1
|
Doboszewska U, Maret W, Wlaź P. GPR39: An orphan receptor begging for ligands. Drug Discov Today 2024; 29:103861. [PMID: 38122967 DOI: 10.1016/j.drudis.2023.103861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 12/03/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Progress in the understanding of the receptor GPR39 is held up by inconsistent pharmacological data. First, the endogenous ligand(s) remain(s) contentious. Data pointing to zinc ions (Zn2+) and/or eicosanoids as endogenous ligands are a matter of debate. Second, there are uncertainties in the specificity of the widely used synthetic ligand (agonist) TC-G 1008. Third, activation of GPR39 has been often proposed as a novel treatment strategy, but new data also support that inhibition might be beneficial in certain disease contexts. Constitutive activity/promiscuous signaling suggests the need for antagonists/inverse agonists in addition to (biased) agonists. Here, we scrutinize data on the signaling and functions of GPR39 and critically assess factors that might have contributed to divergent outcomes and interpretations of investigations on this important receptor.
Collapse
Affiliation(s)
- Urszula Doboszewska
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Kraków, Poland
| | - Wolfgang Maret
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, London SE1 9NH, UK
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, PL 20-033 Lublin, Poland.
| |
Collapse
|
2
|
Bagka M, Choi H, Héritier M, Schwaemmle H, Pasquer QTL, Braun SMG, Scapozza L, Wu Y, Hoogendoorn S. Targeted protein degradation reveals BET bromodomains as the cellular target of Hedgehog pathway inhibitor-1. Nat Commun 2023; 14:3893. [PMID: 37393376 PMCID: PMC10314895 DOI: 10.1038/s41467-023-39657-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 06/22/2023] [Indexed: 07/03/2023] Open
Abstract
Target deconvolution of small molecule hits from phenotypic screens presents a major challenge. Many screens have been conducted to find inhibitors for the Hedgehog signaling pathway - a developmental pathway with many implications in health and disease - yielding many hits but only few identified cellular targets. We here present a strategy for target identification based on Proteolysis-Targeting Chimeras (PROTACs), combined with label-free quantitative proteomics. We develop a PROTAC based on Hedgehog Pathway Inhibitor-1 (HPI-1), a phenotypic screen hit with unknown cellular target. Using this Hedgehog Pathway PROTAC (HPP) we identify and validate BET bromodomains as the cellular targets of HPI-1. Furthermore, we find that HPP-9 is a long-acting Hedgehog pathway inhibitor through prolonged BET bromodomain degradation. Collectively, we provide a powerful PROTAC-based approach for target deconvolution, that answers the longstanding question of the cellular target of HPI-1 and yields a PROTAC that acts on the Hedgehog pathway.
Collapse
Affiliation(s)
- Meropi Bagka
- Department of Organic Chemistry, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Hyeonyi Choi
- Department of Organic Chemistry, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Margaux Héritier
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Hanna Schwaemmle
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Quentin T L Pasquer
- Department of Organic Chemistry, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Simon M G Braun
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Leonardo Scapozza
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Yibo Wu
- Chemical Biology Mass Spectrometry Platform (CHEMBIOMS), Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Sascha Hoogendoorn
- Department of Organic Chemistry, Faculty of Sciences, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
3
|
Doboszewska U, Socała K, Pieróg M, Nieoczym D, Sawicki J, Szafarz M, Gawel K, Rafało-Ulińska A, Sajnóg A, Wyska E, Esguerra CV, Szewczyk B, Maćkowiak M, Barałkiewicz D, Mlyniec K, Nowak G, Sowa I, Wlaź P. TC-G 1008 facilitates epileptogenesis by acting selectively at the GPR39 receptor but non-selectively activates CREB in the hippocampus of pentylenetetrazole-kindled mice. Cell Mol Life Sci 2023; 80:133. [PMID: 37185787 PMCID: PMC10130118 DOI: 10.1007/s00018-023-04766-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 05/17/2023]
Abstract
The pharmacological activation of the GPR39 receptor has been proposed as a novel strategy for treating seizures; however, this hypothesis has not been verified experimentally. TC-G 1008 is a small molecule agonist increasingly used to study GPR39 receptor function but has not been validated using gene knockout. Our aim was to assess whether TC-G 1008 produces anti-seizure/anti-epileptogenic effects in vivo and whether the effects are mediated by GPR39. To obtain this goal we utilized various animal models of seizures/epileptogenesis and GPR39 knockout mice model. Generally, TC-G 1008 exacerbated behavioral seizures. Furthermore, it increased the mean duration of local field potential recordings in response to pentylenetetrazole (PTZ) in zebrafish larvae. It facilitated the development of epileptogenesis in the PTZ-induced kindling model of epilepsy in mice. We demonstrated that TC-G 1008 aggravated PTZ-epileptogenesis by selectively acting at GPR39. However, a concomitant analysis of the downstream effects on the cyclic-AMP-response element binding protein in the hippocampus of GPR39 knockout mice suggested that the molecule also acts via other targets. Our data argue against GPR39 activation being a viable therapeutic strategy for treating epilepsy and suggest investigating whether TC-G 1008 is a selective agonist of the GPR39 receptor.
Collapse
Affiliation(s)
- Urszula Doboszewska
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland.
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland.
| | - Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Mateusz Pieróg
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Dorota Nieoczym
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland
| | - Jan Sawicki
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093, Lublin, Poland
| | - Małgorzata Szafarz
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Kinga Gawel
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego 8B, 20-090, Lublin, Poland
| | - Anna Rafało-Ulińska
- Department of Neurobiology, Polish Academy of Sciences, Maj Institute of Pharmacology, Smętna 12, 31-343, Kraków, Poland
| | - Adam Sajnóg
- Department of Trace Analysis, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Elżbieta Wyska
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Camila V Esguerra
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway, University of Oslo, Gaustadalléen 21, Forskningsparken, 0349, Oslo, Norway
| | - Bernadeta Szewczyk
- Department of Neurobiology, Polish Academy of Sciences, Maj Institute of Pharmacology, Smętna 12, 31-343, Kraków, Poland
| | - Marzena Maćkowiak
- Laboratory of Pharmacology and Brain Biostructure, Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Danuta Barałkiewicz
- Department of Trace Analysis, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Katarzyna Mlyniec
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Gabriel Nowak
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093, Lublin, Poland
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Akademicka 19, 20-033, Lublin, Poland
| |
Collapse
|
4
|
Laitakari A, Liu L, Frimurer TM, Holst B. The Zinc-Sensing Receptor GPR39 in Physiology and as a Pharmacological Target. Int J Mol Sci 2021; 22:ijms22083872. [PMID: 33918078 PMCID: PMC8070507 DOI: 10.3390/ijms22083872] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 12/16/2022] Open
Abstract
The G-protein coupled receptor GPR39 is abundantly expressed in various tissues and can be activated by changes in extracellular Zn2+ in physiological concentrations. Previously, genetically modified rodent models have been able to shed some light on the physiological functions of GPR39, and more recently the utilization of novel synthetic agonists has led to the unraveling of several new functions in the variety of tissues GPR39 is expressed. Indeed, GPR39 seems to be involved in many important metabolic and endocrine functions, but also to play a part in inflammation, cardiovascular diseases, saliva secretion, bone formation, male fertility, addictive and depression disorders and cancer. These new discoveries offer opportunities for the development of novel therapeutic approaches against many diseases where efficient therapeutics are still lacking. This review focuses on Zn2+ as an endogenous ligand as well as on the novel synthetic agonists of GPR39, placing special emphasis on the recently discovered physiological functions and discusses their pharmacological potential.
Collapse
Affiliation(s)
- Anna Laitakari
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark; (A.L.); (L.L.); (T.M.F.)
| | - Lingzhi Liu
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark; (A.L.); (L.L.); (T.M.F.)
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Thomas M. Frimurer
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark; (A.L.); (L.L.); (T.M.F.)
| | - Birgitte Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark; (A.L.); (L.L.); (T.M.F.)
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
- Correspondence:
| |
Collapse
|
5
|
Grunddal KV, Diep TA, Petersen N, Tough IR, Skov LJ, Liu L, Buijink JA, Mende F, Jin C, Jepsen SL, Sørensen LME, Achiam MP, Strandby RB, Bach A, Hartmann B, Frimurer TM, Hjorth SA, Bouvier M, Cox H, Holst B. Selective release of gastrointestinal hormones induced by an orally active GPR39 agonist. Mol Metab 2021; 49:101207. [PMID: 33711555 PMCID: PMC8042403 DOI: 10.1016/j.molmet.2021.101207] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVES Obesity is a complex disease associated with a high risk of comorbidities. Gastric bypass surgery, an invasive procedure with low patient eligibility, is currently the most effective intervention that achieves sustained weight loss. This beneficial effect is attributed to alterations in gut hormone signaling. An attractive alternative is to pharmacologically mimic the effects of bariatric surgery by targeting several gut hormonal axes. The G protein-coupled receptor 39 (GPR39) expressed in the gastrointestinal tract has been shown to mediate ghrelin signaling and control appetite, food intake, and energy homeostasis, but the broader effect on gut hormones is largely unknown. A potent and efficacious GPR39 agonist (Cpd1324) was recently discovered, but the in vivo function was not addressed. Herein we studied the efficacy of the GPR39 agonist, Cpd1324, on metabolism and gut hormone secretion. METHODS Body weight, food intake, and energy expenditure in GPR39 agonist-treated mice and GPR39 KO mice were studied in calorimetric cages. Plasma ghrelin, glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide-1 (GLP-1), and peptide YY (PYY) levels were measured. Organoids generated from murine and human small intestine and mouse colon were used to study GLP-1 and PYY release. Upon GPR39 agonist administration, dynamic changes in intracellular GLP-1 content were studied via immunostaining and changes in ion transport across colonic mucosa were monitored in Ussing chambers. The G protein activation underlying GPR39-mediated selective release of gut hormones was studied using bioluminescence resonance energy transfer biosensors. RESULTS The GPR39 KO mice displayed a significantly increased food intake without corresponding increases in respiratory exchange ratios or energy expenditure. Oral administration of a GPR39 agonist induced an acute decrease in food intake and subsequent weight loss in high-fat diet (HFD)-fed mice without affecting their energy expenditure. The tool compound, Cpd1324, increased GLP-1 secretion in the mice as well as in mouse and human intestinal organoids, but not in GPR39 KO mouse organoids. In contrast, the GPR39 agonist had no effect on PYY or GIP secretion. Transepithelial ion transport was acutely affected by GPR39 agonism in a GLP-1- and calcitonin gene-related peptide (CGRP)-dependent manner. Analysis of Cpd1324 signaling properties showed activation of Gαq and Gαi/o signaling pathways in L cells, but not Gαs signaling. CONCLUSIONS The GPR39 agonist described in this study can potentially be used by oral administration as a weight-lowering agent due to its stimulatory effect on GLP-1 secretion, which is most likely mediated through a unique activation of Gα subunits. Thus, GPR39 agonism may represent a novel approach to effectively treat obesity through selective modulation of gastrointestinal hormonal axes.
Collapse
Affiliation(s)
- Kaare V Grunddal
- Department of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Thi A Diep
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Natalia Petersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Iain R Tough
- Wolfson Center for Age-Related Diseases, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, SE1 1UL, UK
| | - Louise J Skov
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Lingzhi Liu
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Jesse A Buijink
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Franziska Mende
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Chunyu Jin
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Sara L Jepsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Louis M E Sørensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Michael P Achiam
- Department of Surgical Gastroenterology, Rigshospitalet, University of Copenhagen, Denmark
| | - Rune B Strandby
- Department of Surgical Gastroenterology, Rigshospitalet, University of Copenhagen, Denmark
| | - Anders Bach
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, 2100, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Thomas M Frimurer
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Siv A Hjorth
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark
| | - Michel Bouvier
- Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer, Molecular Pharmacology Research Unit, University of Montréal, Marcelle-Coutu Bureau Pavilion 1306-3, Montréal, QC H3T 1J4, Canada
| | - Helen Cox
- Wolfson Center for Age-Related Diseases, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, SE1 1UL, UK
| | - Birgitte Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200, Copenhagen, Denmark.
| |
Collapse
|
6
|
Zhang L, Song J, Zang Z, Tang H, Li W, Lai S, Deng C. Adaptive evolution of GPR39 in diverse directions in vertebrates. Gen Comp Endocrinol 2020; 299:113610. [PMID: 32916170 DOI: 10.1016/j.ygcen.2020.113610] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/27/2020] [Accepted: 08/30/2020] [Indexed: 02/08/2023]
Abstract
G protein-coupled receptors (GPCRs) play an important role in physiology and disease and represent productive drug targets. Orphan GPCRs, which have unknown endogenous ligands, are considered drug targets and consequently have attracted great interest in identifying their endogenous cognate ligands for deorphanization. However, additional studies have shown that GPCRs, including many orphan GPCRs, can constitutively activate G protein signaling in a ligand-independent manner. GPR39 is such an orphan GPCR with constitutive activity. Here, we performed a phylogenetic and selection analysis of GPR39 in vertebrates, and we found that GPR39 underwent positive selection in different branches of vertebrates. Using luciferase reporter assays, we demonstrated that human, frog and chicken GPR39 can constitutively activate Gq and G12 signaling pathways in a ligand-independent manner. Zebrafish GPR39 can constitutively activate Gs, Gq and G12 signaling pathways in a ligand-independent manner. We further found that the zebrafish-H2967.35 site is crucial for the activity of the Gs signaling pathway. In addition, our mutagenesis studies indicated that the positive selection sites of GPR39 from different species had important effects on the constitutive activity of the receptor. Our results revealed the adaptive evolution of GPR39 in diverse directions, which led to differences in constitutive activity.
Collapse
Affiliation(s)
- Lina Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jingjing Song
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Zhuqing Zang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Huihao Tang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Wei Li
- Department of Dermatovenereology, Rare Disease Center, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang Street, Chengdu, Sichuan 610041, China
| | - Shanshan Lai
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| | - Cheng Deng
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
7
|
Vincent F, Loria PM, Weston AD, Steppan CM, Doyonnas R, Wang YM, Rockwell KL, Peakman MC. Hit Triage and Validation in Phenotypic Screening: Considerations and Strategies. Cell Chem Biol 2020; 27:1332-1346. [DOI: 10.1016/j.chembiol.2020.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 05/31/2020] [Accepted: 08/14/2020] [Indexed: 02/06/2023]
|
8
|
Dusek CO, Hadden MK. Targeting the GLI family of transcription factors for the development of anti-cancer drugs. Expert Opin Drug Discov 2020; 16:289-302. [PMID: 33006903 DOI: 10.1080/17460441.2021.1832078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION GLI1 is a transcription factor that has been identified as a downstream effector for multiple tumorigenic signaling pathways. These include the Hedgehog, RAS-RAF-MEK-ERK, and PI3K-AKT-mTOR pathways, which have all been separately validated as individual anti-cancer drug targets. The identification of GLI1 as a key transcriptional regulator for each of these pathways highlights its promise as a therapeutic target. Small molecule GLI1 inhibitors are potentially efficacious against human malignancies arising from multiple oncogenic mechanisms. AREAS COVERED This review provides an overview of the key oncogenic cellular pathways that regulate GLI1 transcriptional activity. It also provides a detailed account of small molecule GLI1 inhibitors that are currently under development as potential anti-cancer chemotherapeutics. EXPERT OPINION Interest in developing inhibitors of GLI1-mediated transcription has significantly increased as its role in multiple oncogenic signaling pathways has been elucidated. To date, it has proven difficult to directly target GLI1 with small molecules, and the majority of compounds that inhibit GLI1 activity function through indirect mechanisms. To date, no direct-acting GLI1 inhibitor has entered clinical trials. The identification and development of new scaffolds that can bind and directly inhibit GLI1 are essential to further advance this class of chemotherapeutics.
Collapse
Affiliation(s)
- Christopher O Dusek
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, United States
| | - M Kyle Hadden
- Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
9
|
Goto K, Nishitsuji H, Sugiyama M, Nishida N, Mizokami M, Shimotohno K. Orchestration of Intracellular Circuits by G Protein-Coupled Receptor 39 for Hepatitis B Virus Proliferation. Int J Mol Sci 2020; 21:ijms21165661. [PMID: 32784555 PMCID: PMC7460832 DOI: 10.3390/ijms21165661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 12/14/2022] Open
Abstract
Hepatitis B virus (HBV), a highly persistent pathogen causing hepatocellular carcinoma (HCC), takes full advantage of host machinery, presenting therapeutic targets. Here we aimed to identify novel druggable host cellular factors using the reporter HBV we have recently generated. In an RNAi screen of G protein-coupled receptors (GPCRs), GPCR39 (GPR39) appeared as the top hit to facilitate HBV proliferation. Lentiviral overexpression of active GPR39 proteins and an agonist enhanced HBV replication and transcriptional activities of viral promoters, inducing the expression of CCAAT/enhancer binding protein (CEBP)-β (CEBPB). Meanwhile, GPR39 was uncovered to activate the heat shock response, upregulating the expression of proviral heat shock proteins (HSPs). In addition, glioma-associated oncogene homologue signaling, a recently reported target of GPR39, was suggested to inhibit HBV replication and eventually suppress expression of CEBPB and HSPs. Thus, GPR39 provirally governed intracellular circuits simultaneously affecting the carcinopathogenetic gene functions. GPR39 and the regulated signaling networks would serve as antiviral targets, and strategies with selective inhibitors of GPR39 functions can develop host-targeted antiviral therapies preventing HCC.
Collapse
Affiliation(s)
- Kaku Goto
- Correspondence: ; Tel.: +81-47-372-3501; Fax: +81-47-375-4766
| | | | | | | | | | | |
Collapse
|
10
|
Liu X, Ding C, Tan W, Zhang A. Medulloblastoma: Molecular understanding, treatment evolution, and new developments. Pharmacol Ther 2020; 210:107516. [PMID: 32105673 DOI: 10.1016/j.pharmthera.2020.107516] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/12/2020] [Indexed: 12/27/2022]
Abstract
Medulloblastoma (MB) is the most common childhood malignant brain tumor, accounting for approximately 20% of all pediatric central nervous system tumors. Current standard treatments involving surgical interventions followed by craniospinal irradiation and adjuvant chemotherapy have severe motor and cognitive defects. Therefore, individualized treatment regimens with reduced toxicity designed according to the presence of specific oncogenic 'driver' genes are urgently demanded. To this end, recent genetic and epigenetic findings have advanced the classification of MB into the international consensus of four distinct MB molecular subgroups (WNT, SHH, Group 3, and Group 4) based on their respective molecular and histopathological characteristics. More recent studies have indicated that up to seven molecular subgroups exist in childhood MB. Moreover, studies on the inter- and intra-tumoral features of the four subgroups revealed that each subgroup contains variant subtypes. These results have greatly helped risk stratification of MB patients at diagnosis and significantly improved clinical treatment options. Herein, we highlight the recent advances and challenges associated with MB classification, and the development of therapeutic treatments targeting novel subgroup-specific molecular and epigenetic factors, especially those in the SHH-driven MB tumors.
Collapse
Affiliation(s)
- Xiaohua Liu
- Research Laboratory of Medicinal Chemical Biology, Frontiers on Drug Discovery (RLMCBFDD), School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyong Ding
- Research Laboratory of Medicinal Chemical Biology, Frontiers on Drug Discovery (RLMCBFDD), School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China
| | - Wenfu Tan
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Ao Zhang
- Research Laboratory of Medicinal Chemical Biology, Frontiers on Drug Discovery (RLMCBFDD), School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China; CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
11
|
Sun L, Wang L, Chen T, Yao B, Wang Y, Li Q, Yang W, Liu Z. microRNA-1914, which is regulated by lncRNA DUXAP10, inhibits cell proliferation by targeting the GPR39-mediated PI3K/AKT/mTOR pathway in HCC. J Cell Mol Med 2019; 23:8292-8304. [PMID: 31576658 PMCID: PMC6850956 DOI: 10.1111/jcmm.14705] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/21/2019] [Accepted: 09/15/2019] [Indexed: 12/18/2022] Open
Abstract
Increasing studies have confirmed that abnormally expressed microRNAs (miRNAs) take part in the carcinogenesis as well as the aggravation of hepatocellular carcinoma (HCC). However, little information is currently available about miR-1914 in HCC. Here, we first confirmed that miR-1914 inhibition in HCC cell lines and tumour specimens correlates with tumour size and histological grade. In a series of functional experiments, miR-1914 inhibited tumour proliferation and colony formation, resulting in cell cycle arrest and increased apoptosis. Moreover, miR-1914 mediated its functional effects by directly targeting GPR39 in HCC cells, leading to PI3K/AKT/mTOR repression. Restoring GPR39 expression incompletely counteracted the physiological roles of miR-1914 in HCC cells. In addition, down-regulation of AKT phosphorylation inhibited the effects of miR-1914 in HCC. Furthermore, the overexpression of lncRNA DUXAP10 negatively correlated with the expression of miR-1914 in HCC; thus, lncRNA DUXAP10 regulated miR-1914 expression and modulated the GPR39/PI3K/AKT-mediated cellular behaviours. In summary, the present study demonstrated for the first time that lncRNA DUXAP10-regulated miR-1914 plays a functional role in inhibiting HCC progression by targeting GPR39-mediated PI3K/AKT/mTOR pathway, and this miRNA represents a novel therapeutic target for patients with HCC.
Collapse
MESH Headings
- Aged
- Animals
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/therapy
- Cell Line, Tumor
- Cell Proliferation/genetics
- Female
- Gene Expression Regulation, Neoplastic
- Hep G2 Cells
- Humans
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/therapy
- Male
- Mice, Inbred BALB C
- Mice, Nude
- MicroRNAs/genetics
- Middle Aged
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphotransferases/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- RNA, Long Noncoding/genetics
- RNAi Therapeutics/methods
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Signal Transduction
- TOR Serine-Threonine Kinases/metabolism
- Xenograft Model Antitumor Assays/methods
Collapse
Affiliation(s)
- Liankang Sun
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Liang Wang
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Tianxiang Chen
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Bowen Yao
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Yufeng Wang
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Qing Li
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Wei Yang
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Zhikui Liu
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
12
|
Abstract
The hedgehog (Hh) pathway plays an important role in cancer development and maintenance, as ~25% of all cancers have aberrant Hh pathway activation. Targeted therapy for inhibition of the Hh pathway was thought to be promising for achieving clinical response in the Hh-dependent cancers. However, the results of new clinical trials with smoothened (SMO) antagonists do not show much success in cancers other than basal cell carcinoma. The studies suggest that the Hh pathway involves multiple mechanisms of activation or inhibition in primary cilia and interactions between several related pathways in different types of cells, which makes this pathway extremely complex. The SMO-specific antagonists may not stop all relevant pathways that may lead to escape or development of resistance. Therefore, in the Hh-dependent cancers, the inhibition of two or more oncogenic pathways (including the Hh pathway) with use of a single agent of a suitable multitarget profile or a combination of drugs seems promising for achieving clinical response in patients and decrease in resistance development with prolonged use of the specific SMO antagonists. Furthermore, for studying the effect of new treatments, the inclusion criteria should be more specific for selection of patients with aberrant Hh pathway activity confirmed by tests. These considerations will be very helpful for choosing the right patients and the right drugs for the best therapeutic outcome.
Collapse
|
13
|
Extracellular vesicles mediate improved functional outcomes in engineered cartilage produced from MSC/chondrocyte cocultures. Proc Natl Acad Sci U S A 2019; 116:1569-1578. [PMID: 30647113 DOI: 10.1073/pnas.1815447116] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Several recent studies have demonstrated that coculture of chondrocytes (CHs) with bone marrow-derived mesenchymal stem cells (MSCs) improves their chondrogenesis. This implies that intercellular communication dictates fate decisions in recipient cells and/or reprograms their metabolic state to support a differentiated function. While this coculture phenomenon is compelling, the differential chondroinductivity of zonal CHs on MSC cocultures, the nature of the molecular cargo, and their transport mechanisms remains undetermined. Here, we demonstrate that juvenile CHs in coculture with adult MSCs promote functional differentiation and improved matrix production. We further demonstrate that close proximity between the two cell types is a prerequisite for this response and that the outcome of this interaction improves viability, chondrogenesis, matrix formation, and homeostasis in the recipient MSCs. Furthermore, we visualized the transfer of intracellular contents from CHs to nearby MSCs and showed that inhibition of extracellular vesicle (EV) transfer blocks the synergistic effect of coculture, identifying EVs as the primary mode of communication in these cocultures. These findings will forward the development of therapeutic agents and more effective delivery systems to promote cartilage repair.
Collapse
|
14
|
Cheung AK, Hurley B, Kerrigan R, Shu L, Chin DN, Shen Y, O'Brien G, Sung MJ, Hou Y, Axford J, Cody E, Sun R, Fazal A, Fridrich C, Sanchez CC, Tomlinson RC, Jain M, Deng L, Hoffmaster K, Song C, Van Hoosear M, Shin Y, Servais R, Towler C, Hild M, Curtis D, Dietrich WF, Hamann LG, Briner K, Chen KS, Kobayashi D, Sivasankaran R, Dales NA. Discovery of Small Molecule Splicing Modulators of Survival Motor Neuron-2 (SMN2) for the Treatment of Spinal Muscular Atrophy (SMA). J Med Chem 2018; 61:11021-11036. [PMID: 30407821 DOI: 10.1021/acs.jmedchem.8b01291] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Spinal muscular atrophy (SMA), a rare neuromuscular disorder, is the leading genetic cause of death in infants and toddlers. SMA is caused by the deletion or a loss of function mutation of the survival motor neuron 1 (SMN1) gene. In humans, a second closely related gene SMN2 exists; however it codes for a less stable SMN protein. In recent years, significant progress has been made toward disease modifying treatments for SMA by modulating SMN2 pre-mRNA splicing. Herein, we describe the discovery of LMI070/branaplam, a small molecule that stabilizes the interaction between the spliceosome and SMN2 pre-mRNA. Branaplam (1) originated from a high-throughput phenotypic screening hit, pyridazine 2, and evolved via multiparameter lead optimization. In a severe mouse SMA model, branaplam treatment increased full-length SMN RNA and protein levels, and extended survival. Currently, branaplam is in clinical studies for SMA.
Collapse
Affiliation(s)
- Atwood K Cheung
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Brian Hurley
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Ryan Kerrigan
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Lei Shu
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Donovan N Chin
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Yiping Shen
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Gary O'Brien
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Moo Je Sung
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Ying Hou
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Jake Axford
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Emma Cody
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Robert Sun
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Aleem Fazal
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Cary Fridrich
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Carina C Sanchez
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Ronald C Tomlinson
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Monish Jain
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Lin Deng
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Keith Hoffmaster
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Cheng Song
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Mailin Van Hoosear
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Youngah Shin
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Rebecca Servais
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Christopher Towler
- Novartis Pharmaceuticals , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Marc Hild
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Daniel Curtis
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - William F Dietrich
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Lawrence G Hamann
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Karin Briner
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Karen S Chen
- SMA Foundation , 888 Seventh Avenue, Suite 400 , New York , New York 10019 , United States
| | - Dione Kobayashi
- SMA Foundation , 888 Seventh Avenue, Suite 400 , New York , New York 10019 , United States
| | - Rajeev Sivasankaran
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Natalie A Dales
- Novartis Institutes for BioMedical Research , 250 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
15
|
Perturbation-Based Proteomic Correlation Profiling as a Target Deconvolution Methodology. Cell Chem Biol 2018; 26:137-143.e8. [PMID: 30449674 DOI: 10.1016/j.chembiol.2018.10.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 07/13/2018] [Accepted: 10/08/2018] [Indexed: 01/10/2023]
Abstract
Molecular target identification of small molecules, so-called target deconvolution, is a major obstacle to phenotype-based drug discovery. Here, we developed an approach called perturbation-based proteomic correlation profiling (PPCP) utilizing the correlation between protein quantity and binding activity of compounds under cellular perturbation by gene silencing and successfully identified lanosterol synthase as a molecular target of TGF-β pathway inhibitor. This PPCP concept was extended to the use of a cell line panel and provides a new option for target deconvolution.
Collapse
|
16
|
Yokota H. Applications of proteomics in pharmaceutical research and development. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1867:17-21. [PMID: 29753086 DOI: 10.1016/j.bbapap.2018.05.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/10/2018] [Accepted: 05/08/2018] [Indexed: 01/13/2023]
Abstract
The significance of proteomics in the pharmaceutical industry has increased since overcoming initial difficulties. This review discusses recent proteomics publications from pharmaceutical companies to identify new trends in proteomics applications to research and development. Applications of proteomics such as chemical proteomics, protein expression profiling, targeted protein quantitation, analysis of protein-protein interactions and post-translational modification are widely used by various sections of the industry. Technological advancements in proteomics will further accelerate pharmaceutical research and development.
Collapse
Affiliation(s)
- Hiroyuki Yokota
- Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba-shi 305-8585, Japan.
| |
Collapse
|
17
|
Comess KM, McLoughlin SM, Oyer JA, Richardson PL, Stöckmann H, Vasudevan A, Warder SE. Emerging Approaches for the Identification of Protein Targets of Small Molecules - A Practitioners’ Perspective. J Med Chem 2018; 61:8504-8535. [DOI: 10.1021/acs.jmedchem.7b01921] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kenneth M. Comess
- AbbVie Inc., 1 Waukegan Road, North Chicago, Illinois 60064-1802, United States
| | - Shaun M. McLoughlin
- AbbVie Inc., 1 Waukegan Road, North Chicago, Illinois 60064-1802, United States
| | - Jon A. Oyer
- AbbVie Inc., 1 Waukegan Road, North Chicago, Illinois 60064-1802, United States
| | - Paul L. Richardson
- AbbVie Inc., 1 Waukegan Road, North Chicago, Illinois 60064-1802, United States
| | - Henning Stöckmann
- AbbVie Inc., 1 Waukegan Road, North Chicago, Illinois 60064-1802, United States
| | - Anil Vasudevan
- AbbVie Inc., 1 Waukegan Road, North Chicago, Illinois 60064-1802, United States
| | - Scott E. Warder
- AbbVie Inc., 1 Waukegan Road, North Chicago, Illinois 60064-1802, United States
| |
Collapse
|
18
|
Dong X, Wang C, Chen Z, Zhao W. Overcoming the resistance mechanisms of Smoothened inhibitors. Drug Discov Today 2018; 23:704-710. [DOI: 10.1016/j.drudis.2018.01.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/15/2017] [Accepted: 01/04/2018] [Indexed: 12/31/2022]
|
19
|
Discovery of new GPCR ligands to illuminate new biology. Nat Chem Biol 2017; 13:1143-1151. [PMID: 29045379 DOI: 10.1038/nchembio.2490] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 08/30/2017] [Indexed: 12/12/2022]
Abstract
Although a plurality of drugs target G-protein-coupled receptors (GPCRs), most have emerged from classical medicinal chemistry and pharmacology programs and resemble one another structurally and functionally. Though effective, these drugs are often promiscuous. With the realization that GPCRs signal via multiple pathways, and with the emergence of crystal structures for this family of proteins, there is an opportunity to target GPCRs with new chemotypes and confer new signaling modalities. We consider structure-based and physical screening methods that have led to the discovery of new reagents, focusing particularly on the former. We illustrate their use against previously untargeted or orphan GPCRs, against allosteric sites, and against classical orthosteric sites that selectively activate one downstream pathway over others. The ligands that emerge are often chemically novel, which can lead to new biological effects.
Collapse
|
20
|
Liu G, Huang W, Wang J, Liu X, Yang J, Zhang Y, Geng Y, Tan W, Zhang A. Discovery of Novel Macrocyclic Hedgehog Pathway Inhibitors Acting by Suppressing the Gli-Mediated Transcription. J Med Chem 2017; 60:8218-8245. [PMID: 28873303 DOI: 10.1021/acs.jmedchem.7b01185] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A systemic medicinal chemistry campaign was conducted based on a literature hit compound 5 bearing the 4,5-dihydro-2H-benzo[b][1,5]oxazocin-6(3H)-one core through cyclization of two side substituents of the bicyclic skeleton combined with N-atom walking or ring walking and the central ring expansion or extraction approaches, leading to several series of structurally unique tricyclic compounds. Among these, compound 29a was identified as the most potent against the Hedgehog (Hh) signaling pathway showing an IC50 value of 23 nM. Mechanism studies indicated that compound 29a inhibited the Hh signaling pathway by suppressing the expression of the transcriptional factors Gli rather than by interrupting the binding of Gli with DNA. We further observed that 29a was equally potent against both Smo wild type and the two major resistant mutants (Smo D473H and Smo W535L). It potently inhibited the proliferation of medulloblastoma cells and showed significant tumor growth inhibition in the ptch± ;p53-/- medulloblastoma allograft mice model. Though more studies are needed to clarify the precise interaction pattern of 29a with Gli, its promising in vitro and in vivo properties encourage further profiling as a new-generation Hh signaling inhibitor to treat tumors primarily or secondarily resistant to current Smo inhibitors.
Collapse
Affiliation(s)
- Gang Liu
- CAS Key Laboratory of Receptor Research, and the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM) , Shanghai 201203, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| | - Wenjing Huang
- Department of Pharmacology, School of Pharmacy, Fudan University , Shanghai 201203, China
| | - Juan Wang
- Department of Pharmacology, School of Pharmacy, Fudan University , Shanghai 201203, China
| | - Xiaohua Liu
- CAS Key Laboratory of Receptor Research, and the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM) , Shanghai 201203, China
| | - Jun Yang
- Department of Pharmacology, School of Pharmacy, Fudan University , Shanghai 201203, China
| | - Yu Zhang
- Department of Pharmacology, School of Pharmacy, Fudan University , Shanghai 201203, China
| | - Yong Geng
- CAS Key Laboratory of Receptor Research, and the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM) , Shanghai 201203, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| | - Wenfu Tan
- Department of Pharmacology, School of Pharmacy, Fudan University , Shanghai 201203, China
| | - Ao Zhang
- CAS Key Laboratory of Receptor Research, and the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM) , Shanghai 201203, China.,School of Life Science and Technology, ShanghaiTech University , Shanghai 201210, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| |
Collapse
|
21
|
Kremer L, Schultz-Fademrecht C, Baumann M, Habenberger P, Choidas A, Klebl B, Kordes S, Schöler HR, Sterneckert J, Ziegler S, Schneider G, Waldmann H. Discovery of a Novel Inhibitor of the Hedgehog Signaling Pathway through Cell-based Compound Discovery and Target Prediction. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201707394] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Lea Kremer
- Abteilung für Chemische Biologie; Max-Planck-Institut für Molekulare Physiologie; Otto-Hahn-Straße 11 44227 Dortmund Germany
- Fakultät für Chemie und Chemische Biologie; Technische Universität Dortmund; Otto-Hahn-Straße 6 44227 Dortmund Germany
| | | | - Matthias Baumann
- Lead Discovery Center GmbH; Otto-Hahn-Straße 15 44227 Dortmund Germany
| | - Peter Habenberger
- Lead Discovery Center GmbH; Otto-Hahn-Straße 15 44227 Dortmund Germany
| | - Axel Choidas
- Lead Discovery Center GmbH; Otto-Hahn-Straße 15 44227 Dortmund Germany
| | - Bert Klebl
- Lead Discovery Center GmbH; Otto-Hahn-Straße 15 44227 Dortmund Germany
| | - Susanne Kordes
- Lead Discovery Center GmbH; Otto-Hahn-Straße 15 44227 Dortmund Germany
- Abteilung Zell- und Entwicklungsbiologie; Max-Planck-Institut für Molekulare Biomedizin; Röntgenstraße 20 48149 Münster Germany
| | - Hans R. Schöler
- Abteilung Zell- und Entwicklungsbiologie; Max-Planck-Institut für Molekulare Biomedizin; Röntgenstraße 20 48149 Münster Germany
| | - Jared Sterneckert
- Abteilung Zell- und Entwicklungsbiologie; Max-Planck-Institut für Molekulare Biomedizin; Röntgenstraße 20 48149 Münster Germany
- DFG-Center for Regenerative Therapies; Cluster of Excellence; Technische Universität Dresden; Fetscherstr. 105 01307 Dresden Germany
| | - Slava Ziegler
- Abteilung für Chemische Biologie; Max-Planck-Institut für Molekulare Physiologie; Otto-Hahn-Straße 11 44227 Dortmund Germany
| | - Gisbert Schneider
- Institut für Pharmazeutische Wissenschaften; Departement Chemie und Angewandte Biowissenschaften; ETH Zürich; Vladimir-Prelog-Weg 4 8093 Zurich Switzerland
| | - Herbert Waldmann
- Abteilung für Chemische Biologie; Max-Planck-Institut für Molekulare Physiologie; Otto-Hahn-Straße 11 44227 Dortmund Germany
- Fakultät für Chemie und Chemische Biologie; Technische Universität Dortmund; Otto-Hahn-Straße 6 44227 Dortmund Germany
| |
Collapse
|
22
|
Kremer L, Schultz-Fademrecht C, Baumann M, Habenberger P, Choidas A, Klebl B, Kordes S, Schöler HR, Sterneckert J, Ziegler S, Schneider G, Waldmann H. Discovery of a Novel Inhibitor of the Hedgehog Signaling Pathway through Cell-based Compound Discovery and Target Prediction. Angew Chem Int Ed Engl 2017; 56:13021-13025. [PMID: 28833911 DOI: 10.1002/anie.201707394] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Indexed: 01/20/2023]
Abstract
Cell-based assays enable monitoring of small-molecule bioactivity in a target-agnostic manner and help uncover new biological mechanisms. Subsequent identification and validation of the small-molecule targets, typically employing proteomics techniques, is very challenging and limited, in particular if the targets are membrane proteins. Herein, we demonstrate that the combination of cell-based bioactive-compound discovery with cheminformatic target prediction may provide an efficient approach to accelerate the process and render target identification and validation more efficient. Using a cell-based assay, we identified the pyrazolo-imidazole smoothib as a new inhibitor of hedgehog (Hh) signaling and an antagonist of the protein smoothened (SMO) with a novel chemotype. Smoothib targets the heptahelical bundle of SMO, prevents its ciliary localization, reduces the expression of Hh target genes, and suppresses the growth of Ptch+/- medulloblastoma cells.
Collapse
Affiliation(s)
- Lea Kremer
- Abteilung für Chemische Biologie, Max-Planck-Institut für Molekulare Physiologie, Otto-Hahn-Straße 11, 44227, Dortmund, Germany.,Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | | | - Matthias Baumann
- Lead Discovery Center GmbH, Otto-Hahn-Straße 15, 44227, Dortmund, Germany
| | - Peter Habenberger
- Lead Discovery Center GmbH, Otto-Hahn-Straße 15, 44227, Dortmund, Germany
| | - Axel Choidas
- Lead Discovery Center GmbH, Otto-Hahn-Straße 15, 44227, Dortmund, Germany
| | - Bert Klebl
- Lead Discovery Center GmbH, Otto-Hahn-Straße 15, 44227, Dortmund, Germany
| | - Susanne Kordes
- Lead Discovery Center GmbH, Otto-Hahn-Straße 15, 44227, Dortmund, Germany.,Abteilung Zell- und Entwicklungsbiologie, Max-Planck-Institut für Molekulare Biomedizin, Röntgenstraße 20, 48149, Münster, Germany
| | - Hans R Schöler
- Abteilung Zell- und Entwicklungsbiologie, Max-Planck-Institut für Molekulare Biomedizin, Röntgenstraße 20, 48149, Münster, Germany
| | - Jared Sterneckert
- Abteilung Zell- und Entwicklungsbiologie, Max-Planck-Institut für Molekulare Biomedizin, Röntgenstraße 20, 48149, Münster, Germany.,DFG-Center for Regenerative Therapies, Cluster of Excellence, Technische Universität Dresden, Fetscherstr. 105, 01307, Dresden, Germany
| | - Slava Ziegler
- Abteilung für Chemische Biologie, Max-Planck-Institut für Molekulare Physiologie, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
| | - Gisbert Schneider
- Institut für Pharmazeutische Wissenschaften, Departement Chemie und Angewandte Biowissenschaften, ETH Zürich, Vladimir-Prelog-Weg 4, 8093, Zurich, Switzerland
| | - Herbert Waldmann
- Abteilung für Chemische Biologie, Max-Planck-Institut für Molekulare Physiologie, Otto-Hahn-Straße 11, 44227, Dortmund, Germany.,Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| |
Collapse
|
23
|
Scott CA, Marsden AN, Rebagliati MR, Zhang Q, Chamling X, Searby CC, Baye LM, Sheffield VC, Slusarski DC. Nuclear/cytoplasmic transport defects in BBS6 underlie congenital heart disease through perturbation of a chromatin remodeling protein. PLoS Genet 2017; 13:e1006936. [PMID: 28753627 PMCID: PMC5550010 DOI: 10.1371/journal.pgen.1006936] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 08/09/2017] [Accepted: 07/20/2017] [Indexed: 01/31/2023] Open
Abstract
Mutations in BBS6 cause two clinically distinct syndromes, Bardet-Biedl syndrome (BBS), a syndrome caused by defects in cilia transport and function, as well as McKusick-Kaufman syndrome, a genetic disorder characterized by congenital heart defects. Congenital heart defects are rare in BBS, and McKusick-Kaufman syndrome patients do not develop retinitis pigmentosa. Therefore, the McKusick-Kaufman syndrome allele may highlight cellular functions of BBS6 distinct from the presently understood functions in the cilia. In support, we find that the McKusick-Kaufman syndrome disease-associated allele, BBS6H84Y; A242S, maintains cilia function. We demonstrate that BBS6 is actively transported between the cytoplasm and nucleus, and that BBS6H84Y; A242S, is defective in this transport. We developed a transgenic zebrafish with inducible bbs6 to identify novel binding partners of BBS6, and we find interaction with the SWI/SNF chromatin remodeling protein Smarcc1a (SMARCC1 in humans). We demonstrate that through this interaction, BBS6 modulates the sub-cellular localization of SMARCC1 and find, by transcriptional profiling, similar transcriptional changes following smarcc1a and bbs6 manipulation. Our work identifies a new function for BBS6 in nuclear-cytoplasmic transport, and provides insight into the disease mechanism underlying the congenital heart defects in McKusick-Kaufman syndrome patients. To understand how mutations in one gene can cause two distinct human syndromes (McKusick-Kaufman syndrome and Bardet-Bield syndrome), we investigated the cellular functions of the implicated gene BBS6. We found that BBS6 is actively transported between the cytoplasm and nucleus, and this interaction is disrupted in McKusick-Kaufman syndrome, but not Bardet-Biedl syndrome. We find that by manipulating BBS6, we can affect another protein, SMARCC1, which has a direct role in regulating gene expression. When we profiled these changes in gene expression, we find that many genes, which can be directly linked to the symptoms of McKusick-Kaufman syndrome, are affected. Therefore, our data support that the nuclear-cytoplasmic transport defect of BBS6, through disruption of proteins controlling gene expression, cause the symptoms observed in McKusick-Kaufman syndrome patients.
Collapse
Affiliation(s)
- Charles Anthony Scott
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Autumn N. Marsden
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, Iowa, United States of America
| | - Michael R. Rebagliati
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Qihong Zhang
- Department of Pediatrics and Ophthalmology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Xitiz Chamling
- Department of Pediatrics and Ophthalmology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Charles C. Searby
- Department of Pediatrics and Ophthalmology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
| | - Lisa M. Baye
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Val C. Sheffield
- Department of Pediatrics and Ophthalmology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, United States of America
- Wynn Institute for Vision Research University of Iowa, Iowa City, Iowa, United States of America
| | - Diane C. Slusarski
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
- Wynn Institute for Vision Research University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
24
|
Blex C, Michaelis S, Schrey AK, Furkert J, Eichhorst J, Bartho K, Gyapon Quast F, Marais A, Hakelberg M, Gruber U, Niquet S, Popp O, Kroll F, Sefkow M, Schülein R, Dreger M, Köster H. Targeting G Protein-Coupled Receptors by Capture Compound Mass Spectrometry: A Case Study with Sertindole. Chembiochem 2017; 18:1639-1649. [PMID: 28557180 DOI: 10.1002/cbic.201700152] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Indexed: 01/06/2023]
Abstract
Unbiased chemoproteomic profiling of small-molecule interactions with endogenous proteins is important for drug discovery. For meaningful results, all protein classes have to be tractable, including G protein-coupled receptors (GPCRs). These receptors are hardly tractable by affinity pulldown from lysates. We report a capture compound (CC)-based strategy to target and identify GPCRs directly from living cells. We synthesized CCs with sertindole attached to the CC scaffold in different orientations to target the dopamine D2 receptor (DRD2) heterologously expressed in HEK 293 cells. The structure-activity relationship of sertindole for DRD2 binding was reflected in the activities of the sertindole CCs in radioligand displacement, cell-based assays, and capture compound mass spectrometry (CCMS). The activity pattern was rationalized by molecular modelling. The most-active CC showed activities very similar to that of unmodified sertindole. A concentration of DRD2 in living cells well below 100 fmol used as an experimental input was sufficient for unambiguous identification of captured DRD2 by mass spectrometry. Our new CCMS workflow broadens the arsenal of chemoproteomic technologies to close a critical gap for the comprehensive characterization of drug-protein interactions.
Collapse
Affiliation(s)
- Christian Blex
- caprotec bioanalytics GmbH, Magnusstrasse 11, 12489, Berlin, Germany.,Present address: Department of Neurology and Experimental Neurology, Charité, University Medicine Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Simon Michaelis
- caprotec bioanalytics GmbH, Magnusstrasse 11, 12489, Berlin, Germany
| | - Anna K Schrey
- caprotec bioanalytics GmbH, Magnusstrasse 11, 12489, Berlin, Germany.,Institute for Physiology/Structural Bioinformatics Group, Charité, University Medicine Berlin, Philippstrasse 12, 10115, Berlin, Germany
| | - Jens Furkert
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Jenny Eichhorst
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Kathrin Bartho
- caprotec bioanalytics GmbH, Magnusstrasse 11, 12489, Berlin, Germany.,Thermo Fisher Scientific GmbH, Im Steingrund 4-6, 63303, Dreieich, Germany
| | - Frederick Gyapon Quast
- caprotec bioanalytics GmbH, Magnusstrasse 11, 12489, Berlin, Germany.,Glycotope GmbH, Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Anett Marais
- caprotec bioanalytics GmbH, Magnusstrasse 11, 12489, Berlin, Germany.,Medical Bioinformatics, Centogene AG, Schillingstrasse 68, 18057, Berlin, Germany
| | | | - Uschi Gruber
- caprotec bioanalytics GmbH, Magnusstrasse 11, 12489, Berlin, Germany
| | - Sylvia Niquet
- caprotec bioanalytics GmbH, Magnusstrasse 11, 12489, Berlin, Germany
| | - Oliver Popp
- caprotec bioanalytics GmbH, Magnusstrasse 11, 12489, Berlin, Germany
| | - Friedrich Kroll
- caprotec bioanalytics GmbH, Magnusstrasse 11, 12489, Berlin, Germany.,YARA International, Hanninghof 35, 48249, Duelmen, Germany
| | - Michael Sefkow
- caprotec bioanalytics GmbH, Magnusstrasse 11, 12489, Berlin, Germany.,Celares GmbH, Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Ralf Schülein
- Leibniz-Institut für Molekulare Pharmakologie, Robert-Rössle-Strasse 10, 13125, Berlin, Germany
| | - Mathias Dreger
- caprotec bioanalytics GmbH, Magnusstrasse 11, 12489, Berlin, Germany
| | - Hubert Köster
- caprotec bioanalytics GmbH, Magnusstrasse 11, 12489, Berlin, Germany
| |
Collapse
|
25
|
Model-Based Discovery of Synthetic Agonists for the Zn 2+-Sensing G-Protein-Coupled Receptor 39 (GPR39) Reveals Novel Biological Functions. J Med Chem 2017; 60:886-898. [PMID: 28045522 DOI: 10.1021/acs.jmedchem.6b00648] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The G-protein-coupled receptor 39 (GPR39) is a G-protein-coupled receptor activated by Zn2+. We used a homology model-based approach to identify small-molecule pharmacological tool compounds for the receptor. The method focused on a putative binding site in GPR39 for synthetic ligands and knowledge of ligand binding to other receptors with similar binding pockets to select iterative series of minilibraries. These libraries were cherry-picked from all commercially available synthetic compounds. A total of only 520 compounds were tested in vitro, making this method broadly applicable for tool compound development. The compounds of the initial library were inactive when tested alone, but lead compounds were identified using Zn2+ as an allosteric enhancer. Highly selective, highly potent Zn2+-independent GPR39 agonists were found in subsequent minilibraries. These agonists identified GPR39 as a novel regulator of gastric somatostatin secretion.
Collapse
|
26
|
Thomas JR, Brittain SM, Lipps J, Llamas L, Jain RK, Schirle M. A Photoaffinity Labeling-Based Chemoproteomics Strategy for Unbiased Target Deconvolution of Small Molecule Drug Candidates. Methods Mol Biol 2017; 1647:1-18. [PMID: 28808992 DOI: 10.1007/978-1-4939-7201-2_1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The combination of photoaffinity labeling (PAL) and quantitative chemoproteomics enables the comprehensive, unbiased determination of protein interaction profiles to support target identification of bioactive small molecules. This approach is amenable to cells in culture and compatible with pharmacologically relevant transmembrane target classes like G-protein coupled receptors and ions channels which have been notoriously hard to access by conventional chemoproteomics approaches. Here, we describe a strategy that combines PAL probe titration and competition with excess parental compounds with the goal of enabling the identification of specific interactors as well as assessing the functional relevance of a binding event for the phenotype under investigation.
Collapse
Affiliation(s)
- Jason R Thomas
- Novartis Institutes for Biomedical Research, 181 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Scott M Brittain
- Novartis Institutes for Biomedical Research, 181 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Jennifer Lipps
- Novartis Institutes for Biomedical Research, 181 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Luis Llamas
- Novartis Institutes for Biomedical Research, 181 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Rishi K Jain
- Novartis Institutes for Biomedical Research, 181 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Markus Schirle
- Novartis Institutes for Biomedical Research, 181 Massachusetts Avenue, Cambridge, MA, 02139, USA.
| |
Collapse
|
27
|
Solasonine, A Natural Glycoalkaloid Compound, Inhibits Gli-Mediated Transcriptional Activity. Molecules 2016; 21:molecules21101364. [PMID: 27754442 PMCID: PMC6274431 DOI: 10.3390/molecules21101364] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 09/28/2016] [Accepted: 10/09/2016] [Indexed: 12/20/2022] Open
Abstract
The major obstacle limiting the efficacy of current Smoothened (Smo) inhibitors is the primary and acquired resistance mainly caused by Smo mutations and Gli amplification. In this context, developing Hh inhibitors targeting Gli, the final effector of this signaling pathway, may combat the resistance. In this study we found that solasonine, a natural glycoalkaloid compound, significantly inhibited the hedgehog (Hh) pathway activity. Meanwhile, solasonine may obviously inhibit the alkaline phosphatase (ALP) activity in C3H10T1/2 cells, concomitantly with reductions of the mRNA expression of Gli1 and Ptch1. However, we found that solasonine exhibited no effect on the transcriptional factors activities provoked by TNF-α and PGE2, thus suggesting its selectivity against Hh pathway activity. Furthermore, we identified that solasonine inhibited the Hh pathway activity by acting on its transcriptional factor Gli using a series of complementary data. We also observed that solasonine obviously inhibited the Gli-luciferase activity provoked by ectopic expression of Smo mutants which may cause the resistance to the current Smo inhibitors. Our study suggests that solasonine may significantly inhibit the Hh pathway activity by acting on Gli, therefore indicating the possibility to use solasonine as a lead compound to develop anticancer drugs for combating the resistance of current Smo inhibitors.
Collapse
|
28
|
Grüner BM, Schulze CJ, Yang D, Ogasawara D, Dix MM, Rogers ZN, Chuang CH, McFarland CD, Chiou SH, Brown JM, Cravatt BF, Bogyo M, Winslow MM. An in vivo multiplexed small-molecule screening platform. Nat Methods 2016; 13:883-889. [PMID: 27617390 DOI: 10.1038/nmeth.3992] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 08/01/2016] [Indexed: 01/04/2023]
Abstract
Phenotype-based small-molecule screening is a powerful method to identify molecules that regulate cellular functions. However, such screens are generally performed in vitro under conditions that do not necessarily model complex physiological conditions or disease states. Here, we use molecular cell barcoding to enable direct in vivo phenotypic screening of small-molecule libraries. The multiplexed nature of this approach allows rapid in vivo analysis of hundreds to thousands of compounds. Using this platform, we screened >700 covalent inhibitors directed toward hydrolases for their effect on pancreatic cancer metastatic seeding. We identified multiple hits and confirmed the relevant target of one compound as the lipase ABHD6. Pharmacological and genetic studies confirmed the role of this enzyme as a regulator of metastatic fitness. Our results highlight the applicability of this multiplexed screening platform for investigating complex processes in vivo.
Collapse
Affiliation(s)
- Barbara M Grüner
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Dian Yang
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Daisuke Ogasawara
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Melissa M Dix
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Zoë N Rogers
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Chen-Hua Chuang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Shin-Heng Chiou
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - J Mark Brown
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Benjamin F Cravatt
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA, USA
| | - Matthew Bogyo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.,Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA.,Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Monte M Winslow
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.,Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.,Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA.,Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
29
|
Kapoor S, Waldmann H, Ziegler S. Novel approaches to map small molecule–target interactions. Bioorg Med Chem 2016; 24:3232-45. [DOI: 10.1016/j.bmc.2016.05.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/10/2016] [Accepted: 05/12/2016] [Indexed: 10/24/2022]
|
30
|
Wang Y, Cornett A, King FJ, Mao Y, Nigsch F, Paris CG, McAllister G, Jenkins JL. Evidence-Based and Quantitative Prioritization of Tool Compounds in Phenotypic Drug Discovery. Cell Chem Biol 2016; 23:862-874. [PMID: 27427232 DOI: 10.1016/j.chembiol.2016.05.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 04/29/2016] [Accepted: 05/13/2016] [Indexed: 01/07/2023]
Abstract
The use of potent and selective chemical tools with well-defined targets can help elucidate biological processes driving phenotypes in phenotypic screens. However, identification of selective compounds en masse to create targeted screening sets is non-trivial. A systematic approach is needed to prioritize probes, which prevents the repeated use of published but unselective compounds. Here we performed a meta-analysis of integrated large-scale, heterogeneous bioactivity data to create an evidence-based, quantitative metric to systematically rank tool compounds for targets. Our tool score (TS) was then tested on hundreds of compounds by assessing their activity profiles in a panel of 41 cell-based pathway assays. We demonstrate that high-TS tools show more reliably selective phenotypic profiles than lower-TS compounds. Additionally we highlight frequently tested compounds that are non-selective tools and distinguish target family polypharmacology from cross-family promiscuity. TS can therefore be used to prioritize compounds from heterogeneous databases for phenotypic screening.
Collapse
Affiliation(s)
- Yuan Wang
- Novartis Institutes for BioMedical Research Inc., 250 Massachusetts Avenue, Cambridge, MA 02139, USA.
| | - Allen Cornett
- Novartis Institutes for BioMedical Research Inc., 250 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Fred J King
- Genomics Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, CA 92121, USA
| | - Yi Mao
- Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA
| | - Florian Nigsch
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, Basel 4056, Switzerland
| | - C Gregory Paris
- Novartis Institutes for BioMedical Research Inc., 250 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Gregory McAllister
- Novartis Institutes for BioMedical Research Inc., 250 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Jeremy L Jenkins
- Novartis Institutes for BioMedical Research Inc., 250 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
31
|
Maschinot CA, Pace JR, Hadden MK. Synthetic Small Molecule Inhibitors of Hh Signaling As Anti-Cancer Chemotherapeutics. Curr Med Chem 2016; 22:4033-57. [PMID: 26310919 DOI: 10.2174/0929867322666150827093904] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 08/25/2015] [Accepted: 08/26/2015] [Indexed: 12/11/2022]
Abstract
The hedgehog (Hh) pathway is a developmental signaling pathway that is essential to the proper embryonic development of many vertebrate systems. Dysregulation of Hh signaling has been implicated as a causative factor in the development and progression of several forms of human cancer. As such, the development of small molecule inhibitors of Hh signaling as potential anti-cancer chemotherapeutics has been a major area of research interest in both academics and industry over the past ten years. Through these efforts, synthetic small molecules that target multiple components of the Hh pathway have been identified and advanced to preclinical or clinical development. The goal of this review is to provide an update on the current status of several synthetic small molecule Hh pathway inhibitors and explore the potential of several recently disclosed inhibitory scaffolds.
Collapse
Affiliation(s)
| | | | - M K Hadden
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N Eagleville Rd, Unit 3092, Storrs, CT 06269-3092, USA.
| |
Collapse
|
32
|
Zhao Z, Lee RTH, Pusapati GV, Iyu A, Rohatgi R, Ingham PW. An essential role for Grk2 in Hedgehog signalling downstream of Smoothened. EMBO Rep 2016; 17:739-52. [PMID: 27113758 PMCID: PMC5341524 DOI: 10.15252/embr.201541532] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 03/07/2016] [Indexed: 01/28/2023] Open
Abstract
The G‐protein‐coupled receptor kinase 2 (adrbk2/GRK2) has been implicated in vertebrate Hedgehog (Hh) signalling based on the effects of its transient knock‐down in mammalian cells and zebrafish embryos. Here, we show that the response to Hh signalling is effectively abolished in the absence of Grk2 activity. Zebrafish embryos lacking all Grk2 activity are refractory to both Sonic hedgehog (Shh) and oncogenic Smoothened (Smo) activity, but remain responsive to inhibition of cAMP‐dependent protein kinase (PKA) activity. Mutation of the kinase domain abrogates the rescuing activity of grk2 mRNA, suggesting that Grk2 acts in a kinase‐dependent manner to regulate the response to Hh. Previous studies have suggested that Grk2 potentiates Smo activity by phosphorylating its C‐terminal tail (CTT). In the zebrafish embryo, however, phosphomimetic Smo does not display constitutive activity, whereas phospho‐null mutants retain activity, implying phosphorylation is neither sufficient nor necessary for Smo function. Since Grk2 rescuing activity requires the integrity of domains essential for its interaction with GPCRs, we speculate that Grk2 may regulate Hh pathway activity by downregulation of a GPCR.
Collapse
Affiliation(s)
- Zhonghua Zhao
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore Developmental and Biomedical Genetics Laboratory, Institute of Molecular and Cell Biology, Agency of Science, Technology and Research (A-STAR), Singapore, Singapore
| | - Raymond Teck Ho Lee
- Developmental and Biomedical Genetics Laboratory, Institute of Molecular and Cell Biology, Agency of Science, Technology and Research (A-STAR), Singapore, Singapore
| | - Ganesh V Pusapati
- Departments of Medicine and Biochemistry, School of Medicine, Stanford University, Stanford, CA, USA
| | - Audrey Iyu
- Developmental and Biomedical Genetics Laboratory, Institute of Molecular and Cell Biology, Agency of Science, Technology and Research (A-STAR), Singapore, Singapore
| | - Rajat Rohatgi
- Departments of Medicine and Biochemistry, School of Medicine, Stanford University, Stanford, CA, USA
| | - Philip W Ingham
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore Developmental and Biomedical Genetics Laboratory, Institute of Molecular and Cell Biology, Agency of Science, Technology and Research (A-STAR), Singapore, Singapore
| |
Collapse
|
33
|
Seow HF, Yip WK, Fifis T. Advances in targeted and immunobased therapies for colorectal cancer in the genomic era. Onco Targets Ther 2016; 9:1899-920. [PMID: 27099521 PMCID: PMC4821380 DOI: 10.2147/ott.s95101] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Targeted therapies require information on specific defective signaling pathways or mutations. Advances in genomic technologies and cell biology have led to identification of new therapeutic targets associated with signal-transduction pathways. Survival times of patients with colorectal cancer (CRC) can be extended with combinations of conventional cytotoxic agents and targeted therapies. Targeting EGFR- and VEGFR-signaling systems has been the major focus for treatment of metastatic CRC. However, there are still limitations in their clinical application, and new and better drug combinations are needed. This review provides information on EGFR and VEGF inhibitors, new therapeutic agents in the pipeline targeting EGFR and VEGFR pathways, and those targeting other signal-transduction pathways, such as MET, IGF1R, MEK, PI3K, Wnt, Notch, Hedgehog, and death-receptor signaling pathways for treatment of metastatic CRC. Additionally, multitargeted approaches in combination therapies targeting negative-feedback loops, compensatory networks, and cross talk between pathways are highlighted. Then, immunobased strategies to enhance antitumor immunity using specific monoclonal antibodies, such as the immune-checkpoint inhibitors anti-CTLA4 and anti-PD1, as well as the challenges that need to be overcome for increased efficacy of targeted therapies, including drug resistance, predictive markers of response, tumor subtypes, and cancer stem cells, are covered. The review concludes with a brief insight into the applications of next-generation sequencing, expression profiling for tumor subtyping, and the exciting progress made in in silico predictive analysis in the development of a prescription strategy for cancer therapy.
Collapse
Affiliation(s)
- Heng Fong Seow
- Immunology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Wai Kien Yip
- Immunology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Theodora Fifis
- Department of Surgery, University of Melbourne, Melbourne, Australia
| |
Collapse
|
34
|
Chen SR, Qiu HC, Hu Y, Wang Y, Wang YT. Herbal Medicine Offered as an Initiative Therapeutic Option for the Management of Hepatocellular Carcinoma. Phytother Res 2016; 30:863-77. [PMID: 26879574 DOI: 10.1002/ptr.5594] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/28/2015] [Accepted: 01/22/2016] [Indexed: 12/14/2022]
Abstract
Hepatocellular carcinoma (HCC) is a common malignant cancer and is the third leading cause of death worldwide. Effective treatment of this disease is limited by the complicated molecular mechanism underlying HCC pathogenesis. Thus, therapeutic options for HCC management are urgently needed. Targeting the Wnt/β-catenin, Hedgehog, Notch, and Hippo-YAP signaling pathways in cancer stem cell development has been extensively investigated as an alternative treatment. Herbal medicine has emerged as an initiative therapeutic option for HCC management because of its multi-level, multi-target, and coordinated intervention effects. In this article, we summarized the recent progress and clinical benefits of targeting the above mentioned signaling pathways and using natural products such as herbal medicine formulas to treat HCC. Proving the clinical success of herbal medicine is expected to deepen the knowledge on herbal medicine efficiency and hasten the adoption of new therapies. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Shao-Ru Chen
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao, SAR, China
| | - Hong-Cong Qiu
- Guangxi Institute of Traditional Medical and Pharmaceutical Sciences and Guangxi Key Laboratory of Traditional Chinese Medicine Quality Standards, Nanning, 530022, China
| | - Yang Hu
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao, SAR, China
| | - Ying Wang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao, SAR, China
| | - Yi-Tao Wang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao, SAR, China
| |
Collapse
|
35
|
Antoniou A, Chatzopoulou M, Bantzi M, Athanassopoulos CM, Giannis A, Pitsinos EN. Identification of Gli-mediated transcription inhibitors through synthesis and evaluation of taepeenin D analogues. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00354k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abietic acid derivatives related to taepeenin D were identified as new Hh pathway inhibitors that operate downstream of Smo.
Collapse
Affiliation(s)
- A. Antoniou
- Natural Products Synthesis & Bioorganic Chemistry Laboratory
- I.N.N
- NCSR “Demokritos”
- Athens
- Greece
| | - M. Chatzopoulou
- Natural Products Synthesis & Bioorganic Chemistry Laboratory
- I.N.N
- NCSR “Demokritos”
- Athens
- Greece
| | - M. Bantzi
- Universität Leipzig, Fakultät für Chemie und Mineralogie
- Institut für Organische Chemie
- 04103 Leipzig
- Germany
| | - C. M. Athanassopoulos
- Laboratory of Synthetic Organic Chemistry
- Department of Chemistry
- University of Patras
- Patras
- Greece
| | - A. Giannis
- Universität Leipzig, Fakultät für Chemie und Mineralogie
- Institut für Organische Chemie
- 04103 Leipzig
- Germany
| | - E. N. Pitsinos
- Natural Products Synthesis & Bioorganic Chemistry Laboratory
- I.N.N
- NCSR “Demokritos”
- Athens
- Greece
| |
Collapse
|
36
|
Fjellström O, Larsson N, Yasuda SI, Tsuchida T, Oguma T, Marley A, Wennberg-Huldt C, Hovdal D, Fukuda H, Yoneyama Y, Sasaki K, Johansson A, Lundqvist S, Brengdahl J, Isaacs RJ, Brown D, Geschwindner S, Benthem L, Priest C, Turnbull A. Novel Zn2+ Modulated GPR39 Receptor Agonists Do Not Drive Acute Insulin Secretion in Rodents. PLoS One 2015; 10:e0145849. [PMID: 26720709 PMCID: PMC4697807 DOI: 10.1371/journal.pone.0145849] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 12/09/2015] [Indexed: 12/24/2022] Open
Abstract
Type 2 diabetes (T2D) occurs when there is insufficient insulin release to control blood glucose, due to insulin resistance and impaired β-cell function. The GPR39 receptor is expressed in metabolic tissues including pancreatic β-cells and has been proposed as a T2D target. Specifically, GPR39 agonists might improve β-cell function leading to more adequate and sustained insulin release and glucose control. The present study aimed to test the hypothesis that GPR39 agonism would improve glucose stimulated insulin secretion in vivo. A high throughput screen, followed by a medicinal chemistry program, identified three novel potent Zn2+ modulated GPR39 agonists. These agonists were evaluated in acute rodent glucose tolerance tests. The results showed a lack of glucose lowering and insulinotropic effects not only in lean mice, but also in diet-induced obese (DIO) mice and Zucker fatty rats. It is concluded that Zn2+ modulated GPR39 agonists do not acutely stimulate insulin release in rodents.
Collapse
Affiliation(s)
- Ola Fjellström
- Medicinal Chemistry CVMD iMed, AstraZeneca R&D Gothenburg, Mölndal, Sweden
- * E-mail:
| | - Niklas Larsson
- Discovery Sciences, AstraZeneca R&D Gothenburg, Mölndal, Sweden
| | - Shin-ichiro Yasuda
- Pharmacology Research Laboratories II, Mitsubishi Tanabe Pharma Corporation, Kawagishi, Toda-shi, Saitama, Japan
| | - Takuma Tsuchida
- Pharmacology Research Laboratories II, Mitsubishi Tanabe Pharma Corporation, Kawagishi, Toda-shi, Saitama, Japan
| | - Takahiro Oguma
- Pharmacology Research Laboratories II, Mitsubishi Tanabe Pharma Corporation, Kawagishi, Toda-shi, Saitama, Japan
| | - Anna Marley
- Discovery Sciences, AstraZeneca R&D, Mereside, United Kingdom
| | | | - Daniel Hovdal
- DMPK CVMD iMed, AstraZeneca R&D Gothenburg, Mölndal, Sweden
| | - Hajime Fukuda
- DMPK Research Laboratories, Mitsubishi Tanabe Pharma Corporation, Kawagishi, Toda-shi, Saitama, Japan
| | - Yukimi Yoneyama
- DMPK Research Laboratories, Mitsubishi Tanabe Pharma Corporation, Kawagishi, Toda-shi, Saitama, Japan
| | - Kazuyo Sasaki
- Pharmacology Research Laboratories II, Mitsubishi Tanabe Pharma Corporation, Kawagishi, Toda-shi, Saitama, Japan
| | - Anders Johansson
- Medicinal Chemistry CVMD iMed, AstraZeneca R&D Gothenburg, Mölndal, Sweden
| | - Sara Lundqvist
- Discovery Sciences, AstraZeneca R&D Gothenburg, Mölndal, Sweden
| | - Johan Brengdahl
- Discovery Sciences, AstraZeneca R&D Gothenburg, Mölndal, Sweden
| | - Richard J. Isaacs
- Molecular Sensing, Inc., Nashville, Tennessee, United States of America
| | - Daniel Brown
- Molecular Sensing, Inc., Nashville, Tennessee, United States of America
| | | | | | - Claire Priest
- Discovery Sciences, AstraZeneca R&D, Mereside, United Kingdom
| | | |
Collapse
|
37
|
Mori M, Cau Y, Vignaroli G, Laurenzana I, Caivano A, Vullo D, Supuran CT, Botta M. Hit Recycling: Discovery of a Potent Carbonic Anhydrase Inhibitor by in Silico Target Fishing. ACS Chem Biol 2015; 10:1964-9. [PMID: 26121309 DOI: 10.1021/acschembio.5b00337] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In silico target fishing is an emerging tool in drug discovery, which is mostly used for primary target or off-target prediction and drug repositioning. In this work, we developed an in silico target fishing protocol to identify the primary target of GV2-20, a false-positive hit highlighted in a cell-based screen for 14-3-3 modulators. Although GV2-20 does not bind to 14-3-3 proteins, it showed remarkable antiproliferative effects in CML cells, thus raising interest toward the identification of its primary target. Six potential targets of GV2-20 were prioritized in silico and tested in vitro. Our results show that the molecule is a potent inhibitor of carbonic anhydrase 2 (CA2), thus confirming the predictive capability of our protocol. Most notably, GV2-20 experienced a remarkable selectivity for CA2, CA7, CA9, and CA12, and its scaffold was never explored before as a chemotype for CA inhibition, thus becoming an interesting lead candidate for further development.
Collapse
Affiliation(s)
- Mattia Mori
- Dipartimento
di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via Aldo Moro 2, I-53100 Siena, Italy
- Center
for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, viale Regina Elena 291, I-00161 Roma, Italy
| | - Ylenia Cau
- Dipartimento
di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Giulia Vignaroli
- Dipartimento
di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via Aldo Moro 2, I-53100 Siena, Italy
| | - Ilaria Laurenzana
- IRCCS-Centro di Riferimento Oncologico Basilicata (CROB), Laboratory of Preclinical and Translational Research, Via Padre Pio 1, Rionero in Vulture 85028 Potenza, Italy
| | - Antonella Caivano
- IRCCS-Centro di Riferimento Oncologico Basilicata (CROB), Laboratory of Preclinical and Translational Research, Via Padre Pio 1, Rionero in Vulture 85028 Potenza, Italy
| | - Daniela Vullo
- Dipartimento
di Chimica, Laboratorio di Chimica Bioinorganica, Università degli Studi di Firenze, Polo Scientifico, Via della Lastruccia 3, 50019 Sesto Fiorentino (Firenze), Italy
| | - Claudiu T. Supuran
- Dipartimento
di Chimica, Laboratorio di Chimica Bioinorganica, Università degli Studi di Firenze, Polo Scientifico, Via della Lastruccia 3, 50019 Sesto Fiorentino (Firenze), Italy
- Dipartimento
NEUROFARBA, Sezione di Scienze Farmaceutiche, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Firenze), Italy
| | - Maurizio Botta
- Dipartimento
di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, via Aldo Moro 2, I-53100 Siena, Italy
- Sbarro Institute
for Cancer Research and Molecular Medicine, Center for Biotechnology,
College of Science and Technology, Temple University, BioLife Science
Building, Suite 333, 1900 N 12th Street, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
38
|
Schou KB, Pedersen LB, Christensen ST. Ins and outs of GPCR signaling in primary cilia. EMBO Rep 2015; 16:1099-113. [PMID: 26297609 DOI: 10.15252/embr.201540530] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 07/01/2015] [Indexed: 12/17/2022] Open
Abstract
Primary cilia are specialized microtubule-based signaling organelles that convey extracellular signals into a cellular response in most vertebrate cell types. The physiological significance of primary cilia is underscored by the fact that defects in assembly or function of these organelles lead to a range of severe diseases and developmental disorders. In most cell types of the human body, signaling by primary cilia involves different G protein-coupled receptors (GPCRs), which transmit specific signals to the cell through G proteins to regulate diverse cellular and physiological events. Here, we provide an overview of GPCR signaling in primary cilia, with main focus on the rhodopsin-like (class A) and the smoothened/frizzled (class F) GPCRs. We describe how such receptors dynamically traffic into and out of the ciliary compartment and how they interact with other classes of ciliary GPCRs, such as class B receptors, to control ciliary function and various physiological and behavioral processes. Finally, we discuss future avenues for developing GPCR-targeted drug strategies for the treatment of ciliopathies.
Collapse
|
39
|
Schirle M, Jenkins JL. Identifying compound efficacy targets in phenotypic drug discovery. Drug Discov Today 2015; 21:82-89. [PMID: 26272035 DOI: 10.1016/j.drudis.2015.08.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 07/10/2015] [Accepted: 08/03/2015] [Indexed: 12/30/2022]
Abstract
The identification of the efficacy target(s) for hits from phenotypic compound screens remains a key step to progress compounds into drug development. In addition to efficacy targets, the characterization of epistatic proteins influencing compound activity often facilitates the elucidation of the underlying mechanism of action; and, further, early determination of off-targets that cause potentially unwanted secondary phenotypes helps in assessing potential liabilities. This short review discusses the most important technologies currently available for characterizing the direct and indirect target space of bioactive compounds following phenotypic screening. We present a comprehensive strategy employing complementary approaches to balance individual technology strengths and weaknesses.
Collapse
Affiliation(s)
- Markus Schirle
- Developmental & Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA.
| | - Jeremy L Jenkins
- Developmental & Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA.
| |
Collapse
|
40
|
Not so Fast: Co-Requirements for Sonic Hedgehog Induced Brain Tumorigenesis. Cancers (Basel) 2015; 7:1484-98. [PMID: 26258793 PMCID: PMC4586781 DOI: 10.3390/cancers7030848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 07/30/2015] [Accepted: 08/03/2015] [Indexed: 01/17/2023] Open
Abstract
The Sonic hedgehog (Shh) pathway plays an integral role in cellular proliferation during normal brain development and also drives growth in a variety of cancers including brain cancer. Clinical trials of Shh pathway inhibitors for brain tumors have yielded disappointing results, indicating a more nuanced role for Shh signaling. We postulate that Shh signaling does not work alone but requires co-activation of other signaling pathways for tumorigenesis and stem cell maintenance. This review will focus on the interplay between the Shh pathway and these pathways to promote tumor growth in brain tumors, presenting opportunities for the study of combinatorial therapies.
Collapse
|
41
|
Targeting GLI factors to inhibit the Hedgehog pathway. Trends Pharmacol Sci 2015; 36:547-58. [DOI: 10.1016/j.tips.2015.05.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/14/2015] [Accepted: 05/15/2015] [Indexed: 12/17/2022]
|
42
|
Mace OJ, Tehan B, Marshall F. Pharmacology and physiology of gastrointestinal enteroendocrine cells. Pharmacol Res Perspect 2015. [PMID: 26213627 PMCID: PMC4506687 DOI: 10.1002/prp2.155] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Gastrointestinal (GI) polypeptides are secreted from enteroendocrine cells (EECs). Recent technical advances and the identification of endogenous and synthetic ligands have enabled exploration of the pharmacology and physiology of EECs. Enteroendocrine signaling pathways stimulating hormone secretion involve multiple nutrient transporters and G protein-coupled receptors (GPCRs), which are activated simultaneously under prevailing nutrient conditions in the intestine following a meal. The majority of studies investigate hormone secretion from EECs in response to single ligands and although the mechanisms behind how individual signaling pathways generate a hormonal output have been well characterized, our understanding of how these signaling pathways converge to generate a single hormone secretory response is still in its infancy. However, a picture is beginning to emerge of how nutrients and full, partial, or allosteric GPCR ligands differentially regulate the enteroendocrine system and its interaction with the enteric and central nervous system. So far, activation of multiple pathways underlies drug discovery efforts to harness the therapeutic potential of the enteroendocrine system to mimic the phenotypic changes observed in patients who have undergone Roux-en-Y gastric surgery. Typically obese patients exhibit ∼30% weight loss and greater than 80% of obese diabetics show remission of diabetes. Targeting combinations of enteroendocrine signaling pathways that work synergistically may manifest with significant, differentiated EEC secretory efficacy. Furthermore, allosteric modulators with their increased selectivity, self-limiting activity, and structural novelty may translate into more promising enteroendocrine drugs. Together with the potential to bias enteroendocrine GPCR signaling and/or to activate multiple divergent signaling pathways highlights the considerable range of therapeutic possibilities available. Here, we review the pharmacology and physiology of the EEC system.
Collapse
Affiliation(s)
- O J Mace
- Heptares Therapeutics Ltd BioPark, Broadwater Road, Welwyn Garden City, AL7 3AX, United Kingdom
| | - B Tehan
- Heptares Therapeutics Ltd BioPark, Broadwater Road, Welwyn Garden City, AL7 3AX, United Kingdom
| | - F Marshall
- Heptares Therapeutics Ltd BioPark, Broadwater Road, Welwyn Garden City, AL7 3AX, United Kingdom
| |
Collapse
|
43
|
Zhao H, Qiao J, Zhang S, Zhang H, Lei X, Wang X, Deng Z, Ning L, Cao Y, Guo Y, Liu S, Duan E. GPR39 marks specific cells within the sebaceous gland and contributes to skin wound healing. Sci Rep 2015; 5:7913. [PMID: 25604641 PMCID: PMC4300488 DOI: 10.1038/srep07913] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 12/19/2014] [Indexed: 12/28/2022] Open
Abstract
G protein-coupled receptors (GPCRs) mediate multiple key biological processes in the body. The orphan receptor GPR39 has been reported to be involved in various pathophysiological events. However, the function of GPR39 in skin biology remains unknown. Using a genetically engineered mouse strain in which lacZ expression faithfully replaced endogenous Gpr39 expression, we discovered a unique expression pattern of Gpr39 in the sebaceous gland (SG). Using various methods, we confirmed that GPR39 marked a specific cell population at the opening of the SG and colocalised with the SG stem cell marker Blimp1. Further investigations showed that GPR39 was spatiotemporally expressed during skin wound repair. Although it was dispensable for skin development and homeostasis, GPR39 contributed positively to skin wound healing: its loss led to a delay in wound healing during the intermediate stage. The present study reveals a novel role of GPR39 in both dermatology and stem cell biology that has not been previously recognised.
Collapse
Affiliation(s)
- Huashan Zhao
- 1] State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China [2] University of Chinese Academy of Sciences, Beijing, China
| | - Jingqiao Qiao
- College of Animal Science and Technology, Beijing University of Agriculture, China
| | - Shoubing Zhang
- Department of Histology&Embryology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Huishan Zhang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiaohua Lei
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xinyue Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhili Deng
- 1] State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China [2] University of Chinese Academy of Sciences, Beijing, China
| | - Lina Ning
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yujing Cao
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yong Guo
- College of Animal Science and Technology, Beijing University of Agriculture, China
| | - Shuang Liu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Enkui Duan
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
44
|
Peukert S, Hughes R, Nunez J, He G, Yan Z, Jain R, Llamas L, Luchansky S, Carlson A, Liang G, Kunjathoor V, Pietropaolo M, Shapiro J, Castellana A, Wu X, Bose A. Discovery of 2-Pyridylpyrimidines as the First Orally Bioavailable GPR39 Agonists. ACS Med Chem Lett 2014; 5:1114-8. [PMID: 25313322 DOI: 10.1021/ml500240d] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 08/04/2014] [Indexed: 11/29/2022] Open
Abstract
The identification of highly potent and orally bioavailable GPR39 agonists is reported. Compound 1, found in a phenotypic screening campaign, was transformed into compound 2 with good activity on both the rat and human GPR39 receptor. This compound was further optimized to improve ligand efficiency and pharmacokinetic properties to yield GPR39 agonists for the potential oral treatment of type 2 diabetes. Thus, compound 3 is the first potent GPR39 agonist (EC50s ≤ 1 nM for human and rat receptor) that is orally bioavailable in mice and robustly induced acute GLP-1 levels.
Collapse
Affiliation(s)
- Stefan Peukert
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Richard Hughes
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jill Nunez
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Guo He
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Zhao Yan
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Rishi Jain
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Luis Llamas
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Sarah Luchansky
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Adam Carlson
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Guiqing Liang
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Vidya Kunjathoor
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Mike Pietropaolo
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jeffrey Shapiro
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Anja Castellana
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Xiaoping Wu
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Avirup Bose
- Novartis Institutes for BioMedical Research, 250 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
45
|
Blagg J, Workman P. Chemical biology approaches to target validation in cancer. Curr Opin Pharmacol 2014; 17:87-100. [PMID: 25175311 DOI: 10.1016/j.coph.2014.07.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 07/15/2014] [Accepted: 07/16/2014] [Indexed: 02/06/2023]
Abstract
Target validation is a crucial element of drug discovery. Especially given the wealth of potential targets emerging from cancer genome sequencing and functional genetic screens, and also considering the time and cost of downstream drug discovery efforts, it is essential to build confidence in a proposed target, ideally using different technical approaches. We argue that complementary biological and chemical biology strategies are essential for robust target validation. We discuss recent progress in the discovery and application of high quality chemical tools and other chemical biology approaches to target validation in cancer. Among other topical examples, we highlight the emergence of designed irreversible chemical tools to study potential target proteins and oncogenic pathways that were hitherto regarded as poorly druggable.
Collapse
Affiliation(s)
- Julian Blagg
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, UK.
| | - Paul Workman
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, UK.
| |
Collapse
|
46
|
Pal K, Mukhopadhyay S. Primary cilium and sonic hedgehog signaling during neural tube patterning: Role of GPCRs and second messengers. Dev Neurobiol 2014; 75:337-48. [DOI: 10.1002/dneu.22193] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/09/2014] [Accepted: 05/22/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Kasturi Pal
- Department of Cell Biology; UT Southwestern Medical Center; Dallas Texas 75390
| | - Saikat Mukhopadhyay
- Department of Cell Biology; UT Southwestern Medical Center; Dallas Texas 75390
| |
Collapse
|
47
|
Banerjee U, Hadden MK. Recent advances in the design of Hedgehog pathway inhibitors for the treatment of malignancies. Expert Opin Drug Discov 2014; 9:751-71. [PMID: 24850423 DOI: 10.1517/17460441.2014.920817] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION The Hedgehog (Hh) signaling pathway is known to be dysregulated in several forms of cancer. Hence, specifically targeting this signaling cascade is a valid and promising strategy for successful therapeutic intervention. Several components within the Hh pathway have been proven to be druggable; however, challenges in the discovery and development process for small molecules targeting this pathway have been identified. AREAS COVERED This review details both the current state and future potential of Hh pathway inhibitors as anticancer chemotherapeutics that target a variety of human malignancies. EXPERT OPINION The initial development of Hh pathway inhibitors focused on small-molecule antagonists of Smoothened, a transmembrane protein that is a key regulator of pathway signaling. More recently, efforts to identify and develop inhibitors of pathway signaling that function through alternate mechanisms have been increasing. However, none of these have advanced into clinical trials. Further, early evidence suggesting the broad application of Hh pathway inhibitors as a monotherapy in a wide range of human cancers has not been validated. The potential for Hh pathway inhibitors as combination therapy has demonstrated promising preclinical results. However, more research to identify rational drug combinations to fully explore the potential of this anticancer drug class is warranted.
Collapse
Affiliation(s)
- Upasana Banerjee
- University of Connecticut, Department of Pharmaceutical Sciences , 69 N Eagleville Rd, Unit 3092, Storrs, CT 06269-3092 , USA +1 860 486 8446 ;
| | | |
Collapse
|
48
|
Harrison C. A new player in Hedgehog signalling. Nat Rev Drug Discov 2014. [DOI: 10.1038/nrd4321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|