saclay, CNRS, Institut de Chimie Physique UMR8000 Orsay 91405 France
| | - Grégory Nocton
- LCM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris Route de Saclay Palaiseau 91120 France
| |
Collapse
|
7
|
Zhang Y, Pan X, Xu M, Xiong C, Hong D, Fang H, Cui P. Dinitrogen Complexes of Cobalt(-I) Supported by Rare-Earth Metal-Based Metalloligands. Inorg Chem 2023; 62:3836-3846. [PMID: 36800534 DOI: 10.1021/acs.inorgchem.2c04099] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Sequential reactions of heptadentate phosphinoamine LH3 with rare-earth metal tris-alkyl precursor (Me3SiCH2)3Ln(THF)2 (Ln = Sc, Lu, Yb, Y, Gd) and a low-valent cobalt complex (Ph3P)3CoI afforded rare-earth metal-supported cobalt iodide complexes. Reduction of these iodide complexes under N2 allowed the isolation of the first series of dinitrogen complexes of Co(-I) featuring dative Co(-I) → Ln (Ln = Sc, Lu, Yb, Y, Gd) bonding interactions. These compounds were characterized by multinuclear NMR spectroscopy, X-ray diffraction analysis, electrochemistry, and computational studies. The correlation of N-N vibrational frequencies with the pKa of [Ln(H2O)6]3+ showed that strongest activation of N2 was achieved with the least Lewis acidic Gd(III) ion. Interestingly, these Ln-Co-N2 complexes catalyzed silylation of N2 in the presence of KC8 and Me3SiCl with turnover numbers (TONs) up to 16, where the lutetium-supported Co(-I) complex showed the highest activity within the series. The role of the Lewis acidic Ln(III) was crucial to achieve catalytic turnovers and tunable reactivity toward N2 functionalization.
Collapse
Affiliation(s)
- Yun Zhang
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, 189 South Jiuhua Road, Wuhu, Anhui 241002, P. R. China
| | - Xiaowei Pan
- School of Materials Science and Engineering, Tianjin Key Lab for Rare Earth Materials and Applications, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Tianjin 300350, P. R. China
| | - Min Xu
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, 189 South Jiuhua Road, Wuhu, Anhui 241002, P. R. China
| | - Chunyan Xiong
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, 189 South Jiuhua Road, Wuhu, Anhui 241002, P. R. China
| | - Dongjing Hong
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, 189 South Jiuhua Road, Wuhu, Anhui 241002, P. R. China
| | - Huayi Fang
- School of Materials Science and Engineering, Tianjin Key Lab for Rare Earth Materials and Applications, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Tianjin 300350, P. R. China
| | - Peng Cui
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, 189 South Jiuhua Road, Wuhu, Anhui 241002, P. R. China
| |
Collapse
|
8
|
Blasco D, Sundholm D. Gold(I)···Lanthanide(III) Bonds in Discrete Heterobimetallic Compounds: A Combined Computational and Topological Study. Inorg Chem 2022; 61:20308-20315. [PMID: 36475614 PMCID: PMC9768751 DOI: 10.1021/acs.inorgchem.2c02717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Indexed: 12/12/2022]
Abstract
The chemical nature of the ligand-unsupported gold(I)-lanthanide(III) bond in the proposed [LnIII(η5-Cp)2][AuIPh2] (Ln-Au; LnIII = LaIII, EuIII, or LuIII; Cp = cyclopentadienide; Ph = phenyl) models is examined from a theoretical viewpoint. The covalent bond-like Au-Ln distances (Au-La, 2.95 Å; Au-Eu, 2.85 Å; Au-Lu, 2.78 Å) result from a strong interaction between the oppositely charged fragments (ΔEintMP2 > 600 kJ mol-1), including the aforementioned metal-metal bond and additional LnIII-Cipso and C-H···π interactions. The Au-Ln bond has been characterized as a chemical bond rather than a strong metallophilic interaction with the aid of energy decomposition analysis, interaction region indicator, and quantum theory of atoms in molecules topological tools. The chemical nature of the Au-Ln bond cannot be fully ascribed to a covalent or an ionic model; an intermediate situation or a charge shift bond is proposed. The [AuIPh2]- anion has also been identified as a suitable lanthanide(III) emission sensitizer for La-Au and Lu-Au.
Collapse
Affiliation(s)
- Daniel Blasco
- Department
of Chemistry, Faculty of Science, University
of Helsinki, P.O. Box 55
(A.I. Virtasen aukio 1), FIN-00014Helsinki, Finland
- Departamento
de Química, Centro de Investigación en Síntesis
Química (CISQ), Universidad de La
Rioja, Madre de Dios 53, 26006Logroño, Spain
| | - Dage Sundholm
- Department
of Chemistry, Faculty of Science, University
of Helsinki, P.O. Box 55
(A.I. Virtasen aukio 1), FIN-00014Helsinki, Finland
| |
Collapse
|
9
|
Fang W, Zhu Q, Zhu C. Recent advances in heterometallic clusters with f-block metal-metal bonds: synthesis, reactivity and applications. Chem Soc Rev 2022; 51:8434-8449. [PMID: 36164971 DOI: 10.1039/d2cs00424k] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Due to the heterometallic synergistic effects from different metals, heterometallic clusters are of great importance in small-molecule activation and catalysis. For example, both biological nitrogen fixation and photosynthetic splitting of water into oxygen are thought to involve multimetallic catalytic sites with d-block transition metals. Benefitting from the larger coordination numbers of f-block metals (rare-earth metals and actinide elements), heterometallic clusters containing f-block metal-metal bonds have long attracted the interest of both experimental and theoretical chemists. Therefore, a series of effective strategies or platforms have been developed in recent years for the construction of heterometallic clusters with f-block metal-metal bonds. More importantly, synergistic effects between f-block metals and transition metals have been observed in small-molecule activation and catalysis. This tutorial review highlights the recent advances in the construction of heterometallic molecular clusters with f-block metal-metal bonds and also their reactivities and applications. It is hoped that this tutorial review will persuade chemists to develop more efficient strategies to construct clusters with f-block metal-metal bonds and also further expand their applications with heterometallic synergistic effects.
Collapse
Affiliation(s)
- Wei Fang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Qin Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Congqing Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
10
|
Zhu Q, Fang W, Maron L, Zhu C. Heterometallic Clusters with Uranium-Metal Bonds Supported by Double-Layer Nitrogen-Phosphorus Ligands. Acc Chem Res 2022; 55:1718-1730. [PMID: 35617335 DOI: 10.1021/acs.accounts.2c00180] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
ConspectusHeterometallic clusters with M-M bonds have significantly interested chemists because of their attractive structures and synergistic effects in small-molecule activation and catalysis. However, reports of the isolation of heterometallic clusters with uranium-transition metal (U-TM) bonds remain very limited. In this Account, we describe our research in the construction of heterometallic molecular clusters with multiple U-TM single or multiple bonds supported by novel double-layer N-P ligands. Multimetallic synergistic catalysis and small-molecule activation with these species are also summarized.First, according to the hard-soft acid-base theory, we employed a three-armed N-P ligand, which can be used to construct heterometallic clusters with four or six U-Ni bonds. This strategy was also effective in the construction of complexes with direct rare earth metal-TM bonding. The similar two-armed N-P ligands also are effective platforms for the synthesis of heterometallic complexes with U-Ni, U-Pd, and U-Pt bonds.Second, a set of heterometallic clusters featuring U≡Rh, U≡Co, and U≡Fe triple bonds were constructed under routine experimental conditions. X-ray diffraction analysis of these clusters exhibits the shortest U-TM bond distance (1.9693(4) Å for the U≡Fe triple bond) in these complexes. Theoretical studies reveal that the nature of the triple bond is one covalent σ bond and two TM → U dative π bonds. A large Wiberg bond index (WBI) of 2.93 and a significant degree of covalency for the U≡TM triple bonds were also found in these complexes.Third, these uranium complexes supported by the double-layer N-P ligands exhibit great potential in small-molecule activation. For instance, N2 cleavage without an external reducing agent was achieved by a U(III)-P(III) synergistic six-electron reduction. The synergism between U(III) and P(III) enables the activation of other small molecules, such as O2, P4, and As0(nano), and highlights the importance of the P atom in the double-layer N-P ligand for the activation of small molecules. A heterometallic cluster with U-Rh bonds can break the strong N≡N triple bond in N2 in the presence of potassium graphite, suggesting a synergistic effect between U and Rh. This multimetallic synergistic effect was also observed in catalytic processes. A heterometallic cluster with U≡Co triple bonds shows excellent selectivity and activity in the hydroboration of a series of alkynes under mild conditions. These results lead to effective methods for the construction of heterometallic molecular clusters with U-TM single or multiple bonds and could promote the application of heterometallic clusters with U-TM bonds in catalysis and the activation of small molecules.
Collapse
Affiliation(s)
- Qin Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei Fang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Laurent Maron
- LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Congqing Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
11
|
An intermetallic molecular nanomagnet with the lanthanide coordinated only by transition metals. Nat Commun 2022; 13:2014. [PMID: 35440596 PMCID: PMC9018761 DOI: 10.1038/s41467-022-29624-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/22/2022] [Indexed: 11/09/2022] Open
Abstract
Magnetic molecules known as molecular nanomagnets (MNMs) may be the key to ultra-high density data storage. Thus, novel strategies on how to design MNMs are desirable. Here, inspired by the hexagonal structure of the hardest intermetallic magnet SmCo5, we have synthesized a nanomagnetic molecule where the central lanthanide (Ln) ErIII is coordinated solely by three transition metal ions (TM) in a perfectly trigonal planar fashion. This intermetallic molecule [ErIII(ReICp2)3] (ErRe3) starts a family of molecular nanomagnets (MNM) with unsupported Ln-TM bonds and paves the way towards molecular intermetallics with strong direct magnetic exchange interactions-a promising route towards high-performance single-molecule magnets.
Collapse
|
12
|
Abstract
The number of rare earth (RE) starting materials used in synthesis is staggering, ranging from simple binary metal-halide salts to borohydrides and "designer reagents" such as alkyl and organoaluminate complexes. This review collates the most important starting materials used in RE synthetic chemistry, including essential information on their preparations and uses in modern synthetic methodologies. The review is divided by starting material category and supporting ligands (i.e., metals as synthetic precursors, halides, borohydrides, nitrogen donors, oxygen donors, triflates, and organometallic reagents), and in each section relevant synthetic methodologies and applications are discussed.
Collapse
Affiliation(s)
- Fabrizio Ortu
- School of Chemistry, University of Leicester, LE1 7RH Leicester, U.K.
| |
Collapse
|
13
|
Magnoux C, Mills DP. Metallocene anions: From electrochemical curiosities to isolable complexes. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202101063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - David P. Mills
- The University of Manchester School of Chemistry Oxford Road M13 9PL Manchester UNITED KINGDOM
| |
Collapse
|
14
|
Escomel L, Soulé N, Robin E, Del Rosal I, Maron L, Jeanneau E, Thieuleux C, Camp C. Rational Preparation of Well-Defined Multinuclear Iridium–Aluminum Polyhydride Clusters and Comparative Reactivity. Inorg Chem 2022; 61:5715-5730. [DOI: 10.1021/acs.inorgchem.1c03120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Léon Escomel
- Laboratory of Catalysis, Polymerization, Processes and Materials, CP2M UMR 5128, CNRS, Université de Lyon, Institut de Chimie de Lyon, Université Lyon 1, ESCPE Lyon, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France
| | - Naïme Soulé
- Laboratory of Catalysis, Polymerization, Processes and Materials, CP2M UMR 5128, CNRS, Université de Lyon, Institut de Chimie de Lyon, Université Lyon 1, ESCPE Lyon, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France
| | - Emmanuel Robin
- Laboratory of Catalysis, Polymerization, Processes and Materials, CP2M UMR 5128, CNRS, Université de Lyon, Institut de Chimie de Lyon, Université Lyon 1, ESCPE Lyon, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France
| | - Iker Del Rosal
- Université de Toulouse, CNRS, INSA, UPS, UMR 5215, LPCNO, 135 Avenue de Rangueil, F-31077 Toulouse, France
| | - Laurent Maron
- Université de Toulouse, CNRS, INSA, UPS, UMR 5215, LPCNO, 135 Avenue de Rangueil, F-31077 Toulouse, France
| | - Erwann Jeanneau
- Université de Lyon, Centre de Diffractométrie Henri Longchambon, 5 Rue de la Doua, 69100 Villeurbanne, France
| | - Chloé Thieuleux
- Laboratory of Catalysis, Polymerization, Processes and Materials, CP2M UMR 5128, CNRS, Université de Lyon, Institut de Chimie de Lyon, Université Lyon 1, ESCPE Lyon, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France
| | - Clément Camp
- Laboratory of Catalysis, Polymerization, Processes and Materials, CP2M UMR 5128, CNRS, Université de Lyon, Institut de Chimie de Lyon, Université Lyon 1, ESCPE Lyon, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France
| |
Collapse
|
15
|
Zhu Z, Tang J. Metal–metal bond in lanthanide single-molecule magnets. Chem Soc Rev 2022; 51:9469-9481. [DOI: 10.1039/d2cs00516f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review surveys recent critical advances in lanthanide SMMs, highlighting the influences of metal–metal bonds on the magnetization dynamics.
Collapse
Affiliation(s)
- Zhenhua Zhu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jinkui Tang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
16
|
Du J, He X, Hong D, Zhou S, Fang H, Cui P. Phosphinoamido Ligand Supported Heterobimetallic Rare-Earth Metal-Palladium Complexes: Versatile Structures and Redox Reactivities. Dalton Trans 2022; 51:8777-8785. [DOI: 10.1039/d2dt01084d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Heterobimetallic Ln(III)-Pd(0) complexes (Ln = Y, Sm, Gd, Yb) featuring tetranuclear structures with COD as bridges were obtained via the metallation of tris(phosphinoamido) rare-earth metal complexes [Ph2PNAd]3Ln (Ad = admantyl)...
Collapse
|
17
|
Chen LS, Liu YZ, Li XN, Chen JJ, Jiang GD, Ma TM, He SG. An IrVO 4+ Cluster Catalytically Oxidizes Four CO Molecules: Importance of Ir-V Multiple Bonding. J Phys Chem Lett 2021; 12:6519-6525. [PMID: 34240876 DOI: 10.1021/acs.jpclett.1c01584] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The generation and characterization of multiple metal-metal (M-M) bonds between early and late transition metals is vital to correlate the nature of multiple M-M bonds with the related reactivity in catalysis, while the examples with multiple M-M bonds have been rarely reported. Herein, we identified that the quadruple bonding interactions were formed in a gas-phase ion IrV+ with a dramatically short Ir-V bond. Oxidation of four CO molecules by IrVO4+ is a highly exothermic process driven by the generation of stable products IrV+ and CO2, and then IrV+ can be oxidized by N2O to regenerate IrVO4+. This finding overturns the general impression that vanadium oxide clusters are unwilling to oxidize multiple CO molecules because of the strong V-O bond and that at most two oxygen atoms can be supplied from a single V-containing cluster in CO oxidation. This study emphasizes the potential importance of heterobimetallic multiple M-M bonds in related heterogeneous catalysis.
Collapse
Affiliation(s)
- Le-Shi Chen
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510641, China
| | - Yun-Zhu Liu
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing 100190, China
| | - Xiao-Na Li
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing 100190, China
| | - Jiao-Jiao Chen
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing 100190, China
| | - Gui-Duo Jiang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing 100190, China
| | - Tong-Mei Ma
- School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Tianhe District, Guangzhou 510641, China
| | - Sheng-Gui He
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing 100190, China
| |
Collapse
|
18
|
Yang X, Burns CP, Nippe M, Hall MB. Unsupported Lanthanide-Transition Metal Bonds: Ionic vs Polar Covalent? Inorg Chem 2021; 60:9394-9401. [PMID: 34121398 DOI: 10.1021/acs.inorgchem.1c00285] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Lanthanide-transition metal complexes continue to be of interest, not only because of their synthetic challenge but also of their promising magnetic properties. Computational work examining the chemical bonding between lanthanides and transition metals in PyCp2Ln-TMCp(CO)2 (DyPyCp22- = [2,6-(CH2C5H3)2C5H3N]2-) reveals strong Ln-TM dative bonds. Gas-phase optimized geometries are in good agreement with experimental structures at the density functional theory (DFT) level with large-core pseudopotentials. From La to Lu, there is a small increase in the bond dissociation energy, as well as a decrease in Ln-Fe bond lengths. Energy decomposition analyses attribute this trend to an increase in the electrostatic contribution from the decreasing bond length and a modest increase in the orbital contribution. The natural bond orbital analysis clearly indicates that 3d6 "lone pairs" in the [FeCp(CO)2]- fragment act as a Lewis bases donating nearly 0.5 electron to Ln virtual orbitals of mainly d character. The interfragment bonding was also quantified by the quantum theory of atoms in molecules, which indicates that the Ln-Fe bond is more covalent than the Ca-Fe bond in the hypothetical CpCa-FeCp(CO)2 but less covalent than the Zn-Fe bond in the hypothetical CpZn-FeCp(CO)2. Further comparisons suggest that to the [PyCp2Ln]+ cation the [FeCp(CO)2]- anion appears much like a halide. Overall, these Ln-TM dative bonds appear to have strong electrostatic contributions as well as significant orbital mixing and dispersion contributions.
Collapse
Affiliation(s)
- Xin Yang
- Department of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| | - Corey P Burns
- Department of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| | - Michael Nippe
- Department of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| | - Michael B Hall
- Department of Chemistry, Texas A&M University, College Station, Texas 77845, United States
| |
Collapse
|
19
|
Cui P, Wu C, Du J, Luo G, Huang Z, Zhou S. Three-Coordinate Pd(0) with Rare-Earth Metalloligands: Synergetic CO Activation and Double P-C Bond Cleavage-Formation Reactions. Inorg Chem 2021; 60:9688-9699. [PMID: 34125520 DOI: 10.1021/acs.inorgchem.1c00990] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Metalation of β-diketiminato rare-earth metal complexes LnacnacLn(PhNCH2PPh2)2 (Ln = Y, Yb, Lu) with (COD)Pd(CH2SiMe3)2 afforded three-coordinate Pd(0) complexes supported by two sterically less bulky phosphines and a Pd → Ln dative interaction. The Pd(0) center is prone to ligation with isonitrile and CO; in the latter case, the insertion of a second CO with the Y-N bond was assisted via a precoordination of CO on the Pd(0) center, which led to the formation of an anionic Pd(0) carbamoyl. The reaction of the Pd-Y complex with iodobenzene showed a remarkable double P-C bond cleavage-formation pathway within the heterobimetallic Pd-Y core to afford (Ph3P)2PdI(Ph), imine PhNCH2, and a β-diketiminato yttrium diiodide. In the related reaction of LnacnacY(PhNCH2PPh2)2 with (Ph3P)2PdI(Ph), the P-C bond cleavage following with a N-C bond formation was observed. Computational studies revealed a synergetic bimetallic mechanism for these reactions.
Collapse
Affiliation(s)
- Peng Cui
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| | - Changjiang Wu
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| | - Jun Du
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| | - Gen Luo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Zeming Huang
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| | - Shuangliu Zhou
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, P. R. China
| |
Collapse
|
20
|
Shi K, Douair I, Feng G, Wang P, Zhao Y, Maron L, Zhu C. Heterometallic Clusters with Multiple Rare Earth Metal–Transition Metal Bonding. J Am Chem Soc 2021; 143:5998-6005. [DOI: 10.1021/jacs.1c01771] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kaiying Shi
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Iskander Douair
- LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Genfeng Feng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Penglong Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Laurent Maron
- LPCNO, CNRS & INSA, Université Paul Sabatier, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - Congqing Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
21
|
Liu J, Li J, Xu Z, Zhou X, Xue Q, Wu T, Zhong M, Li R, Sun R, Shen Z, Tang H, Gao S, Wang B, Hou S, Wang Y. On-surface preparation of coordinated lanthanide-transition-metal clusters. Nat Commun 2021; 12:1619. [PMID: 33712614 PMCID: PMC7954866 DOI: 10.1038/s41467-021-21911-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 02/19/2021] [Indexed: 11/25/2022] Open
Abstract
The study of lanthanide (Ln)-transition-metal (TM) heterometallic clusters which play key roles in various high-tech applications is a rapid growing field of research. Despite the achievement of numerous Ln-TM cluster compounds comprising one Ln atom, the synthesis of Ln-TM clusters containing multiple Ln atoms remains challenging. Here, we present the preparation and self-assembly of a series of Au-bridged heterometallic clusters containing multiple cerium (Ce) atoms via on-surface coordination. By employing different pyridine and nitrile ligands, the ordered coordination assemblies of clusters containing 2, 3 and 4 Ce atoms bridged by Au adatoms are achieved on Au(111) and Au(100), as revealed by scanning tunneling microscopy. Density functional theory calculations uncover the indispensable role of the bridging Au adatoms in constructing the multi-Ce-containing clusters by connecting the Ce atoms via unsupported Ce-Au bonds. These findings demonstrate on-surface coordination as an efficient strategy for preparation and organization of the multi-Ln-containing heterometallic clusters.
Collapse
Affiliation(s)
- Jing Liu
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, Department of Electronics, Peking University, Beijing, China
- Division of Quantum State of Matter, Beijing Academy of Quantum Information Sciences, Beijing, China
| | - Jie Li
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, Department of Electronics, Peking University, Beijing, China
- Peking University Information Technology Institute (Tianjin Binhai), Tianjin, China
| | - Zhen Xu
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, Department of Electronics, Peking University, Beijing, China
| | - Xiong Zhou
- Beijing National Laboratory of Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Qiang Xue
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, Department of Electronics, Peking University, Beijing, China
| | - Tianhao Wu
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, Department of Electronics, Peking University, Beijing, China
| | - Mingjun Zhong
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, Department of Electronics, Peking University, Beijing, China
| | - Ruoning Li
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, Department of Electronics, Peking University, Beijing, China
| | - Rong Sun
- Beijing National Laboratory of Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Ziyong Shen
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, Department of Electronics, Peking University, Beijing, China
| | - Hao Tang
- CEMES, UPR CNRS 8011, Toulouse Cedex 4, France
| | - Song Gao
- Division of Quantum State of Matter, Beijing Academy of Quantum Information Sciences, Beijing, China
- Beijing National Laboratory of Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
- Institute of Spin Science and Technology, South China University of Technology, Guangzhou, China
| | - Bingwu Wang
- Beijing National Laboratory of Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Shimin Hou
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, Department of Electronics, Peking University, Beijing, China
- Peking University Information Technology Institute (Tianjin Binhai), Tianjin, China
| | - Yongfeng Wang
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, Department of Electronics, Peking University, Beijing, China.
- Division of Quantum State of Matter, Beijing Academy of Quantum Information Sciences, Beijing, China.
- Institute of Spin Science and Technology, South China University of Technology, Guangzhou, China.
| |
Collapse
|
22
|
Cui P, Huang X, Du J, Huang Z. P–C Bond Cleavage Induced Ni(II) Complexes Bearing Rare-Earth-Metal-Based Metalloligand and Reactivities toward Isonitrile, Nitrile, and Epoxide. Inorg Chem 2021; 60:3249-3258. [DOI: 10.1021/acs.inorgchem.0c03675] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Peng Cui
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, PR China
- Key Laboratory of Organic Synthesis of Jiangsu Province, Soochow University, Suzhou 215123, PR China
| | - Xia Huang
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, PR China
| | - Jun Du
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, PR China
| | - Zeming Huang
- Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, PR China
| |
Collapse
|
23
|
Del Rosal I, Lassalle S, Dinoi C, Thieuleux C, Maron L, Camp C. Mechanistic investigations via DFT support the cooperative heterobimetallic C-H and O-H bond activation across Ta[double bond, length as m-dash]Ir multiple bonds. Dalton Trans 2021; 50:504-510. [PMID: 33210676 DOI: 10.1039/d0dt03818k] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A rare heterobimetallic oxidative addition of X-H (X = C, O) bonds is reported. DFT suggests that steric constraints around the bimetallic core play a critical role to synergistically activate C-H bonds across the two metals and thus explains the exceptional H/D exchange catalytic activity of unhindered surface organometallic Ta/Ir species observed experimentally.
Collapse
Affiliation(s)
- Iker Del Rosal
- Université de Toulouse et CNRS, INSA, UPS, UMR 5215, LPCNO, 135 Avenue de Rangueil, F-31077 Toulouse, France
| | - Sébastien Lassalle
- Laboratory of Chemistry, Catalysis, Polymers and Processes, C2P2 UMR 5265, Université de Lyon, Institut de Chimie de Lyon, CNRS, Université Lyon 1, CPE Lyon, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France.
| | - Chiara Dinoi
- Université de Toulouse et CNRS, INSA, UPS, UMR 5215, LPCNO, 135 Avenue de Rangueil, F-31077 Toulouse, France
| | - Chloé Thieuleux
- Laboratory of Chemistry, Catalysis, Polymers and Processes, C2P2 UMR 5265, Université de Lyon, Institut de Chimie de Lyon, CNRS, Université Lyon 1, CPE Lyon, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France.
| | - Laurent Maron
- Université de Toulouse et CNRS, INSA, UPS, UMR 5215, LPCNO, 135 Avenue de Rangueil, F-31077 Toulouse, France
| | - Clément Camp
- Laboratory of Chemistry, Catalysis, Polymers and Processes, C2P2 UMR 5265, Université de Lyon, Institut de Chimie de Lyon, CNRS, Université Lyon 1, CPE Lyon, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France.
| |
Collapse
|
24
|
Cui P, Xiong C, Du J, Huang Z, Xie S, Wang H, Zhou S, Fang H, Wang S. Heterobimetallic scandium–group 10 metal complexes with LM → Sc (LM = Ni, Pd, Pt) dative bonds. Dalton Trans 2020; 49:124-130. [DOI: 10.1039/c9dt04369a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Heterobimetallic scandium–group 10 metal complexes featuring notable LM → Sc (LM = Ni, Pd, Pt) dative bonding interactions.
Collapse
Affiliation(s)
- Peng Cui
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Chunyan Xiong
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Jun Du
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Zeming Huang
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Sijun Xie
- Department of Chemistry
- Fudan University
- Shanghai 200438
- P. R. China
| | - Hua Wang
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Shuangliu Zhou
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Huayi Fang
- Department of Chemistry
- Fudan University
- Shanghai 200438
- P. R. China
| | - Shaowu Wang
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
| |
Collapse
|
25
|
Du J, Zhang Y, Huang Z, Zhou S, Fang H, Cui P. Heterobimetallic Pd(0) complexes with Pd→Ln (Ln = Sc, Y, Yb, Lu) dative bonds: rare-earth metal-dominated frustrated Lewis pair-like reactivity. Dalton Trans 2020; 49:12311-12318. [DOI: 10.1039/d0dt02708a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A series of Pd–Ln complexes with Pd→Ln (Ln = Sc, Y, Yb, Lu) dative bonds exhibited notable dynamic structural features and unexpected frustrated Lewis pair-like reactivity.
Collapse
Affiliation(s)
- Jun Du
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Yanan Zhang
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Zeming Huang
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Shuangliu Zhou
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
| | - Huayi Fang
- School of Materials Science and Engineering
- Nankai University
- Tianjin 300350
- P. R. China
| | - Peng Cui
- Key Laboratory of Functional Molecular Solids
- Ministry of Education
- Anhui Laboratory of Molecule-Based Materials
- College of Chemistry and Materials Science
- Anhui Normal University
| |
Collapse
|
26
|
Lassalle S, Jabbour R, Schiltz P, Berruyer P, Todorova TK, Veyre L, Gajan D, Lesage A, Thieuleux C, Camp C. Metal–Metal Synergy in Well-Defined Surface Tantalum–Iridium Heterobimetallic Catalysts for H/D Exchange Reactions. J Am Chem Soc 2019; 141:19321-19335. [DOI: 10.1021/jacs.9b08311] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Sébastien Lassalle
- Laboratory of Chemistry, Catalysis, Polymers and Processes, C2P2 UMR 5265, Institut de Chimie de Lyon, CNRS, UCB Lyon 1, Université de Lyon, ESCPE Lyon, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France
| | - Ribal Jabbour
- Centre de RMN à Hauts Champs de Lyon CRMN, FRE 2034, CNRS, Université de Lyon, ENS Lyon, UCB Lyon 1, F-69100 Villeurbanne, France
| | - Pauline Schiltz
- Laboratory of Chemistry, Catalysis, Polymers and Processes, C2P2 UMR 5265, Institut de Chimie de Lyon, CNRS, UCB Lyon 1, Université de Lyon, ESCPE Lyon, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France
| | - Pierrick Berruyer
- Centre de RMN à Hauts Champs de Lyon CRMN, FRE 2034, CNRS, Université de Lyon, ENS Lyon, UCB Lyon 1, F-69100 Villeurbanne, France
| | - Tanya K. Todorova
- Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Université Paris 6, 11 Place Marcelin Berthelot, F-75231 Paris Cedex 05, France
| | - Laurent Veyre
- Laboratory of Chemistry, Catalysis, Polymers and Processes, C2P2 UMR 5265, Institut de Chimie de Lyon, CNRS, UCB Lyon 1, Université de Lyon, ESCPE Lyon, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France
| | - David Gajan
- Centre de RMN à Hauts Champs de Lyon CRMN, FRE 2034, CNRS, Université de Lyon, ENS Lyon, UCB Lyon 1, F-69100 Villeurbanne, France
| | - Anne Lesage
- Centre de RMN à Hauts Champs de Lyon CRMN, FRE 2034, CNRS, Université de Lyon, ENS Lyon, UCB Lyon 1, F-69100 Villeurbanne, France
| | - Chloé Thieuleux
- Laboratory of Chemistry, Catalysis, Polymers and Processes, C2P2 UMR 5265, Institut de Chimie de Lyon, CNRS, UCB Lyon 1, Université de Lyon, ESCPE Lyon, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France
| | - Clément Camp
- Laboratory of Chemistry, Catalysis, Polymers and Processes, C2P2 UMR 5265, Institut de Chimie de Lyon, CNRS, UCB Lyon 1, Université de Lyon, ESCPE Lyon, 43 Bd du 11 Novembre 1918, F-69616 Villeurbanne, France
| |
Collapse
|
27
|
Identification of a uranium-rhodium triple bond in a heterometallic cluster. Proc Natl Acad Sci U S A 2019; 116:17654-17658. [PMID: 31427529 DOI: 10.1073/pnas.1904895116] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The chemistry of d-block metal-metal multiple bonds has been extensively investigated in the past 5 decades. However, the synthesis and characterization of species with f-block metal-metal multiple bonds are significantly more challenging and such species remain extremely rare. Here, we report the identification of a uranium-rhodium triple bond in a heterometallic cluster, which was synthesized under routine conditions. The uranium-rhodium triple-bond length of 2.31 Å in this cluster is only 3% longer than the sum of the covalent triple-bond radii of uranium and rhodium (2.24 Å). Computational studies reveal that the nature of this uranium-rhodium triple bond is 1 covalent bond with 2 rhodium-to-uranium dative bonds. This heterometallic cluster represents a species with f-block metal-metal triple bond structurally authenticated by X-ray diffraction. These studies not only demonstrate the authenticity of the uranium-metal triple bond, but also provide a possibility for the synthesis of other f-block metal-metal multiple bonds. We expect that this work may further our understanding of the bonding between uranium and transition metals, which may help to design new d-f heterometallic catalysts with uranium-metal bonds for small-molecule activation and to promote the utilization of abundant depleted uranium resources.
Collapse
|
28
|
Chen SM, Xiong J, Zhang YQ, Ma F, Sun HL, Wang BW, Gao S. Dysprosium complexes bearing unsupported Dy III-Ge II/Sn II metal-metal bonds as single-ion magnets. Chem Commun (Camb) 2019; 55:8250-8253. [PMID: 31243407 DOI: 10.1039/c9cc00388f] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Two dysprosium complexes bearing unsupported Dy-Ge/Sn metal-metal bonds are reported here, wherein the Dy-Ge and Dy-Sn bonds both contain relatively large covalency. The complexes exhibit slow relaxation of magnetization at zero field with energy barriers of 485 and 620 K, respectively, and the blocking temperature of 6 K.
Collapse
Affiliation(s)
- Shi-Ming Chen
- Beijing National Laboratory of Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking Ufniversity, Beijing 100871, P. R. China.
| | - Jin Xiong
- Beijing National Laboratory of Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking Ufniversity, Beijing 100871, P. R. China.
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Fang Ma
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Hao-Ling Sun
- College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Bing-Wu Wang
- Beijing National Laboratory of Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking Ufniversity, Beijing 100871, P. R. China.
| | - Song Gao
- Beijing National Laboratory of Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking Ufniversity, Beijing 100871, P. R. China.
| |
Collapse
|
29
|
Du J, Huang Z, Zhang Y, Wang S, Zhou S, Fang H, Cui P. A Scandium Metalloligand‐Based Heterobimetallic Pd−Sc Complex: Electronic Tuning Through a Very Short Pd→Sc Dative Bond. Chemistry 2019; 25:10149-10155. [DOI: 10.1002/chem.201901424] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/22/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Jun Du
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials ScienceAnhui Normal University 189 S. Jiuhua Road Wuhu Anhui 241002 P.R. China
| | - Zeming Huang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials ScienceAnhui Normal University 189 S. Jiuhua Road Wuhu Anhui 241002 P.R. China
| | - Yanan Zhang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials ScienceAnhui Normal University 189 S. Jiuhua Road Wuhu Anhui 241002 P.R. China
| | - Shaowu Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials ScienceAnhui Normal University 189 S. Jiuhua Road Wuhu Anhui 241002 P.R. China
| | - Shuangliu Zhou
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials ScienceAnhui Normal University 189 S. Jiuhua Road Wuhu Anhui 241002 P.R. China
| | - Huayi Fang
- Department of ChemistryFudan University No. 2205 Songhu Road, Yangpu District Shanghai 200438 P.R. China
| | - Peng Cui
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials ScienceAnhui Normal University 189 S. Jiuhua Road Wuhu Anhui 241002 P.R. China
| |
Collapse
|
30
|
Freccero R, Solokha P, De Negri S, Saccone A, Grin Y, Wagner FR. Polar‐Covalent Bonding Beyond the Zintl Picture in Intermetallic Rare‐Earth Germanides. Chemistry 2019; 25:6600-6612. [DOI: 10.1002/chem.201900510] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Riccardo Freccero
- Dipartimento di Chimica e Chimica IndustrialeUniversità degli Studi di Genova Via Dodecaneso 31 16146 Genova Italy
- Max-Planck-Institut für Chemische Physik fester Stoffe Nöthnitzer Straße 40 01187 Dresden Germany
| | - Pavlo Solokha
- Dipartimento di Chimica e Chimica IndustrialeUniversità degli Studi di Genova Via Dodecaneso 31 16146 Genova Italy
| | - Serena De Negri
- Dipartimento di Chimica e Chimica IndustrialeUniversità degli Studi di Genova Via Dodecaneso 31 16146 Genova Italy
| | - Adriana Saccone
- Dipartimento di Chimica e Chimica IndustrialeUniversità degli Studi di Genova Via Dodecaneso 31 16146 Genova Italy
| | - Yuri Grin
- Max-Planck-Institut für Chemische Physik fester Stoffe Nöthnitzer Straße 40 01187 Dresden Germany
| | - Frank R. Wagner
- Max-Planck-Institut für Chemische Physik fester Stoffe Nöthnitzer Straße 40 01187 Dresden Germany
| |
Collapse
|
31
|
Boreen MA, Lohrey TD, Rao G, Britt RD, Maron L, Arnold J. A Uranium Tri-Rhenium Triple Inverse Sandwich Compound. J Am Chem Soc 2019; 141:5144-5148. [DOI: 10.1021/jacs.9b01331] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Michael A. Boreen
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Trevor D. Lohrey
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Guodong Rao
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - R. David Britt
- Department of Chemistry, University of California, Davis, Davis, California 95616, United States
| | - Laurent Maron
- LPCNO, Université de Toulouse, INSA Toulouse, 135 Avenue de Rangueil, 31077 Toulouse, France
| | - John Arnold
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
32
|
Ramirez BL, Sharma P, Eisenhart RJ, Gagliardi L, Lu CC. Bimetallic nickel-lutetium complexes: tuning the properties and catalytic hydrogenation activity of the Ni site by varying the Lu coordination environment. Chem Sci 2019; 10:3375-3384. [PMID: 30996926 PMCID: PMC6429466 DOI: 10.1039/c8sc04712j] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/03/2019] [Indexed: 12/31/2022] Open
Abstract
We present three heterobimetallic complexes containing an isostructural nickel center and a lutetium ion in varying coordination environments. The bidentate iPr2PCH2NHPh and nonadentate (iPr2PCH2NHAr)3tacn ligands were used to prepare the Lu metalloligands, Lu(iPr2PCH2NPh)3 (1) and Lu{(iPr2PCH2NAr)3tacn} (2), respectively. Reaction of Ni(COD)2 (where COD is 1,5-cyclooctadiene) and 1 afforded NiLu(iPr2PCH2NPh)3 (3), with a Lu coordination number (CN) of 4 and a Ni-Lu distance, d(Ni-Lu), of 2.4644(2) Å. Complex 3 can further bind THF to form 3-THF, increasing both the Lu CN to 5 and d(Ni-Lu) to 2.5989(4) Å. On the other hand, incorporation of Ni(0) into 2 provides NiLu{(iPr2PCH2NAr)3tacn} (4), in which the Lu coordination environment is more saturated (CN = 6), and the d(Ni-Lu) is substantially elongated at 2.9771(5) Å. Cyclic voltammetry of the three Ni-Lu complexes shows an overall ∼410 mV shift in the Ni(0/I) redox couple, suggesting tunability of the Ni electronics across the series. Computational studies reveal polarized bonding interactions between the Ni 3d z 2 (major) and the Lu 5d z 2 (minor) orbitals, where the percentage of Lu character increases in the order: 4 (6.0% Lu 5d z 2 ) < 3-THF (8.5%) < 3 (9.3%). All three Ni-Lu complexes bind H2 at low temperatures (-30 to -80 °C) and are competent catalysts for styrene hydrogenation. Complex 3 outperforms 4 with a four-fold faster rate. Additionally, adding increasing THF equivalents to 3, which would favor build-up of 3-THF, decreases the rate. We propose that altering the coordination sphere of the Lu support can influence the resulting properties and catalytic activity of the active Ni(0) metal center.
Collapse
Affiliation(s)
- Bianca L Ramirez
- Department of Chemistry , University of Minnesota , Minneapolis , Minnesota 55455-0431 , USA .
| | - Prachi Sharma
- Department of Chemistry , University of Minnesota , Minneapolis , Minnesota 55455-0431 , USA . .,Minnesota Supercomputing Institute , Chemical Theory Center , University of Minnesota , Minneapolis , Minnesota 55455-0431 , USA
| | - Reed J Eisenhart
- Department of Chemistry , University of Minnesota , Minneapolis , Minnesota 55455-0431 , USA .
| | - Laura Gagliardi
- Department of Chemistry , University of Minnesota , Minneapolis , Minnesota 55455-0431 , USA . .,Minnesota Supercomputing Institute , Chemical Theory Center , University of Minnesota , Minneapolis , Minnesota 55455-0431 , USA
| | - Connie C Lu
- Department of Chemistry , University of Minnesota , Minneapolis , Minnesota 55455-0431 , USA .
| |
Collapse
|
33
|
Transition-metal-bridged bimetallic clusters with multiple uranium–metal bonds. Nat Chem 2019; 11:248-253. [DOI: 10.1038/s41557-018-0195-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 11/22/2018] [Indexed: 11/08/2022]
|
34
|
Li Y, Chen X, Gong Y. Synthesis of a dinuclear europium( iii) complex through deprotonation and oxygen-atom transfer of trimethylamine N-oxide. Dalton Trans 2019; 48:17158-17162. [DOI: 10.1039/c9dt04234b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A dinuclear europium complex was synthesized via unprecedented deprotonation and oxygen-atom transfer of Me3NO.
Collapse
Affiliation(s)
- Yangjuan Li
- Department of Radiochemistry
- Shanghai Institute of Applied Physics
- Chinese Academy of Sciences
- Shanghai
- China
| | - Xiuting Chen
- Department of Radiochemistry
- Shanghai Institute of Applied Physics
- Chinese Academy of Sciences
- Shanghai
- China
| | - Yu Gong
- Department of Radiochemistry
- Shanghai Institute of Applied Physics
- Chinese Academy of Sciences
- Shanghai
- China
| |
Collapse
|
35
|
Burns CP, Yang X, Wofford JD, Bhuvanesh NS, Hall MB, Nippe M. Structure and Magnetization Dynamics of Dy−Fe and Dy−Ru Bonded Complexes. Angew Chem Int Ed Engl 2018; 57:8144-8148. [DOI: 10.1002/anie.201803761] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/28/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Corey P. Burns
- Department of ChemistryTexas A&M University 3255 TAMU College Station TX 77843 USA
| | - Xin Yang
- Department of ChemistryTexas A&M University 3255 TAMU College Station TX 77843 USA
| | - Joshua D. Wofford
- Department of ChemistryTexas A&M University 3255 TAMU College Station TX 77843 USA
| | | | - Michael B. Hall
- Department of ChemistryTexas A&M University 3255 TAMU College Station TX 77843 USA
| | - Michael Nippe
- Department of ChemistryTexas A&M University 3255 TAMU College Station TX 77843 USA
| |
Collapse
|
36
|
Burns CP, Yang X, Wofford JD, Bhuvanesh NS, Hall MB, Nippe M. Structure and Magnetization Dynamics of Dy−Fe and Dy−Ru Bonded Complexes. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Corey P. Burns
- Department of ChemistryTexas A&M University 3255 TAMU College Station TX 77843 USA
| | - Xin Yang
- Department of ChemistryTexas A&M University 3255 TAMU College Station TX 77843 USA
| | - Joshua D. Wofford
- Department of ChemistryTexas A&M University 3255 TAMU College Station TX 77843 USA
| | | | - Michael B. Hall
- Department of ChemistryTexas A&M University 3255 TAMU College Station TX 77843 USA
| | - Michael Nippe
- Department of ChemistryTexas A&M University 3255 TAMU College Station TX 77843 USA
| |
Collapse
|
37
|
|
38
|
Lu E, Wooles AJ, Gregson M, Cobb PJ, Liddle ST. A Very Short Uranium(IV)-Rhodium(I) Bond with Net Double-Dative Bonding Character. Angew Chem Int Ed Engl 2018; 57:6587-6591. [PMID: 29665209 PMCID: PMC6055764 DOI: 10.1002/anie.201803493] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Indexed: 11/08/2022]
Abstract
Reaction of [U{C(SiMe3 )(PPh2 )}(BIPM)(μ-Cl)Li(TMEDA)(μ-TMEDA)0.5 ]2 (BIPM=C(PPh2 NSiMe3 )2 ; TMEDA=Me2 NCH2 CH2 NMe2 ) with [Rh(μ-Cl)(COD)]2 (COD=cyclooctadiene) affords the heterotrimetallic UIV -RhI2 complex [U(Cl)2 {C(PPh2 NSiMe3 )(PPh[C6 H4 ]NSiMe3 )}{Rh(COD)}{Rh(CH(SiMe3 )(PPh2 )}]. This complex has a very short uranium-rhodium distance, the shortest uranium-rhodium bond on record and the shortest actinide-transition metal bond in terms of formal shortness ratio. Quantum-chemical calculations reveal a remarkable RhI→→ UIV net double dative bond interaction, involving RhI 4dz2 - and 4dxy/xz -type donation into vacant UIV 5f orbitals, resulting in a Wiberg/Nalewajski-Mrozek U-Rh bond order of 1.30/1.44, respectively. Despite being, formally, purely dative, the uranium-rhodium bonding interaction is the most substantial actinide-metal multiple bond yet prepared under conventional experimental conditions, as confirmed by structural, magnetic, and computational analyses.
Collapse
Affiliation(s)
- Erli Lu
- School of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Ashley J. Wooles
- School of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Matthew Gregson
- School of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Philip J. Cobb
- School of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
| | - Stephen T. Liddle
- School of ChemistryThe University of ManchesterOxford RoadManchesterM13 9PLUK
| |
Collapse
|
39
|
Vannay L, Meyer B, Petraglia R, Sforazzini G, Ceriotti M, Corminboeuf C. Analyzing Fluxional Molecules Using DORI. J Chem Theory Comput 2018; 14:2370-2379. [PMID: 29570294 DOI: 10.1021/acs.jctc.7b01176] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Density Overlap Region Indicator (DORI) is a density-based scalar field that reveals covalent bonding patterns and noncovalent interactions in the same value range. This work goes beyond the traditional static quantum chemistry use of scalar fields and illustrates the suitability of DORI for analyzing geometrical and electronic signatures in highly fluxional molecular systems. Examples include a dithiocyclophane, which possesses multiple local minima with differing extents of π-stacking interactions and a temperature dependent rotation of a molecular rotor, where the descriptor is employed to capture fingerprints of CH-π and π-π interactions. Finally, DORI serves to examine the fluctuating π-conjugation pathway of a photochromic torsional switch (PTS). Attention is also placed on postprocessing the large amount of generated data and juxtaposing DORI with a data-driven low-dimensional representation of the structural landscape.
Collapse
|
40
|
Lu E, Wooles AJ, Gregson M, Cobb PJ, Liddle ST. A Very Short Uranium(IV)–Rhodium(I) Bond with Net Double‐Dative Bonding Character. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201803493] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Erli Lu
- School of ChemistryThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - Ashley J. Wooles
- School of ChemistryThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - Matthew Gregson
- School of ChemistryThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - Philip J. Cobb
- School of ChemistryThe University of Manchester Oxford Road Manchester M13 9PL UK
| | - Stephen T. Liddle
- School of ChemistryThe University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
41
|
Song J, Wang W, Wang F, Kang Y, Liu S, Lei Z. Encapsulated NdCuOx bimetallic nanoparticles with nitrogen doped carbon as an efficient electrocatalyst for oxygen reduction reaction. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.12.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Latendresse TP, Bhuvanesh NS, Nippe M. Hard Single-Molecule Magnet Behavior by a Linear Trinuclear Lanthanide–[1]Metallocenophane Complex. J Am Chem Soc 2017; 139:14877-14880. [DOI: 10.1021/jacs.7b08690] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Trevor P. Latendresse
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843, United States
| | - Nattamai S. Bhuvanesh
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843, United States
| | - Michael Nippe
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, Texas 77843, United States
| |
Collapse
|
43
|
Kawai D, Shima T, Nishiura M, Hou Z. Cleavage of carbon monoxide and C-C bond formation promoted by rare-earth/ruthenium heterobimetallic hydride complexes. J Organomet Chem 2017. [DOI: 10.1016/j.jorganchem.2017.02.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
44
|
Birchall C, Moxey GJ, McMaster J, Blake AJ, Lewis W, Kays DL. A monomeric, heterobimetallic complex with an unsupported Mg–Fe bond. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2016.12.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
45
|
Li HF, Zhao YX, Yuan Z, Liu QY, Li ZY, Li XN, Ning CG, He SG. Methane Activation by Tantalum Carbide Cluster Anions Ta 2C 4. J Phys Chem Lett 2017; 8:605-610. [PMID: 28088857 DOI: 10.1021/acs.jpclett.6b02568] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Methane activation by transition metals is of fundamental interest and practical importance, as this process is extensively involved in the natural gas conversion to fuels and value-added chemicals. While single-metal centers have been well recognized as active sites for methane activation, the active center composed of two or more metal atoms is rarely addressed and the detailed reaction mechanism remains unclear. Here, by using state-of-the-art time-of-flight mass spectrometry, cryogenic anion photoelectron imaging spectroscopy, and quantum-chemical calculations, the cooperation of the two Ta atoms in a dinuclear carbide cluster Ta2C4- for methane activation has been identified. The C-H bond activation takes place predominantly around one Ta atom in the initial stage of the reaction and the second Ta atom accepts the delivered H atom from the C-H bond cleavage. The well-resolved vibrational spectra of the cryogenically cooled anions agree well with theoretical simulations, allowing the clear characterization of the structure of Ta2C4- cluster. The reactivity comparison between Ta2C4- cluster and the carbon-less analogues (Ta2C3- and Ta2C2-) demonstrated that the cooperative effect of the two metal atoms can be well tuned by the carbon ligands in terms of methane activation and transformation.
Collapse
Affiliation(s)
- Hai-Fang Li
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
- University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Yan-Xia Zhao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | - Zhen Yuan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | - Qing-Yu Liu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
- University of Chinese Academy of Sciences , Beijing 100049, P. R. China
| | - Zi-Yu Li
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | - Xiao-Na Li
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| | - Chuan-Gang Ning
- Department of Physics, State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University , Beijing 100084, P. R. China
| | - Sheng-Gui He
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, P. R. China
| |
Collapse
|
46
|
Fukin GK, Cherkasov AV, Yu. Zarovkina N, Artemov AN. Experimental and Theoretical AIM and NCI Index Study of Substituted Arene Tricarbonyl Complexes of Chromium(0). ChemistrySelect 2016. [DOI: 10.1002/slct.201601100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Georgy K. Fukin
- G.A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences; Tropinina str., 49 Nizhny Novgorod Russia 603137
| | - Anton V. Cherkasov
- G.A. Razuvaev Institute of Organometallic Chemistry of Russian Academy of Sciences; Tropinina str., 49 Nizhny Novgorod Russia 603137
| | - Natalia Yu. Zarovkina
- N.I. Lobachevsky Nizhny Novgorod State University; Gagarina av., 23 Nizhny Novgorod Russia 603950
| | - Alexander N. Artemov
- N.I. Lobachevsky Nizhny Novgorod State University; Gagarina av., 23 Nizhny Novgorod Russia 603950
| |
Collapse
|
47
|
Abstract
The elucidation of formation mechanisms is mandatory for understanding and planning of synthetic routes. For (bio-)organic and organometallic compounds, this has long been realized even for very complicated molecules, whereas the formation of ligand-free inorganic molecules has widely remained a black box to date. This is due to poor structural relationships between reactants and products and the lack of structurally related intermediates—due to the comparably high coordination flexibility of involved atoms. Here we report on investigations of the stepwise formation of multimetallic clusters, based on a series of crystal structures and complementary quantum-chemical studies of (Ge2As2)2−, (Ge7As2)2−, [Ta@Ge6As4]3−, [Ta@Ge8As4]3− and [Ta@Ge8As6]3−. The study makes use of efficient quantum-chemical tools, enabling the first detailed screening of the energy hypersurface along the formation of ligand-free inorganic species for a semi-quantitative picture. The results can be generalized for an entire family of multimetallic clusters. Elucidation of formation mechanisms of inorganic cluster compounds is challenging due to the high coordination flexibility of the atoms involved. Here, the authors combine crystallographic and quantum-chemical studies to probe the energy hypersurface of a series of multimetallic clusters.
Collapse
|
48
|
Völcker F, Roesky PW. Bimetallic rare-earth/platinum complexes ligated by phosphinoamides. Dalton Trans 2016; 45:9429-35. [DOI: 10.1039/c6dt00417b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The heterometallic early-late 5d/4f binuclear phosphinoamido Ln/Pt(0) complexes [(Ph2PNHPh)Pt{μ-(Ph2PNPh)}3Ln(μ-Cl)Li(THF)3] (Ln = Y, Lu) and [(Ph2PNHPh)Pt{μ-(Ph2PNPh)}3Ln{η2-(Ph2PNPh)}][Li(THF)4] (Ln = Y, Lu) are reported.
Collapse
Affiliation(s)
- Franziska Völcker
- Institut für Anorganische Chemie
- Karlsruher Institut für Technologie (KIT)
- 76131 Karlsruhe
- Germany
| | - Peter W. Roesky
- Institut für Anorganische Chemie
- Karlsruher Institut für Technologie (KIT)
- 76131 Karlsruhe
- Germany
| |
Collapse
|
49
|
Binary and Ternary Intermetalloid Clusters. CLUSTERS – CONTEMPORARY INSIGHT IN STRUCTURE AND BONDING 2016. [DOI: 10.1007/430_2015_5002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
50
|
Ponou S, Lidin S. Exo-bonded six-membered heterocycle in the crystal structures of RE7Co2Ge4(RE = La–Nd). Dalton Trans 2016; 45:18522-18531. [DOI: 10.1039/c6dt03302d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The stability of the heterocyclic {Co4Ge6} clusters in RE7Co2Ge4(RE = La–Nd) is determined by strong interactions with the surrounding RE atoms in the structures.
Collapse
Affiliation(s)
- Siméon Ponou
- Centre for Analysis and Synthesis
- Department of Chemistry
- Lund University
- SE-22100 Lund
- Sweden
| | - Sven Lidin
- Centre for Analysis and Synthesis
- Department of Chemistry
- Lund University
- SE-22100 Lund
- Sweden
| |
Collapse
|