1
|
Pei ZF, Vior NM, Zhu L, Truman AW, Nair SK. Biosynthesis of peptide-nucleobase hybrids in ribosomal peptides. Nat Chem Biol 2025; 21:143-154. [PMID: 39285006 DOI: 10.1038/s41589-024-01736-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 08/20/2024] [Indexed: 12/25/2024]
Abstract
The main biopolymers in nature are oligonucleotides and polypeptides. However, naturally occurring peptide-nucleobase hybrids are rare. Here we report the characterization of the founding member of a class of peptide-nucleobase hybrid natural products with a pyrimidone motif from a widely distributed ribosomally synthesized and post-translationally modified (RiPP) biosynthetic pathway. This pathway features two steps where a heteromeric RRE-YcaO-dehydrogenase complex catalyzes the formation of a six-membered pyrimidone ring from an asparagine residue on the precursor peptide, and an acyl esterase selectively recognizes this moiety to cleave the C-terminal follower peptide. Mechanistic studies reveal that the pyrimidone formation occurs in a substrate-assisted catalysis manner, requiring a His residue in the precursor to activate asparagine for heterocyclization. Our study expands the chemotypes of RiPP natural products and the catalytic scope of YcaO enzymes. This discovery opens avenues to create artificial biohybrid molecules that resemble both peptide and nucleobase, a modality of growing interest.
Collapse
Affiliation(s)
- Zeng-Fei Pei
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Natalia M Vior
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK
| | - Lingyang Zhu
- School of Chemical Sciences NMR Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Andrew W Truman
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK
| | - Satish K Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
2
|
Steude EG, Dieckhaus H, Pelton JM, Kuhlman B, Bowers AA. Assessing substrate scope of the cyclodehydratase LynD by mRNA display-enabled machine learning models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618330. [PMID: 39464139 PMCID: PMC11507813 DOI: 10.1101/2024.10.14.618330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Many of the biosynthetic pathways for ribosomal synthesized and post-translationally modified peptide (RiPP) natural products make use of multi-domain enzymes with separate recruitment and catalysis domains that separately bind and modify peptide substrates. This "division of labor" allows RiPP enzymes to use relatively open and promiscuous active sites to perform chemistry at multiple residues within a peptide substrate seemingly regardless of the surrounding context. Defining, measuring, and predicting the seemingly broad substrate promiscuity of RiPPs necessitates high throughput assays, capable of assessing activity against very large libraries of peptides. Using mRNA display, a high throughput peptide display technology, we examine the substrate promiscuity of the RiPP cyclodehydratase, LynD. The vast substrate profiling that can be done with mRNA display enables the construction of deep learning models for accurate prediction of substrate processing by LynD. These models further inform on epistatic interactions involved in enzymatic processing. This work will facilitate the further elucidation of other RiPP enzymes and enable their use in the modification of mRNA display libraries for selection of modified peptide-based inhibitors and therapeutics.
Collapse
|
3
|
Wang M, Wu M, Han M, Niu X, Fan A, Zhu S, Tong Y. Mining the Biosynthetic Landscape of Lactic Acid Bacteria Unearths a New Family of RiPPs Assembled by a Novel Type of ThiF-like Adenylyltransferases. ACS OMEGA 2024; 9:30891-30903. [PMID: 39035879 PMCID: PMC11256085 DOI: 10.1021/acsomega.4c03760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/23/2024]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are chemically diverse natural products of ribosomal origin. These peptides, which frequently act as signals or antimicrobials, are biosynthesized by conserved enzymatic machinery, making genome mining a powerful strategy for unearthing previously uncharacterized members of their class. Herein, we investigate the untapped biosynthetic potential of Lactobacillales (i.e., lactic acid bacteria), an order of Gram-positive bacteria closely associated with human life, including pathogenic species and industrially relevant fermenters of dairy products. Through genome mining methods, we systematically explored the distribution and diversity of ThiF-like adenylyltransferase-utilizing RiPP systems in lactic acid bacteria and identified a number of unprecedented biosynthetic gene clusters. In one of these clusters, we found a previously undescribed group of macrocyclic imide biosynthetic pathways containing multiple transporters that may be involved in a potential quorum sensing (QS) system. Through in vitro assays, we determined that one such adenylyltransferase specifically catalyzes the intracyclization of its precursor peptide through macrocyclic imide formation. Incubating the enzyme with various primary amines revealed that it could effectively amidate the C-terminus of the precursor peptide. This new transformation adds to the growing list of Nature's peptide macrocyclization strategies and expands the impressive catalytic repertoire of the adenylyltransferase family. The diverse RiPP systems identified herein represent a vast, unexploited landscape for the discovery of a novel class of natural products and QS systems.
Collapse
Affiliation(s)
- Mengjiao Wang
- College
of Life Science and Technology, Beijing
University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Mengyue Wu
- State
Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, People’s
Republic of China
| | - Meng Han
- MOE
Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Xiaogang Niu
- Beijing
Nuclear Magnetic Resonance Center, College of Chemistry and Molecular
Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Aili Fan
- State
Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, People’s
Republic of China
| | - Shaozhou Zhu
- National
Institutes for Food and Drug Control, Beijing 102629, People’s Republic of China
| | - Yigang Tong
- College
of Life Science and Technology, Beijing
University of Chemical Technology, Beijing 100029, People’s Republic of China
| |
Collapse
|
4
|
Li H, Ding W, Zhang Q. Discovery and engineering of ribosomally synthesized and post-translationally modified peptide (RiPP) natural products. RSC Chem Biol 2024; 5:90-108. [PMID: 38333193 PMCID: PMC10849128 DOI: 10.1039/d3cb00172e] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/17/2023] [Indexed: 02/10/2024] Open
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) represent a diverse superfamily of natural products with immense potential for drug development. This review provides a concise overview of the recent advances in the discovery of RiPP natural products, focusing on rational strategies such as bioactivity guided screening, enzyme or precursor-based genome mining, and biosynthetic engineering. The challenges associated with activating silent biosynthetic gene clusters and the development of elaborate catalytic systems are also discussed. The logical frameworks emerging from these research studies offer valuable insights into RiPP biosynthesis and engineering, paving the way for broader pharmaceutic applications of these peptide natural products.
Collapse
Affiliation(s)
- He Li
- Department of Chemistry, Fudan University Shanghai 200433 China
| | - Wei Ding
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University Shanghai 200240 China
| | - Qi Zhang
- Department of Chemistry, Fudan University Shanghai 200433 China
| |
Collapse
|
5
|
Arias-Orozco P, Zhou L, Yi Y, Cebrián R, Kuipers OP. Uncovering the diversity and distribution of biosynthetic gene clusters of prochlorosins and other putative RiPPs in marine Synechococcus strains. Microbiol Spectr 2024; 12:e0361123. [PMID: 38088546 PMCID: PMC10783134 DOI: 10.1128/spectrum.03611-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/06/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE Genome mining studies have revealed the remarkable combinatorial diversity of ribosomally synthesized and post-translationally modified peptides (RiPPs) in marine bacteria, including prochlorosins. However, mining strategies also prove valuable in investigating the genomic landscape of associated genes within biosynthetic gene cluster (BGC) specific to targeted RiPPs of interest. Our study contributes to the enrichment of knowledge regarding prochlorosin diversity. It offers insights into potential mechanisms involved in their biosynthesis and modification, such as hyper-modification, which may give rise to active lantibiotics. Additionally, our study uncovers putative novel promiscuous post-translational enzymes, thereby expanding the chemical space explored within the Synechococcus genus. Moreover, this research extends the applications of mining techniques beyond the discovery of new RiPP-like clusters, allowing for a deeper understanding of genomics and diversity. Furthermore, it holds the potential to reveal previously unknown functions within the intriguing RiPP families, particularly in the case of prochlorosins.
Collapse
Affiliation(s)
- Patricia Arias-Orozco
- Department of Molecular Genetics, University of Groningen, Nijenborgh, Groningen, The Netherlands
| | - Lu Zhou
- Department of Molecular Genetics, University of Groningen, Nijenborgh, Groningen, The Netherlands
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Yunhai Yi
- Department of Molecular Genetics, University of Groningen, Nijenborgh, Groningen, The Netherlands
| | - Rubén Cebrián
- Department of Molecular Genetics, University of Groningen, Nijenborgh, Groningen, The Netherlands
- Department of Clinical Microbiology, Instituto de Investigación Biosanitaria ibs.GRANADA, San Cecilio University Hospital, Granada, Spain
- CIBER de Enfermedades Infecciosas, CIBERINFEC, ISCIII, Madrid, Spain
| | - Oscar P. Kuipers
- Department of Molecular Genetics, University of Groningen, Nijenborgh, Groningen, The Netherlands
| |
Collapse
|
6
|
Calvopina-Chavez DG, Bursey DM, Tseng YJ, Patil LM, Bewley KD, Bennallack PR, McPhie JM, Wagstaff KB, Daley A, Miller SM, Moody JD, Price JC, Griffitts JS. Micrococcin cysteine-to-thiazole conversion through transient interactions between a scaffolding protein and two modification enzymes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.23.563616. [PMID: 37961320 PMCID: PMC10634744 DOI: 10.1101/2023.10.23.563616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a broad group of compounds mediating microbial competition in nature. Azole/azoline heterocycle formation in the peptide backbone is a key step in the biosynthesis of many RiPPs. Heterocycle formation in RiPP precursors is often carried out by a scaffold protein, an ATP-dependent cyclodehydratase, and an FMN-dependent dehydrogenase. It has generally been assumed that the orchestration of these modifications is carried out by a stable complex including the scaffold, cyclodehydratase and dehydrogenase. The antimicrobial RiPP micrococcin begins as a precursor peptide (TclE) with a 35-amino acid N-terminal leader and a 14-amino acid C-terminal core containing six Cys residues that are converted to thiazoles. The putative scaffold protein (TclI) presumably presents the TclE substrate to a cyclodehydratase (TclJ) and a dehydrogenase (TclN) to accomplish the two-step installation of the six thiazoles. In this study, we identify a minimal TclE leader region required for thiazole formation, we demonstrate complex formation between TclI, TclJ and TclN, and further define regions of these proteins required for complex formation. Our results point to a mechanism of thiazole installation in which TclI associates with the two enzymes in a mutually exclusive fashion, such that each enzyme competes for access to the peptide substrate in a dynamic equilibrium, thus ensuring complete modification of each Cys residue in the TclE core.
Collapse
Affiliation(s)
| | - Devan M Bursey
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602
| | - Yi-Jie Tseng
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| | - Leena M Patil
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| | - Kathryn D Bewley
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143
- Currently at: Genentech Inc, San Francisco, CA 94080
| | - Philip R Bennallack
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602
- Currently at: Werfen North America, Bedford, MA 01730
| | - Josh M McPhie
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| | - Kimberly B Wagstaff
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| | - Anisha Daley
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| | - Susan M Miller
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA 94143
| | - James D Moody
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| | - John C Price
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602
| | - Joel S Griffitts
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602
| |
Collapse
|
7
|
Fernandez-Cantos MV, Garcia-Morena D, Yi Y, Liang L, Gómez-Vázquez E, Kuipers OP. Bioinformatic mining for RiPP biosynthetic gene clusters in Bacteroidales reveals possible new subfamily architectures and novel natural products. Front Microbiol 2023; 14:1219272. [PMID: 37469430 PMCID: PMC10352776 DOI: 10.3389/fmicb.2023.1219272] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/16/2023] [Indexed: 07/21/2023] Open
Abstract
The Bacteroidales order, widely distributed among diverse human populations, constitutes a key component of the human microbiota. Members of this Gram-negative order have been shown to modulate the host immune system, play a fundamental role in the gut's microbial food webs, or be involved in pathogenesis. Bacteria inhabiting such a complex environment as the human microbiome are expected to display social behaviors and, hence, possess factors that mediate cooperative and competitive interactions. Different types of molecules can mediate interference competition, including non-ribosomal peptides (NRPs), polyketides, and bacteriocins. The present study investigates the potential of Bacteroidales bacteria to biosynthesize class I bacteriocins, which are ribosomally synthesized and post-translationally modified peptides (RiPPs). For this purpose, 1,136 genome-sequenced strains from this order were mined using BAGEL4. A total of 1,340 areas of interest (AOIs) were detected. The most commonly identified enzymes involved in RiPP biosynthesis were radical S-adenosylmethionine (rSAM), either alone or in combination with other biosynthetic enzymes such as YcaO. A more comprehensive analysis of a subset of 9 biosynthetic gene clusters (BGCs) revealed a consistent association in Bacteroidales BGCs between peptidase-containing ATP-binding transporters (PCATs) and precursor peptides with GG-motifs. This finding suggests a possibly shared mechanism for leader peptide cleavage and transport of mature products. Notably, human metagenomic studies showed a high prevalence and abundance of the RiPP BGCs from Phocaeicola vulgatus and Porphyromonas gulae. The mature product of P. gulae BGC is hypothesized to display γ-thioether linkages and a C-terminal backbone amidine, a potential new combination of post-translational modifications (PTM). All these findings highlight the RiPP biosynthetic potential of Bacteroidales bacteria, as a rich source of novel peptide structures of possible relevance in the human microbiome context.
Collapse
Affiliation(s)
- Maria Victoria Fernandez-Cantos
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Diego Garcia-Morena
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Yunhai Yi
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | | | - Emilio Gómez-Vázquez
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Oscar P. Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| |
Collapse
|
8
|
YcaO-mediated ATP-dependent peptidase activity in ribosomal peptide biosynthesis. Nat Chem Biol 2023; 19:111-119. [PMID: 36280794 DOI: 10.1038/s41589-022-01141-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 08/11/2022] [Indexed: 12/31/2022]
Abstract
YcaO enzymes catalyze ATP-dependent post-translation modifications on peptides, including the installation of (ox/thi)azoline, thioamide and/or amidine moieties. Here we demonstrate that, in the biosynthesis of the bis-methyloxazolic alkaloid muscoride A, the YcaO enzyme MusD carries out both ATP-dependent cyclodehydration and peptide bond cleavage, which is a mechanism unprecedented for such a reaction. YcaO-catalyzed modifications are proposed to occur through a backbone O-phosphorylated intermediate, but this mechanism remains speculative. We report, to our knowedge, the first characterization of an acyl-phosphate species consistent with the proposed mechanism for backbone amide activation. The 3.1-Å-resolution cryogenic electron microscopy structure of MusD along with biochemical analysis allow identification of residues that enable peptide cleavage reaction. Bioinformatics analysis identifies other cyanobactin pathways that may deploy bifunctional YcaO enzymes. Our structural, mutational and mechanistic studies expand the scope of modifications catalyzed by YcaO proteins to include peptide hydrolysis and provide evidence for a unifying mechanism for the catalytically diverse outcomes.
Collapse
|
9
|
Mahanta N, PH K, KS S, Das S, G. D. Recent Advancements in Bottromycin Biosynthesis. Synlett 2022. [DOI: 10.1055/s-0042-1751373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
AbstractBottromycin is a structurally complex cyclic peptidic compound isolated from Streptomyces bottropensis and related organisms and belongs to the RiPP family of natural products (ribosomally synthesized and post-translationally modified peptides). It exhibits potent antibacterial properties against gram-positive pathogens (including drug resistant strains such as MRSA, MIC 1 μg/mL and VRE, MIC 0.5 μg/mL) and mycoplasma. Bottromycin blocks the binding of the aminoacyl-tRNA to the A-site on the 50S ribosome and hence inhibits protein synthesis. Bottromycins contain structurally diverse post-translational modifications (PTMs) on a small peptide (GPVVVFDC) including a unique macrocyclic amidine, rare β-methylation, terminal thiazole heterocycle, oxidative decarboxylation, and Asp epimerization, among others. It exhibits a precursor peptide organization with a C-terminal follower peptide and a N-terminal core peptide. There are several new studies reported recently which gave detailed insights into the bottromycin biosynthesis pathway. This Account highlights the current advancements in understanding the biosynthetic pathway of bottromycin focusing mainly on the biochemically and structurally characterized enzymes and intricate details of the peptide–protein biophysical interactions. These studies have provided a strong foundation for conducting combinatorial biosynthesis and synthetic biological studies to create novel bottromycin variants for therapeutic applications.1 Introduction2 Biosynthetic Pathway for Bottromycin3 Enzymology of Bottromycin Biosynthesis3.1 Cleavage of Methionine (BotP)3.2 Radical SAM Methyltransferases (BotRMT1, BotRMT2, BotRMT3)3.3 ATP-Dependent YcaO Enzymes3.3.1 Thiazoline Formation by BotC3.3.2 Macrolactamidine Formation by BotCD3.4 Follower Peptide Hydrolysis (BotAH)3.5 Aspartate Epimerization (BotH)3.6 Oxidative Decarboxylation (BotCYP)3.7 O-Methyltransferase (BotOMT)4 Heterologous Bottromycin Production and Analogue Preparation5 Summary and Outlook
Collapse
|
10
|
Comparative Metagenomic Analysis of Biosynthetic Diversity across Sponge Microbiomes Highlights Metabolic Novelty, Conservation, and Diversification. mSystems 2022; 7:e0035722. [PMID: 35862823 PMCID: PMC9426513 DOI: 10.1128/msystems.00357-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Marine sponges and their microbial symbiotic communities are rich sources of diverse natural products (NPs) that often display biological activity, yet little is known about the global distribution of NPs and the symbionts that produce them. Since the majority of sponge symbionts remain uncultured, it is a challenge to characterize their NP biosynthetic pathways, assess their prevalence within the holobiont, and measure the diversity of NP biosynthetic gene clusters (BGCs) across sponge taxa and environments. Here, we explore the microbial biosynthetic landscapes of three high-microbial-abundance (HMA) sponges from the Atlantic Ocean and the Mediterranean Sea. This data set reveals striking novelty, with <1% of the recovered gene cluster families (GCFs) showing similarity to any characterized BGC. When zooming in on the microbial communities of each sponge, we observed higher variability of specialized metabolic and taxonomic profiles between sponge species than within species. Nonetheless, we identified conservation of GCFs, with 20% of sponge GCFs being shared between at least two sponge species and a GCF core comprised of 6% of GCFs shared across all species. Within this functional core, we identified a set of widespread and diverse GCFs encoding nonribosomal peptide synthetases that are potentially involved in the production of diversified ether lipids, as well as GCFs putatively encoding the production of highly modified proteusins. The present work contributes to the small, yet growing body of data characterizing NP landscapes of marine sponge symbionts and to the cryptic biosynthetic potential contained in this environmental niche. IMPORTANCE Marine sponges and their microbial symbiotic communities are a rich source of diverse natural products (NPs). However, little is known about the sponge NP global distribution landscape and the symbionts that produce them. Here, we make use of recently developed tools to perform untargeted mining and comparative analysis of sponge microbiome metagenomes of three sponge species in the first study considering replicate metagenomes of multiple sponge species. We present an overview of the biosynthetic diversity across these sponge holobionts, which displays extreme biosynthetic novelty. We report not only the conservation of biosynthetic and taxonomic diversity but also a core of conserved specialized metabolic pathways. Finally, we highlight several novel GCFs with unknown ecological function, and observe particularly high biosynthetic potential in Acidobacteriota and Latescibacteria symbionts. This study paves the way toward a better understanding of the marine sponge holobionts' biosynthetic potential and the functional and ecological role of sponge microbiomes.
Collapse
|
11
|
Gu W, Zheng Y, Pogorelov T, Nair SK, Schmidt EW. Control of Nucleophile Chemoselectivity in Cyanobactin YcaO Heterocyclases PatD and TruD. ACS Chem Biol 2022; 17:1215-1225. [PMID: 35420020 DOI: 10.1021/acschembio.2c00147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Members of the YcaO superfamily are among the most common post-translational modification enzymes in natural product biosynthesis, with wide usage in biotechnology and synthetic biology applications. Here, we use domain-swapped chimeras and discovered unstructured regions in cyanobactin YcaOs that guide interactions with the substrates, governing access to interior amino acids in the substrates and explaining the chemoselectivity between PatD and TruD. These results define how the cyanobactin heterocyclases modify exceptionally sequence diverse substrates, yet with a high degree of positional and nucleophile selectivity.
Collapse
Affiliation(s)
- Wenjia Gu
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | | | | | | | - Eric W. Schmidt
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
12
|
Mohite OS, Lloyd CJ, Monk JM, Weber T, Palsson BO. Pangenome analysis of Enterobacteria reveals richness of secondary metabolite gene clusters and their associated gene sets. Synth Syst Biotechnol 2022; 7:900-910. [PMID: 35647330 PMCID: PMC9125672 DOI: 10.1016/j.synbio.2022.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 11/25/2022] Open
Abstract
In silico genome mining provides easy access to secondary metabolite biosynthetic gene clusters (BGCs) encoding the biosynthesis of many bioactive compounds, which are the basis for many important drugs used in human medicine. However, the association between BGCs and other functions encoded in the genomes of producers have remained elusive. Here, we present a systems biology workflow that integrates genome mining with a detailed pangenome analysis for detecting genes associated with a particular BGC. We analyzed 3,889 enterobacterial genomes and found 13,266 BGCs, represented by 252 distinct BGC families and 347 additional singletons. A pangenome analysis revealed 88 genes putatively associated with a specific BGC coding for the colon cancer-related colibactin that code for diverse metabolic and regulatory functions. The presented workflow opens up the possibility to discover novel secondary metabolites, better understand their physiological roles, and provides a guide to identify and analyze BGC associated gene sets.
Collapse
|
13
|
Lewis JK, Jochimsen AS, Lefave SJ, Young AP, Kincannon WM, Roberts AG, Kieber-Emmons MT, Bandarian V. New Role for Radical SAM Enzymes in the Biosynthesis of Thio(seleno)oxazole RiPP Natural Products. Biochemistry 2021; 60:3347-3361. [PMID: 34730336 DOI: 10.1021/acs.biochem.1c00469] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ribosomally synthesized post-translationally modified peptides (RiPPs) are ubiquitous and represent a structurally diverse class of natural products. The ribosomally encoded precursor polypeptides are often extensively modified post-translationally by enzymes that are encoded by coclustered genes. Radical S-adenosyl-l-methionine (SAM) enzymes catalyze numerous chemically challenging transformations. In RiPP biosynthetic pathways, these transformations include the formation of C-H, C-C, C-S, and C-O linkages. In this paper, we show that the Geobacter lovleyi sbtM gene encodes a radical SAM protein, SbtM, which catalyzes the cyclization of a Cys/SeCys residue in a minimal peptide substrate. Biochemical studies of this transformation support a mechanism involving H-atom abstraction at the C-3 of the substrate Cys to initiate the chemistry. Several possible cyclization products were considered. The collective biochemical, spectroscopic, mass spectral, and computational observations point to a thiooxazole as the product of the SbtM-catalyzed modification. To our knowledge, this is the first example of a radical SAM enzyme that catalyzes a transformation involving a SeCys-containing peptide and represents a new paradigm for formation of oxazole-containing RiPP natural products.
Collapse
Affiliation(s)
- Julia K Lewis
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Andrew S Jochimsen
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Sarah J Lefave
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Anthony P Young
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - William M Kincannon
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Andrew G Roberts
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Matthew T Kieber-Emmons
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Vahe Bandarian
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
14
|
Russell AH, Vior NM, Hems ES, Lacret R, Truman AW. Discovery and characterisation of an amidine-containing ribosomally-synthesised peptide that is widely distributed in nature. Chem Sci 2021; 12:11769-11778. [PMID: 34659714 PMCID: PMC8442711 DOI: 10.1039/d1sc01456k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/31/2021] [Indexed: 12/30/2022] Open
Abstract
Ribosomally synthesised and post-translationally modified peptides (RiPPs) are a structurally diverse class of natural product with a wide range of bioactivities. Genome mining for RiPP biosynthetic gene clusters (BGCs) is often hampered by poor annotation of the short precursor peptides that are ultimately modified into the final molecule. Here, we utilise a previously described genome mining tool, RiPPER, to identify novel RiPP precursor peptides near YcaO-domain proteins, enzymes that catalyse various RiPP post-translational modifications including heterocyclisation and thioamidation. Using this dataset, we identified a novel and diverse family of RiPP BGCs spanning over 230 species of Actinobacteria and Firmicutes. A representative BGC from Streptomyces albidoflavus J1074 (formerly known as Streptomyces albus) was characterised, leading to the discovery of streptamidine, a novel amidine-containing RiPP. This new BGC family highlights the breadth of unexplored natural products with structurally rare features, even in model organisms.
Collapse
Affiliation(s)
- Alicia H Russell
- Department of Molecular Microbiology, John Innes Centre Norwich NR4 7UH UK
| | - Natalia M Vior
- Department of Molecular Microbiology, John Innes Centre Norwich NR4 7UH UK
| | - Edward S Hems
- Department of Molecular Microbiology, John Innes Centre Norwich NR4 7UH UK
| | - Rodney Lacret
- Department of Molecular Microbiology, John Innes Centre Norwich NR4 7UH UK
| | - Andrew W Truman
- Department of Molecular Microbiology, John Innes Centre Norwich NR4 7UH UK
| |
Collapse
|
15
|
Pei ZF, Yang MJ, Zhang K, Jian XH, Tang GL. Heterologous characterization of mechercharmycin A biosynthesis reveals alternative insights into post-translational modifications for RiPPs. Cell Chem Biol 2021; 29:650-659.e5. [PMID: 34474009 DOI: 10.1016/j.chembiol.2021.08.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/12/2021] [Accepted: 08/12/2021] [Indexed: 11/03/2022]
Abstract
Mechercharmycin A (MCM-A) is a marine natural product belonging to a family of polyazole cyclopeptides with remarkable bioactivities and unique structures. Identification, heterologous expression, and genetic characterizations of the MCM biosynthetic gene cluster in Bacillus subtilis revealed that it is a ribosomally synthesized and post-translationally modified peptide (RiPP) possessing complex with distinctive modifications. Based on this heterologous expression system, two MCM analogs with comparable antitumor activity are generated by engineering the biosynthetic pathway. Combinatorial co-production of a precursor peptide with different modifying enzymes in Escherichia coli identifies a different timing of modifications, showing that a tRNAGlu-dependent highly regioselective dehydration is the first modification step, followed by polyazole formation through heterocyclization and dehydrogenation in an N- to C-terminal direction. Therefore, a rational biosynthetic pathway of MCMs is proposed, which unveils a subfamily of azol(in)e-containing RiPPs and sets the stage for further investigations of the enzymatic mechanism and synthetic biology.
Collapse
Affiliation(s)
- Zeng-Fei Pei
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Min-Jie Yang
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Kai Zhang
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xiao-Hong Jian
- College of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Gong-Li Tang
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China; School of Chemistry and Material Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China.
| |
Collapse
|
16
|
Liu A, Si Y, Dong SH, Mahanta N, Penkala HN, Nair SK, Mitchell DA. Functional elucidation of TfuA in peptide backbone thioamidation. Nat Chem Biol 2021; 17:585-592. [PMID: 33707784 PMCID: PMC8084935 DOI: 10.1038/s41589-021-00771-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 02/11/2021] [Indexed: 01/31/2023]
Abstract
YcaO enzymes catalyze several post-translational modifications on peptide substrates, including thioamidation, which substitutes an amide oxygen with sulfur. Most predicted thioamide-forming YcaO enzymes are encoded adjacent to TfuA, which when present, is required for thioamidation. While activation of the peptide amide backbone is well established for YcaO enzymes, the function of TfuA has remained enigmatic. Here we characterize the TfuA protein involved in methyl-coenzyme M reductase thioamidation and demonstrate that TfuA catalyzes the hydrolysis of thiocarboxylated ThiS (ThiS-COSH), a proteinaceous sulfur donor, and enhances the affinity of YcaO toward the thioamidation substrate. We also report a crystal structure of a TfuA, which displays a new protein fold. Our structural and mutational analyses of TfuA have uncovered conserved binding interfaces with YcaO and ThiS in addition to revealing a hydrolase-like active site featuring a Ser-Lys catalytic pair.
Collapse
Affiliation(s)
- Andi Liu
- Department of Microbiology, University of Illinois, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, USA
| | - Yuanyuan Si
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, USA
- Department of Chemistry, University of Illinois, Urbana, IL, USA
| | - Shi-Hui Dong
- Department of Biochemistry, University of Illinois, Urbana, IL, USA
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Nilkamal Mahanta
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, USA
- Department of Chemistry, University of Illinois, Urbana, IL, USA
- Department of Chemistry, Indian Institute of Technology Dharwad, Karnataka, India
| | - Haley N Penkala
- Department of Microbiology, University of Illinois, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, USA
| | - Satish K Nair
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, USA
- Department of Chemistry, University of Illinois, Urbana, IL, USA
- Department of Biochemistry, University of Illinois, Urbana, IL, USA
| | - Douglas A Mitchell
- Department of Microbiology, University of Illinois, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, USA.
- Department of Chemistry, University of Illinois, Urbana, IL, USA.
| |
Collapse
|
17
|
Malit JJL, Wu C, Liu LL, Qian PY. Global Genome Mining Reveals the Distribution of Diverse Thioamidated RiPP Biosynthesis Gene Clusters. Front Microbiol 2021; 12:635389. [PMID: 33995295 PMCID: PMC8120280 DOI: 10.3389/fmicb.2021.635389] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Thioamidated ribosomally synthesized and post-translationally modified peptides (RiPPs) are recently characterized natural products with wide range of potent bioactivities, such as antibiotic, antiproliferative, and cytotoxic activities. These peptides are distinguished by the presence of thioamide bonds in the peptide backbone catalyzed by the YcaO-TfuA protein pair with its genes adjacent to each other. Genome mining has facilitated an in silico approach to identify biosynthesis gene clusters (BGCs) responsible for thioamidated RiPP production. In this work, publicly available genomic data was used to detect and illustrate the diversity of putative BGCs encoding for thioamidated RiPPs. AntiSMASH and RiPPER analysis identified 613 unique TfuA-related gene cluster families (GCFs) and 797 precursor peptide families, even on phyla where the presence of these clusters have not been previously described. Several additional biosynthesis genes are colocalized with the detected BGCs, suggesting an array of possible chemical modifications. This study shows that thioamidated RiPPs occupy a widely unexplored chemical landscape.
Collapse
Affiliation(s)
- Jessie James Limlingan Malit
- Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Chuanhai Wu
- Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ling-Li Liu
- Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, China.,Shaanxi Key Laboratory of Natural Products and Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, China
| | - Pei-Yuan Qian
- Department of Ocean Science and Hong Kong Branch of Southern Marine Science and Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
18
|
Canu N, Moutiez M, Belin P, Gondry M. Cyclodipeptide synthases: a promising biotechnological tool for the synthesis of diverse 2,5-diketopiperazines. Nat Prod Rep 2021; 37:312-321. [PMID: 31435633 DOI: 10.1039/c9np00036d] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Covering: Up to mid-2019 Cyclodipeptide synthases (CDPSs) catalyse the formation of cyclodipeptides using aminoacylated-tRNA as substrates. The recent characterization of large sets of CDPSs has revealed that they can produce highly diverse products, and therefore have great potential for use in the production of different 2,5-diketopiperazines (2,5-DKPs). Sequence similarity networks (SSNs) are presented as a new, efficient way of classifying CDPSs by specificity and identifying new CDPS likely to display novel specificities. Several strategies for further increasing the diversity accessible with these enzymes are discussed here, including the incorporation of non-canonical amino acids by CDPSs and use of the remarkable diversity of 2,5-DKP-tailoring enzymes discovered in recent years.
Collapse
Affiliation(s)
- Nicolas Canu
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France.
| | - Mireille Moutiez
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France.
| | - Pascal Belin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France.
| | - Muriel Gondry
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France.
| |
Collapse
|
19
|
Montalbán-López M, Scott TA, Ramesh S, Rahman IR, van Heel AJ, Viel JH, Bandarian V, Dittmann E, Genilloud O, Goto Y, Grande Burgos MJ, Hill C, Kim S, Koehnke J, Latham JA, Link AJ, Martínez B, Nair SK, Nicolet Y, Rebuffat S, Sahl HG, Sareen D, Schmidt EW, Schmitt L, Severinov K, Süssmuth RD, Truman AW, Wang H, Weng JK, van Wezel GP, Zhang Q, Zhong J, Piel J, Mitchell DA, Kuipers OP, van der Donk WA. New developments in RiPP discovery, enzymology and engineering. Nat Prod Rep 2021; 38:130-239. [PMID: 32935693 PMCID: PMC7864896 DOI: 10.1039/d0np00027b] [Citation(s) in RCA: 450] [Impact Index Per Article: 112.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Covering: up to June 2020Ribosomally-synthesized and post-translationally modified peptides (RiPPs) are a large group of natural products. A community-driven review in 2013 described the emerging commonalities in the biosynthesis of RiPPs and the opportunities they offered for bioengineering and genome mining. Since then, the field has seen tremendous advances in understanding of the mechanisms by which nature assembles these compounds, in engineering their biosynthetic machinery for a wide range of applications, and in the discovery of entirely new RiPP families using bioinformatic tools developed specifically for this compound class. The First International Conference on RiPPs was held in 2019, and the meeting participants assembled the current review describing new developments since 2013. The review discusses the new classes of RiPPs that have been discovered, the advances in our understanding of the installation of both primary and secondary post-translational modifications, and the mechanisms by which the enzymes recognize the leader peptides in their substrates. In addition, genome mining tools used for RiPP discovery are discussed as well as various strategies for RiPP engineering. An outlook section presents directions for future research.
Collapse
|
20
|
Zane GM, Wall JD, De León KB. Novel Mode of Molybdate Inhibition of Desulfovibrio vulgaris Hildenborough. Front Microbiol 2020; 11:610455. [PMID: 33391236 PMCID: PMC7774982 DOI: 10.3389/fmicb.2020.610455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/19/2020] [Indexed: 11/25/2022] Open
Abstract
Sulfate-reducing microorganisms (SRM) are found in multiple environments and play a major role in global carbon and sulfur cycling. Because of their growth capabilities and association with metal corrosion, controlling the growth of SRM has become of increased interest. One such mechanism of control has been the use of molybdate (MoO4 2-), which is thought to be a specific inhibitor of SRM. The way in which molybdate inhibits the growth of SRM has been enigmatic. It has been reported that molybdate is involved in a futile energy cycle with the sulfate-activating enzyme, sulfate adenylyl transferase (Sat), which results in loss of cellular ATP. However, we show here that a deletion of this enzyme in the model SRM, Desulfovibrio vulgaris Hildenborough, remained sensitive to molybdate. We performed several subcultures of the ∆sat strain in the presence of increasing concentrations of molybdate and obtained a culture with increased resistance to the inhibitor (up to 3 mM). The culture was re-sequenced and three single nucleotide polymorphisms (SNPs) were identified that were not present in the parental strain. Two of the SNPs seemed unlikely candidates for molybdate resistance due to a lack of conservation of the mutated residues in homologous genes of closely related strains. The remaining SNP was located in DVU2210, a protein containing two domains: a YcaO-like domain and a tetratricopeptide-repeat domain. The SNP resulted in a change of a serine residue to arginine in the ATP-hydrolyzing motif of the YcaO-like domain. Deletion mutants of each of the three genes apparently enriched with SNPs in the presence of inhibitory molybdate and combinations of these genes were generated in the Δsat and wild-type strains. Strains lacking both sat and DVU2210 became more resistant to molybdate. Deletions of the other two genes in which SNPs were observed did not result in increased resistance to molybdate. YcaO-like proteins are distributed across the bacterial and archaeal domains, though the function of these proteins is largely unknown. The role of this protein in D. vulgaris is unknown. Due to the distribution of YcaO-like proteins in prokaryotes, the veracity of molybdate as a specific SRM inhibitor should be reconsidered.
Collapse
|
21
|
Hou SY, Zhang MY, Wang HD, Zhang YX. Biosynthesis Gene Cluster and Oxazole Ring Formation Enzyme for Inthomycins in Streptomyces sp. Strain SYP-A7193. Appl Environ Microbiol 2020; 86:e01388-20. [PMID: 32801183 PMCID: PMC7531957 DOI: 10.1128/aem.01388-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/08/2020] [Indexed: 11/20/2022] Open
Abstract
Inthomycins belong to a growing family of oxazole-containing polyketides and exhibit a broad spectrum of anti-oomycete and herbicidal activities. In this study, we purified inthomycins A and B from the metabolites of Streptomyces sp. strain SYP-A7193 and determined their chemical structures. Genome sequencing, comparative genomic analysis, and gene disruption of Streptomyces sp. SYP-A7193 showed that the inthomycin biosynthetic gene cluster (itm) belonged to the hybrid polyketide synthase (PKS)/nonribosomal peptide synthetase (NRPS) system. Functional domain comparison and disruption/complementation experiments of itm12 resulted in the complete loss of inthomycins A and B and the subsequent restoration of their production, confirming that itm12 encodes a discrete acyltransferase (AT), and hence, itm was considered to belong to the trans-AT type I PKS system. Moreover, the disruption/complementation experiments of itm15 also resulted in the loss and restoration of inthomycin A and B formation. Further gene cloning, expression, purification, and activity verification of itm15 revealed that Itm15 is a cyclodehydratase that catalyzes a straight-chain dehydration reaction to form an oxazole ring for the biosynthesis of inthomycins A and B. Thus, we discovered a novel enzyme that catalyzes oxazole ring formation and elucidated the complete biosynthetic pathway of inthomycins.IMPORTANCEStreptomyces species produce numerous secondary metabolites with diverse structures and pharmacological activities that are beneficial for human health and have several applications in agriculture. In this study, hybrid nonribosomal peptide synthetase/polyketide synthase metabolites inthomycins A and B were isolated from after fermenting Streptomyces sp. SYP-A7193. Genome sequencing, gene disruption, gene complementation, heterologous expression, and activity assay revealed that the biosynthesis gene assembly line of inthomycins A and B was a 95.3-kb trans-AT type I PKS system in the strain SYP-A7193. More importantly, Itm15, a cyclodehydratase, was identified to be an oxazole ring formation enzyme required for the biosynthesis of inthomycins A and B; it is significant to discover this catalyzation reaction in the PKS/NRPS system in the field of microbiology. Our findings could provide further insights into the diversity of trans-AT type I PKS systems and the mechanism of oxazole cyclization involved in the biosynthesis of natural products.
Collapse
Affiliation(s)
- Shao-Yang Hou
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Meng-Yue Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Hong-Da Wang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Yi-Xuan Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| |
Collapse
|
22
|
Minimal lactazole scaffold for in vitro thiopeptide bioengineering. Nat Commun 2020; 11:2272. [PMID: 32385237 PMCID: PMC7210931 DOI: 10.1038/s41467-020-16145-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/06/2020] [Indexed: 12/16/2022] Open
Abstract
Lactazole A is a cryptic thiopeptide from Streptomyces lactacystinaeus, encoded by a compact 9.8 kb biosynthetic gene cluster. Here, we establish a platform for in vitro biosynthesis of lactazole A, referred to as the FIT-Laz system, via a combination of the flexible in vitro translation (FIT) system with recombinantly produced lactazole biosynthetic enzymes. Systematic dissection of lactazole biosynthesis reveals remarkable substrate tolerance of the biosynthetic enzymes and leads to the development of the minimal lactazole scaffold, a construct requiring only 6 post-translational modifications for macrocyclization. Efficient assembly of such minimal thiopeptides with FIT-Laz opens access to diverse lactazole analogs with 10 consecutive mutations, 14- to 62-membered macrocycles, and 18 amino acid-long tail regions, as well as to hybrid thiopeptides containing non-proteinogenic amino acids. This work suggests that the minimal lactazole scaffold is amenable to extensive bioengineering and opens possibilities to explore untapped chemical space of thiopeptides. Lactazole A is a thiopeptide from Streptomyces lactacystinaeus, encoded by a compact 9.8 kb biosynthetic gene cluster. Here, the authors show a platform for in vitro biosynthesis of lactazole A via a combination of a flexible in vitro translation system with recombinantly produced lactazole biosynthetic enzymes.
Collapse
|
23
|
Du Y, Qiu Y, Meng X, Feng J, Tao J, Liu W. A Heterotrimeric Dehydrogenase Complex Functions with 2 Distinct YcaO Proteins to Install 5 Azole Heterocycles into 35-Membered Sulfomycin Thiopeptides. J Am Chem Soc 2020; 142:8454-8463. [DOI: 10.1021/jacs.0c02329] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yanan Du
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yanping Qiu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xiang Meng
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Junyin Feng
- Huzhou Center of Bio-Synthetic Innovation, 1366 Hongfeng Road, Huzhou 313000, China
| | - Jiang Tao
- Department of General Dentistry, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai 200011, China
| | - Wen Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- Huzhou Center of Bio-Synthetic Innovation, 1366 Hongfeng Road, Huzhou 313000, China
| |
Collapse
|
24
|
Sikandar A, Franz L, Melse O, Antes I, Koehnke J. Thiazoline-Specific Amidohydrolase PurAH Is the Gatekeeper of Bottromycin Biosynthesis. J Am Chem Soc 2019; 141:9748-9752. [DOI: 10.1021/jacs.8b12231] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Asfandyar Sikandar
- Workgroup Structural
Biology of Biosynthetic Enzymes, Helmholtz Institute for Pharmaceutical
Research Saarland, Helmholtz Centre for Infection Research, Saarland University, Campus Geb. E8.1, 66123 Saarbrücken, Germany
| | - Laura Franz
- Workgroup Structural
Biology of Biosynthetic Enzymes, Helmholtz Institute for Pharmaceutical
Research Saarland, Helmholtz Centre for Infection Research, Saarland University, Campus Geb. E8.1, 66123 Saarbrücken, Germany
| | - Okke Melse
- Center for
Integrated
Protein Science Munich at the TUM School of Life Sciences, Technische Universität München, Emil-Erlenmeyer-Forum 8, 85354 Freising, Germany
| | - Iris Antes
- Center for
Integrated
Protein Science Munich at the TUM School of Life Sciences, Technische Universität München, Emil-Erlenmeyer-Forum 8, 85354 Freising, Germany
| | - Jesko Koehnke
- Workgroup Structural
Biology of Biosynthetic Enzymes, Helmholtz Institute for Pharmaceutical
Research Saarland, Helmholtz Centre for Infection Research, Saarland University, Campus Geb. E8.1, 66123 Saarbrücken, Germany
| |
Collapse
|
25
|
Natural thiopeptides as a privileged scaffold for drug discovery and therapeutic development. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02361-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
26
|
Dong SH, Liu A, Mahanta N, Mitchell DA, Nair SK. Mechanistic Basis for Ribosomal Peptide Backbone Modifications. ACS CENTRAL SCIENCE 2019; 5:842-851. [PMID: 31139720 PMCID: PMC6535971 DOI: 10.1021/acscentsci.9b00124] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Indexed: 05/16/2023]
Abstract
YcaO enzymes are known to catalyze the ATP-dependent formation of azoline heterocycles, thioamides, and (macro)lactamidines on peptide substrates. These enzymes are found in multiple biosynthetic pathways, including those for several different classes of ribosomally synthesized and post-translationally modified peptides (RiPPs). However, there are major knowledge gaps in the mechanistic and structural underpinnings that govern each of the known YcaO-mediated modifications. Here, we present the first structure of any YcaO enzyme bound to its peptide substrate in the active site, specifically that from Methanocaldococcus jannaschii which is involved in the thioamidation of the α-subunit of methyl-coenzyme M reductase (McrA). The structural data are leveraged to identify and test the residues involved in substrate binding and catalysis by site-directed mutagenesis. We also show that thioamide-forming YcaOs can carry out the cyclodehydration of a related peptide substrate, which underscores the mechanistic conservation across the YcaO family and allows for the extrapolation of mechanistic details to azoline-forming YcaOs involved in RiPP biosynthesis. A bioinformatic survey of all YcaOs highlights the diverse sequence space in azoline-forming YcaOs and suggests their early divergence from a common ancestor. The data presented within provide a detailed molecular framework for understanding this family of enzymes, which reconcile several decades of prior data on RiPP cyclodehydratases. These studies also provide the foundational knowledge to impact our mechanistic understanding of additional RiPP biosynthetic classes.
Collapse
Affiliation(s)
- Shi-Hui Dong
- Department
of Biochemistry, Carl R. Woese Institute for Genomic Biology, Department of Microbiology, Department of Chemistry, and Center for Biophysics
and Quantitative Biology, University of
Illinois, 600 South Mathews Avenue, Urbana, Illinois 61801, United
States
| | - Andi Liu
- Department
of Biochemistry, Carl R. Woese Institute for Genomic Biology, Department of Microbiology, Department of Chemistry, and Center for Biophysics
and Quantitative Biology, University of
Illinois, 600 South Mathews Avenue, Urbana, Illinois 61801, United
States
| | - Nilkamal Mahanta
- Department
of Biochemistry, Carl R. Woese Institute for Genomic Biology, Department of Microbiology, Department of Chemistry, and Center for Biophysics
and Quantitative Biology, University of
Illinois, 600 South Mathews Avenue, Urbana, Illinois 61801, United
States
| | - Douglas A. Mitchell
- Department
of Biochemistry, Carl R. Woese Institute for Genomic Biology, Department of Microbiology, Department of Chemistry, and Center for Biophysics
and Quantitative Biology, University of
Illinois, 600 South Mathews Avenue, Urbana, Illinois 61801, United
States
| | - Satish K. Nair
- Department
of Biochemistry, Carl R. Woese Institute for Genomic Biology, Department of Microbiology, Department of Chemistry, and Center for Biophysics
and Quantitative Biology, University of
Illinois, 600 South Mathews Avenue, Urbana, Illinois 61801, United
States
| |
Collapse
|
27
|
Ge Y, Czekster CM, Miller OK, Botting CH, Schwarz-Linek U, Naismith JH. Insights into the Mechanism of the Cyanobactin Heterocyclase Enzyme. Biochemistry 2019; 58:2125-2132. [PMID: 30912640 PMCID: PMC6497369 DOI: 10.1021/acs.biochem.9b00084] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Cyanobactin
heterocyclases share the same catalytic domain (YcaO)
as heterocyclases/cyclodehydratases from other ribosomal peptide (RiPPs)
biosynthetic pathways. These enzymes process multiple residues (Cys/Thr/Ser)
within the same substrate. The processing of cysteine residues proceeds
with a known order. We show the order of reaction for threonines is
different and depends in part on a leader peptide within the substrate.
In contrast to other YcaO domains, which have been reported to exclusively
break down ATP into ADP and inorganic phosphate, cyanobactin heterocyclases
have been observed to produce AMP and inorganic pyrophosphate during
catalysis. We dissect the nucleotide profiles associated with heterocyclization
and propose a unifying mechanism, where the γ-phosphate of ATP
is transferred in a kinase mechanism to the substrate to yield a phosphorylated
intermediate common to all YcaO domains. In cyanobactin heterocyclases,
this phosphorylated intermediate, in a proportion of turnovers, reacts
with ADP to yield AMP and pyrophosphate.
Collapse
Affiliation(s)
- Ying Ge
- Biomedical Sciences Research Complex , University of St Andrews , St Andrews, Fife KY16 9ST , United Kingdom
| | - Clarissa Melo Czekster
- Biomedical Sciences Research Complex , University of St Andrews , St Andrews, Fife KY16 9ST , United Kingdom
| | - Ona K Miller
- Biomedical Sciences Research Complex , University of St Andrews , St Andrews, Fife KY16 9ST , United Kingdom
| | - Catherine H Botting
- Biomedical Sciences Research Complex , University of St Andrews , St Andrews, Fife KY16 9ST , United Kingdom
| | - Ulrich Schwarz-Linek
- Biomedical Sciences Research Complex , University of St Andrews , St Andrews, Fife KY16 9ST , United Kingdom
| | - James H Naismith
- Research Complex at Harwell , Didcot, Oxon OX11 0FA , United Kingdom.,Division of Structural Biology , University of Oxford , Oxford OX3 7BN , United Kingdom.,Rosalind Franklin Institute , Harwell, Didcot, Oxon OX11 0FA , United Kingdom
| |
Collapse
|
28
|
Mahanta N, Szantai-Kis DM, Petersson EJ, Mitchell DA. Biosynthesis and Chemical Applications of Thioamides. ACS Chem Biol 2019; 14:142-163. [PMID: 30698414 PMCID: PMC6404778 DOI: 10.1021/acschembio.8b01022] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Thioamidation as a posttranslational modification is exceptionally rare, with only a few reported natural products and exactly one known protein example (methyl-coenzyme M reductase from methane-metabolizing archaea). Recently, there has been significant progress in elucidating the biosynthesis and function of several thioamide-containing natural compounds. Separate developments in the chemical installation of thioamides into peptides and proteins have enabled cell biology and biophysical studies to advance the current understanding of natural thioamides. This review highlights the various strategies used by Nature to install thioamides in peptidic scaffolds and the potential functions of this rare but important modification. We also discuss synthetic methods used for the site-selective incorporation of thioamides into polypeptides with a brief discussion of the physicochemical implications. This account will serve as a foundation for the further study of thioamides in natural products and their various applications.
Collapse
Affiliation(s)
| | - D Miklos Szantai-Kis
- Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine , University of Pennsylvania , 3700 Hamilton Walk , Philadelphia , Pennsylvania 19104 , United States
| | - E James Petersson
- Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine , University of Pennsylvania , 3700 Hamilton Walk , Philadelphia , Pennsylvania 19104 , United States
- Department of Chemistry , University of Pennsylvania , 231 South 34th Street , Philadelphia , Pennsylvania 19104 , United States
| | | |
Collapse
|
29
|
Ghilarov D, Stevenson CEM, Travin DY, Piskunova J, Serebryakova M, Maxwell A, Lawson DM, Severinov K. Architecture of Microcin B17 Synthetase: An Octameric Protein Complex Converting a Ribosomally Synthesized Peptide into a DNA Gyrase Poison. Mol Cell 2019; 73:749-762.e5. [PMID: 30661981 PMCID: PMC6395948 DOI: 10.1016/j.molcel.2018.11.032] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 10/24/2018] [Accepted: 11/27/2018] [Indexed: 11/29/2022]
Abstract
The introduction of azole heterocycles into a peptide backbone is the principal step in the biosynthesis of numerous compounds with therapeutic potential. One of them is microcin B17, a bacterial topoisomerase inhibitor whose activity depends on the conversion of selected serine and cysteine residues of the precursor peptide to oxazoles and thiazoles by the McbBCD synthetase complex. Crystal structures of McbBCD reveal an octameric B4C2D2 complex with two bound substrate peptides. Each McbB dimer clamps the N-terminal recognition sequence, while the C-terminal heterocycle of the modified peptide is trapped in the active site of McbC. The McbD and McbC active sites are distant from each other, which necessitates alternate shuttling of the peptide substrate between them, while remaining tethered to the McbB dimer. An atomic-level view of the azole synthetase is a starting point for deeper understanding and control of biosynthesis of a large group of ribosomally synthesized natural products. Azole synthetase McbBCD is co-crystallized with its product, microcin B17 Crystal structure of McbBCD reveals an octameric assembly of B4C2D2 Two McbB subunits within each asymmetric unit interact to recognize a peptide Formation of each azole ring requires shuttling of peptide between two active centers
Collapse
Affiliation(s)
- Dmitry Ghilarov
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, 143026 Moscow, Russia; Institute of Gene Biology of the Russian Academy of Sciences, 119334 Moscow, Russia; Malopolska Centre of Biotechnology, Jagiellonian University, 30-387 Cracow, Poland
| | | | - Dmitrii Y Travin
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, 143026 Moscow, Russia; Department of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Julia Piskunova
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, 143026 Moscow, Russia; Institute of Gene Biology of the Russian Academy of Sciences, 119334 Moscow, Russia
| | - Marina Serebryakova
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, 143026 Moscow, Russia; A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Anthony Maxwell
- Department of Biological Chemistry, John Innes Centre, NR4 7UH Norwich, UK
| | - David M Lawson
- Department of Biological Chemistry, John Innes Centre, NR4 7UH Norwich, UK.
| | - Konstantin Severinov
- Centre for Life Sciences, Skolkovo Institute of Science and Technology, 143026 Moscow, Russia; Institute of Gene Biology of the Russian Academy of Sciences, 119334 Moscow, Russia; Waksman Institute for Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| |
Collapse
|
30
|
Schneider O, Simic N, Aachmann FL, Rückert C, Kristiansen KA, Kalinowski J, Jiang Y, Wang L, Jiang CL, Lale R, Zotchev SB. Genome Mining of Streptomyces sp. YIM 130001 Isolated From Lichen Affords New Thiopeptide Antibiotic. Front Microbiol 2018; 9:3139. [PMID: 30619207 PMCID: PMC6306032 DOI: 10.3389/fmicb.2018.03139] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/04/2018] [Indexed: 12/01/2022] Open
Abstract
Streptomyces bacteria are recognized as an important source for antibiotics with broad applications in human medicine and animal health. Here, we report the isolation of a new lichen-associating Streptomyces sp. YIM 130001 from the tropical rainforest in Xishuangbanna (Yunnan, China), which displayed antibacterial activity against Bacillus subtilis. The draft genome sequence of this isolate strain revealed 18 putative biosynthetic gene clusters (BGCs) for secondary metabolites, which is an unusually low number compared to a typical streptomycete. Inactivation of a lantibiotic dehydrogenase-encoding gene from the BGC presumed to govern biosynthesis of a thiopeptide resulted in the loss of bioactivity. Using comparative HPLC analysis, two peaks in the chromatogram were identified in the extract from the wild-type strain, which were missing in the extract from the mutant. The compounds corresponding to the identified peaks were purified, and structure of one compound was elucidated using NMR. The compound, designated geninthiocin B, showed high similarity to several 35-membered macrocyclic thiopeptides geninthiocin, Val-geninthiocin and berninamycin A. Bioinformatics analysis of the geninthiocin B BGC revealed its close homology to that of berninamycins.
Collapse
Affiliation(s)
- Olha Schneider
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Nebojsa Simic
- Department of Chemistry, Norwegian University of Science and Technology, Trondheim, Norway
| | - Finn Lillelund Aachmann
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Kåre Andre Kristiansen
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Yi Jiang
- Yunnan Institute of Microbiology, Yunnan University, Kunming, China
| | - Lisong Wang
- Key Lab for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Cheng-Lin Jiang
- Yunnan Institute of Microbiology, Yunnan University, Kunming, China
| | - Rahmi Lale
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Sergey B Zotchev
- Department of Pharmacognosy, University of Vienna, Vienna, Austria
| |
Collapse
|
31
|
Liu J, Lin Z, Chen H, Guo H, Tao J, Liu W. Biosynthesis of the Central Piperidine Nitrogen Heterocycle in SeriesaThiopeptides. CHINESE J CHEM 2018. [DOI: 10.1002/cjoc.201800497] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Jingyu Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence on Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences 345 Lingling Road, Shanghai 200032 China
| | - Zhi Lin
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence on Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences 345 Lingling Road, Shanghai 200032 China
- State Key Laboratory of Microbial Metabolism, School of Life Science & Biotechnology, Shanghai Jiao Tong University 800 Dongchuan Road, Shanghai 200240 China
| | - Hua Chen
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence on Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences 345 Lingling Road, Shanghai 200032 China
| | - Heng Guo
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence on Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences 345 Lingling Road, Shanghai 200032 China
| | - Jiang Tao
- Department of General Dentistry, Ninth People's HospitalShanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology Shanghai 200011 China
| | - Wen Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence on Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences 345 Lingling Road, Shanghai 200032 China
- Huzhou Center of Bio‐Synthetic Innovation 1366 Hongfeng Road, Huzhou, Zhejiang 313000 China
| |
Collapse
|
32
|
Ichikawa H, Bashiri G, Kelly WL. Biosynthesis of the Thiopeptins and Identification of an F 420H 2-Dependent Dehydropiperidine Reductase. J Am Chem Soc 2018; 140:10749-10756. [PMID: 30118217 PMCID: PMC6193465 DOI: 10.1021/jacs.8b04238] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Thiopeptins are highly decorated thiopeptide antibiotics similar in structure to thiostrepton A and harbor two unusual features. All thiopeptins contain a thioamide, a rare moiety among natural products, and a subset of thiopeptins present with a piperidine in the core macrocycle rather than the more oxidated dehydropiperidine or pyridine rings typically observed in the thiopeptides. Here, we report the identification of the thiopeptin biosynthetic gene ( tpn) cluster in Streptomyces tateyamensis and the gene product, TpnL, which shows sequence similarity to (deaza)flavin-dependent oxidoreductases. Heterologous expression of TpnL in the thiostrepton A producer Streptomyces laurentii led to the production of a piperidine-containing analogue. Binding studies revealed that TpnL preferentially binds the deazaflavin cofactor coenzyme F420, and in vitro reconstitution of TpnL activity confirmed that this enzyme is an F420H2-dependent dehydropiperidine reductase. The identification of TpnL and its activity establishes the basis for the piperidine-containing series a thiopeptides, one of the five main structural groups of this diverse family of antibiotics.
Collapse
Affiliation(s)
- Hiro Ichikawa
- School of Chemistry and Biochemistry and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ghader Bashiri
- Laboratory of Structural Biology and Maurice Wilkins Center for Molecular Biodiscovery, School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Wendy L. Kelly
- School of Chemistry and Biochemistry and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
33
|
Meng S, Tang GL, Pan HX. Enzymatic Formation of Oxygen-Containing Heterocycles in Natural Product Biosynthesis. Chembiochem 2018; 19:2002-2022. [PMID: 30039582 DOI: 10.1002/cbic.201800225] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Indexed: 01/12/2023]
Abstract
Oxygen-containing heterocycles are widely encountered in natural products that display diverse pharmacological properties and have potential benefits to human health. The formation of O-heterocycles catalyzed by different types of enzymes in the biosynthesis of natural products not only contributes to the structural diversity of these compounds, but also enriches our understanding of nature's ability to construct complex molecules. This minireview focuses on the various modes of enzymatic O-heterocyclization identified in natural product biosynthesis and summarizes the possible mechanisms involved in ring closure.
Collapse
Affiliation(s)
- Song Meng
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of the Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Gong-Li Tang
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of the Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Hai-Xue Pan
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, University of the Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| |
Collapse
|
34
|
Schwalen CJ, Hudson GA, Kille B, Mitchell DA. Bioinformatic Expansion and Discovery of Thiopeptide Antibiotics. J Am Chem Soc 2018; 140:9494-9501. [PMID: 29983054 PMCID: PMC6070396 DOI: 10.1021/jacs.8b03896] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Thiopeptides are members of the ribosomally synthesized and post-translationally modified peptide family of natural products. Most characterized thiopeptides display nanomolar potency toward Gram-positive bacteria by blocking protein translation with several being produced at the industrial scale for veterinary and livestock applications. Employing our custom bioinformatics program, RODEO, we expand the thiopeptide family of natural products by a factor of four. This effort revealed many new thiopeptide biosynthetic gene clusters with products predicted to be distinct from characterized thiopeptides and identified gene clusters for previously characterized molecules of unknown biosynthetic origin. To further validate our data set of predicted thiopeptide biosynthetic gene clusters, we isolated and characterized a structurally unique thiopeptide featuring a central piperidine and rare thioamide moiety. Termed saalfelduracin, this thiopeptide displayed potent antibiotic activity toward several drug-resistant Gram-positive pathogens. A combination of whole-genome sequencing, comparative genomics, and heterologous expression experiments confirmed that the thioamide moiety of saalfelduracin is installed post-translationally by the joint action of two proteins, TfuA and YcaO. These results reconcile the previously unknown origin of the thioamide in two long-known thiopeptides, thiopeptin and Sch 18640. Armed with these new insights into thiopeptide chemical-genomic space, we provide a roadmap for the discovery of additional members of this natural product family.
Collapse
Affiliation(s)
- Christopher J. Schwalen
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Graham A. Hudson
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Bryce Kille
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Douglas A. Mitchell
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| |
Collapse
|
35
|
Abstract
Copper-binding metallophores, or chalkophores, play a role in microbial copper homeostasis that is analogous to that of siderophores in iron homeostasis. The best-studied chalkophores are members of the methanobactin (Mbn) family-ribosomally produced, posttranslationally modified natural products first identified as copper chelators responsible for copper uptake in methane-oxidizing bacteria. To date, Mbns have been characterized exclusively in those species, but there is genomic evidence for their production in a much wider range of bacteria. This review addresses the current state of knowledge regarding the function, biosynthesis, transport, and regulation of Mbns. While the roles of several proteins in these processes are supported by substantial genetic and biochemical evidence, key aspects of Mbn manufacture, handling, and regulation remain unclear. In addition, other natural products that have been proposed to mediate copper uptake as well as metallophores that have biologically relevant roles involving copper binding, but not copper uptake, are discussed.
Collapse
Affiliation(s)
- Grace E Kenney
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA; ,
| | - Amy C Rosenzweig
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, USA; ,
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
36
|
Gu W, Dong SH, Sarkar S, Nair SK, Schmidt EW. The Biochemistry and Structural Biology of Cyanobactin Pathways: Enabling Combinatorial Biosynthesis. Methods Enzymol 2018; 604:113-163. [PMID: 29779651 DOI: 10.1016/bs.mie.2018.03.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cyanobactin biosynthetic enzymes have exceptional versatility in the synthesis of natural and unnatural products. Cyanobactins are ribosomally synthesized and posttranslationally modified peptides synthesized by multistep pathways involving a broad suite of enzymes, including heterocyclases/cyclodehydratases, macrocyclases, proteases, prenyltransferases, methyltransferases, and others. Here, we describe the enzymology and structural biology of cyanobactin biosynthetic enzymes, aiming at the twin goals of understanding biochemical mechanisms and biosynthetic plasticity. We highlight how this common suite of enzymes may be utilized to generate a large array or structurally and chemically diverse compounds.
Collapse
Affiliation(s)
- Wenjia Gu
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT, United States
| | - Shi-Hui Dong
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Snigdha Sarkar
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT, United States
| | - Satish K Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, United States.
| | - Eric W Schmidt
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT, United States.
| |
Collapse
|
37
|
Travin DY, Metelev M, Serebryakova M, Komarova ES, Osterman IA, Ghilarov D, Severinov K. Biosynthesis of Translation Inhibitor Klebsazolicin Proceeds through Heterocyclization and N-Terminal Amidine Formation Catalyzed by a Single YcaO Enzyme. J Am Chem Soc 2018; 140:5625-5633. [PMID: 29601195 DOI: 10.1021/jacs.8b02277] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Klebsazolicin (KLB) is a recently discovered Klebsiella pneumonia peptide antibiotic targeting the exit tunnel of bacterial ribosome. KLB contains an N-terminal amidine ring and four azole heterocycles installed into a ribosomally synthesized precursor by dedicated maturation machinery. Using an in vitro system for KLB production, we show that the YcaO-domain KlpD maturation enzyme is a bifunctional cyclodehydratase required for the formation of both the core heterocycles and the N-terminal amidine ring. We further demonstrate that the amidine ring is formed concomitantly with proteolytic cleavage of azole-containing pro-KLB by a cellular protease TldD/E. Members of the YcaO family are diverse enzymes known to activate peptide carbonyls during natural product biosynthesis leading to the formation of azoline, macroamidine, and thioamide moieties. The ability of KlpD to simultaneously perform two distinct types of modifications is unprecedented for known YcaO proteins. The versatility of KlpD opens up possibilities for rational introduction of modifications into various peptide backbones.
Collapse
Affiliation(s)
- Dmitrii Y Travin
- Department of Bioengineering and Bioinformatics , Lomonosov Moscow State University , Moscow , 119992 , Russia.,Center for Data-Intensive Biomedicine and Biotechnology , Skolkovo Institute of Science and Technology , Skolkovo , 143025 , Russia
| | - Mikhail Metelev
- Center for Data-Intensive Biomedicine and Biotechnology , Skolkovo Institute of Science and Technology , Skolkovo , 143025 , Russia.,Institute of Gene Biology of the Russian Academy of Sciences , Moscow , 119334 , Russia
| | - Marina Serebryakova
- Center for Data-Intensive Biomedicine and Biotechnology , Skolkovo Institute of Science and Technology , Skolkovo , 143025 , Russia.,Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology , Lomonosov Moscow State University , Moscow , 119992 , Russia
| | - Ekaterina S Komarova
- Department of Bioengineering and Bioinformatics , Lomonosov Moscow State University , Moscow , 119992 , Russia.,Center for Data-Intensive Biomedicine and Biotechnology , Skolkovo Institute of Science and Technology , Skolkovo , 143025 , Russia
| | - Ilya A Osterman
- Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology , Lomonosov Moscow State University , Moscow , 119992 , Russia.,Center for Translational Biomedicine , Skolkovo Institute of Science and Technology , Skolkovo , 143025 , Russia
| | - Dmitry Ghilarov
- Center for Data-Intensive Biomedicine and Biotechnology , Skolkovo Institute of Science and Technology , Skolkovo , 143025 , Russia.,Institute of Gene Biology of the Russian Academy of Sciences , Moscow , 119334 , Russia
| | - Konstantin Severinov
- Center for Data-Intensive Biomedicine and Biotechnology , Skolkovo Institute of Science and Technology , Skolkovo , 143025 , Russia.,Institute of Gene Biology of the Russian Academy of Sciences , Moscow , 119334 , Russia.,Waksman Institute for Microbiology , Rutgers, The State University of New Jersey , Piscataway , New Jersey 08854 , United States
| |
Collapse
|
38
|
Abstract
Methyl-coenzyme M reductase (MCR) is an essential enzyme found strictly in methanogenic and methanotrophic archaea. MCR catalyzes a reversible reaction involved in the production and consumption of the potent greenhouse gas methane. The α-subunit of this enzyme (McrA) contains several unusual posttranslational modifications, including the only known naturally occurring example of protein thioamidation. We have recently demonstrated by genetic deletion and mass spectrometry that the tfuA and ycaO genes of Methanosarcina acetivorans are involved in thioamidation of Gly465 in the MCR active site. Modification to thioGly has been postulated to stabilize the active site structure of MCR. Herein, we report the in vitro reconstitution of ribosomal peptide thioamidation using heterologously expressed and purified YcaO and TfuA proteins from M. acetivorans Like other reported YcaO proteins, this reaction is ATP-dependent but requires an external sulfide source. We also reconstitute the thioamidation activity of two TfuA-independent YcaOs from the hyperthermophilic methanogenic archaea Methanopyrus kandleri and Methanocaldococcus jannaschii Using these proteins, we demonstrate the basis for substrate recognition and regioselectivity of thioamide formation based on extensive mutagenesis, biochemical, and binding studies. Finally, we report nucleotide-free and nucleotide-bound crystal structures for the YcaO proteins from M. kandleri Sequence and structure-guided mutagenesis with subsequent biochemical evaluation have allowed us to assign roles for residues involved in thioamidation and confirm that the reaction proceeds via backbone O-phosphorylation. These data assign a new biochemical reaction to the YcaO superfamily and paves the way for further characterization of additional peptide backbone posttranslational modifications.
Collapse
|
39
|
Zheng Q, Fang H, Liu W. Post-translational modifications involved in the biosynthesis of thiopeptide antibiotics. Org Biomol Chem 2018; 15:3376-3390. [PMID: 28358161 DOI: 10.1039/c7ob00466d] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thiopeptide antibiotics are a class of typical ribosomally synthesized and post-translationally modified peptides (RiPPs) with complex chemical structures that are difficult to construct via chemical synthesis. To date, more than 100 thiopeptides have been discovered, and most of these compounds exhibit remarkable biological activities, such as antibacterial, antitumor and immunosuppressive activities. Therefore, studies of the biosynthesis of thiopeptides can contribute to the development of new drug leads and facilitate the understanding of the complex post-translational modifications (PTMs) of peptides and/or proteins. Since the biosynthetic gene clusters of thiopeptides were first discovered in 2009, several research studies regarding the biochemistry and enzymology of thiopeptide biosyntheses have been reported, indicating that their characteristic framework is constructed via a cascade of common PTMs and that additional specific PTMs diversify the molecules. In this review, we primarily summarize recent advances in understanding the biosynthesis of thiopeptide antibiotics and propose some potential applications based on our insights into the biosynthetic logic and machinery.
Collapse
Affiliation(s)
- Qingfei Zheng
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.
| | | | | |
Collapse
|
40
|
Schwalen CJ, Hudson GA, Kosol S, Mahanta N, Challis GL, Mitchell DA. In Vitro Biosynthetic Studies of Bottromycin Expand the Enzymatic Capabilities of the YcaO Superfamily. J Am Chem Soc 2017; 139:18154-18157. [PMID: 29200283 PMCID: PMC5915351 DOI: 10.1021/jacs.7b09899] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The bottromycins belong to the ribosomally synthesized and posttranslationally modified peptide (RiPP) family of natural products. Bottromycins exhibit unique structural features, including a hallmark macrolactamidine ring and thiazole heterocycle for which divergent members of the YcaO superfamily have been biosynthetically implicated. Here we report the in vitro reconstitution of two YcaO proteins, BmbD and BmbE, responsible for the ATP-dependent cyclodehydration reactions that yield thiazoline- and macrolactamidine-functionalized products, respectively. We also establish the substrate tolerance for BmbD and BmbE and systematically dissect the role of the follower peptide, which we show serves a purpose similar to canonical leader peptides in directing the biosynthetic enzymes to the substrate. Lastly, we leverage the expanded capabilities of YcaO proteins to conduct an extensive bioinformatic survey to classify known YcaO chemistry. This analysis predicts new functions remain to be uncovered within the superfamily.
Collapse
Affiliation(s)
- Christopher J. Schwalen
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Graham A. Hudson
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Simone Kosol
- Department of Chemistry and Warwick Integrative Synthetic Biology Center, University of Warwick, Coventry CV4 7AL, UK
| | - Nilkamal Mahanta
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | - Gregory L. Challis
- Department of Chemistry and Warwick Integrative Synthetic Biology Center, University of Warwick, Coventry CV4 7AL, UK
- Department of Biochemistry and Molecular Biology and ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia
| | - Douglas A. Mitchell
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| |
Collapse
|
41
|
Franz L, Adam S, Santos-Aberturas J, Truman AW, Koehnke J. Macroamidine Formation in Bottromycins Is Catalyzed by a Divergent YcaO Enzyme. J Am Chem Soc 2017; 139:18158-18161. [DOI: 10.1021/jacs.7b09898] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Laura Franz
- Workgroup
Structural Biology of Biosynthetic Enzymes, Helmholtz Institute for
Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research, Saarland University, Campus Geb. E8.1, 66123 Saarbrücken, Germany
| | - Sebastian Adam
- Workgroup
Structural Biology of Biosynthetic Enzymes, Helmholtz Institute for
Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research, Saarland University, Campus Geb. E8.1, 66123 Saarbrücken, Germany
| | - Javier Santos-Aberturas
- Department
of Molecular Microbiology, John Innes Centre, Colney Lane, Norwich NR4 7UH, United Kingdom
| | - Andrew W. Truman
- Department
of Molecular Microbiology, John Innes Centre, Colney Lane, Norwich NR4 7UH, United Kingdom
| | - Jesko Koehnke
- Workgroup
Structural Biology of Biosynthetic Enzymes, Helmholtz Institute for
Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research, Saarland University, Campus Geb. E8.1, 66123 Saarbrücken, Germany
| |
Collapse
|
42
|
Nayak DD, Mahanta N, Mitchell DA, Metcalf WW. Post-translational thioamidation of methyl-coenzyme M reductase, a key enzyme in methanogenic and methanotrophic Archaea. eLife 2017; 6. [PMID: 28880150 PMCID: PMC5589413 DOI: 10.7554/elife.29218] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/11/2017] [Indexed: 12/14/2022] Open
Abstract
Methyl-coenzyme M reductase (MCR), found in strictly anaerobic methanogenic and methanotrophic archaea, catalyzes the reversible production and consumption of the potent greenhouse gas methane. The α subunit of MCR (McrA) contains several unusual post-translational modifications, including a rare thioamidation of glycine. Based on the presumed function of homologous genes involved in the biosynthesis of thioviridamide, a thioamide-containing natural product, we hypothesized that the archaeal tfuA and ycaO genes would be responsible for post-translational installation of thioglycine into McrA. Mass spectrometric characterization of McrA from the methanogenic archaeon Methanosarcina acetivorans lacking tfuA and/or ycaO revealed the presence of glycine, rather than thioglycine, supporting this hypothesis. Phenotypic characterization of the ∆ycaO-tfuA mutant revealed a severe growth rate defect on substrates with low free energy yields and at elevated temperatures (39°C - 45°C). Our analyses support a role for thioglycine in stabilizing the protein secondary structure near the active site.
Collapse
Affiliation(s)
- Dipti D Nayak
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, United States
| | - Nilkamal Mahanta
- Department of Chemistry, University of Illinois, Urbana, United States
| | - Douglas A Mitchell
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, United States.,Department of Chemistry, University of Illinois, Urbana, United States.,Department of Microbiology, University of Illinois, Urbana, United States
| | - William W Metcalf
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, United States.,Department of Microbiology, University of Illinois, Urbana, United States
| |
Collapse
|
43
|
Metelev M, Osterman IA, Ghilarov D, Khabibullina NF, Yakimov A, Shabalin K, Utkina I, Travin DY, Komarova ES, Serebryakova M, Artamonova T, Khodorkovskii M, Konevega AL, Sergiev PV, Severinov K, Polikanov YS. Klebsazolicin inhibits 70S ribosome by obstructing the peptide exit tunnel. Nat Chem Biol 2017; 13:1129-1136. [PMID: 28846667 PMCID: PMC5701663 DOI: 10.1038/nchembio.2462] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 07/19/2017] [Indexed: 12/19/2022]
Abstract
While screening of small-molecular metabolites produced by most cultivatable microorganisms often results in rediscovery of known compounds, genome-mining programs allow to harness much greater chemical diversity and result in discovery of new molecular scaffolds. Here we report genome-guided identification of a new antibiotic klebsazolicin (KLB) from Klebsiella pneumoniae that inhibits growth of sensitive cells by targeting ribosome. A member of ribosomally-synthesized post-translationally modified peptides (RiPPs), KLB is characterized by the presence of unique N-terminal amidine ring essential for its activity. Biochemical in vitro studies indicate that KLB inhibits ribosome by interfering with translation elongation. Structural analysis of the ribosome-KLB complex reveals the compound bound in the peptide exit tunnel overlapping with the binding sites of macrolides or streptogramins-B. KLB adopts compact conformation and largely obstructs the tunnel. Engineered KLB fragments retain in vitro activity and can serve as a starting point for the development of new bioactive compounds.
Collapse
Affiliation(s)
- Mikhail Metelev
- Research Center of Nanobiotechnologies, Peter the Great St.Petersburg Polytechnic University, St. Petersburg, Russia.,Institute of Antimicrobial Chemotherapy, Smolensk State Medical Academy, Smolensk, Russia.,Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Moscow, Russia.,Institute of Gene Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Ilya A Osterman
- Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Moscow, Russia.,Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Dmitry Ghilarov
- Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Moscow, Russia.,Institute of Gene Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Nelli F Khabibullina
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Alexander Yakimov
- Research Center of Nanobiotechnologies, Peter the Great St.Petersburg Polytechnic University, St. Petersburg, Russia.,Petersburg Nuclear Physics Institute, NRC Kurchatov Institute, Gatchina, Russia
| | - Konstantin Shabalin
- Petersburg Nuclear Physics Institute, NRC Kurchatov Institute, Gatchina, Russia
| | - Irina Utkina
- Research Center of Nanobiotechnologies, Peter the Great St.Petersburg Polytechnic University, St. Petersburg, Russia.,Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Dmitry Y Travin
- Department of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Ekaterina S Komarova
- Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Moscow, Russia.,Department of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Marina Serebryakova
- Institute of Gene Biology of the Russian Academy of Sciences, Moscow, Russia.,Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Tatyana Artamonova
- Research Center of Nanobiotechnologies, Peter the Great St.Petersburg Polytechnic University, St. Petersburg, Russia
| | - Mikhail Khodorkovskii
- Research Center of Nanobiotechnologies, Peter the Great St.Petersburg Polytechnic University, St. Petersburg, Russia
| | - Andrey L Konevega
- Research Center of Nanobiotechnologies, Peter the Great St.Petersburg Polytechnic University, St. Petersburg, Russia.,Petersburg Nuclear Physics Institute, NRC Kurchatov Institute, Gatchina, Russia
| | - Petr V Sergiev
- Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Moscow, Russia.,Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Konstantin Severinov
- Research Center of Nanobiotechnologies, Peter the Great St.Petersburg Polytechnic University, St. Petersburg, Russia.,Center for Data-Intensive Biomedicine and Biotechnology, Skolkovo Institute of Science and Technology, Moscow, Russia.,Institute of Gene Biology of the Russian Academy of Sciences, Moscow, Russia.,Waksman Institute for Microbiology, Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Yury S Polikanov
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, USA.,Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
44
|
Elucidating and engineering thiopeptide biosynthesis. World J Microbiol Biotechnol 2017; 33:119. [DOI: 10.1007/s11274-017-2283-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/03/2017] [Indexed: 01/15/2023]
|
45
|
Abstract
Oxidative cyclizations are important transformations that occur widely during natural product biosynthesis. The transformations from acyclic precursors to cyclized products can afford morphed scaffolds, structural rigidity, and biological activities. Some of the most dramatic structural alterations in natural product biosynthesis occur through oxidative cyclization. In this Review, we examine the different strategies used by nature to create new intra(inter)molecular bonds via redox chemistry. This Review will cover both oxidation- and reduction-enabled cyclization mechanisms, with an emphasis on the former. Radical cyclizations catalyzed by P450, nonheme iron, α-KG-dependent oxygenases, and radical SAM enzymes are discussed to illustrate the use of molecular oxygen and S-adenosylmethionine to forge new bonds at unactivated sites via one-electron manifolds. Nonradical cyclizations catalyzed by flavin-dependent monooxygenases and NAD(P)H-dependent reductases are covered to show the use of two-electron manifolds in initiating cyclization reactions. The oxidative installations of epoxides and halogens into acyclic scaffolds to drive subsequent cyclizations are separately discussed as examples of "disappearing" reactive handles. Last, oxidative rearrangement of rings systems, including contractions and expansions, will be covered.
Collapse
Affiliation(s)
- Man-Cheng Tang
- Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Yi Zou
- Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095, USA
| | - Kenji Watanabe
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Christopher T. Walsh
- Stanford University Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford University, 443 Via Ortega, Stanford, CA 94305
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, Department of Chemistry and Biochemistry, University of California, Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095, USA
| |
Collapse
|
46
|
Cao H, Nie K, Li C, Xu H, Wang F, Tan T, Liu L. Rational design of substrate binding pockets in polyphosphate kinase for use in cost-effective ATP-dependent cascade reactions. Appl Microbiol Biotechnol 2017; 101:5325-5332. [PMID: 28417169 DOI: 10.1007/s00253-017-8268-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 03/27/2017] [Indexed: 11/26/2022]
Abstract
Adenosine-5'-triphosphate (ATP) is the energy equivalent of the living system. Polyphosphate (polyP) is the ancient energy storage equivalent of organisms. Polyphosphate kinases (PPKs) catalyze the polyP formation or ATP formation, to store energy or to regenerate ATP, respectively. However, most PPKs are active only in the presence of long polyPs, which are more difficult and more expensive to generate than the short polyPs. We investigated the PPK preference towards polyPs by site-directed mutagenesis and computational simulation, to understand the mechanism and further design enzymes for effective ATP regeneration using short polyPs for in vitro cascade reactions, which are highly desired for research and applications. The results suggest that the short polyPs inhibit PPK by blocking the ADP-binding pocket. Structural comparison between PPK (Corynebacterium glutamicum) and PPK (Sinorhizobium meliloti) indicates that three amino acid residues, i.e., lysine, glutamate, and threonine, are involved in the activity towards short polyP by fixing the adenosine group of ADP in between the subunits of the dimer, while the terminal phosphate group of ADP still offers an active site, which presents a binding pocket for ADP. A proposed triple mutant PPK (SMc02148-KET) demonstrates significant activity towards short polyP to form ATP from ADP. The obtained high glutathione titer (38.79 mM) and glucose-6-phosphate titer (87.35 mM) in cascade reactions with ATP regeneration using the triple mutant PPK (SMc02148-KET) reveal that the tailored PPK establishes the effective ATP regeneration system for ATP-dependent reactions.
Collapse
Affiliation(s)
- Hao Cao
- Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Kaili Nie
- Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Chengcheng Li
- Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Haijun Xu
- Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Fang Wang
- Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Tianwei Tan
- Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Luo Liu
- Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| |
Collapse
|
47
|
Dunbar KL, Scharf DH, Litomska A, Hertweck C. Enzymatic Carbon-Sulfur Bond Formation in Natural Product Biosynthesis. Chem Rev 2017; 117:5521-5577. [PMID: 28418240 DOI: 10.1021/acs.chemrev.6b00697] [Citation(s) in RCA: 374] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sulfur plays a critical role for the development and maintenance of life on earth, which is reflected by the wealth of primary metabolites, macromolecules, and cofactors bearing this element. Whereas a large body of knowledge has existed for sulfur trafficking in primary metabolism, the secondary metabolism involving sulfur has long been neglected. Yet, diverse sulfur functionalities have a major impact on the biological activities of natural products. Recent research at the genetic, biochemical, and chemical levels has unearthed a broad range of enzymes, sulfur shuttles, and chemical mechanisms for generating carbon-sulfur bonds. This Review will give the first systematic overview on enzymes catalyzing the formation of organosulfur natural products.
Collapse
Affiliation(s)
- Kyle L Dunbar
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI) , Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Daniel H Scharf
- Life Sciences Institute, University of Michigan , 210 Washtenaw Avenue, Ann Arbor, Michigan 48109-2216, United States
| | - Agnieszka Litomska
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI) , Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI) , Beutenbergstrasse 11a, 07745 Jena, Germany.,Friedrich Schiller University , 07743 Jena, Germany
| |
Collapse
|
48
|
Burkhart BJ, Schwalen CJ, Mann G, Naismith JH, Mitchell DA. YcaO-Dependent Posttranslational Amide Activation: Biosynthesis, Structure, and Function. Chem Rev 2017; 117:5389-5456. [PMID: 28256131 DOI: 10.1021/acs.chemrev.6b00623] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
With advances in sequencing technology, uncharacterized proteins and domains of unknown function (DUFs) are rapidly accumulating in sequence databases and offer an opportunity to discover new protein chemistry and reaction mechanisms. The focus of this review, the formerly enigmatic YcaO superfamily (DUF181), has been found to catalyze a unique phosphorylation of a ribosomal peptide backbone amide upon attack by different nucleophiles. Established nucleophiles are the side chains of Cys, Ser, and Thr which gives rise to azoline/azole biosynthesis in ribosomally synthesized and posttranslationally modified peptide (RiPP) natural products. However, much remains unknown about the potential for YcaO proteins to collaborate with other nucleophiles. Recent work suggests potential in forming thioamides, macroamidines, and possibly additional post-translational modifications. This review covers all knowledge through mid-2016 regarding the biosynthetic gene clusters (BGCs), natural products, functions, mechanisms, and applications of YcaO proteins and outlines likely future research directions for this protein superfamily.
Collapse
Affiliation(s)
| | | | - Greg Mann
- Biomedical Science Research Complex, University of St Andrews , BSRC North Haugh, St Andrews KY16 9ST, United Kingdom
| | - James H Naismith
- Biomedical Science Research Complex, University of St Andrews , BSRC North Haugh, St Andrews KY16 9ST, United Kingdom.,State Key Laboratory of Biotherapy, Sichuan University , Sichuan, China
| | | |
Collapse
|
49
|
Dissection of goadsporin biosynthesis by in vitro reconstitution leading to designer analogues expressed in vivo. Nat Commun 2017; 8:14207. [PMID: 28165449 PMCID: PMC5303826 DOI: 10.1038/ncomms14207] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 12/07/2016] [Indexed: 12/14/2022] Open
Abstract
Goadsporin (GS) is a member of ribosomally synthesized and post-translationally modified peptides (RiPPs), containing an N-terminal acetyl moiety, six azoles and two dehydroalanines in the peptidic main chain. Although the enzymes involved in GS biosynthesis have been defined, the principle of how the respective enzymes control the specific modifications remains elusive. Here we report a one-pot synthesis of GS using the enzymes reconstituted in the 'flexible' in vitro translation system, referred to as the FIT-GS system. This system allows us to readily prepare not only the precursor peptide from its synthetic DNA template but also 52 mutants, enabling us to dissect the modification determinants of GodA for each enzyme. The in vitro knowledge has also led us to successfully produce designer GS analogues in vivo. The methodology demonstrated in this work is also applicable to other RiPP biosynthesis, allowing us to rapidly investigate the principle of modification events with great ease.
Collapse
|
50
|
Chekan JR, Koos JD, Zong C, Maksimov MO, Link AJ, Nair SK. Structure of the Lasso Peptide Isopeptidase Identifies a Topology for Processing Threaded Substrates. J Am Chem Soc 2016; 138:16452-16458. [PMID: 27998080 DOI: 10.1021/jacs.6b10389] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Lasso peptides are a class of bioactive ribosomally synthesized and post-translationally modified peptides (RiPPs), with a threaded knot structure that is formed by an isopeptide bond attaching the N-terminus of the peptide to a side chain carboxylate. Some lasso peptide biosynthetic clusters harbor an enzyme that specifically hydrolyzes the isopeptide bond to yield the linear peptide. We describe here the 2.4 Å resolution structure of a lasso peptide isopeptidase revealing a topologically novel didomain architecture consisting of an open β-propeller appended to an α/β hydrolase domain. The 2.2 Å resolution cocrystal structure of an inactive variant in complex with a lasso peptide reveals deformation of the substrate, and reorganization of the enzyme active site, which exposes and orients the isopeptide bond for hydrolysis. Structure-based mutational analysis reveals how this enzyme recognizes the lasso peptide substrate by shape complementarity rather than through sequence specificity. The isopeptidase gene can be used to facilitate genome mining, as a network-based mining strategy queried with this sequence identified 87 putative lasso peptide biosynthetic clusters, 65 of which have not been previously described. Lastly, we validate this mining approach by heterologous expression of two clusters encoded within the genome of Asticcaucalis benevestitus, and demonstrate that both clusters produce lasso peptides.
Collapse
Affiliation(s)
- Jonathan R Chekan
- Department of Biochemistry, ‡Institute for Genomic Biology and §Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States and.,Departments of Chemical and Biological Engineering, ⊥Molecular Biology, and #Chemistry Princeton University , Princeton, New Jersey 08544, United States
| | - Joseph D Koos
- Department of Biochemistry, ‡Institute for Genomic Biology and §Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States and.,Departments of Chemical and Biological Engineering, ⊥Molecular Biology, and #Chemistry Princeton University , Princeton, New Jersey 08544, United States
| | - Chuhan Zong
- Department of Biochemistry, ‡Institute for Genomic Biology and §Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States and.,Departments of Chemical and Biological Engineering, ⊥Molecular Biology, and #Chemistry Princeton University , Princeton, New Jersey 08544, United States
| | - Mikhail O Maksimov
- Department of Biochemistry, ‡Institute for Genomic Biology and §Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States and.,Departments of Chemical and Biological Engineering, ⊥Molecular Biology, and #Chemistry Princeton University , Princeton, New Jersey 08544, United States
| | - A James Link
- Department of Biochemistry, ‡Institute for Genomic Biology and §Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States and.,Departments of Chemical and Biological Engineering, ⊥Molecular Biology, and #Chemistry Princeton University , Princeton, New Jersey 08544, United States
| | - Satish K Nair
- Department of Biochemistry, ‡Institute for Genomic Biology and §Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign , 600 South Mathews Avenue, Urbana, Illinois 61801, United States and.,Departments of Chemical and Biological Engineering, ⊥Molecular Biology, and #Chemistry Princeton University , Princeton, New Jersey 08544, United States
| |
Collapse
|