1
|
A Novel Capsule Network with Attention Routing to Identify Prokaryote Phosphorylation Sites. Biomolecules 2022; 12:biom12121854. [PMID: 36551282 PMCID: PMC9775645 DOI: 10.3390/biom12121854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
By denaturing proteins and promoting the formation of multiprotein complexes, protein phosphorylation has important effects on the activity of protein functional molecules and cell signaling. The regulation of protein phosphorylation allows microbes to respond rapidly and reversibly to specific environmental stimuli or niches, which is closely related to the molecular mechanisms of bacterial drug resistance. Accurate prediction of phosphorylation sites (p-site) of prokaryotes can contribute to addressing bacterial resistance and providing new perspectives for developing novel antibacterial drugs. Most existing studies focus on human phosphorylation sites, while tools targeting phosphorylation site identification of prokaryotic proteins are still relatively scarce. This study designs a capsule network-based prediction technique for p-site in prokaryotes. To address the poor scalability and unreliability of dynamic routing processes in the output space of capsule networks, a more reliable way is introduced to learn the consistency between capsules. We incorporate a self-attention mechanism into the routing algorithm to capture the global information of the capsule, reducing the computational effort while enriching the representation capability of the capsule. Aiming at the weak robustness of the model, EcapsP improves the prediction accuracy and stability by introducing shortcuts and unconditional reconfiguration. In addition, the study compares and analyzes the prediction performance based on word vectors, physicochemical properties, and mixing characteristics in predicting serine (Ser/S), threonine (Thr/T), and tyrosine (Tyr/Y) p-site. The comprehensive experimental results show that the accuracy of the developed technique is close to 70% for the identification of the three phosphorylation sites in prokaryotes. Importantly, in side-by-side comparisons with other state-of-the-art predictors, our method improves the Matthews correlation coefficient (MCC) by approximately 7%. The results demonstrate the superiority of EcapsP in terms of high performance and reliability.
Collapse
|
2
|
Mishra PK, Kang MG, Lee H, Kim S, Choi S, Sharma N, Park CM, Ko J, Lee C, Seo JK, Rhee HW. A chemical tool for blue light-inducible proximity photo-crosslinking in live cells. Chem Sci 2022; 13:955-966. [PMID: 35211260 PMCID: PMC8790779 DOI: 10.1039/d1sc04871f] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/10/2021] [Indexed: 12/15/2022] Open
Abstract
We developed a proximity photo-crosslinking method (Spotlight) with a 4-azido-N-ethyl-1,8-naphthalimide (AzNP) moiety that can be converted to reactive aryl nitrene species using ambient blue light-emitting diode light. Using an AzNP-conjugated HaloTag ligand (VL1), blue light-induced photo-crosslinked products of various HaloTag-conjugated proteins of interest were detected in subcellular spaces in live cells. Chemical or heat stress-induced dynamic changes in the proteome were also detected, and photo-crosslinking in the mouse brain tissue was enabled. Using Spotlight, we further identified the host interactome of SARS-CoV-2 nucleocapsid (N) protein, which is essential for viral genome assembly. Mass analysis of the VL1-crosslinked product of N-HaloTag in HEK293T cells showed that RNA-binding proteins in stress granules were exclusively enriched in the cross-linked samples. These results tell that our method can reveal the interactome of protein of interest within a short distance in live cells.
Collapse
Affiliation(s)
- Pratyush Kumar Mishra
- Department of Chemistry, Seoul National University Seoul 08826 Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44191 Korea
| | - Myeong-Gyun Kang
- Department of Chemistry, Seoul National University Seoul 08826 Korea
| | - Hakbong Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Korea
| | - Seungjoon Kim
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu 42988 Korea
| | - Subin Choi
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44191 Korea
| | - Nirmali Sharma
- Department of Chemistry, Seoul National University Seoul 08826 Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44191 Korea
| | - Cheol-Min Park
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44191 Korea
| | - Jaewon Ko
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu 42988 Korea
| | - Changwook Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Korea
| | - Jeong Kon Seo
- UNIST Central Research Facilities (UCRF), Ulsan National Institute of Science and Technology (UNIST) Ulsan 44919 Korea
| | - Hyun-Woo Rhee
- Department of Chemistry, Seoul National University Seoul 08826 Korea
- School of Biological Sciences, Seoul National University Seoul 08826 Korea
| |
Collapse
|
3
|
Korovesis D, Beard HA, Mérillat C, Verhelst SHL. Probes for Photoaffinity Labelling of Kinases. Chembiochem 2021; 22:2206-2218. [PMID: 33544409 DOI: 10.1002/cbic.202000874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/05/2021] [Indexed: 11/06/2022]
Abstract
Protein kinases, one of the largest enzyme superfamilies, regulate many physiological and pathological processes. They are drug targets for multiple human diseases, including various cancer types. Probes for the photoaffinity labelling of kinases are important research tools for the study of members of this enzyme superfamily. In this review, we discuss the design principles of these probes, which are mainly derived from inhibitors targeting the ATP pocket. Overall, insights from crystal structures guide the placement of photoreactive groups and detection tags. This has resulted in a wide variety of probes, of which we provide a comprehensive overview. We also discuss several areas of application of these probes, including the identification of targets and off-targets of kinase inhibitors, mapping of their binding sites, the development of inhibitor screening assays, the imaging of kinases, and identification of protein binding partners.
Collapse
Affiliation(s)
- Dimitris Korovesis
- Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology KU Leuven, Herestraat 49 box 802, 3000, Leuven, Belgium
| | - Hester A Beard
- Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology KU Leuven, Herestraat 49 box 802, 3000, Leuven, Belgium
| | - Christel Mérillat
- Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology KU Leuven, Herestraat 49 box 802, 3000, Leuven, Belgium
| | - Steven H L Verhelst
- Department of Cellular and Molecular Medicine, Laboratory of Chemical Biology KU Leuven, Herestraat 49 box 802, 3000, Leuven, Belgium.,AG Chemical Proteomics, Leibniz Institute for Analytical Sciences ISAS, Otto-Hahn-Strasse 6b, 44227, Dortmund, Germany
| |
Collapse
|
4
|
Higuchi M, Ishiyama K, Maruoka M, Kanamori R, Takaori-Kondo A, Watanabe N. Paradoxical activation of c-Src as a drug-resistant mechanism. Cell Rep 2021; 34:108876. [PMID: 33761359 DOI: 10.1016/j.celrep.2021.108876] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/29/2020] [Accepted: 02/25/2021] [Indexed: 12/13/2022] Open
Abstract
ATP-competitive inhibitors have been developed as promising anti-cancer agents. However, drug-resistance frequently occurs, and the underlying mechanisms are not fully understood. Here, we show that the activation of c-Src and its downstream phosphorylation cascade can be paradoxically induced by Src-targeted and RTK-targeted kinase inhibitors. We reveal that inhibitor binding induces a conformational change in c-Src, leading to the association of the active form c-Src with focal adhesion kinase (FAK). Reduction of the inhibitor concentration results in the dissociation of inhibitors from the c-Src-FAK complex, which allows c-Src to phosphorylate FAK and initiate FAK-Grb2-mediated Erk signaling. Furthermore, a drug-resistant mutation in c-Src, which reduces the affinity of inhibitors for c-Src, converts Src inhibitors into facilitators of cell proliferation by enhancing the phosphorylation of FAK and Erk in c-Src-mutated cells. Our data thus reveal paradoxical enhancement of cell growth evoked by target-based kinase inhibitors, providing potentially important clues for the future development of effective and safe cancer treatment.
Collapse
Affiliation(s)
- Makio Higuchi
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kenichi Ishiyama
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Hematology and Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masahiro Maruoka
- Laboratory of Single-Molecule Cell Biology, Tohoku University Graduate School of Life Sciences, Sendai, Japan
| | - Ryosuke Kanamori
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Naoki Watanabe
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan; Laboratory of Single-Molecule Cell Biology, Kyoto University Graduate School of Biostudies, Kyoto, Japan.
| |
Collapse
|
5
|
Kerjouan A, Boyault C, Oddou C, Hiriart-Bryant E, Grichine A, Kraut A, Pezet M, Balland M, Faurobert E, Bonnet I, Coute Y, Fourcade B, Albiges-Rizo C, Destaing O. Control of SRC molecular dynamics encodes distinct cytoskeletal responses by specifying signaling pathway usage. J Cell Sci 2021; 134:237349. [PMID: 33495358 DOI: 10.1242/jcs.254599] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 11/13/2020] [Indexed: 01/23/2023] Open
Abstract
Upon activation by different transmembrane receptors, the same signaling protein can induce distinct cellular responses. A way to decipher the mechanisms of such pleiotropic signaling activity is to directly manipulate the decision-making activity that supports the selection between distinct cellular responses. We developed an optogenetic probe (optoSRC) to control SRC signaling, an example of a pleiotropic signaling node, and we demonstrated its ability to generate different acto-adhesive structures (lamellipodia or invadosomes) upon distinct spatio-temporal control of SRC kinase activity. The occurrence of each acto-adhesive structure was simply dictated by the dynamics of optoSRC nanoclusters in adhesive sites, which were dependent on the SH3 and Unique domains of the protein. The different decision-making events regulated by optoSRC dynamics induced distinct downstream signaling pathways, which we characterized using time-resolved proteomic and network analyses. Collectively, by manipulating the molecular mobility of SRC kinase activity, these experiments reveal the pleiotropy-encoding mechanism of SRC signaling.
Collapse
Affiliation(s)
- Adèle Kerjouan
- Institute for Advanced Biosciences, Centre de Recherche Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, 38706 La Tronche, France
| | - Cyril Boyault
- Institute for Advanced Biosciences, Centre de Recherche Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, 38706 La Tronche, France
| | - Christiane Oddou
- Institute for Advanced Biosciences, Centre de Recherche Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, 38706 La Tronche, France
| | - Edwige Hiriart-Bryant
- Institute for Advanced Biosciences, Centre de Recherche Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, 38706 La Tronche, France
| | - Alexei Grichine
- Institute for Advanced Biosciences, Centre de Recherche Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, 38706 La Tronche, France
| | | | - Mylène Pezet
- Institute for Advanced Biosciences, Centre de Recherche Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, 38706 La Tronche, France
| | - Martial Balland
- Laboratoire Interdisciplinaire de Physique (Liphy), Université Grenoble Alpes, CNRS, 38000, 38402 Saint-Martin-d'Héres, France
| | - Eva Faurobert
- Institute for Advanced Biosciences, Centre de Recherche Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, 38706 La Tronche, France
| | - Isabelle Bonnet
- Laboratoire Physico-Chimie Curie, Institut Curie, PSL Research University, Sorbonne University, UMR 168, 75005 Paris, France
| | - Yohann Coute
- Laboratoire EDYP, BIG-BGE, CEA, 38054 Grenoble, France
| | - Bertrand Fourcade
- Laboratoire Interdisciplinaire de Physique (Liphy), Université Grenoble Alpes, CNRS, 38000, 38402 Saint-Martin-d'Héres, France
| | - Corinne Albiges-Rizo
- Institute for Advanced Biosciences, Centre de Recherche Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, 38706 La Tronche, France
| | - Olivier Destaing
- Institute for Advanced Biosciences, Centre de Recherche Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, 38706 La Tronche, France
| |
Collapse
|
6
|
Liu Z, Zhang W, Sun B, Ma Y, He M, Pan Y, Wang F. Probing conformational hotspots for the recognition and intervention of protein complexes by lysine reactivity profiling. Chem Sci 2020; 12:1451-1457. [PMID: 34163908 PMCID: PMC8179027 DOI: 10.1039/d0sc05330a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Probing the conformational and functional hotspot sites within aqueous native protein complexes is still a challenging task. Herein, a mass spectrometry (MS)-based two-step isotope labeling-lysine reactivity profiling (TILLRP) strategy is developed to quantify the reactivities of lysine residues and probe the molecular details of protein–protein interactions as well as evaluate the conformational interventions by small-molecule active compounds. The hotspot lysine sites that are crucial to the SARS-CoV-2 S1–ACE2 combination could be successfully probed, such as S1 Lys417 and Lys444. Significant alteration of the reactivities of lysine residues at the interaction interface of S1-RBD Lys386–Lys462 was observed during the formation of complexes, which might be utilized as indicators for investigating the S1-ACE2 dynamic recognition and intervention at the molecular level in high throughput. A mass spectrometry-based two-step isotope labeling-lysine reactivity profiling strategy is developed to probe the molecular details of protein–protein interactions and evaluate the conformational interventions by small-molecule active compounds.![]()
Collapse
Affiliation(s)
- Zheyi Liu
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
| | - Wenxiang Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China .,Department of Chemistry, Zhejiang University Hangzhou 310027 China
| | - Binwen Sun
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China .,University of Chinese Academy of Sciences Beijing 100049 China
| | - Yaolu Ma
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China .,University of Chinese Academy of Sciences Beijing 100049 China
| | - Min He
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China .,University of Chinese Academy of Sciences Beijing 100049 China
| | - Yuanjiang Pan
- Department of Chemistry, Zhejiang University Hangzhou 310027 China
| | - Fangjun Wang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China .,University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
7
|
Potter ZE, Lau HT, Chakraborty S, Fang L, Guttman M, Ong SE, Fowler DM, Maly DJ. Parallel Chemoselective Profiling for Mapping Protein Structure. Cell Chem Biol 2020; 27:1084-1096.e4. [PMID: 32649906 PMCID: PMC7484201 DOI: 10.1016/j.chembiol.2020.06.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/27/2020] [Accepted: 06/19/2020] [Indexed: 01/01/2023]
Abstract
Solution-based structural techniques complement high-resolution structural data by providing insight into the oft-missed links between protein structure and dynamics. Here, we present Parallel Chemoselective Profiling, a solution-based structural method for characterizing protein structure and dynamics. Our method utilizes deep mutational scanning saturation mutagenesis data to install amino acid residues with specific chemistries at defined positions on the solvent-exposed surface of a protein. Differences in the extent of labeling of installed mutant residues are quantified using targeted mass spectrometry, reporting on each residue's local environment and structural dynamics. Using our method, we studied how conformation-selective, ATP-competitive inhibitors affect the local and global structure and dynamics of full-length Src kinase. Our results highlight how parallel chemoselective profiling can be used to study a dynamic multi-domain protein, and suggest that our method will be a useful addition to the relatively small toolkit of existing protein footprinting techniques.
Collapse
Affiliation(s)
- Zachary E Potter
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Ho-Tak Lau
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Sujata Chakraborty
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Linglan Fang
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Shao-En Ong
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Douglas M Fowler
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Dustin J Maly
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
8
|
Three-Dimensional Interactions Analysis of the Anticancer Target c-Src Kinase with Its Inhibitors. Cancers (Basel) 2020; 12:cancers12082327. [PMID: 32824733 PMCID: PMC7466017 DOI: 10.3390/cancers12082327] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/07/2020] [Accepted: 08/16/2020] [Indexed: 12/13/2022] Open
Abstract
Src family kinases (SFKs) constitute the biggest family of non-receptor tyrosine kinases considered as therapeutic targets for cancer therapy. An aberrant expression and/or activation of the proto-oncogene c-Src kinase, which is the oldest and most studied member of the family, has long been demonstrated to play a major role in the development, growth, progression and metastasis of numerous human cancers, including colon, breast, gastric, pancreatic, lung and brain carcinomas. For these reasons, the pharmacological inhibition of c-Src activity represents an effective anticancer strategy and a few compounds targeting c-Src, together with other kinases, have been approved as drugs for cancer therapy, while others are currently undergoing preclinical studies. Nevertheless, the development of potent and selective inhibitors of c-Src aimed at properly exploiting this biological target for the treatment of cancer still represents a growing field of study. In this review, the co-crystal structures of c-Src kinase in complex with inhibitors discovered in the past two decades have been described, highlighting the key ligand-protein interactions necessary to obtain high potency and the features to be exploited for addressing selectivity and drug resistance issues, thus providing useful information for the design of new and potent c-Src kinase inhibitors.
Collapse
|
9
|
Fang L, Vilas-Boas J, Chakraborty S, Potter ZE, Register AC, Seeliger MA, Maly DJ. How ATP-Competitive Inhibitors Allosterically Modulate Tyrosine Kinases That Contain a Src-like Regulatory Architecture. ACS Chem Biol 2020; 15:2005-2016. [PMID: 32479050 DOI: 10.1021/acschembio.0c00429] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Small molecule kinase inhibitors that stabilize distinct ATP binding site conformations can differentially modulate the global conformation of Src-family kinases (SFKs). However, it is unclear which specific ATP binding site contacts are responsible for modulating the global conformation of SFKs and whether these inhibitor-mediated allosteric effects generalize to other tyrosine kinases. Here, we describe the development of chemical probes that allow us to deconvolute which features in the ATP binding site are responsible for the allosteric modulation of the global conformation of Src. We find that the ability of an inhibitor to modulate the global conformation of Src's regulatory domain-catalytic domain module relies mainly on the influence it has on the conformation of a structural element called helix αC. Furthermore, by developing a set of orthogonal probes that target a drug-sensitized Src variant, we show that stabilizing Src's helix αC in an active conformation is sufficient to promote a Src-mediated, phosphotransferase-independent alteration in cell morphology. Finally, we report that ATP-competitive, conformation-selective inhibitors can influence the global conformation of tyrosine kinases beyond the SFKs, suggesting that the allosteric networks we observe in Src are conserved in kinases that have a similar regulatory architecture. Our study highlights that an ATP-competitive inhibitor's interactions with helix αC can have a major influence on the global conformation of some tyrosine kinases.
Collapse
Affiliation(s)
| | - Jessica Vilas-Boas
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11794-8651, United States
| | | | | | | | - Markus A. Seeliger
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11794-8651, United States
| | | |
Collapse
|
10
|
Mukherjee A, Singh R, Udayan S, Biswas S, Reddy PP, Manmadhan S, George G, Kumar S, Das R, Rao BM, Gulyani A. A Fyn biosensor reveals pulsatile, spatially localized kinase activity and signaling crosstalk in live mammalian cells. eLife 2020; 9:50571. [PMID: 32017701 PMCID: PMC7000222 DOI: 10.7554/elife.50571] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/08/2020] [Indexed: 12/14/2022] Open
Abstract
Cell behavior is controlled through spatio-temporally localized protein activity. Despite unique and often contradictory roles played by Src-family-kinases (SFKs) in regulating cell physiology, activity patterns of individual SFKs have remained elusive. Here, we report a biosensor for specifically visualizing active conformation of SFK-Fyn in live cells. We deployed combinatorial library screening to isolate a binding-protein (F29) targeting activated Fyn. Nuclear-magnetic-resonance (NMR) analysis provides the structural basis of F29 specificity for Fyn over homologous SFKs. Using F29, we engineered a sensitive, minimally-perturbing fluorescence-resonance-energy-transfer (FRET) biosensor (FynSensor) that reveals cellular Fyn activity to be spatially localized, pulsatile and sensitive to adhesion/integrin signaling. Strikingly, growth factor stimulation further enhanced Fyn activity in pre-activated intracellular zones. However, inhibition of focal-adhesion-kinase activity not only attenuates Fyn activity, but abolishes growth-factor modulation. FynSensor imaging uncovers spatially organized, sensitized signaling clusters, direct crosstalk between integrin and growth-factor-signaling, and clarifies how compartmentalized Src-kinase activity may drive cell fate.
Collapse
Affiliation(s)
- Ananya Mukherjee
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India.,SASTRA University, Thanjavur, India
| | - Randhir Singh
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | - Sreeram Udayan
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | - Sayan Biswas
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | | | - Saumya Manmadhan
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | - Geen George
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | - Shilpa Kumar
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | - Ranabir Das
- National Centre for Biological Sciences, Bangalore, India
| | - Balaji M Rao
- North Carolina State University, Raleigh, United States
| | - Akash Gulyani
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| |
Collapse
|
11
|
Mishra PK, Yoo CM, Hong E, Rhee HW. Photo-crosslinking: An Emerging Chemical Tool for Investigating Molecular Networks in Live Cells. Chembiochem 2020; 21:924-932. [PMID: 31794116 DOI: 10.1002/cbic.201900600] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/03/2019] [Indexed: 12/13/2022]
Abstract
Studying protein-protein interactions (PPIs) is useful for understanding cellular functions and mechanisms. Evaluating these PPIs under conditions as similar as possible to native conditions can be achieved using photo-crosslinking methods because of their on-demand ability to generate reactive species in situ by irradiation with UV light. Various fusion tag, metabolic incorporation, and amber codon suppression approaches using various crosslinkers containing aryl azide, benzophenone, and diazirines have been applied in live cells. Mass spectrometry and immunological techniques are used to identify crosslinked proteins based on their capture transient and context-dependent interactions. Herein we discuss various incorporation methods and crosslinkers that have been used for interactome mapping in live cells.
Collapse
Affiliation(s)
- Pratyush Kumar Mishra
- Department of Chemistry, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea.,Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan, 44919, Republic of Korea
| | - Chang-Mo Yoo
- Department of Chemistry, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Eunmi Hong
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), 360-4 Dongnae-dong, Dong-gu, Daegu, 41061, Republic of Korea
| | - Hyun Woo Rhee
- Department of Chemistry, Seoul National University, Gwanak-ro 1, Gwanak-gu, Seoul, 08826, Republic of Korea
| |
Collapse
|
12
|
Lang W, Yuan C, Zhu B, Pan S, Liu J, Luo J, Nie S, Zhu Q, Lee JS, Ge J. Expanding the "minimalist" small molecule tagging approach to different bioactive compounds. Org Biomol Chem 2019; 17:3010-3017. [PMID: 30816385 DOI: 10.1039/c8ob03175d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
"Minimalist" small molecule tagging (MSMT) is a promising approach that easily converts bioactive compounds into affinity-based probes (AfBPs) for proteomic studies. In this work, seven bioactive compounds targeting diversified protein classes were installed with "minimalist" linkers through common reactions to generate the corresponding AfBPs. These probes were evaluated for cell-based protein profiling and target validation. Among them, the entinostat-derived probe EN and the camptothecin-derived probe CA were further utilized in cellular imaging and SILAC-based large-scale target identification. Our extensive studies suggest that the "minimalist" small molecule tagging approach could be expanded to different classes of bioactive compounds for modification into AfBPs as a dual functional tool for both proteomics and cellular imaging.
Collapse
Affiliation(s)
- Wenjie Lang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Leroux AE, Biondi RM. Renaissance of Allostery to Disrupt Protein Kinase Interactions. Trends Biochem Sci 2019; 45:27-41. [PMID: 31690482 DOI: 10.1016/j.tibs.2019.09.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/18/2019] [Accepted: 09/25/2019] [Indexed: 12/11/2022]
Abstract
Protein-protein interactions often regulate the activity of protein kinases by allosterically modulating the conformation of the ATP-binding site. Bidirectional allostery implies that reverse modulation (i.e., from the ATP-binding site to the interaction and regulatory sites) must also be possible. Here, we review both the allosteric regulation of protein kinases and recent work describing how compounds binding at the ATP-binding site can promote or inhibit protein kinase interactions at regulatory sites via the reverse mechanism. Notably, the pharmaceutical industry has been developing compounds that bind to the ATP-binding site of protein kinases and potently disrupt protein-protein interactions between target protein kinases and their regulatory interacting partners. Learning to modulate allosteric processes will facilitate the development of protein-protein interaction modulators.
Collapse
Affiliation(s)
- Alejandro E Leroux
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET, Partner Institute of the Max Planck Society, Buenos Aires C1425FQD, Argentina
| | - Ricardo M Biondi
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET, Partner Institute of the Max Planck Society, Buenos Aires C1425FQD, Argentina; Department of Internal Medicine I, University Hospital, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany; DKTK German Cancer Consortium (DKTK), Frankfurt, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
14
|
Zhou R, Han B, Xia C, Zhuang X. Membrane-associated periodic skeleton is a signaling platform for RTK transactivation in neurons. Science 2019; 365:929-934. [PMID: 31467223 PMCID: PMC7063502 DOI: 10.1126/science.aaw5937] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 08/02/2019] [Indexed: 01/23/2023]
Abstract
Actin, spectrin, and related molecules form a membrane-associated periodic skeleton (MPS) in neurons. The function of the MPS, however, remains poorly understood. Using super-resolution imaging, we observed that G protein-coupled receptors (GPCRs), cell adhesion molecules (CAMs), receptor tyrosine kinases (RTKs), and related signaling molecules were recruited to the MPS in response to extracellular stimuli, resulting in colocalization of these molecules and RTK transactivation by GPCRs and CAMs, giving rise to extracellular signal-regulated kinase (ERK) signaling. Disruption of the MPS prevented such molecular colocalizations and downstream ERK signaling. ERK signaling in turn caused calpain-dependent MPS degradation, providing a negative feedback that modulates signaling strength. These results reveal an important functional role of the MPS and establish it as a dynamically regulated platform for GPCR- and CAM-mediated RTK signaling.
Collapse
Affiliation(s)
- Ruobo Zhou
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Boran Han
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Chenglong Xia
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Xiaowei Zhuang
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA.
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
15
|
Dynamic regulatory features of the protein tyrosine kinases. Biochem Soc Trans 2019; 47:1101-1116. [PMID: 31395755 DOI: 10.1042/bst20180590] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 12/20/2022]
Abstract
The SRC, Abelson murine leukemia viral oncogene homolog 1, TEC and C-terminal SRC Kinase families of non-receptor tyrosine kinases (collectively the Src module kinases) mediate an array of cellular signaling processes and are therapeutic targets in many disease states. Crystal structures of Src modules kinases provide valuable insights into the regulatory mechanisms that control activation and generate a framework from which drug discovery can advance. The conformational ensembles visited by these multidomain kinases in solution are also key features of the regulatory machinery controlling catalytic activity. Measurement of dynamic motions within kinases substantially augments information derived from crystal structures. In this review, we focus on a body of work that has transformed our understanding of non-receptor tyrosine kinase regulation from a static view to one that incorporates how fluctuations in conformational ensembles and dynamic motions influence activation status. Regulatory dynamic networks are often shared across and between kinase families while specific dynamic behavior distinguishes unique regulatory mechanisms for select kinases. Moreover, intrinsically dynamic regions of kinases likely play important regulatory roles that have only been partially explored. Since there is clear precedence that kinase inhibitors can exploit specific dynamic features, continued efforts to define conformational ensembles and dynamic allostery will be key to combating drug resistance and devising alternate treatments for kinase-associated diseases.
Collapse
|
16
|
Fang L, Chakraborty S, Dieter EM, Potter ZE, Lombard CK, Maly DJ. Chemoproteomic Method for Profiling Inhibitor-Bound Kinase Complexes. J Am Chem Soc 2019; 141:11912-11922. [PMID: 31274292 DOI: 10.1021/jacs.9b02963] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Small molecule inhibitors often only block a subset of the cellular functions of their protein targets. In many cases, how inhibiting only a portion of a multifunctional protein's functions affects the state of the cell is not well-understood. Therefore, tools that allow the systematic characterization of the cellular interactions that inhibitor-bound proteins make would be of great utility, especially for multifunctional proteins. Here, we describe a chemoproteomic strategy for interrogating the cellular localization and interactomes of inhibitor-bound kinases. By developing a set of orthogonal inhibitors that contain a trans-cyclooctene (TCO) click handle, we are able to enrich and characterize the proteins complexed to a drug-sensitized variant of the multidomain kinase Src. We show that Src's cellular interactions are highly influenced by the intermolecular accessibility of its regulatory domains, which can be allosterically modulated through its ATP-binding site. Furthermore, we find that the signaling status of the cell also has a large effect on Src's interactome. Finally, we demonstrate that our TCO-conjugated probes can be used as a part of a proximity ligation assay to study Src's localization and interactions in situ. Together, our chemoproteomic strategy represents a comprehensive method for studying the localization and interactomes of inhibitor-bound kinases and, potentially, other druggable protein targets.
Collapse
|
17
|
Chakraborty S, Inukai T, Fang L, Golkowski M, Maly DJ. Targeting Dynamic ATP-Binding Site Features Allows Discrimination between Highly Homologous Protein Kinases. ACS Chem Biol 2019; 14:1249-1259. [PMID: 31038916 DOI: 10.1021/acschembio.9b00214] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
ATP-competitive inhibitors that demonstrate exquisite selectivity for specific members of the human kinome have been developed. Despite this success, the identification of highly selective inhibitors is still very challenging, and it is often not possible to rationally engineer selectivity between the ATP-binding sites of kinases, especially among closely related family members. Src-family kinases (SFKs) are a highly homologous family of eight multidomain, nonreceptor tyrosine kinases that play general and specialized roles in numerous cellular processes. The high sequence and functional similarities between SFK members make it hard to rationalize how selectivity can be gained with inhibitors that target the ATP-binding site. Here, we describe the development of a series of inhibitors that are highly selective for the ATP-binding sites of the SFKs Lyn and Hck over other SFKs. By biochemically characterizing how these selective ATP-competitive inhibitors allosterically influence the global conformation of SFKs, we demonstrate that they most likely interact with a binding pocket created by the movement of the conformationally flexible helix αC in the ATP-binding site. With a series of sequence swap experiments, we show that sensitivity to this class of selective inhibitors is due to the identity of residues that control the conformational flexibility of helix αC rather than any specific ATP-binding site interactions. Thus, the ATP-binding sites of highly homologous kinases can be discriminated by targeting heterogeneity within conformationally flexible regions.
Collapse
Affiliation(s)
| | - Takayuki Inukai
- Medicinal Chemistry Research Laboratories, Ono Pharmaceutical Company, Ltd., 3-1-1 Sakurai, Shimamoto, Mishima, Osaka 618-8585, Japan
| | | | | | | |
Collapse
|
18
|
New Heteroleptic Ruthenium(II) Complexes with Sulfamethoxypyridazine and Diimines as Potential Antitumor Agents. Molecules 2019; 24:molecules24112154. [PMID: 31181667 PMCID: PMC6600252 DOI: 10.3390/molecules24112154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 05/30/2019] [Accepted: 06/01/2019] [Indexed: 11/21/2022] Open
Abstract
Two new complexes of Ru(II) with mixed ligands were prepared: [Ru(bpy)2smp](PF6) (1) and [Ru(phen)2smp](PF6) (2), in which smp = sulfamethoxypyridazine; bpy = 2,2′-bipyridine; phen = 1,10-phenanthroline. The complexes have been characterized by elemental and conductivity analyses; infrared, NMR, and electrospray ionization mass spectroscopies; and X-ray diffraction of single crystal. Structural analyses reveal a distorted octahedral geometry around Ru(II) that is bound to two bpy (in 1) or two phen (in 2) via their two heterocyclic nitrogens and to two nitrogen atoms from sulfamethoxypyridazine—one of the methoxypyridazine ring and the sulfonamidic nitrogen, which is deprotonated. Both complexes inhibit the growth of chronic myelogenous leukemia cells. The interaction of the complexes with bovine serum albumin and DNA is described. DNA footprinting using an oligonucleotide as substrate showed the complexes’ preference for thymine base rich sites. It is worth notifying that the complexes interact with the Src homology SH3 domain of the Abl tyrosine kinase protein. Abl protein is involved in signal transduction and implicated in the development of chronic myelogenous leukemia. Nuclear magnetic resonance (NMR) studies of the interaction of complex 2 with the Abl-SH3 domain showed that the most affected residues were T79, G97, W99, and Y115.
Collapse
|
19
|
A Combined Approach Reveals a Regulatory Mechanism Coupling Src's Kinase Activity, Localization, and Phosphotransferase-Independent Functions. Mol Cell 2019; 74:393-408.e20. [PMID: 30956043 DOI: 10.1016/j.molcel.2019.02.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 11/20/2018] [Accepted: 01/31/2019] [Indexed: 02/06/2023]
Abstract
Multiple layers of regulation modulate the activity and localization of protein kinases. However, many details of kinase regulation remain incompletely understood. Here, we apply saturation mutagenesis and a chemical genetic method for allosterically modulating kinase global conformation to Src kinase, providing insight into known regulatory mechanisms and revealing a previously undiscovered interaction between Src's SH4 and catalytic domains. Abrogation of this interaction increased phosphotransferase activity, promoted membrane association, and provoked phosphotransferase-independent alterations in cell morphology. Thus, Src's SH4 domain serves as an intramolecular regulator coupling catalytic activity, global conformation, and localization, as well as mediating a phosphotransferase-independent function. Sequence conservation suggests that the SH4 domain regulatory interaction exists in other Src-family kinases. Our combined approach's ability to reveal a regulatory mechanism in one of the best-studied kinases suggests that it could be applied broadly to provide insight into kinase structure, regulation, and function.
Collapse
|
20
|
Lombard CK, Davis AL, Inukai T, Maly DJ. Allosteric Modulation of JNK Docking Site Interactions with ATP-Competitive Inhibitors. Biochemistry 2018; 57:5897-5909. [PMID: 30211540 DOI: 10.1021/acs.biochem.8b00776] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The c-Jun N-terminal kinases (JNKs) play a wide variety of roles in cellular signaling processes, dictating important, and even divergent, cellular fates. These essential kinases possess docking surfaces distal to their active sites that interact with diverse binding partners, including upstream activators, downstream substrates, and protein scaffolds. Prior studies have suggested that the interactions of certain protein-binding partners with one such JNK docking surface, termed the D-recruitment site (DRS), can allosterically influence the conformational state of the ATP-binding pocket of JNKs. To further explore the allosteric relationship between the ATP-binding pockets and DRSs of JNKs, we investigated how the interactions of the scaffolding protein JIP1, as well as the upstream activators MKK4 and MKK7, are allosterically influenced by the ATP-binding site occupancy of the JNKs. We show that the affinity of the JNKs for JIP1 can be divergently modulated with ATP-competitive inhibitors, with a >50-fold difference in dissociation constant observed between the lowest- and highest-affinity JNK1-inhibitor complexes. Furthermore, we found that we could promote or attenuate phosphorylation of JNK1's activation loop by MKK4 and MKK7, by varying the ATP-binding site occupancy. Given that JIP1, MKK4, and MKK7 all interact with JNK DRSs, these results demonstrate that there is functional allostery between the ATP-binding sites and DRSs of these kinases. Furthermore, our studies suggest that ATP-competitive inhibitors can allosterically influence the intracellular binding partners of the JNKs.
Collapse
Affiliation(s)
- Chloe K Lombard
- Department of Chemistry , University of Washington , Seattle , Washington 98117 , United States
| | - Audrey L Davis
- Department of Chemistry , University of Washington , Seattle , Washington 98117 , United States
| | - Takayuki Inukai
- Medicinal Chemistry Research Laboratories , Ono Pharmaceutical Company, Ltd. , 3-1-1 Sakurai , Shimamoto, Mishima, Osaka 618-8585 , Japan
| | - Dustin J Maly
- Department of Chemistry , University of Washington , Seattle , Washington 98117 , United States.,Department of Biochemistry , University of Washington , Seattle , Washington 98117 , United States
| |
Collapse
|
21
|
Register AC, Chakraborty S, Maly DJ. Allosteric Modulation of Src Family Kinases with ATP-Competitive Inhibitors. Methods Mol Biol 2018; 1636:79-89. [PMID: 28730474 DOI: 10.1007/978-1-4939-7154-1_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The Src family kinases (SFKs) are an important family of tyrosine kinases that are allosterically regulated by their SH2 and SH3 domains. Engagement of SFK SH2 and SH3 domains with their intramolecular ligands leads to reduced kinase activity by stabilizing an inactive ATP-binding site conformation. Disruption of these intramolecular interactions stabilizes a more active ATP-binding site conformation and restores SFK activity. Interestingly, this allosteric relationship is bidirectional in that ATP-competitive ligands that stabilize distinct active site conformations can divergently modulate the abilities of the regulatory SH2 and SH3 domains to participate in intermolecular interactions. Here, we describe a series of assays that profile the bidirectional relationship between the ATP-binding sites and regulatory domains of SFKs. These methods can be used to discover ATP-competitive inhibitors that are selective for distinct ATP-binding site conformations of SFKs and for characterizing the effects that ATP-competitive inhibitors of SFKs have on domains that are distal to their site of interaction.
Collapse
Affiliation(s)
- Ames C Register
- Departments of Chemistry and Biochemistry, University of Washington, 36 Bagley Hall, Box 351700, Seattle, WA, 98195-1700, USA
| | - Sujata Chakraborty
- Departments of Chemistry and Biochemistry, University of Washington, 36 Bagley Hall, Box 351700, Seattle, WA, 98195-1700, USA
| | - Dustin J Maly
- Departments of Chemistry and Biochemistry, University of Washington, 36 Bagley Hall, Box 351700, Seattle, WA, 98195-1700, USA.
| |
Collapse
|
22
|
Kim YR, Kim YH, Kim SW, Lee YJ, Chae DE, Kim KA, Lee ZW, Kim ND, Choi JS, Choi IS, Lee KB. A bioorthogonal approach for imaging the binding between Dasatinib and its target proteins inside living cells. Chem Commun (Camb) 2018; 52:11764-11767. [PMID: 27711355 DOI: 10.1039/c6cc07011f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Herein, we present a simple readout of the binding between a chemical drug and its target proteins in the cytoplasm by using a two-step bioorthogonal labeling method combined with spatially-localized expression of proteins. Dasatinib was modified with trans-cyclooctene (TCO), and its cytoplasmic target kinases were expressed in intracellular compartments, such as endosomes and F-actins. After bioorthogonal labeling, the colocalization between Dasatinib and its target proteins was observed in intracellular compartments.
Collapse
Affiliation(s)
- Young-Rang Kim
- Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Daejeon 34133, Korea.
| | - Young Hye Kim
- Biomedical Omics Group, Korea Basic Science Institute (KBSI), Cheongju 28119, Korea
| | - Sung Woo Kim
- Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Daejeon 34133, Korea.
| | - Yong Ju Lee
- Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Daejeon 34133, Korea.
| | - Dong-Eon Chae
- Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Daejeon 34133, Korea. and Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Korea
| | - Kyung-A Kim
- Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Daejeon 34133, Korea. and Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Korea
| | - Zee-Won Lee
- Drug Discovery System & Pharmaceuticals, Inc. (DDSPharm), Daejeon 34165, Korea
| | - Nam Doo Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), Daegu 41061, Korea
| | - Jong-Soon Choi
- Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Daejeon 34133, Korea. and Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Korea
| | - Insung S Choi
- Center for Cell-Encapsulation Research and Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea.
| | - Kyung-Bok Lee
- Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Daejeon 34133, Korea.
| |
Collapse
|
23
|
Assadieskandar A, Yu C, Maisonneuve P, Liu X, Chen YC, Prakash GKS, Kurinov I, Sicheri F, Zhang C. Effects of rigidity on the selectivity of protein kinase inhibitors. Eur J Med Chem 2018; 146:519-528. [PMID: 29407977 DOI: 10.1016/j.ejmech.2018.01.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/28/2017] [Accepted: 01/16/2018] [Indexed: 12/18/2022]
Abstract
Established strategies for discovering selective kinase inhibitors are target-centric as they often target certain structural or reactive features in the target kinase. In the absence of such prominent features, there is a lack of general methods for discovering selective inhibitors. Here we describe a new strategy that exploits conformational flexibility of kinases for achieving selective kinase inhibition. Through ring closure, we designed and synthesized a panel of isoquinoline-containing compounds as rigidified analogs of an amidophenyl-containing parent compound. These analogs potently inhibit kinases including Abl and BRAF but have diminished inhibition against some other kinases compared to the parent compound. Sequence analysis reveals that many of the kinases that are potently inhibited by the isoquonoline-containing compounds contain a long insertion within their catalytic domains. A crystal structure of one rigid compound bound to BRAF confirmed its binding mode. Our findings highlight the potential of a novel strategy of rigidification for improving the selectivity of kinase inhibitors.
Collapse
Affiliation(s)
- Amir Assadieskandar
- Loker Hydrocarbon Research Institute & Department of Chemistry, University of Southern California, University Park, Los Angeles, CA 90089, USA
| | - Caiqun Yu
- Loker Hydrocarbon Research Institute & Department of Chemistry, University of Southern California, University Park, Los Angeles, CA 90089, USA
| | - Pierre Maisonneuve
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Xu Liu
- Loker Hydrocarbon Research Institute & Department of Chemistry, University of Southern California, University Park, Los Angeles, CA 90089, USA
| | - Ying-Chu Chen
- Loker Hydrocarbon Research Institute & Department of Chemistry, University of Southern California, University Park, Los Angeles, CA 90089, USA
| | - G K Surya Prakash
- Loker Hydrocarbon Research Institute & Department of Chemistry, University of Southern California, University Park, Los Angeles, CA 90089, USA
| | - Igor Kurinov
- NE-CAT APS, Building 436E, Argonne National Lab, 9700 S. Cass Avenue, Argonne, IL 60439, USA
| | - Frank Sicheri
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Chao Zhang
- Loker Hydrocarbon Research Institute & Department of Chemistry, University of Southern California, University Park, Los Angeles, CA 90089, USA; USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
24
|
Pan S, Zhang H, Wang C, Yao SCL, Yao SQ. Target identification of natural products and bioactive compounds using affinity-based probes. Nat Prod Rep 2017; 33:612-20. [PMID: 26580476 DOI: 10.1039/c5np00101c] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Covering: 2010 to 2014.Advances in isolation, synthesis and screening strategies have made many bioactive substances available. However, in most cases their putative biological targets remain unknown. Herein, we highlight recent advances in target identification of natural products and bioactive compounds by using affinity-based probes. Aided by photoaffinity labelling, this strategy can capture potential cellular targets (on and off) of a natural product or bioactive compound in live cells directly, even when the compound-target interaction is reversible with moderate affinity. The knowledge of these targets may help uncover molecular pathways and new therapeutics for currently untreatable diseases. In this highlight, we will introduce the development of various photoactivatable groups, their synthesis and applications in target identification of natural products and bioactive compounds, with a focus on work done in recent years and from our laboratory. We will further discuss the strengths and weaknesses of each group and the outlooks for this novel proteome-wide profiling strategy.
Collapse
Affiliation(s)
- Sijun Pan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.
| | - Hailong Zhang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.
| | - Chenyu Wang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.
| | - Samantha C L Yao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.
| |
Collapse
|
25
|
Feldman HC, Tong M, Wang L, Meza-Acevedo R, Gobillot TA, Lebedev I, Gliedt MJ, Hari SB, Mitra AK, Backes BJ, Papa FR, Seeliger MA, Maly DJ. Structural and Functional Analysis of the Allosteric Inhibition of IRE1α with ATP-Competitive Ligands. ACS Chem Biol 2016; 11:2195-205. [PMID: 27227314 DOI: 10.1021/acschembio.5b00940] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The accumulation of unfolded proteins under endoplasmic reticulum (ER) stress leads to the activation of the multidomain protein sensor IRE1α as part of the unfolded protein response (UPR). Clustering of IRE1α lumenal domains in the presence of unfolded proteins promotes kinase trans-autophosphorylation in the cytosol and subsequent RNase domain activation. Interestingly, there is an allosteric relationship between the kinase and RNase domains of IRE1α, which allows ATP-competitive inhibitors to modulate the activity of the RNase domain. Here, we use kinase inhibitors to study how ATP-binding site conformation affects the activity of the RNase domain of IRE1α. We find that diverse ATP-competitive inhibitors of IRE1α promote dimerization and activation of RNase activity despite blocking kinase autophosphorylation. In contrast, a subset of ATP-competitive ligands, which we call KIRAs, allosterically inactivate the RNase domain through the kinase domain by stabilizing monomeric IRE1α. Further insight into how ATP-competitive inhibitors are able to divergently modulate the RNase domain through the kinase domain was gained by obtaining the first structure of apo human IRE1α in the RNase active back-to-back dimer conformation. Comparison of this structure with other existing structures of IRE1α and integration of our extensive structure activity relationship (SAR) data has led us to formulate a model to rationalize how ATP-binding site ligands are able to control the IRE1α oligomeric state and subsequent RNase domain activity.
Collapse
Affiliation(s)
- Hannah C. Feldman
- Department
of Chemistry, University of Washington, Seattle, Washington, United States
| | - Michael Tong
- Department
of Pharmacological Sciences, Stony Brook University Medical School, Stony
Brook, New York, United States
| | - Likun Wang
- Department
of Medicine, University of California−San Francisco, San Francisco, California, United States
- Diabetes
Center, University of California−San Francisco, San Francisco, California, United States
- Lung
Biology Center, University of California−San Francisco, San Francisco, California, United States
- California
Institute for Quantitative Biosciences, University of California−San Francisco, San Francisco, California, United States
| | - Rosa Meza-Acevedo
- Department
of Medicine, University of California−San Francisco, San Francisco, California, United States
- Diabetes
Center, University of California−San Francisco, San Francisco, California, United States
- Lung
Biology Center, University of California−San Francisco, San Francisco, California, United States
- California
Institute for Quantitative Biosciences, University of California−San Francisco, San Francisco, California, United States
| | - Theodore A. Gobillot
- Department
of Chemistry, University of Washington, Seattle, Washington, United States
| | - Ivan Lebedev
- Department
of Pharmacological Sciences, Stony Brook University Medical School, Stony
Brook, New York, United States
| | - Micah J. Gliedt
- Department
of Medicine, University of California−San Francisco, San Francisco, California, United States
- Lung
Biology Center, University of California−San Francisco, San Francisco, California, United States
| | - Sanjay B. Hari
- Department
of Chemistry, University of Washington, Seattle, Washington, United States
| | - Arinjay K. Mitra
- Department
of Chemistry, University of Washington, Seattle, Washington, United States
| | - Bradley J. Backes
- Department
of Medicine, University of California−San Francisco, San Francisco, California, United States
- Lung
Biology Center, University of California−San Francisco, San Francisco, California, United States
| | - Feroz R. Papa
- Department
of Medicine, University of California−San Francisco, San Francisco, California, United States
- Diabetes
Center, University of California−San Francisco, San Francisco, California, United States
- Lung
Biology Center, University of California−San Francisco, San Francisco, California, United States
- California
Institute for Quantitative Biosciences, University of California−San Francisco, San Francisco, California, United States
| | - Markus A. Seeliger
- Department
of Pharmacological Sciences, Stony Brook University Medical School, Stony
Brook, New York, United States
| | - Dustin J. Maly
- Department
of Chemistry, University of Washington, Seattle, Washington, United States
- Department
of Biochemistry, University of Washington, Seattle, Washington, United States
| |
Collapse
|
26
|
Abstract
We have developed a general methodology to produce bivalent kinase inhibitors for c-Src that interact with the SH2 and ATP binding pockets. Our approach led to a highly selective bivalent inhibitor of c-Src. We demonstrate impressive selectivity for c-Src over homologous kinases. Exploration of the unexpected high level of selectivity yielded insight into the inherent flexibility of homologous kinases. Finally, we demonstrate that our methodology is modular and both the ATP-competitive fragment and conjugation chemistry can be swapped.
Collapse
Affiliation(s)
- Taylor K. Johnson
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109
| | - Matthew B. Soellner
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
27
|
Kwarcinski FE, Brandvold KR, Phadke S, Beleh OM, Johnson TK, Meagher JL, Seeliger MA, Stuckey JA, Soellner MB. Conformation-Selective Analogues of Dasatinib Reveal Insight into Kinase Inhibitor Binding and Selectivity. ACS Chem Biol 2016; 11:1296-304. [PMID: 26895387 PMCID: PMC7306399 DOI: 10.1021/acschembio.5b01018] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
In the kinase field, there are many widely held tenets about conformation-selective inhibitors that have yet to be validated using controlled experiments. We have designed, synthesized, and characterized a series of kinase inhibitor analogues of dasatinib, an FDA-approved kinase inhibitor that binds the active conformation. This inhibitor series includes two Type II inhibitors that bind the DFG-out inactive conformation and two inhibitors that bind the αC-helix-out inactive conformation. Using this series of compounds, we analyze the impact that conformation-selective inhibitors have on target binding and kinome-wide selectivity.
Collapse
Affiliation(s)
- Frank E. Kwarcinski
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109
| | | | - Sameer Phadke
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
| | - Omar M. Beleh
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109
| | - Taylor K. Johnson
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109
| | | | - Markus A. Seeliger
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794
| | - Jeanne A. Stuckey
- Center for Structural Biology, University of Michigan, Ann Arbor, MI 48109
| | - Matthew B. Soellner
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
28
|
Zhu B, Zhang H, Pan S, Wang C, Ge J, Lee JS, Yao SQ. In Situ Proteome Profiling and Bioimaging Applications of Small-Molecule Affinity-Based Probes Derived From DOT1L Inhibitors. Chemistry 2016; 22:7824-36. [PMID: 27115831 DOI: 10.1002/chem.201600259] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Indexed: 01/01/2023]
Abstract
DOT1L is the sole protein methyltransferase that methylates histone H3 on lysine 79 (H3K79), and is a promising drug target against cancers. Small-molecule inhibitors of DOT1L such as FED1 are potential anti-cancer agents and useful tools to investigate the biological roles of DOT1L in human diseases. FED1 showed excellent in vitro inhibitory activity against DOT1L, but its cellular effect was relatively poor. In this study, we designed and synthesized photo-reactive and "clickable" affinity-based probes (AfBPs), P1 and P2, which were cell-permeable and structural mimics of FED1. The binding and inhibitory effects of these two probes against DOT1L protein were extensively investigated in vitro and in live mammalian cells (in situ). The cellular uptake and sub-cellular localization properties of the probes were subsequently studied in live-cell imaging experiments, and our results revealed that, whereas both P1 and P2 readily entered mammalian cells, most of them were not able to reach the cell nucleus where functional DOT1L resides. This offers a plausible explanation for the poor cellular activity of FED1. Finally with P1/P2, large-scale cell-based proteome profiling, followed by quantitative LC-MS/MS, was carried out to identify potential cellular off-targets of FED1. Amongst the more than 100 candidate off-targets identified, NOP2 (a putative ribosomal RNA methyltransferase) was further confirmed to be likely a genuine off-target of FED1 by preliminary validation experiments including pull-down/Western blotting (PD/WB) and cellular thermal shift assay (CETSA).
Collapse
Affiliation(s)
- Biwei Zhu
- Department of Chemistry, National University of Singapore, 3 Science drive 3, Singapore, 117543, Singapore
| | - Hailong Zhang
- Department of Chemistry, National University of Singapore, 3 Science drive 3, Singapore, 117543, Singapore
| | - Sijun Pan
- Department of Chemistry, National University of Singapore, 3 Science drive 3, Singapore, 117543, Singapore
| | - Chenyu Wang
- Department of Chemistry, National University of Singapore, 3 Science drive 3, Singapore, 117543, Singapore
| | - Jingyan Ge
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, P.R. China
| | - Jun-Seok Lee
- Molecular Recognition Research Center, Korea Institute of Science and Technology (KIST) and Department of Biological Chemistry, University of Science & Technology, Republic of Korea
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, 3 Science drive 3, Singapore, 117543, Singapore.
| |
Collapse
|
29
|
Sawa M, Masuda M, Yamada T. Targeting the Wnt signaling pathway in colorectal cancer. Expert Opin Ther Targets 2015; 20:419-29. [PMID: 26439805 DOI: 10.1517/14728222.2016.1098619] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION The treatment of patients with advanced colorectal cancer still remains challenging, and identification of new target molecules and therapeutic avenues remains a priority. The great majority of colorectal cancers have mutations in one of two genes involved in the Wnt signaling pathway: the adenomatous polyposis coli (APC) and β-catenin (CTNNB1) genes. Up to now, however, no therapeutics for targeting this pathway have been established. AREAS COVERED This review article begins with a brief summary of Wnt signaling from the viewpoints of genetics, cancer stem cell biology, and drug development. We then overview current attempts to develop drugs directed at various components of the Wnt signaling pathway. EXPERT OPINION APC is a tumor suppressor, and therefore only downstream signal transducers of the APC protein can be considered as targets for pharmaceutical intervention. TRAF2 and NCK-interacting protein kinase (TNIK) was identified as the most downstream regulator of Wnt signaling by two independent research groups, and several classes of small-molecule inhibitors targeting this protein kinase have been developed. TNIK is a multifunctional protein with actions that extend beyond Wnt signaling regulation. Such TNIK inhibitors are expected to have a large variety of clinical applications.
Collapse
Affiliation(s)
- Masaaki Sawa
- a 1 Carna Biosciences, Inc. , BMA 3F 1-5-5 Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Mari Masuda
- b 2 National Cancer Center Research Institute, Division of Chemotherapy and Clinical Research , 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Tesshi Yamada
- c 3 National Cancer Center Research Institute, Division of Chemotherapy and Clinical Research , 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan ;
| |
Collapse
|
30
|
Murrey HE, Judkins JC, Am Ende CW, Ballard TE, Fang Y, Riccardi K, Di L, Guilmette ER, Schwartz JW, Fox JM, Johnson DS. Systematic Evaluation of Bioorthogonal Reactions in Live Cells with Clickable HaloTag Ligands: Implications for Intracellular Imaging. J Am Chem Soc 2015; 137:11461-75. [PMID: 26270632 PMCID: PMC4572613 DOI: 10.1021/jacs.5b06847] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Bioorthogonal
reactions, including the strain-promoted azide–alkyne
cycloaddition (SPAAC) and inverse electron demand Diels–Alder
(iEDDA) reactions, have become increasingly popular for live-cell
imaging applications. However, the stability and reactivity of reagents
has never been systematically explored in the context of a living
cell. Here we report a universal, organelle-targetable system based
on HaloTag protein technology for directly comparing bioorthogonal
reagent reactivity, specificity, and stability using clickable HaloTag
ligands in various subcellular compartments. This system enabled a
detailed comparison of the bioorthogonal reactions in live cells and
informed the selection of optimal reagents and conditions for live-cell
imaging studies. We found that the reaction of sTCO with monosubstituted
tetrazines is the fastest reaction in cells; however, both reagents
have stability issues. To address this, we introduced a new variant
of sTCO, Ag-sTCO, which has much improved stability and can be used
directly in cells for rapid bioorthogonal reactions with tetrazines.
Utilization of Ag complexes of conformationally strained trans-cyclooctenes should greatly expand their usefulness especially when
paired with less reactive, more stable tetrazines.
Collapse
Affiliation(s)
- Heather E Murrey
- Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development , Cambridge, Massachusetts 02139, United States
| | - Joshua C Judkins
- Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development , Cambridge, Massachusetts 02139, United States
| | - Christopher W Am Ende
- Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development , Cambridge, Massachusetts 02139, United States
| | - T Eric Ballard
- Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development , Cambridge, Massachusetts 02139, United States.,Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development , Groton, Connecticut 06340, United States
| | - Yinzhi Fang
- Brown Laboratories, Department of Chemistry and Biochemistry, University of Delaware , Newark, Delaware 19716, United States
| | - Keith Riccardi
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development , Groton, Connecticut 06340, United States
| | - Li Di
- Pharmacokinetics, Dynamics and Metabolism, Pfizer Worldwide Research and Development , Groton, Connecticut 06340, United States
| | - Edward R Guilmette
- Neuroscience and Pain Research Unit, Pfizer Worldwide Research and Development , Cambridge, Massachusetts 02139, United States
| | - Joel W Schwartz
- Neuroscience and Pain Research Unit, Pfizer Worldwide Research and Development , Cambridge, Massachusetts 02139, United States
| | - Joseph M Fox
- Brown Laboratories, Department of Chemistry and Biochemistry, University of Delaware , Newark, Delaware 19716, United States
| | - Douglas S Johnson
- Worldwide Medicinal Chemistry, Pfizer Worldwide Research and Development , Cambridge, Massachusetts 02139, United States
| |
Collapse
|
31
|
Zheng W, Li G, Li X. Affinity purification in target identification: the specificity challenge. Arch Pharm Res 2015; 38:1661-85. [DOI: 10.1007/s12272-015-0635-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/07/2015] [Indexed: 12/16/2022]
|
32
|
Vohidov F, Knudsen SE, Leonard PG, Ohata J, Wheadon MJ, Popp BV, Ladbury JE, Ball ZT. Potent and selective inhibition of SH3 domains with dirhodium metalloinhibitors. Chem Sci 2015; 6:4778-4783. [PMID: 29142714 PMCID: PMC5667506 DOI: 10.1039/c5sc01602a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 06/03/2015] [Indexed: 01/23/2023] Open
Abstract
Src-family kinases (SFKs) play important roles in human biology and are key drug targets as well. However, achieving selective inhibition of individual Src-family kinases is challenging due to the high similarity within the protein family. We describe rhodium(ii) conjugates that deliver both potent and selective inhibition of Src-family SH3 domains. Rhodium(ii) conjugates offer dramatic affinity enhancements due to interactions with specific and unique Lewis-basic histidine residues near the SH3 binding interface, allowing predictable, structure-guided inhibition of SH3 targets that are recalcitrant to traditional inhibitors. In one example, a simple metallopeptide binds the Lyn SH3 domain with 6 nM affinity and exhibits functional activation of Lyn kinase under biologically relevant concentrations (EC50 ∼ 200 nM).
Collapse
Affiliation(s)
- Farrukh Vohidov
- Department of Chemistry , Rice University , 6100 Main St. , Houston , Texas , USA .
| | - Sarah E Knudsen
- Department of Chemistry , Rice University , 6100 Main St. , Houston , Texas , USA .
| | - Paul G Leonard
- Department of Genomic Medicine , Core for Biomolecular Structure and Function , University of Texas , M.D. Anderson Cancer Center , Houston , Texas , USA
| | - Jun Ohata
- Department of Chemistry , Rice University , 6100 Main St. , Houston , Texas , USA .
| | - Michael J Wheadon
- Department of Chemistry , Rice University , 6100 Main St. , Houston , Texas , USA .
| | - Brian V Popp
- Eugene Bennett Department of Chemistry , West Virginia University , 217 Clark Hall , Morgantown , West Virginia , USA
| | - John E Ladbury
- Department of Molecular and Cellular Biology , University of Leeds , LS2 9JT , UK
| | - Zachary T Ball
- Department of Chemistry , Rice University , 6100 Main St. , Houston , Texas , USA .
| |
Collapse
|
33
|
Poh AR, O'Donoghue RJ, Ernst M. Hematopoietic cell kinase (HCK) as a therapeutic target in immune and cancer cells. Oncotarget 2015; 6:15752-71. [PMID: 26087188 PMCID: PMC4599235 DOI: 10.18632/oncotarget.4199] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 05/29/2015] [Indexed: 12/21/2022] Open
Abstract
The hematopoietic cell kinase (HCK) is a member of the SRC family of cytoplasmic tyrosine kinases (SFKs), and is expressed in cells of the myeloid and B-lymphocyte cell lineages. Excessive HCK activation is associated with several types of leukemia and enhances cell proliferation and survival by physical association with oncogenic fusion proteins, and with functional interactions with receptor tyrosine kinases. Elevated HCK activity is also observed in many solid malignancies, including breast and colon cancer, and correlates with decreased patient survival rates. HCK enhances the secretion of growth factors and pro-inflammatory cytokines from myeloid cells, and promotes macrophage polarization towards a wound healing and tumor-promoting alternatively activated phenotype. Within tumor associated macrophages, HCK stimulates the formation of podosomes that facilitate extracellular matrix degradation, which enhance immune and epithelial cell invasion. By virtue of functional cooperation between HCK and bona fide oncogenic tyrosine kinases, excessive HCK activation can also reduce drug efficacy and contribute to chemo-resistance, while genetic ablation of HCK results in minimal physiological consequences in healthy mice. Given its known crystal structure, HCK therefore provides an attractive therapeutic target to both, directly inhibit the growth of cancer cells, and indirectly curb the source of tumor-promoting changes in the tumor microenvironment.
Collapse
Affiliation(s)
- Ashleigh R. Poh
- The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Victoria, Australia
| | - Robert J.J. O'Donoghue
- The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Victoria, Australia
- Olivia Newton-John Cancer Research Institute, La Trobe University School of Cancer Medicine, Victoria, Australia
| | - Matthias Ernst
- The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Victoria, Australia
- Olivia Newton-John Cancer Research Institute, La Trobe University School of Cancer Medicine, Victoria, Australia
| |
Collapse
|
34
|
Li L, Wijaya H, Samanta S, Lam Y, Yao SQ. In situ imaging and proteome profiling indicate andrographolide is a highly promiscuous compound. Sci Rep 2015; 5:11522. [PMID: 26105662 PMCID: PMC4478469 DOI: 10.1038/srep11522] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 05/28/2015] [Indexed: 01/07/2023] Open
Abstract
Natural products represent an enormous source of pharmacologically useful compounds, and are often used as the starting point in modern drug discovery. Many biologically interesting natural products are however not being pursued as potential drug candidates, partly due to a lack of well-defined mechanism-of-action. Traditional in vitro methods for target identification of natural products based on affinity protein enrichment from crude cellular lysates cannot faithfully recapitulate protein-drug interactions in living cells. Reported herein are dual-purpose probes inspired by the natural product andrographolide, capable of both reaction-based, real-time bioimaging and in situ proteome profiling/target identification in live mammalian cells. Our results confirm that andrographolide is a highly promiscuous compound and engaged in covalent interactions with numerous previously unknown cellular targets in cell type-specific manner. We caution its potential therapeutic effects should be further investigated in detail.
Collapse
Affiliation(s)
- Lin Li
- 1] Department of Chemistry, National University of Singapore, Singapore 117543 [2] Key Laboratory of Flexible Electronics (KLOFE) &Institute of Advanced Materials (IAM), National Jiangsu Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211816, P. R. China
| | - Hadhi Wijaya
- Department of Chemistry, National University of Singapore, Singapore 117543
| | - Sanjay Samanta
- Department of Chemistry, National University of Singapore, Singapore 117543
| | - Yulin Lam
- Department of Chemistry, National University of Singapore, Singapore 117543
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, Singapore 117543
| |
Collapse
|
35
|
Zhu B, Ge J, Yao SQ. Developing new chemical tools for DNA methyltransferase 1 (DNMT 1): A small-molecule activity-based probe and novel tetrazole-containing inhibitors. Bioorg Med Chem 2015; 23:2917-27. [DOI: 10.1016/j.bmc.2015.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 02/25/2015] [Accepted: 03/02/2015] [Indexed: 12/31/2022]
|
36
|
Abstract
In this issue of Chemistry & Biology, Hari and colleagues show that conformation-selective ATP-competitive kinase inhibitors have distinct noncatalytic effects on Erk2, including the ability to modulate protein-protein interactions outside the ATP-binding site. These findings enhance our knowledge about the diverse array of activities in which kinase inhibitors can target signaling pathways.
Collapse
|
37
|
Vohidov F, Coughlin JM, Ball ZT. Rhodium(II) Metallopeptide Catalyst Design Enables Fine Control in Selective Functionalization of Natural SH3 Domains. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201411745] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
38
|
Vohidov F, Coughlin JM, Ball ZT. Rhodium(II) Metallopeptide Catalyst Design Enables Fine Control in Selective Functionalization of Natural SH3 Domains. Angew Chem Int Ed Engl 2015; 54:4587-91. [DOI: 10.1002/anie.201411745] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 01/13/2015] [Indexed: 12/29/2022]
|
39
|
Yang P, Liu K. Activity-based protein profiling: recent advances in probe development and applications. Chembiochem 2015; 16:712-24. [PMID: 25652106 DOI: 10.1002/cbic.201402582] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Indexed: 11/08/2022]
Abstract
The completion of the human genome sequencing project has provided a wealth of new information regarding the genomic blueprint of the cell. Although, to date, there are roughly 20,000 genes in the human genome, the functions of only a handful of proteins are clear. The major challenge lies in translating genomic information into an understanding of their cellular functions. The recently developed activity-based protein profiling (ABPP) is an unconventional approach that is complementary for gene expression analysis and an ideal utensil in decoding this overflow of genomic information. This approach makes use of synthetic small molecules that covalently modify a set of related proteins and subsequently facilitates identification of the target protein, enabling rapid biochemical analysis and inhibitor discovery. This tutorial review introduces recent advances in the field of ABPP and its applications.
Collapse
Affiliation(s)
- Pengyu Yang
- Department of Chemistry and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037 (USA)
| | | |
Collapse
|
40
|
Su Y, Pan S, Li Z, Li L, Wu X, Hao P, Sze SK, Yao SQ. Multiplex imaging and cellular target identification of kinase inhibitors via an affinity-based proteome profiling approach. Sci Rep 2015; 5:7724. [PMID: 25579846 PMCID: PMC4290084 DOI: 10.1038/srep07724] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 12/09/2014] [Indexed: 12/14/2022] Open
Abstract
MLN8237 is a highly potent and presumably selective inhibitor of Aurora kinase A (AKA) and has shown promising antitumor activities. Like other kinase inhibitors which target the ATP-binding site of kinases, MLN8237 might be expected to have potential cellular off-targets. Herein, we report the first photoaffinity-based, small molecule AKA probe capable of both live-cell imaging of AKA activities and in situ proteome profiling of potential off-targets of MLN8237 (including AKA-associating proteins). By using two mutually compatible, bioorthogonal reactions (copper-catalyzed azide-alkyne cycloaddition chemistry and TCO-tetrazine ligation), we demostrate small molecule-based multiplex bioimaging for simultaneous in situ monitoring of two important cell-cycle regulating kinases (AKA and CDK1). A broad range of proteins, as potential off-targets of MLN8237 and AKA's-interacting partners, is subsequently identified by affinity-based proteome profiling coupled with large-scale LC-MS/MS analysis. From these studies, we discover novel AKA interactions which were further validated by cell-based immunoprecipitation (IP) experiments.
Collapse
Affiliation(s)
- Ying Su
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Sijun Pan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Zhengqiu Li
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Lin Li
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Xiaoyuan Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Piliang Hao
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| |
Collapse
|
41
|
Register AC, Leonard SE, Maly DJ. SH2-catalytic domain linker heterogeneity influences allosteric coupling across the SFK family. Biochemistry 2014; 53:6910-23. [PMID: 25302671 PMCID: PMC4230323 DOI: 10.1021/bi5008194] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Src-family
kinases (SFKs) make up a family of nine homologous multidomain
tyrosine kinases whose misregulation is responsible for human disease
(cancer, diabetes, inflammation, etc.). Despite overall sequence homology
and identical domain architecture, differences in SH3 and SH2 regulatory
domain accessibility and ability to allosterically autoinhibit the
ATP-binding site have been observed for the prototypical SFKs Src
and Hck. Biochemical and structural studies indicate that the SH2-catalytic
domain (SH2-CD) linker, the intramolecular binding epitope for SFK
SH3 domains, is responsible for allosterically coupling SH3 domain
engagement to autoinhibition of the ATP-binding site through the conformation
of the αC helix. As a relatively unconserved region between
SFK family members, SH2-CD linker sequence variability across the
SFK family is likely a source of nonredundant cellular functions between
individual SFKs via its effect on the availability of SH3 and SH2
domains for intermolecular interactions and post-translational modification.
Using a combination of SFKs engineered with enhanced or weakened regulatory
domain intramolecular interactions and conformation-selective inhibitors
that report αC helix conformation, this study explores how SH2-CD
sequence heterogeneity affects allosteric coupling across the SFK
family by examining Lyn, Fyn1, and Fyn2. Analyses of Fyn1 and Fyn2,
isoforms that are identical but for a 50-residue sequence spanning
the SH2-CD linker, demonstrate that SH2-CD linker sequence differences
can have profound effects on allosteric coupling between otherwise
identical kinases. Most notably, a dampened allosteric connection
between the SH3 domain and αC helix leads to greater autoinhibitory
phosphorylation by Csk, illustrating the complex effects of SH2-CD
linker sequence on cellular function.
Collapse
Affiliation(s)
- A C Register
- Department of Chemistry, University of Washington , Seattle, Washington 98195, United States
| | | | | |
Collapse
|
42
|
Leonard SE, Register AC, Krishnamurty R, Brighty GJ, Maly DJ. Divergent modulation of Src-family kinase regulatory interactions with ATP-competitive inhibitors. ACS Chem Biol 2014; 9:1894-905. [PMID: 24946274 PMCID: PMC4136698 DOI: 10.1021/cb500371g] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
Multidomain protein kinases, central
controllers of signal transduction,
use regulatory domains to modulate catalytic activity in a complex
cellular environment. Additionally, these domains regulate noncatalytic
functions, including cellular localization and protein–protein
interactions. Src-family kinases (SFKs) are promising therapeutic
targets for a number of diseases and are an excellent model for studying
the regulation of multidomain kinases. Here, we demonstrate that the
regulatory domains of the SFKs Src and Hck are divergently affected
by ligands that stabilize two distinct inactive ATP-binding site conformations.
Conformation-selective, ATP-competitive inhibitors differentially
modulate the ability of the SH3 and SH2 domains of Src and Hck to
engage in intermolecular interactions and the ability of the kinase–inhibitor
complex to undergo post-translational modification by effector enzymes.
This surprising divergence in regulatory domain behavior by two classes
of inhibitors that each stabilize inactive ATP-binding site conformations
is found to occur through perturbation or stabilization of the αC
helix. These studies provide insight into how conformation-selective,
ATP-competitive inhibitors can be designed to modulate domain interactions
and post-translational modifications distal to the ATP-binding site
of kinases.
Collapse
Affiliation(s)
- Stephen E. Leonard
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - A. C. Register
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Ratika Krishnamurty
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Gabriel J. Brighty
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Dustin J. Maly
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
43
|
Sherratt AR, Nasheri N, McKay CS, O'Hara S, Hunt A, Ning Z, Figeys D, Goto NK, Pezacki JP. A New Chemical Probe for Phosphatidylinositol Kinase Activity. Chembiochem 2014; 15:1253-6. [DOI: 10.1002/cbic.201402155] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Indexed: 12/13/2022]
|
44
|
Hari SB, Merritt EA, Maly DJ. Conformation-selective ATP-competitive inhibitors control regulatory interactions and noncatalytic functions of mitogen-activated protein kinases. ACTA ACUST UNITED AC 2014; 21:628-35. [PMID: 24704509 DOI: 10.1016/j.chembiol.2014.02.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 02/17/2014] [Accepted: 02/20/2014] [Indexed: 01/07/2023]
Abstract
Most potent protein kinase inhibitors act by competing with ATP to block the phosphotransferase activity of their targets. However, emerging evidence demonstrates that ATP-competitive inhibitors can affect kinase interactions and functions in ways beyond blocking catalytic activity. Here, we show that stabilizing alternative ATP-binding site conformations of the mitogen-activated protein kinases (MAPKs) p38α and Erk2 with ATP-competitive inhibitors differentially, and in some cases divergently, modulates the abilities of these kinases to interact with upstream activators and deactivating phosphatases. Conformation-selective ligands are also able to modulate Erk2's ability to allosterically activate the MAPK phosphatase DUSP6, highlighting how ATP-competitive ligands can control noncatalytic kinase functions. Overall, these studies underscore the relationship between the ATP-binding and regulatory sites of MAPKs and provide insight into how ATP-competitive ligands can be designed to confer graded control over protein kinase function.
Collapse
Affiliation(s)
- Sanjay B Hari
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Ethan A Merritt
- Department of Biological Structure, University of Washington, Seattle, WA 98195, USA
| | - Dustin J Maly
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
45
|
Hari SB, Merritt EA, Maly DJ. Sequence determinants of a specific inactive protein kinase conformation. ACTA ACUST UNITED AC 2014; 20:806-15. [PMID: 23790491 DOI: 10.1016/j.chembiol.2013.05.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 04/18/2013] [Accepted: 05/09/2013] [Indexed: 02/07/2023]
Abstract
Only a small percentage of protein kinases have been shown to adopt a distinct inactive ATP-binding site conformation, called the Asp-Phe-Gly-out (DFG-out) conformation. Given the high degree of homology within this enzyme family, we sought to understand the basis of this disparity on a sequence level. We identified two residue positions that sensitize mitogen-activated protein kinases (MAPKs) to inhibitors that stabilize the DFG-out inactive conformation. After characterizing the structure and dynamics of an inhibitor-sensitive MAPK mutant, we demonstrated the generality of this strategy by sensitizing a kinase (apoptosis signal-regulating kinase 1) not in the MAPK family to several DFG-out stabilizing ligands, using the same residue positions. The use of specific inactive conformations may aid the study of noncatalytic roles of protein kinases, such as binding partner interactions and scaffolding effects.
Collapse
Affiliation(s)
- Sanjay B Hari
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | | | | |
Collapse
|
46
|
Golkowski M, Brigham JL, Perera GK, Romano GE, Maly DJ, Ong SE. Rapid profiling of protein kinase inhibitors by quantitative proteomics. MEDCHEMCOMM 2014; 5:363-369. [PMID: 24648882 DOI: 10.1039/c3md00315a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ability to determine structure-activity relationships (SAR) and identify cellular targets from cell lysates and tissues is of great utility for kinase inhibitor drug discovery. We describe a streamlined mass spectrometry-based chemoproteomics workflow to examine the SAR and target profiles of a small library of kinase inhibitors that consists of the drug dasatinib and a panel of general type II inhibitors. By combining a simplified affinity enrichment and on-bead protein digestion workflow with quantitative proteomics, we achieved sensitive and specific enrichment of target kinases using our small molecule probes. We applied the affinity matrices in competition experiments with soluble probes in HeLa cell lysates using less than 1 mg of protein per experiment. Each pull-down experiment was analyzed in a single nano LC-MS run. Stringent selection criteria for target identification were applied to deduce 28 protein targets for dasatinib and 31 protein targets for our general type II kinase inhibitor in HeLa cell lysate. Additional kinase and protein targets were identified with the general type II inhibitor analogs, with small structural changes leading to divergent target profiles. We observed surprisingly high sequence coverage on some proteins, enabling further analyses of phosphorylation sites for several target kinases without additional sample processing. Our rapid workflow profiled cellular targets for six small molecules within a week, demonstrating that an unbiased proteomics screen of cellular targets yields valuable SAR information and may be incorporated at an early stage in kinase inhibitor development.
Collapse
Affiliation(s)
- Martin Golkowski
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
| | - Jennifer L Brigham
- Division of Chemistry, University of Washington, Seattle, Washington, USA
| | - Gayani K Perera
- Division of Chemistry, University of Washington, Seattle, Washington, USA
| | - Guillermo E Romano
- Division of Chemistry, University of Washington, Seattle, Washington, USA
| | - Dustin J Maly
- Division of Chemistry, University of Washington, Seattle, Washington, USA
| | - Shao-En Ong
- Department of Pharmacology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
47
|
Hari SB, Perera BGK, Ranjitkar P, Seeliger MA, Maly DJ. Conformation-selective inhibitors reveal differences in the activation and phosphate-binding loops of the tyrosine kinases Abl and Src. ACS Chem Biol 2013; 8:2734-43. [PMID: 24106839 DOI: 10.1021/cb400663k] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Over the past decade, an increasingly diverse array of potent and selective inhibitors that target the ATP-binding sites of protein kinases have been developed. Many of these inhibitors, like the clinically approved drug imatinib (Gleevec), stabilize a specific catalytically inactive ATP-binding site conformation of their kinases targets. Imatinib is notable in that it is highly selective for its kinase target, Abl, over other closely related tyrosine kinases, such as Src. In addition, imatinib is highly sensitive to the phosphorylation state of Abl's activation loop, which is believed to be a general characteristic of all inhibitors that stabilize a similar inactive ATP-binding site conformation. In this report, we perform a systematic analysis of a diverse series of ATP-competitive inhibitors that stabilize a similar inactive ATP-binding site conformation as imatinib with the tyrosine kinases Src and Abl. In contrast to imatinib, many of these inhibitors have very similar potencies against Src and Abl. Furthermore, only a subset of this class of inhibitors is sensitive to the phosphorylation state of the activation loop of these kinases. In attempting to explain this observation, we have uncovered an unexpected correlation between Abl's activation loop and another flexible active site feature, called the phosphate-binding loop (p-loop). These studies shed light on how imatinib is able to obtain its high target selectivity and reveal how the conformational preference of flexible active site regions can vary between closely related kinases.
Collapse
Affiliation(s)
- Sanjay B. Hari
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - B. Gayani K. Perera
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Pratistha Ranjitkar
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Markus A. Seeliger
- Department
of Pharmacological Sciences, Stony Brook University Medical School, Stony
Brook, New York 11794, United States
| | - Dustin J. Maly
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
48
|
Su Y, Ge J, Zhu B, Zheng YG, Zhu Q, Yao SQ. Target identification of biologically active small molecules via in situ methods. Curr Opin Chem Biol 2013; 17:768-75. [DOI: 10.1016/j.cbpa.2013.06.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 05/27/2013] [Accepted: 06/02/2013] [Indexed: 12/25/2022]
|
49
|
Li Z, Hao P, Li L, Tan CYJ, Cheng X, Chen GYJ, Sze SK, Shen HM, Yao SQ. Design and Synthesis of Minimalist Terminal Alkyne-Containing Diazirine Photo-Crosslinkers and Their Incorporation into Kinase Inhibitors for Cell- and Tissue-Based Proteome Profiling. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201300683] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
50
|
Li Z, Hao P, Li L, Tan CYJ, Cheng X, Chen GYJ, Sze SK, Shen HM, Yao SQ. Design and synthesis of minimalist terminal alkyne-containing diazirine photo-crosslinkers and their incorporation into kinase inhibitors for cell- and tissue-based proteome profiling. Angew Chem Int Ed Engl 2013; 52:8551-6. [PMID: 23754342 DOI: 10.1002/anie.201300683] [Citation(s) in RCA: 261] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Revised: 04/26/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Zhengqiu Li
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|