1
|
Song J, Zhang C, Fu S, Xu X. Visualized lateral flow assay for logic determination of co-existing viral RNA fragments. Biosens Bioelectron 2024; 261:116519. [PMID: 38917515 DOI: 10.1016/j.bios.2024.116519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/16/2024] [Revised: 06/16/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024]
Abstract
Different types of pathogenic viruses that have common transmission path can be co-infected, inducing distinct disease procession in comparison to that infection of one. Also, in the post COVID-19 time, more types of respiratory infectious virus are becoming prevalent and are concurrent. Those bring an urgent need for detection of co-existing viruses. Here, we propose a visualized lateral flow assay for logic determination of co-existing viral RNA fragments. In the presence of specific viral RNA inputs, DNAzyme is de-blocked according to defined logic, and catalyzes the hydrolysis of hairpin-structural substrate. One of cleaved substrates contains DNAzyme domain to realize dual signal amplification, which obtains copious of the other cleaved substrates. The cleaved substrates act as linking strands for bridging DNA-modified gold nanoparticles onto lateral flow strip to induce coloration on test line. "AND", "OR" and "INHIBIT" controlled lateral flow assays are respectively demonstrated for co-existing viral RNA detection, and the visual results can be obtained by the same kind of prepared strip, without need of re-fabricating strips according to logic systems. The work provides a flexible, convenient, visual and logic-processing strategy for simultaneous analysis of co-existing viruses.
Collapse
Affiliation(s)
- Juanjuan Song
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Chuhao Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Siting Fu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Xiaowen Xu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.
| |
Collapse
|
2
|
Li S, Liu Y, He M, Yang Y, He S, Hu H, Xiong M, Lyu Y. Mirror-Image DNA Nanobox for Enhancing Environment Resistance of Nucleic Acid Probes. ACS NANO 2024; 18:23104-23116. [PMID: 39146318 DOI: 10.1021/acsnano.4c05327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 08/17/2024]
Abstract
Degradation and interference of the nucleic acid probes in complex biological environments like cytoplasm or body fluid can cause obvious false-positive signals and inefficient bioregulation in biosensing and biomedicine. To solve this problem, here, we proposed a universal strategy, termed L-DNA assembly mirror-image box-based environment resistance (L-AMBER), to protect nucleic acid probes from degradation and maintain their responsive activity in complex biological environments. Strand displacement reaction (SDR), aptamer, or DNAzyme-based D-DNA probes were encapsulated into an L-DNA box by using an L-D-L block DNA carrier strand to construct different kinds of L-AMBER probes. We proved that the L-DNA box could effectively protect the encapsulated D-DNA probes by shielding the interference of complex biological environments and only allowing small target molecules to enter for recognition. Compared with the D-AMBER probes, the L-AMBER probes can realize DNase I-assisted amplification detection of biological samples, low false-positive bioimaging, and highly efficient miRNA silence in living cells. Therefore, L-AMBER provided a universal and effective strategy for enhancing the resistance to environmental interference of nucleic acid probes in biosensing and biomedicine applications.
Collapse
Affiliation(s)
- Shiquan Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yihao Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Minze He
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yani Yang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Shuoyao He
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Haolan Hu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Mengyi Xiong
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yifan Lyu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- Furong Laboratory, Changsha, Hunan 410082, China
| |
Collapse
|
3
|
Xia L, Du L, Hou X, Zhou R, Cheng N, Chen J. Protein-Controlled Split DNAzyme to Enhance Catalytic Activity: Design and Performance. Anal Chem 2024. [PMID: 39010288 DOI: 10.1021/acs.analchem.3c05909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 07/17/2024]
Abstract
In this study, we utilized proteins to control the assembly of split DNAzyme to establish protein-controlled split DNAzymes (Pc SD), with the aim of enhancing its catalytic activity. To achieve this, simultaneous recognition of protein by affinity ligands at both ends of split DNAzyme fragments induced an increased local concentration of each split fragment, leading to reassembly of the split catalytic core with a rigid conformation and higher affinity to its cofactor. As a result, under protein control, Pc SD exhibits unexpected cleavage efficiency compared to free split DNAzyme. To further explore the catalytic features, we then systematically positioned split sites within the catalytic core of three popular DNAzyme-based Pc SDs, thus revealing the important nucleic acids that influence Pc SDs activity. Based on the excellent analytical performance of Pc SD for streptavidin (with a LOD of 0.1 pM in buffer),we equipped Pc SD with antibodies as rapid diagnostic tools for inpatient care (AFP as biomarker) with a minimized workflow (with a LOD of 2 pM in 5% human serum). The results of this study offer fundamental insights into external factors for boosting DNAzyme catalysis and will be promising for applications that utilize split DNAzymes.
Collapse
Affiliation(s)
- Lingying Xia
- Analytical & Testing Center, Sichuan University, Sichuan, Chengdu 610064, PR China
- Biliary Surgical Department of West China Hospital, Sichuan University, Sichuan, Chengdu 610064, PR China
| | - Lijie Du
- Analytical & Testing Center, Sichuan University, Sichuan, Chengdu 610064, PR China
| | - Xiandeng Hou
- Analytical & Testing Center, Sichuan University, Sichuan, Chengdu 610064, PR China
| | - Rongxing Zhou
- Biliary Surgical Department of West China Hospital, Sichuan University, Sichuan, Chengdu 610064, PR China
| | - Nansheng Cheng
- Biliary Surgical Department of West China Hospital, Sichuan University, Sichuan, Chengdu 610064, PR China
| | - Junbo Chen
- Analytical & Testing Center, Sichuan University, Sichuan, Chengdu 610064, PR China
| |
Collapse
|
4
|
Schmuck JF, Borggräfe J, Etzkorn M. The dynamic world of the 8-17 DNAzyme. Nat Commun 2024; 15:5145. [PMID: 38886339 PMCID: PMC11183194 DOI: 10.1038/s41467-024-49500-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/23/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024] Open
Affiliation(s)
- Jessica Felice Schmuck
- Heinrich Heine University, Faculty of Mathematics and Natural Sciences, Institute of Physical Biology, Düsseldorf, Germany
| | - Jan Borggräfe
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, 85764, München, Germany.
- Bavarian NMR Center, School of Natural Sciences, Technical University of Munich Garching, 85748, München, Germany.
| | - Manuel Etzkorn
- Heinrich Heine University, Faculty of Mathematics and Natural Sciences, Institute of Physical Biology, Düsseldorf, Germany.
- Institute of Biological Information Processing (IBI-7), Forschungszentrum Jülich, Jülich, Germany.
| |
Collapse
|
5
|
Zhang F, Shi W, Guo L, Liu S, He J. The Programmable Catalytic Core of 8-17 DNAzymes. Molecules 2024; 29:2420. [PMID: 38893308 PMCID: PMC11173380 DOI: 10.3390/molecules29112420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/27/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 06/21/2024] Open
Abstract
8-17 DNAzymes (8-17, 17E, Mg5, and 17EV1) are in vitro-selected catalytic DNA molecules that are capable of cleaving complementary RNAs. The conserved residues in their similar catalytic cores, together with the metal ions, were suggested to contribute to the catalytic reaction. Based on the contribution of the less conserved residues in the bulge loop residues (W12, A15, A15.0) and the internal stem, new catalytic cores of 8-17 DNAzymes were programmed. The internal stem CTC-GAG seems to be more favorable for the DNAzymes than CCG-GGC, while an extra W12.0 led to a significant loss of activity of DNAzymes, which is contrary to the positive effect of A15.0, by which a new active DNAzyme 17EM was derived. It conducts a faster reaction than 17E. It is most active in the presence of Pb2+, with the metal ion preference of Pb2+ >> Zn2+ > Mn2+ > Ca2+ ≈ Mg2+. In the Pb2+ and Zn2+-mediated reactions of 17EM and 17E, the same Na+- and pH dependence were also observed as what was observed for 17E and other 8-17 DNAzymes. Therefore, 17EM is another member of the 8-17 DNAzymes, and it could be applied as a potential biosensor for RNA and metal ions.
Collapse
Affiliation(s)
- Fumei Zhang
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China;
- Beijing Institute of Pharmacology and Toxicology, Taiping 27, Beijing 100850, China; (W.S.); (L.G.)
| | - Weiguo Shi
- Beijing Institute of Pharmacology and Toxicology, Taiping 27, Beijing 100850, China; (W.S.); (L.G.)
| | - Lei Guo
- Beijing Institute of Pharmacology and Toxicology, Taiping 27, Beijing 100850, China; (W.S.); (L.G.)
| | - Shihui Liu
- School of Pharmaceutical Sciences, Guizhou University, Guiyang 550025, China;
| | - Junlin He
- Beijing Institute of Pharmacology and Toxicology, Taiping 27, Beijing 100850, China; (W.S.); (L.G.)
| |
Collapse
|
6
|
Wieruszewska J, Pawłowicz A, Połomska E, Pasternak K, Gdaniec Z, Andrałojć W. The 8-17 DNAzyme can operate in a single active structure regardless of metal ion cofactor. Nat Commun 2024; 15:4218. [PMID: 38760331 PMCID: PMC11101458 DOI: 10.1038/s41467-024-48638-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/13/2023] [Accepted: 05/09/2024] [Indexed: 05/19/2024] Open
Abstract
DNAzymes - synthetic enzymes made of DNA - have long attracted attention as RNA-targeting therapeutic agents. Yet, as of now, no DNAzyme-based drug has been approved, partially due to our lacking understanding of their molecular mode of action. In this work we report the solution structure of 8-17 DNAzyme bound to a Zn2+ ion solved through NMR spectroscopy. Surprisingly, it turned out to be very similar to the previously solved Pb2+-bound form (catalytic domain RMSD = 1.28 Å), despite a long-standing literature consensus that Pb2+ recruits a different DNAzyme fold than other metal ion cofactors. Our follow-up NMR investigations in the presence of other ions - Mg2+, Na+, and Pb2+ - suggest that at DNAzyme concentrations used in NMR all these ions induce a similar tertiary fold. Based on these findings, we propose a model for 8-17 DNAzyme interactions with metal ions postulating the existence of only a single catalytically-active structure, yet populated to a different extent depending on the metal ion cofactor. Our results provide structural information on the 8-17 DNAzyme in presence of non-Pb2+ cofactors, including the biologically relevant Mg2+ ion.
Collapse
Affiliation(s)
- Julia Wieruszewska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznań, Noskowskiego, 12/14, Poland
| | - Aleksandra Pawłowicz
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznań, Noskowskiego, 12/14, Poland
| | - Ewa Połomska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznań, Noskowskiego, 12/14, Poland
| | - Karol Pasternak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznań, Noskowskiego, 12/14, Poland
| | - Zofia Gdaniec
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznań, Noskowskiego, 12/14, Poland
| | - Witold Andrałojć
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704, Poznań, Noskowskiego, 12/14, Poland.
| |
Collapse
|
7
|
Han Y, Li DL, Han Q, Ma F, Zhang CY. Integration of Demethylation-Activated DNAzyme with a Single Quantum Dot Nanosensor for Sensitive Detection of O 6-Methylguanine DNA Methyltransferase in Breast Tissues. Anal Chem 2024; 96:4487-4494. [PMID: 38451469 DOI: 10.1021/acs.analchem.3c05090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 03/08/2024]
Abstract
O6-Methylguanine-DNA-methyltransferase (MGMT) is a demethylation protein that dynamically regulates the O6-methylguanine modification (O6 MeG), and dysregulated MGMT is implicated in various malignant tumors. Herein, we integrate demethylation-activated DNAzyme with a single quantum dot nanosensor to sensitively detect MGMT in breast tissues. The presence of MGMT induces the demethylation of the O6 MeG-caged DNAzyme and the restoration of catalytic activity. The activated DNAzyme then specifically cleaves the ribonucleic acid site of hairpin DNA to expose toehold sequences. The liberated toehold sequence may act as a primer to trigger a cyclic exponential amplification reaction for the generation of enormous signal strands that bind with the Cy5/biotin-labeled probes to form sandwich hybrids. The assembly of sandwich hybrids onto 605QD obtains 605QD-dsDNA-Cy5 nanostructures, inducing efficient FRET between the 605QD donor and Cy5 acceptor. Notably, the introduction of a mismatched base in hairpin DNA can greatly minimize the background and improve the signal-to-noise ratio. This nanosensor achieves a dynamic range of 1.0 × 10-8 to 0.1 ng/μL and a detection limit of 155.78 aM, and it can screen MGMT inhibitors and monitor cellular MGMT activity with single-cell sensitivity. Moreover, it can distinguish the MGMT level in tissues of breast cancer patients and healthy persons, holding great potential in clinical diagnostics and epigenetic research studies.
Collapse
Affiliation(s)
- Yun Han
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Dong-Ling Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Qian Han
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Fei Ma
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Chun-Yang Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
8
|
Fan H, Lu Y. Improving the Sensitivity of a Mn(II)-Specific DNAzyme for Cellular Imaging Sensor through Sequence Mutations. Anal Chem 2024; 96:3853-3858. [PMID: 38375826 PMCID: PMC11060987 DOI: 10.1021/acs.analchem.3c05280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/21/2024]
Abstract
Detection of Mn2+ in living cells is important in understanding the roles of Mn2+ in cellular processes and investigating its potential implications in various diseases and disorders. Toward this goal, we have previously selected a Mn2+-specific 11-5 DNAzyme through an in vitro selection method and converted it into a fluorescence sensor for intracellular Mn2+ sensing. Despite the progress, the nucleotides responsible for the activity are unclear, and the performance of the DNAzyme needs to be improved in order for more effective applications in biological systems. To address these issues, we herein report site-specific mutations within the catalytic domain of the selected 11-5 DNAzyme. As a result, we successfully identified a variant DNAzyme, designated as Mn5V, which exhibited a twofold increase in activity compared to the original 11-5 DNAzyme. Importantly, Mn5V DNAzyme maintained its high selectivity for Mn2+ over other competing metal ions. Upon the addition of Mn2+, Mn5V DNAzyme exhibited a higher fluorescence signal within the tumor cells compared to that of the 11-5 DNAzyme. This study therefore provides a better understanding of how the DNAzyme functions and a more sensitive probe for investigating Mn2+ in biological systems.
Collapse
Affiliation(s)
- Huanhuan Fan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Yi Lu
- Department of Chemistry, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
9
|
Chang T, Li G, Chang D, Amini R, Zhu X, Zhao T, Gu J, Li Z, Li Y. An RNA-Cleaving DNAzyme That Requires an Organic Solvent to Function. Angew Chem Int Ed Engl 2023; 62:e202310941. [PMID: 37648674 DOI: 10.1002/anie.202310941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/31/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/01/2023]
Abstract
Engineering functional nucleic acids that are active under unusual conditions will not only reveal their hidden abilities but also lay the groundwork for pursuing them for unique applications. Although many DNAzymes have been derived to catalyze diverse chemical reactions in aqueous solutions, no prior study has been set up to purposely derive DNAzymes that require an organic solvent to function. Herein, we utilized in vitro selection to isolate RNA-cleaving DNAzymes from a random-sequence DNA pool that were "compelled" to accept 35 % dimethyl sulfoxide (DMSO) as a cosolvent, via counter selection in a purely aqueous solution followed by positive selection in the same solution containing 35 % DMSO. This experiment led to the discovery of a new DNAzyme that requires 35 % DMSO for its catalytic activity and exhibits drastically reduced activity without DMSO. This DNAzyme also requires divalent metal ions for catalysis, and its activity is enhanced by monovalent ions. A minimized, more efficient DNAzyme was also derived. This work demonstrates that highly functional, organic solvent-dependent DNAzymes can be isolated from random-sequence DNA libraries via forced in vitro selection, thus expanding the capability and potential utility of catalytic DNA.
Collapse
Affiliation(s)
- Tianjun Chang
- School of Resources and Environment, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Guangping Li
- School of Resources and Environment, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Dingran Chang
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| | - Ryan Amini
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| | - Xiaoni Zhu
- School of Resources and Environment, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Tongqian Zhao
- School of Resources and Environment, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Jimmy Gu
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| | - Zhongping Li
- Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| |
Collapse
|
10
|
Chiba K, Yamaguchi T, Obika S. Development of 8-17 XNAzymes that are functional in cells. Chem Sci 2023; 14:7620-7629. [PMID: 37476720 PMCID: PMC10355097 DOI: 10.1039/d3sc01928d] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/13/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023] Open
Abstract
DNA enzymes (DNAzymes), which cleave target RNA with high specificity, have been widely investigated as potential oligonucleotide-based therapeutics. Recently, xeno-nucleic acid (XNA)-modified DNAzymes (XNAzymes), exhibiting cleavage activity in cultured cells, have been developed. However, a versatile approach to modify XNAzymes that function in cells has not yet been established. Here, we report an X-ray crystal structure-based approach to modify 8-17 DNAzymes; this approach enables us to effectively locate suitable XNAs to modify. Our approach, combined with a modification strategy used in designing antisense oligonucleotides, rationally designed 8-17 XNAzyme ("X8-17") that achieved high potency in terms of RNA cleavage and biostability against nucleases. X8-17, modified with 2'-O-methyl RNA, locked nucleic acid and phosphorothioate, successfully induced endogenous MALAT-1 and SRB1 RNA knockdown in cells. This approach may help in developing XNAzyme-based novel therapeutic agents.
Collapse
Affiliation(s)
- Kosuke Chiba
- Graduate School of Pharmaceutical Sciences, Osaka University 1-6 Yamadaoka Suita Osaka 565-0871 Japan
| | - Takao Yamaguchi
- Graduate School of Pharmaceutical Sciences, Osaka University 1-6 Yamadaoka Suita Osaka 565-0871 Japan
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences, Osaka University 1-6 Yamadaoka Suita Osaka 565-0871 Japan
- National Institutes of Biomedical Innovation, Health and Nutrition 7-6-8 Saito-Asagi Ibaraki Osaka 567-0085 Japan
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University 1-1 Yamadaoka Suita Osaka 565-0871 Japan
| |
Collapse
|
11
|
Zhang Y, Ji Z, Wang X, Cao Y, Pan H. Single-Molecule Study of DNAzyme Reveals Its Intrinsic Conformational Dynamics. Int J Mol Sci 2023; 24:ijms24021212. [PMID: 36674728 PMCID: PMC9864658 DOI: 10.3390/ijms24021212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/14/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/11/2023] Open
Abstract
DNAzyme is a class of DNA molecules that can perform catalytic functions with high selectivity towards specific metal ions. Due to its potential applications for biosensors and medical therapeutics, DNAzyme has been extensively studied to characterize the relationships between its biochemical properties and functions. Similar to protein enzymes and ribozymes, DNAzymes have been found to undergo conformational changes in a metal-ion-dependent manner for catalysis. Despite the important role the conformation plays in the catalysis process, such structural and dynamic information might not be revealed by conventional approaches. Here, by using the single-molecule fluorescence resonance energy transfer (smFRET) technique, we were able to investigate the detailed conformational dynamics of a uranyl-specific DNAzyme 39E. We observed conformation switches of 39E to a folded state with the addition of Mg2+ and to an extended state with the addition of UO22+. Furthermore, 39E can switch to a more compact configuration with or without divalent metal ions. Our findings reveal that 39E can undergo conformational changes spontaneously between different configurations.
Collapse
Affiliation(s)
- Yiming Zhang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
- Wenzhou–Kean University, Wenzhou 325060, China
| | - Zongzhou Ji
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
- Northeastern University, Shenyang 110819, China
| | - Xin Wang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Yi Cao
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Qingdao Road 3716#, Huaiyin District, Jinan 250117, China
- National Laboratory of Solid–State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Hai Pan
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
- Correspondence:
| |
Collapse
|
12
|
Liu L, Chen X, Sun B. Construction of a Recyclable DNAzyme Motor for MUC1-Specific Glycoform In Situ Quantification. Anal Chem 2022; 94:13745-13752. [PMID: 36161871 DOI: 10.1021/acs.analchem.2c01961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/29/2022]
Abstract
Changes in the glycosylation content, especially in specific proteins, are of great importance for interpreting the mechanisms and development of certain diseases. However, current detection techniques are limited by the weak ionization efficiency of glycosyls and poor anti-interference of fluorescence signals. Herein, we present a general in situ quantification strategy for protein-specific glycoforms by constructing a recyclable DNAzyme motor for mass spectrometric detection using MUC1-specific sialic acid (Sia) as a model. This approach relies on a DNAzyme-based recycling strategy and two well-designed probes: a protein and a glycan probe. The protein probe consists of an aptamer and a DNAzyme. The glycan probe contains three functional domains: a DNAzyme complementary sequence, a substrate peptide segment, and a dibenzocyclooctyne tag. First, these two probes bind to their corresponding targets and trigger hybridization between adjacent probes on the same protein. With the help of the metal cofactor, the DNAzyme of the protein probe hydrolyzes the double-stranded glycan probe. The protein probe then reverts to a single-stranded state and remains intact for the next round of hybridization and cleavage. In this way, the recyclable DNAzyme motor can hydrolyze all glycan probes bound to the target protein. Finally, the reporter peptide released from the hydrolyzed glycan probes can be quantified by mass spectrometry, thereby converting the signal of the protein-specific glycoform to that of mass spectrometry. This strategy has been successfully used for in situ quantification of MUC1-specific Sia in different breast cancer cell lines. It provides a promising platform for protein-specific glycoform quantification.
Collapse
Affiliation(s)
- Liang Liu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiuyu Chen
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Bo Sun
- Department of Pharmacy, The First People's Hospital of Lianyungang, Lianyungang 222000, China
| |
Collapse
|
13
|
Parra-Meneses V, Rojas-Hernández F, Cepeda-Plaza M. The role of Na + in catalysis by the 8-17 DNAzyme. Org Biomol Chem 2022; 20:6356-6362. [PMID: 35856910 DOI: 10.1039/d2ob01075e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
Abstract
The 8-17 DNAzyme is the most studied deoxyribozyme in terms of its molecular mechanism; hence it has become a model system to understand the basis behind DNA catalysis. New functional studies and the recent attainment of high-resolution X-ray structures, in addition to theoretical calculations have offered a great opportunity to gain a broader comprehension of its mechanism; however many aspects are unclear yet, especially regarding the precise role of metal ions in catalysis. Recently, molecular dynamics simulations have suggested for the first time a specific and dynamical participation of Na+ in the mechanism through the reaction pathway, besides the roles proposed for divalent metal cofactors. Herein, we present experimental evidence of a cooperative role of the monovalent cation Na+ in catalysis that is in line with these theoretical suggestions. Our findings show a clear influence of the concentration of Na+ on the activity of the 8-17 DNAzyme when Pb2+ is used as the cofactor. Interestingly, this effect is not noticed with Mg2+, indicating a particular contribution of the monovalent ion to catalysis that would operate preferentially with Pb2+. We have also found that Na+ affects the pKa of the general base and the general acid, indicating its influence on general acid-base catalysis, already identified as part of the mechanism of the 8-17 DNAzyme. Finally, our results emphasize the need to consider Na+ carefully in the design and analysis of functional studies of catalytic DNAs and its possible specific role in their mechanisms.
Collapse
|
14
|
Zhang J, Lan T, Lu Y. Overcoming Major Barriers to Developing Successful Sensors for Practical Applications Using Functional Nucleic Acids. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2022; 15:151-171. [PMID: 35216531 PMCID: PMC9197978 DOI: 10.1146/annurev-anchem-061020-104216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/26/2023]
Abstract
For many years, numerous efforts have been focused on the development of sensitive, selective, and practical sensors for environmental monitoring, food safety, and medical diagnostic applications. However, the transition from innovative research to commercial success is relatively sparse. In this review, we identify four scientific barriers and one technical barrier to developing successful sensors for practical applications, including the lack of general methods to (a) generate receptors for a wide range of targets, (b) improve sensor selectivity to overcome interferences, (c) transduce the selective binding to different optical, electrochemical, and other signals, and (d) tune dynamic range to match thresholds of detection required for different targets; and the costly development of a new device. We then summarize solutions to overcome these barriers using sensors based on functional nucleic acids that include DNAzymes, aptamers, and aptazymes and how these sensors are coupled to widely available measurement devices to expand their capabilities and lower the barrier for their practical applications in the field and point-of-care settings.
Collapse
Affiliation(s)
- JingJing Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China;
| | - Tian Lan
- GlucoSentient, Inc., Champaign, Illinois, USA
| | - Yi Lu
- Department of Chemistry, University of Texas at Austin, Austin, Texas, USA;
| |
Collapse
|
15
|
|
16
|
Hua Y, Ma J, Li D, Wang R. DNA-Based Biosensors for the Biochemical Analysis: A Review. BIOSENSORS 2022; 12:bios12030183. [PMID: 35323453 PMCID: PMC8945906 DOI: 10.3390/bios12030183] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/13/2022] [Revised: 03/09/2022] [Accepted: 03/16/2022] [Indexed: 05/21/2023]
Abstract
In recent years, DNA-based biosensors have shown great potential as the candidate of the next generation biomedical detection device due to their robust chemical properties and customizable biosensing functions. Compared with the conventional biosensors, the DNA-based biosensors have advantages such as wider detection targets, more durable lifetime, and lower production cost. Additionally, the ingenious DNA structures can control the signal conduction near the biosensor surface, which could significantly improve the performance of biosensors. In order to show a big picture of the DNA biosensor's advantages, this article reviews the background knowledge and recent advances of DNA-based biosensors, including the functional DNA strands-based biosensors, DNA hybridization-based biosensors, and DNA templated biosensors. Then, the challenges and future directions of DNA-based biosensors are discussed and proposed.
Collapse
|
17
|
Wang J, Wang DX, Liu B, Jing X, Chen DY, Tang AN, Cui YX, Kong DM. Recent advances in constructing high-order DNA structures. Chem Asian J 2022; 17:e202101315. [PMID: 34989140 DOI: 10.1002/asia.202101315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/22/2021] [Revised: 01/04/2022] [Indexed: 11/07/2022]
Abstract
Molecular self-assembly is widely used in the fields of biosensors, molecular devices, efficient catalytic materials, and medical biomaterials. As the carrier of genetic information, DNA is a kind of biomacromolecule composed of deoxyribonucleotide units. DNA nanotechnology extends DNA of its original properties as a molecule that stores and transmits genetic information from its biological environment. By taking advantage of its unique base pairing and inherent biocompatibility to produce structurally-defined supramolecular structures. With the continuously development of DNA technology, the assembly method of DNA nanostructures is not only limited on the basis of DNA hybridization but also other biochemical interactions. In this review, we summarize the latest methods used to construct high-order DNA nanostructures. The problems of DNA nanostructures are discussed and the future directions in this field are provided.
Collapse
Affiliation(s)
- Jing Wang
- Nankai University, Department of Chemistry, CHINA
| | | | - Bo Liu
- Nankai University, College of Chemistry, CHINA
| | - Xiao Jing
- Nankai University, College of Chemistry, CHINA
| | - Dan-Ye Chen
- Nankai University, College of Chemistry, CHINA
| | - An-Na Tang
- Nankai University, College of Chemistry, CHINA
| | - Yun-Xi Cui
- Nankai University, College of Chemistry, CHINA
| | - De Ming Kong
- Nankai University, Key Laboratory of Functional Polymer Materials, Weijin road 94, 30071, Tianjin, CHINA
| |
Collapse
|
18
|
Zhang W, Li Y, Du S, Chai Z, He J. Activation of 8-17 DNAzyme with extra functional group at conserved residues is related to catalytic metal ion. Bioorg Med Chem Lett 2021; 48:128234. [PMID: 34214510 DOI: 10.1016/j.bmcl.2021.128234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/20/2021] [Revised: 06/05/2021] [Accepted: 06/25/2021] [Indexed: 11/29/2022]
Abstract
In 8-17 DNAzyme, the end loop A6G7C8 is a highly conserved motif. Here we reported an activation approach by specific chemical modifications on A6 and C8 for more efficient Ca2+-mediated reaction. The importance of the end loop was further highlighted and its critical conservation broken for more powerful catalysts.
Collapse
Affiliation(s)
- Wenjie Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yang Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China
| | - Shanshan Du
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China
| | - Zhilong Chai
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China
| | - Junlin He
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, Beijing 100850, China.
| |
Collapse
|
19
|
Zheng J, Wai JL, Lake RJ, New SY, He Z, Lu Y. DNAzyme Sensor Uses Chemiluminescence Resonance Energy Transfer for Rapid, Portable, and Ratiometric Detection of Metal Ions. Anal Chem 2021; 93:10834-10840. [PMID: 34310132 PMCID: PMC9133356 DOI: 10.1021/acs.analchem.1c01077] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/03/2023]
Abstract
DNAzymes have emerged as an important class of sensors for a wide variety of metal ions, with florescence DNAzyme sensors as the most widely used in different sensing and imaging applications because of their fast response time, high signal intensity, and high sensitivity. However, the requirements of an external excitation light source and its associated power increase the cost and size of the fluorometer, making it difficult to be used for portable detections. To overcome these limitations, we report herein a DNAzyme sensor that relies on chemiluminescence resonance energy transfer (CRET) without the need for external light. The sensor is constructed by combining the functional motifs from both Pb2+-dependent 8-17 DNAzyme conjugated to fluorescein (FAM) and hemin/G-quadruplex that mimics horseradish peroxidase to catalyze the oxidation of luminol by H2O2 to yield chemiluminescence. In the absence of Pb2+, the hybridization between the enzyme and substrate strands bring the FAM and hemin/G-quadruplex in close proximity, resulting in CRET. The presence of Pb2+ ions can drive the cleavage on the substrate strand, resulting in a sharp decrease in the melting temperature of hybridization and thus separation of the FAM from hemin/G-quadruplex. The liberated CRET pair causes a ratiometric increase in the donor's fluorescent signal and a decrease in the acceptor signal. Using this method, Pb2+ ions have been measured rapidly (<15 min) with a low limit of detection at 5 nM. By removing the requirement of exogenous light excitation, we have demonstrated a simple and portable detection using a smartphone, making the DNAzyme-CRET system suitable for field tests of lake water. Since DNAzymes selective for other metal ions or targets, such as bacteria, can be obtained using in vitro selection, the method reported here opens a new avenue for rapid, portable, and ratiometric detection of many targets in environmental monitoring, food safety, and medical diagnostics.
Collapse
Affiliation(s)
- Jiao Zheng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jing Luen Wai
- School of Pharmacy, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia
| | | | - Siu Yee New
- School of Pharmacy, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia
| | - Zhike He
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | | |
Collapse
|
20
|
Wang X, Yi X, Huang Z, He J, Wu Z, Chu X, Jiang J. “Repaired and Activated” DNAzyme Enables the Monitoring of DNA Alkylation Repair in Live Cells. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106557] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiangnan Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Chemistry and Chemical Engineering College of biology Hunan University Changsha 410082 China
| | - Xin Yi
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Chemistry and Chemical Engineering College of biology Hunan University Changsha 410082 China
| | - Zhimei Huang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Chemistry and Chemical Engineering College of biology Hunan University Changsha 410082 China
| | - Jianjun He
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Chemistry and Chemical Engineering College of biology Hunan University Changsha 410082 China
| | - Zhenkun Wu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Chemistry and Chemical Engineering College of biology Hunan University Changsha 410082 China
| | - Xia Chu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Chemistry and Chemical Engineering College of biology Hunan University Changsha 410082 China
| | - Jian‐Hui Jiang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics College of Chemistry and Chemical Engineering College of biology Hunan University Changsha 410082 China
| |
Collapse
|
21
|
Wang X, Yi X, Huang Z, He J, Wu Z, Chu X, Jiang JH. "Repaired and Activated" DNAzyme Enables the Monitoring of DNA Alkylation Repair in Live Cells. Angew Chem Int Ed Engl 2021; 60:19889-19896. [PMID: 34165234 DOI: 10.1002/anie.202106557] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/16/2021] [Revised: 06/16/2021] [Indexed: 12/31/2022]
Abstract
Direct measurement of DNA repair is critical for the annotation of their clinical relevance and the discovery of drugs for cancer therapy. Here we reported a "repaired and activated" DNAzyme (RADzyme) by incorporating a single methyl lesion (O6 MeG, 3MeC, or 1MeA) at designated positions through systematic screening. We found that the catalytic activity of the RADzyme was remarkably suppressed and could be restored via enzyme-mediated DNA repair. Benefit from these findings, a fluorogenic RADzyme sensor was developed for the monitoring of MGMT-mediated repair of O6 MeG lesion. Importantly, the sensor allowed the evaluation of MGMT repair activity in different cells and under drugs treatment. Furthermore, another RADzyme sensor was engineered for the monitoring of ALKBH2-mediated repair of 3MeC lesion. This strategy provides a simple and versatile tool for the study of the basic biology of DNA repair, clinical diagnosis and therapeutic assessment.
Collapse
Affiliation(s)
- Xiangnan Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of biology, Hunan University, Changsha, 410082, China
| | - Xin Yi
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of biology, Hunan University, Changsha, 410082, China
| | - Zhimei Huang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of biology, Hunan University, Changsha, 410082, China
| | - Jianjun He
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of biology, Hunan University, Changsha, 410082, China
| | - Zhenkun Wu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of biology, Hunan University, Changsha, 410082, China
| | - Xia Chu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of biology, Hunan University, Changsha, 410082, China
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of biology, Hunan University, Changsha, 410082, China
| |
Collapse
|
22
|
Gavitt TD, Hartmann AK, Sawant SS, Mara AB, Szczepanek SM, Rouge JL. A GATA3 Targeting Nucleic Acid Nanocapsule for In Vivo Gene Regulation in Asthma. ACS NANO 2021; 15:11192-11201. [PMID: 34157834 PMCID: PMC9200080 DOI: 10.1021/acsnano.0c07781] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/13/2023]
Abstract
Allergic asthma is one of the leading chronic lung diseases of both children and adults worldwide, resulting in significant morbidity and mortality in affected individuals. Many patients have severe asthma, which is refractory to treatment, illustrating the need for the development of new therapeutics for this disease. Herein, we describe the use of a peptide cross-linked nucleic acid nanocapsule (NAN) for the delivery of a GATA3-specific DNAzyme to immune cells, with demonstration of modulated transcriptional activity and behavior of those cells. The NAN, built from peptide cross-linked surfactants, is chemically designed to degrade under inflammation conditions releasing individual DNAzyme-surfactant conjugates in response to proteolytic enzymes. Using the NAN, GATA3 DNAzymes were delivered efficiently to human peripheral blood mononuclear cells, with clear evidence of uptake by CD4+ helper T cells without the need for harsh transfection agents. Knockdown of GATA3 was achieved in vitro using human Jurkat T cells, which express GATA3 under homeostatic conditions. Additionally, mice treated with DNAzyme-NANs during house dust mite (HDM)-induced asthma developed less severe allergic lung inflammation than HDM-only control mice, as measured by pulmonary eosinophilia. This study suggests that peptide cross-linked GATA3 DNAzyme-NANs may have the potential to decrease the severity of asthma symptoms in human patients, and development of this technology for human use warrants further investigation.
Collapse
Affiliation(s)
- Tyler D Gavitt
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, Connecticut 06269, United States
- Center of Excellence for Vaccine Research, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Alyssa K Hartmann
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Shraddha S Sawant
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Arlind B Mara
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, Connecticut 06269, United States
- Center of Excellence for Vaccine Research, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Steven M Szczepanek
- Department of Pathobiology and Veterinary Science, University of Connecticut, Storrs, Connecticut 06269, United States
- Center of Excellence for Vaccine Research, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Jessica L Rouge
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| |
Collapse
|
23
|
Cortés-Guajardo C, Rojas-Hernández F, Paillao-Bustos R, Cepeda-Plaza M. Hydrated metal ion as a general acid in the catalytic mechanism of the 8-17 DNAzyme. Org Biomol Chem 2021; 19:5395-5402. [PMID: 34047747 DOI: 10.1039/d1ob00366f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
Abstract
The RNA-cleaving 8-17 DNAzyme, which is a metalloenzyme that depends on divalent metal ions for its function, is the most studied catalytic DNA in terms of its mechanism. By the end of 2017, a report of the crystal structure of the enzyme-substrate complex in the presence of Pb2+ probed some of the previous findings and opened new questions, especially around the participation of the metal ion in the catalytic mechanism and the promiscuity exhibited by the enzyme in terms of the metal cofactor required for catalysis. In this article we explore the role of the divalent metal ion in the mechanism of the 8-17 DNAzyme as a general acid, by measuring the influence of pH over the activity of a slower variant of the enzyme in the presence of Pb2+. We replaced G14, which has been identified as a general base in the mechanism of the enzyme, by the unnatural analog 2-aminopurine, with a lower pKa value of the N1 group. With this approach, we obtained a bell-shaped pH-rate profile with experimental pKa values of 5.4 and 7.0. Comparing these results with previous pH-rate profiles in the presence of Mg2+, our findings suggest the stabilization of the 5'-O leaving group by the hydrated metal ion acting as a general acid, in addition to the activation of the 2'-OH nucleophile by the general base G14.
Collapse
|
24
|
Xu X, Xiao L, Gu C, Shang J, Xiang Y. Wavelength-Selective Activation of Photocaged DNAzymes for Metal Ion Sensing in Live Cells. ACS OMEGA 2021; 6:13153-13160. [PMID: 34056465 PMCID: PMC8158819 DOI: 10.1021/acsomega.1c00976] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 02/23/2021] [Accepted: 04/28/2021] [Indexed: 05/09/2023]
Abstract
RNA-cleaving DNAzymes are widely applied as sensors for detecting metal ions in environmental samples owing to their high sensitivity and selectivity, but their use for sensing biological metal ions in live cells is challenging because constitutive sensors fail to report the spatiotemporal heterogeneity of biological processes. Photocaged DNAzymes can be activated by light for sensing purposes that need spatial and temporal resolution. Studying complex biological processes requires logic photocontrol, but unfortunately all the literature-reported photocaged DNAzymes working in live cells cannot be selectively controlled by light irradiation at different wavelengths. In this work, we developed photocaged DNAzymes responsive to UV and visible light using a general synthetic method based on phosphorothioate chemistry. Taking the Zn2+-dependent DNAzyme sensor as a model, we achieved wavelength-selective activation of photocaged DNAzymes in live human cells by UV and visible light, laying the groundwork for the logic activation of DNAzyme-based sensors in biological systems.
Collapse
|
25
|
Watanabe Y, Fujimoto K. Complete Photochemical Regulation of 8-17 DNAzyme Activity by Using Reversible DNA Photo-crosslinking. Chembiochem 2020; 21:3244-3248. [PMID: 32596920 DOI: 10.1002/cbic.202000227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/13/2020] [Revised: 06/28/2020] [Indexed: 12/15/2022]
Abstract
The regulation of DNAzyme activity is an important problem for its in vivo applications. We achieved photochemical regulation of DNAzyme activity by using reversible DNA photo-crosslinking of 3-cyanovinylcarbazole (CNV K). The ODN containing CNV K photo-crosslinked to a pyrimidine base in the complementary strand after a few seconds of photoirradiation, and its photoadduct was split by photoirradiation of another wavelength. The activity of photo-crosslinked DNAzyme with CNV K was completely inhibited (OFF state). In contrast, after 312 nm irradiation, DNAzyme activity was recovered upon addition of a substrate strand (ON state). In addition, the photo-crosslinked DNAzyme is prone to enzymatic digestion by exonuclease. This photochemical OFF to ON switching with reversible DNA photo-crosslinking was regulated at the desired time and position; therefore, it might be possible to use it for in vivo application.
Collapse
Affiliation(s)
- Yasuha Watanabe
- School of Advanced Science and Technology, Japan Advanced Institute Science and Technology, Asahidai 1-1, Nomi, Ishikawa, 923-1292, Japan
| | - Kenzo Fujimoto
- School of Advanced Science and Technology, Japan Advanced Institute Science and Technology, Asahidai 1-1, Nomi, Ishikawa, 923-1292, Japan
| |
Collapse
|
26
|
Moon WJ, Yang Y, Liu J. Zn 2+ -Dependent DNAzymes: From Solution Chemistry to Analytical, Materials and Therapeutic Applications. Chembiochem 2020; 22:779-789. [PMID: 33007113 DOI: 10.1002/cbic.202000586] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/19/2020] [Revised: 10/01/2020] [Indexed: 12/20/2022]
Abstract
Since 1994, deoxyribozymes or DNAzymes have been in vitro selected to catalyze various types of reactions. Metal ions play a critical role in DNAzyme catalysis, and Zn2+ is a very important one among them. Zn2+ has good biocompatibility and can be used for intracellular applications. Chemically, Zn2+ is a Lewis acid and it can bind to both the phosphate backbone and the nucleobases of DNA. Zn2+ undergoes hydrolysis even at neutral pH, and the partially hydrolyzed polynuclear complexes can affect the interactions with DNA. These features have made Zn2+ a unique cofactor for DNAzyme reactions. This review summarizes Zn2+ -dependent DNAzymes with an emphasis on RNA-/DNA-cleaving reactions. A key feature is the sharp Zn2+ concentration and pH-dependent activity for many of the DNAzymes. The applications of these DNAzymes as biosensors for Zn2+ , as therapeutic agents to cleave intracellular RNA, and as chemical biology tools to manipulate DNA are discussed. Future studies can focus on the selection of new DNAzymes with improved performance and detailed biochemical characterizations to understand the role of Zn2+ , which can facilitate practical applications of Zn2+ -dependent DNAzymes.
Collapse
Affiliation(s)
- Woohyun J Moon
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Yongjie Yang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.,Department of Food and Biological Science, College of Agricultural, Yanbian University, Yanbian Chaoxianzuzizhizhou, Yanji, 133002, P. R. China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.,Centre for Eye and Vision Research, 17W Hong Kong Science Park, Hong Kong, China
| |
Collapse
|
27
|
Micura R, Höbartner C. Fundamental studies of functional nucleic acids: aptamers, riboswitches, ribozymes and DNAzymes. Chem Soc Rev 2020; 49:7331-7353. [PMID: 32944725 DOI: 10.1039/d0cs00617c] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/19/2022]
Abstract
This review aims at juxtaposing common versus distinct structural and functional strategies that are applied by aptamers, riboswitches, and ribozymes/DNAzymes. Focusing on recently discovered systems, we begin our analysis with small-molecule binding aptamers, with emphasis on in vitro-selected fluorogenic RNA aptamers and their different modes of ligand binding and fluorescence activation. Fundamental insights are much needed to advance RNA imaging probes for detection of exo- and endogenous RNA and for RNA process tracking. Secondly, we discuss the latest gene expression-regulating mRNA riboswitches that respond to the alarmone ppGpp, to PRPP, to NAD+, to adenosine and cytidine diphosphates, and to precursors of thiamine biosynthesis (HMP-PP), and we outline new subclasses of SAM and tetrahydrofolate-binding RNA regulators. Many riboswitches bind protein enzyme cofactors that, in principle, can catalyse a chemical reaction. For RNA, however, only one system (glmS ribozyme) has been identified in Nature thus far that utilizes a small molecule - glucosamine-6-phosphate - to participate directly in reaction catalysis (phosphodiester cleavage). We wonder why that is the case and what is to be done to reveal such likely existing cellular activities that could be more diverse than currently imagined. Thirdly, this brings us to the four latest small nucleolytic ribozymes termed twister, twister-sister, pistol, and hatchet as well as to in vitro selected DNA and RNA enzymes that promote new chemistry, mainly by exploiting their ability for RNA labelling and nucleoside modification recognition. Enormous progress in understanding the strategies of nucleic acids catalysts has been made by providing thorough structural fundaments (e.g. first structure of a DNAzyme, structures of ribozyme transition state mimics) in combination with functional assays and atomic mutagenesis.
Collapse
Affiliation(s)
- Ronald Micura
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck CMBI, Leopold-Franzens University Innsbruck, Innsbruck, Austria.
| | | |
Collapse
|
28
|
Ma L, Liu J. Catalytic Nucleic Acids: Biochemistry, Chemical Biology, Biosensors, and Nanotechnology. iScience 2020; 23:100815. [PMID: 31954323 PMCID: PMC6962706 DOI: 10.1016/j.isci.2019.100815] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/30/2019] [Revised: 12/11/2019] [Accepted: 12/26/2019] [Indexed: 01/06/2023] Open
Abstract
Since the initial discovery of ribozymes in the early 1980s, catalytic nucleic acids have been used in different areas. Compared with protein enzymes, catalytic nucleic acids are programmable in structure, easy to modify, and more stable especially for DNA. We take a historic view to summarize a few main interdisciplinary areas of research on nucleic acid enzymes that may have broader impacts. Early efforts on ribozymes in the 1980s have broken the notion that all enzymes are proteins, supplying new evidence for the RNA world hypothesis. In 1994, the first catalytic DNA (DNAzyme) was reported. Since 2000, the biosensor applications of DNAzymes have emerged and DNAzymes are particularly useful for detecting metal ions, a challenging task for enzymes and antibodies. Combined with nanotechnology, DNAzymes are key building elements for switches allowing dynamic control of materials assembly. The search for new DNAzymes and ribozymes is facilitated by developments in DNA sequencing and computational algorithms, further broadening our fundamental understanding of their biochemistry.
Collapse
Affiliation(s)
- Lingzi Ma
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
29
|
Huang PJ, Rochambeau D, Sleiman HF, Liu J. Target Self‐Enhanced Selectivity in Metal‐Specific DNAzymes. Angew Chem Int Ed Engl 2020; 59:3573-3577. [PMID: 31867832 DOI: 10.1002/anie.201915675] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/08/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Po‐Jung Jimmy Huang
- Department of ChemistryWaterloo Institute for Nanotechnology University of Waterloo 200 University Avenue West Waterloo Ontario N2L 3G1 Canada
| | - Donatien Rochambeau
- Department of ChemistryMcGill University 801 Sherbrooke Street West Montréal Québec H3A 0B8 Canada
| | - Hanadi F. Sleiman
- Department of ChemistryMcGill University 801 Sherbrooke Street West Montréal Québec H3A 0B8 Canada
| | - Juewen Liu
- Department of ChemistryWaterloo Institute for Nanotechnology University of Waterloo 200 University Avenue West Waterloo Ontario N2L 3G1 Canada
| |
Collapse
|
30
|
Huang PJ, Rochambeau D, Sleiman HF, Liu J. Target Self‐Enhanced Selectivity in Metal‐Specific DNAzymes. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915675] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/15/2022]
Affiliation(s)
- Po‐Jung Jimmy Huang
- Department of ChemistryWaterloo Institute for Nanotechnology University of Waterloo 200 University Avenue West Waterloo Ontario N2L 3G1 Canada
| | - Donatien Rochambeau
- Department of ChemistryMcGill University 801 Sherbrooke Street West Montréal Québec H3A 0B8 Canada
| | - Hanadi F. Sleiman
- Department of ChemistryMcGill University 801 Sherbrooke Street West Montréal Québec H3A 0B8 Canada
| | - Juewen Liu
- Department of ChemistryWaterloo Institute for Nanotechnology University of Waterloo 200 University Avenue West Waterloo Ontario N2L 3G1 Canada
| |
Collapse
|
31
|
Yang P, Deng P, Du H, Hou X, Zhang J, Chen J, Hou X, Zhou R. Building an anti-interfering DNAzyme-powered micromachine resistant to being inhibited by biological matrices. Chem Commun (Camb) 2020; 56:2658-2661. [PMID: 32022034 DOI: 10.1039/c9cc08515g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 02/05/2023]
Abstract
A DNAzyme-powered micromachine with anti-interfering properties and displaying resistance to being inhibited by biological matrices was built.
Collapse
Affiliation(s)
- Peng Yang
- Analytical & Testing Center
- Sichuan University
- 29 Wangjiang Road
- Chengdu
- China
| | - Ping Deng
- Nephrology Division
- the Third Affiliated Hospital of Sun Yat-sen University
- Guangzhou
- China
| | - Huan Du
- Analytical & Testing Center
- Sichuan University
- 29 Wangjiang Road
- Chengdu
- China
| | - Xin Hou
- Key Lab of Green Chem & Tech of MOE, and College of Chemistry, Sichuan University
- Chengdu
- China
| | - Jie Zhang
- Biliary Surgical Department of West China Hospital
- Sichuan University
- Chengdu
- China
| | - Junbo Chen
- Analytical & Testing Center
- Sichuan University
- 29 Wangjiang Road
- Chengdu
- China
| | - Xiandeng Hou
- Analytical & Testing Center
- Sichuan University
- 29 Wangjiang Road
- Chengdu
- China
| | - Rongxing Zhou
- Biliary Surgical Department of West China Hospital
- Sichuan University
- Chengdu
- China
| |
Collapse
|
32
|
Cepeda-Plaza M, Peracchi A. Insights into DNA catalysis from structural and functional studies of the 8-17 DNAzyme. Org Biomol Chem 2020; 18:1697-1709. [DOI: 10.1039/c9ob02453k] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/17/2022]
Abstract
The review examines functional knowledge gathered over two decades of research on the 8-17 DNAzyme, focusing on three aspects: the structural requirements for catalysis, the role of metal ions and the participation of general acid-base catalysis.
Collapse
Affiliation(s)
| | - Alessio Peracchi
- Department of Chemistry
- Life Sciences and Environmental Sustainability
- University of Parma
- Parma
- Italy
| |
Collapse
|
33
|
Lake RJ, Yang Z, Zhang J, Lu Y. DNAzymes as Activity-Based Sensors for Metal Ions: Recent Applications, Demonstrated Advantages, Current Challenges, and Future Directions. Acc Chem Res 2019; 52:3275-3286. [PMID: 31721559 PMCID: PMC7103667 DOI: 10.1021/acs.accounts.9b00419] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/14/2022]
Abstract
Metal ions can be beneficial or toxic depending on their identity, oxidation state, and concentration. Therefore, the ability to detect and quantify different types of metal ions using portable sensors or in situ imaging agents is important for better environmental monitoring, in vitro medical diagnostics, and imaging of biological systems. While numerous metal ions in different oxidation states are present in the environment and biological systems, only a limited number of them can be detected effectively using current methods. In this Account, we summarize research results from our group that overcome this limitation by the development of a novel class of activity-based sensors based on metal-dependent DNAzymes, which are DNA molecules with enzymatic activity. First, we have developed an in vitro selection method to obtain DNAzymes from a large DNA library of up to 1015 sequences that can carry out cleavage of an oligonucleotide substrate only in the presence of a specific metal ion with high selectivity. Negative selection steps can further be used to improve the selectivity against potentially competing targets by removing sequences that recognize the competing metal ions. Second, we have developed a patented catalytic beacon method to transform the metal-dependent DNAzyme cleavage reaction into a turn-on fluorescent signal by attaching a fluorophore and quenchers to the DNAzyme complex. Because of the difference in the melting temperatures of DNA hybridization before and after metal-ion-dependent cleavage of the DNAzyme substrate, the fluorophore on the DNA cleavage product can be released from its quenchers to create a turn-on fluorescent signal. Because DNAzymes are easy to conjugate with other signaling moieties, such as gold nanoparticles, lanthanide-doped upconversion nanoparticles, electrochemical agents, and gadolinium complexes, these DNAzymes can also readily be converted into colorimetric sensors, upconversion luminescence sensors, electrochemical sensors, or magnetic resonance contrast agents. In addition to describing recent progress in developing and applying these metal ion sensors for environmental monitoring, point-of-care diagnostics, cellular imaging, and in vivo imaging in zebrafish, we summarize major advantages of this class of activity-based sensors. In addition to advantages common to most activity-based sensors, such as enzymatic turnovers that allow for signal amplification and the use of initial rates instead of absolute signals for quantification to avoid interferences from sample matrices, the DNAzyme-based sensors allow for in vitro selection to expand the method to almost any metal ion under a variety of conditions, negative selection to improve the selectivity against competing targets, and reselection of DNAzymes and combination of active and inactive variants to fine-tune the dynamic range of detection. The use of melting temperature differences to separate target binding from signaling moieties in the catalytic beacon method allows the use of different fluorophores and nanomaterials to extend the versatility and modularity of this sensing platform. Furthermore, sensing and imaging artifacts can be minimized by using an inactive mutant DNAzyme as a negative control, while spatiotemporal control of sensing/imaging can be achieved using optical, photothermal, and endogenous orthogonal caging methods. Finally, current challenges, opportunities, and future perspectives for DNAzymes as activity-based sensors are also discussed.
Collapse
Affiliation(s)
- Ryan J. Lake
- Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| | - Zhenglin Yang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
- Department of Biochemistry, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| | - JingJing Zhang
- Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
- Department of Biochemistry, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
34
|
Ekesan Ş, York DM. Dynamical ensemble of the active state and transition state mimic for the RNA-cleaving 8-17 DNAzyme in solution. Nucleic Acids Res 2019; 47:10282-10295. [PMID: 31511899 PMCID: PMC6821293 DOI: 10.1093/nar/gkz773] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/25/2019] [Revised: 08/20/2019] [Accepted: 09/03/2019] [Indexed: 02/01/2023] Open
Abstract
We perform molecular dynamics simulations, based on recent crystallographic data, on the 8-17 DNAzyme at four states along the reaction pathway to determine the dynamical ensemble for the active state and transition state mimic in solution. A striking finding is the diverse roles played by Na+ and Pb2+ ions in the electrostatically strained active site that impact all four fundamental catalytic strategies, and share commonality with some features recently inferred for naturally occurring hammerhead and pistol ribozymes. The active site Pb2+ ion helps to stabilize in-line nucleophilic attack, provides direct electrostatic transition state stabilization, and facilitates leaving group departure. A conserved guanine residue is positioned to act as the general base, and is assisted by a bridging Na+ ion that tunes the pKa and facilitates in-line fitness. The present work provides insight into how DNA molecules are able to solve the RNA-cleavage problem, and establishes functional relationships between the mechanism of these engineered DNA enzymes with their naturally evolved RNA counterparts. This adds valuable information to our growing body of knowledge on general mechanisms of phosphoryl transfer reactions catalyzed by RNA, proteins and DNA.
Collapse
Affiliation(s)
- Şölen Ekesan
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Darrin M York
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
35
|
Du S, Li Y, Chai Z, Shi W, He J. Functionalization of 8-17 DNAzymes modulates catalytic efficiency and divalent metal ion preference. Bioorg Chem 2019; 94:103401. [PMID: 31711763 DOI: 10.1016/j.bioorg.2019.103401] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/20/2019] [Revised: 10/17/2019] [Accepted: 10/24/2019] [Indexed: 11/26/2022]
Abstract
8-17 and 17E DNAzyme are being explored as biosensors for metal ions and RNA motifs of interest, more sensitive and efficient DNAzymes are required to meet the practical applications. Their similarity in the catalytic cores and differences in catalytic efficiency and metal ion dependence initiated great interest about the contribution of the catalytic residues. Functionalization of four adenine residues in the catalytic cores of 8-17 DNAzyme and 17E was conducted with amino, guanidinium, and imidazolyl groups. In the bulge loops of 8-17 and 17E, N6-(3-aminopropyl)-2'-deoxyadenosine (residue 1) at A15 led to new DNAzymes 8-17DZ-A15-1 and 17E-A15-1, with much more efficient cleavage ability in the Ca2+-mediated reaction and the greater preference for Ca2+ over Mg2+ than 8-17 DNAzyme and 17E, respectively, especially with a concentration-dependent increase of the selectivity, which is different from most DNAzymes with the similar dependence on both Mg2+ and Ca2+. With this kind of post-selection modification on 8-17 DNAzymes, for the first time, the catalytic efficiency and metal ion selectivity could be positively modulated. It is also helpful for the catalyic mechanistic studies of these DNAzymes, especially, the role of the unconserved A15 should be emphasized.
Collapse
Affiliation(s)
- Shanshan Du
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Yang Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Zhilong Chai
- School of Pharmaceutical Sciences, Guizhou University, Guizhou 550025, China
| | - Weiguo Shi
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| | - Junlin He
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China.
| |
Collapse
|
36
|
Affiliation(s)
- Woohyun J. Moon
- Department of ChemistryWaterloo Institute for NanotechnologyUniversity of Waterloo Waterloo Ontario N2L 3G1 Canada
| | - Juewen Liu
- Department of ChemistryWaterloo Institute for NanotechnologyUniversity of Waterloo Waterloo Ontario N2L 3G1 Canada
| |
Collapse
|
37
|
Real-Time 3D Single Particle Tracking: Towards Active Feedback Single Molecule Spectroscopy in Live Cells. Molecules 2019; 24:molecules24152826. [PMID: 31382495 PMCID: PMC6695621 DOI: 10.3390/molecules24152826] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/05/2019] [Revised: 07/27/2019] [Accepted: 08/01/2019] [Indexed: 01/25/2023] Open
Abstract
Single molecule fluorescence spectroscopy has been largely implemented using methods which require tethering of molecules to a substrate in order to make high temporal resolution measurements. However, the act of tethering a molecule requires that the molecule be removed from its environment. This is especially perturbative when measuring biomolecules such as enzymes, which may rely on the non-equilibrium and crowded cellular environment for normal function. A method which may be able to un-tether single molecule fluorescence spectroscopy is real-time 3D single particle tracking (RT-3D-SPT). RT-3D-SPT uses active feedback to effectively lock-on to freely diffusing particles so they can be measured continuously with up to photon-limited temporal resolution over large axial ranges. This review gives an overview of the various active feedback 3D single particle tracking methods, highlighting specialized detection and excitation schemes which enable high-speed real-time tracking. Furthermore, the combination of these active feedback methods with simultaneous live-cell imaging is discussed. Finally, the successes in real-time 3D single molecule tracking (RT-3D-SMT) thus far and the roadmap going forward for this promising family of techniques are discussed.
Collapse
|
38
|
He Y, Chen D, Huang PJJ, Zhou Y, Ma L, Xu K, Yang R, Liu J. Misfolding of a DNAzyme for ultrahigh sodium selectivity over potassium. Nucleic Acids Res 2019; 46:10262-10271. [PMID: 30215808 PMCID: PMC6212836 DOI: 10.1093/nar/gky807] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/18/2018] [Accepted: 09/08/2018] [Indexed: 02/07/2023] Open
Abstract
Herein, the excellent Na+ selectivity of a few RNA-cleaving DNAzymes was exploited, where Na+ can be around 3000-fold more effective than K+ for promoting catalysis. By using a double mutant based on the Ce13d DNAzyme, and by lowering the temperature, increased 2-aminopurine (2AP) fluorescence was observed with addition of both Na+ and K+. The fluorescence increase was similar for these two metals at below 10 mM, after which K+ took a different pathway. Since 2AP probes its local base stacking environment, K+ can be considered to induce misfolding. Binding of both Na+ and K+ was specific, since single base mutations could fully inhibit 2AP fluorescence for both metals. The binding thermodynamics was measured by temperature-dependent experiments revealing enthalpy-driven binding for both metals and less coordination sites compared to G-quadruplex DNA. Cleavage activity assays indicated a moderate cleavage activity with 10 mM K+, while further increase of K+ inhibited the activity, also supporting its misfolding of the DNAzyme. For comparison, a G-quadruplex DNA was also studied using the same system, where Na+ and K+ led to the same final state with only around 8-fold difference in Kd. This study provides interesting insights into strategies for discriminating Na+ and K+.
Collapse
Affiliation(s)
- Yanping He
- State Key Laboratory of Precision Measurement Technology and Instruments, University of Tianjin, Tianjin 300072, China.,Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Da Chen
- State Key Laboratory of Precision Measurement Technology and Instruments, University of Tianjin, Tianjin 300072, China
| | - Po-Jung Jimmy Huang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Yibo Zhou
- School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Lingzi Ma
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Kexin Xu
- State Key Laboratory of Precision Measurement Technology and Instruments, University of Tianjin, Tianjin 300072, China
| | - Ronghua Yang
- School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha 410114, P. R. China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
39
|
Gu L, Yan W, Wu H, Fan S, Ren W, Wang S, Lyu M, Liu J. Selection of DNAzymes for Sensing Aquatic Bacteria: Vibrio Anguillarum. Anal Chem 2019; 91:7887-7893. [DOI: 10.1021/acs.analchem.9b01707] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/19/2022]
Affiliation(s)
| | | | | | | | - Wei Ren
- Key Laboratory of Marine Biology, Nanjing Agricultural University, Nanjing, Jiangsu 210000, P. R. China
| | | | | | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
40
|
He Y, Zhou Y, Chen D, Liu J. Global Folding of a Na
+
‐Specific DNAzyme Studied by FRET. Chembiochem 2018; 20:385-393. [DOI: 10.1002/cbic.201800548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/13/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Yanping He
- State Key Laboratory of Precision Measurement Technology and InstrumentsUniversity of Tianjin Tianjin 300072 P.R. China
- Department of Chemistry, Waterloo Institute for NanotechnologyUniversity of Waterloo Waterloo Ontario N2L 3G1 Canada
| | - Yibo Zhou
- School of Chemistry and Biological EngineeringChangsha University of Science and Technology Changsha 410114 P.R. China
| | - Da Chen
- State Key Laboratory of Precision Measurement Technology and InstrumentsUniversity of Tianjin Tianjin 300072 P.R. China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for NanotechnologyUniversity of Waterloo Waterloo Ontario N2L 3G1 Canada
| |
Collapse
|
41
|
Tapp MJN, Slocik JM, Dennis PB, Naik RR, Milam VT. Competition-Enhanced Ligand Selection to Identify DNA Aptamers. ACS COMBINATORIAL SCIENCE 2018; 20:585-593. [PMID: 30189130 DOI: 10.1021/acscombsci.8b00048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 12/12/2022]
Abstract
Competition-enhanced ligand screening (CompELS) was employed to rapidly screen through large DNA libraries to identify single-stranded, oligonucleotide-based ligands called aptamers that bind to a nonbiological target. This previously unreported aptamer screening approach involves the repeated introduction of unenriched random sequence populations during the biopanning process, but avoids iterative elution and polymerase chain reaction (PCR) amplification steps inherent to traditional SELEX (systematic evolution of ligands by exponential enrichment) screening. In this study, 25 aptamers were identified against a gold surface via CompELS and evaluated to identify patterns in primary structures and predicted secondary structures. Following a final one-round competition experiment with the 25 identified aptamers, one particular aptamer sequence (1N) emerged as the most competitive adsorbate species for the gold substrate. Binding analysis indicated at least an order of magnitude difference in the binding affinity of 1N ( Kd = 5.6 × 10-10 M) compared to five other high affinity aptamer candidates ( Kd = 10-8-10-9 M) from identical secondary structure families. Collectively, these studies introduce a rapid, reliable screening and ranking platform along with a classification scheme well-suited for identifying and characterizing aptamers for nonbiological as well as biological targets.
Collapse
Affiliation(s)
| | - Joseph M. Slocik
- Materials & Manufacturing Directorate, Soft Matter Materials Branch, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
| | - Patrick B. Dennis
- Materials & Manufacturing Directorate, Soft Matter Materials Branch, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
| | - Rajesh R. Naik
- Materials & Manufacturing Directorate, Soft Matter Materials Branch, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
| | | |
Collapse
|
42
|
Zhu C, Zhu W, Xu L, Zhou X. A label-free electrochemical aptasensor based on magnetic biocomposites with Pb 2+-dependent DNAzyme for the detection of thrombin. Anal Chim Acta 2018; 1047:21-27. [PMID: 30567652 DOI: 10.1016/j.aca.2018.09.040] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/20/2018] [Revised: 09/03/2018] [Accepted: 09/17/2018] [Indexed: 12/21/2022]
Abstract
Herein, a novel magnetic biocomposite (Fe3O4@Au-S1/S2) was applied to analyze thrombin. The Fe3O4@Au-S1/S2 consisted of Fe3O4@Au nanoparticles (Fe3O4@Au NPs) as carriers for magnetic separation and magnetic field-induced self-assembly, thiolated complementary strand (S1) anchored based on Au-S bond and thrombin binding aptamer (S2) as a recognition element. As a redox indicator, methylene blue (MB) can be adsorbed to DNA anchored on the surface of Fe3O4@Au NPs by electro-static interaction. In the absence of thrombin, MB were adsorbed on double-stranded DNA (S1/S2) which anchored on Fe3O4@Au NPs and a high electrochemical signal of MB was recorded by Differential pulse voltammetry. Conversely, the complementary strand (S1) exposed after thrombin competitively bonded with aptamer. The introduction of Pb2+-dependent DNAzyme (S3) split S1 at specific rA site, resulting in the significantly decreased adsorption capacity of MB. Thus, the thrombin detection could be recorded by monitoring the electrochemical signal reduction of MB through incubation of thrombin with S3. This method exhibited a high sensitivity toward thrombin with a broad linear range from 5 pmol L-1 to 5 nmol L-1 and a limit of detection of 1.8 pmol L-1.
Collapse
Affiliation(s)
- Chunhong Zhu
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, PR China
| | - Wanying Zhu
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, PR China
| | - Lei Xu
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, PR China
| | - Xuemin Zhou
- School of Pharmacy, Nanjing Medical University, Nanjing, 211166, PR China.
| |
Collapse
|
43
|
Yan X, Tang M, Yang J, Diao W, Ma H, Cheng W, Que H, Wang T, Yan Y. A one-step fluorescent biosensing strategy for highly sensitive detection of HIV-related DNA based on strand displacement amplification and DNAzymes. RSC Adv 2018; 8:31710-31716. [PMID: 35548230 PMCID: PMC9085900 DOI: 10.1039/c8ra06480f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/01/2018] [Accepted: 09/06/2018] [Indexed: 01/04/2023] Open
Abstract
Sensitive and specific detection of HIV-related DNA is of great importance for early accurate diagnosis and therapy of HIV-infected patients. Here, we developed a one-step and rapid fluorescence strategy for HIV-related DNA detection based on strand displacement amplification and a Mg2+-dependent DNAzyme reaction. In the presence of target HIV DNA, it can hybridize with template DNA and activate strand displacement amplification to generate numerous DNAzyme sequences. With the introduction of Mg2+, DNAzyme can be activated to circularly cleave the substrate DNA, which leads to the separation of fluorophore reporters from the quenchers, resulting in the recovery of the fluorescence. Under the optimal experimental conditions, the established biosensing method can detect target DNA down to 61 fM with a linear range from 100 fM to 1 nM, and discriminate target DNA from mismatched DNA perfectly. In addition, the developed biosensing strategy was successfully applied to assay target DNA spiked into human serum samples. With the advantages of fast, easy operation and high-performance, this biosensing strategy might be an alternative tool for clinical diagnosis of HIV infection.
Collapse
Affiliation(s)
- Xiaoyu Yan
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University Chongqing 400016 China +86-23-684852 +86-23-684852
| | - Min Tang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University Chongqing 400016 China +86-23-684852 +86-23-684852
| | - Jianru Yang
- Department of Clinical Laboratory, Affiliated Hospital of Zunyi Medical University Zunyi 563003 China
| | - Wei Diao
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University Chongqing 400016 China +86-23-684852 +86-23-684852
| | - Hongmin Ma
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University Chongqing 400016 China +86-23-684852 +86-23-684852
| | - Wenbin Cheng
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University Chongqing 400016 China +86-23-684852 +86-23-684852
| | - Haiying Que
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University Chongqing 400016 China +86-23-684852 +86-23-684852
| | - Tong Wang
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University Chongqing 400016 China +86-23-684852 +86-23-684852
| | - Yurong Yan
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University Chongqing 400016 China +86-23-684852 +86-23-684852
| |
Collapse
|
44
|
SUN LL, SU YY, GAO YJ, Li W, LYU H, LI B, LI D. Progresses of Single Molecular Fluorescence Resonance Energy Transfer in Studying Biomacromolecule Dynamic Process. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2018. [DOI: 10.1016/s1872-2040(18)61088-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 10/14/2022]
|
45
|
Ratnesh RK, Mehata MS. Tunable single and double emission semiconductor nanocrystal quantum dots: a multianalyte sensor. Methods Appl Fluoresc 2018; 6:035006. [DOI: 10.1088/2050-6120/aaba8a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/02/2023]
|
46
|
Abstract
The emergence of functional cooperation between the three main classes of biomolecules - nucleic acids, peptides and lipids - defines life at the molecular level. However, how such mutually interdependent molecular systems emerged from prebiotic chemistry remains a mystery. A key hypothesis, formulated by Crick, Orgel and Woese over 40 year ago, posits that early life must have been simpler. Specifically, it proposed that an early primordial biology lacked proteins and DNA but instead relied on RNA as the key biopolymer responsible not just for genetic information storage and propagation, but also for catalysis, i.e. metabolism. Indeed, there is compelling evidence for such an 'RNA world', notably in the structure of the ribosome as a likely molecular fossil from that time. Nevertheless, one might justifiably ask whether RNA alone would be up to the task. From a purely chemical perspective, RNA is a molecule of rather uniform composition with all four bases comprising organic heterocycles of similar size and comparable polarity and pK a values. Thus, RNA molecules cover a much narrower range of steric, electronic and physicochemical properties than, e.g. the 20 amino acid side-chains of proteins. Herein we will examine the functional potential of RNA (and other nucleic acids) with respect to self-replication, catalysis and assembly into simple protocellular entities.
Collapse
|
47
|
Abstract
DNAzymes are catalytic DNA molecules that can perform a variety of reactions. Although advances have been made in obtaining DNAzymes via in vitro selection and many of them have been developed into sensors and imaging agents for metal ions, bacteria, and other molecules, the structural features responsible for these enzymatic reactions are still not well understood. Previous studies of the 8-17 DNAzyme have suggested conserved guanines close to the phosphodiester transfer site may play a role in the catalytic reaction. To identify the specific guanine and functional group of the guanine responsible for the reaction, we herein report the effects of replacing G1.1 and G14 (G; p Ka,N1 = 9.4) with analogues with a different p Ka at the N1 position, such as inosine (G14I; p Ka,N1 = 8.7), 2,6-diaminopurine (G14diAP; p Ka,N1 = 5.6), and 2-aminopurine (G14AP; p Ka,N1 = 3.8) on pH-dependent reaction rates. A comparison of the pH dependence of the reaction rates of these DNAzymes demonstrated that G14 in the bulge loop next to the cleavage site, is involved in proton transfer at the catalytic site. In contrast, we did not find any evidence of G1.1 being involved in acid-base catalysis. These results support general acid-base catalysis as a feasible strategy used in DNA catalysis, as in RNA and protein enzymes.
Collapse
Affiliation(s)
- Marjorie Cepeda-Plaza
- Department of Chemical Sciences, School of Exact Sciences, Universidad Andres Bello, República 275, Santiago, Chile
| | - Claire E. McGhee
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, Illinois 61801
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, Illinois 61801
| |
Collapse
|
48
|
Zhou W, Ding J, Liu J. Splitting a DNAzyme enables a Na +-dependent FRET signal from the embedded aptamer. Org Biomol Chem 2018; 15:6959-6966. [PMID: 28792040 DOI: 10.1039/c7ob01709j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/10/2023]
Abstract
Recently, a few Na+-specific RNA-cleaving DNAzymes have been reported, and a Na+ aptamer was identified from the NaA43 and Ce13d DNAzymes. These DNAzymes and the embedded aptamer have been used for Na+ detection. In this work, we studied the Na+-dependent folding of the Ce13d DNAzyme using fluorescence resonance energy transfer (FRET). When a FRET donor and an acceptor were respectively labeled at the ends of the DNAzyme, Na+ failed to induce an obvious end-to-end distance change, suggesting a rigid global structure. To relax this rigidity, the Ce13d DNAzyme was systematically split at various sites on both the enzyme and the substrate strands. The Na+ binding activity of the split structures was characterized by 2-aminopurine fluorescence, enzymatic activity, Tb3+-sensitized luminescence, and DMS footprinting. Among the various constructs, the only one that retained Na+ binding was the split at the cleavage site, and this construct was further labeled with two dyes near the split site. This FRET result showed Na+-dependent folding with a Kd of 26 mM Na+. This study provides important structural information related to Na+ binding to this new aptamer, which might also be useful for future work in biosensor design.
Collapse
Affiliation(s)
- Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | | | | |
Collapse
|
49
|
Abstract
Nucleic acid enzymes require metal ions for activity, and many recently discovered enzymes can use multiple metals, either binding to the scissile phosphate or also playing an allosteric role.
Collapse
Affiliation(s)
- Wenhu Zhou
- Xiangya School of Pharmaceutical Sciences
- Central South University
- Changsha
- China
| | - Juewen Liu
- Department of Chemistry
- Water Institute, and Waterloo Institute for Nanotechnology
- University of Waterloo
- Waterloo
- Canada
| |
Collapse
|
50
|
Abstract
In addition to storage of genetic information, DNA can also catalyze various reactions. RNA-cleaving DNAzymes are the catalytic DNAs discovered the earliest, and they can cleave RNAs in a sequence-specific manner. Owing to their great potential in medical therapeutics, virus control, and gene silencing for disease treatments, RNA-cleaving DNAzymes have been extensively studied; however, the mechanistic understandings of their substrate recognition and catalysis remain elusive. Here, we report three catalytic form 8-17 DNAzyme crystal structures. 8-17 DNAzyme adopts a V-shape fold, and the Pb2+ cofactor is bound at the pre-organized pocket. The structures with Pb2+ and the modification at the cleavage site captured the pre-catalytic state of the RNA cleavage reaction, illustrating the unexpected Pb2+-accelerated catalysis, intrinsic tertiary interactions, and molecular kink at the active site. Our studies reveal that DNA is capable of forming a compacted structure and that the functionality-limited bio-polymer can have a novel solution for a functional need in catalysis.
Collapse
|