1
|
Wu D, Yang S, Yuan C, Zhang K, Tan J, Guan K, Zeng H, Huang C. Targeting purine metabolism-related enzymes for therapeutic intervention: A review from molecular mechanism to therapeutic breakthrough. Int J Biol Macromol 2024; 282:136828. [PMID: 39447802 DOI: 10.1016/j.ijbiomac.2024.136828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/02/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Purines are ancient metabolites with established and emerging metabolic and non-metabolic signaling attributes. The expression of purine metabolism-related genes is frequently activated in human malignancies, correlating with increased cancer aggressiveness and chemoresistance. Importantly, under certain stimulating conditions, the purine biosynthetic enzymes can assemble into a metabolon called "purinosomes" to enhance purine flux. Current evidence suggests that purine flux is regulated by a complex circuit that encompasses transcriptional, post-translational, metabolic, and association-dependent regulatory mechanisms. Furthermore, purines within the tumor microenvironment modulate cancer immunity through signaling mediated by purinergic receptors. The deregulation of purine metabolism has significant metabolic consequences, particularly hyperuricemia. Herbal-based therapeutics have emerged as valuable pharmacological interventions for the treatment of hyperuricemia by inhibiting the activity of hepatic XOD, modulating the expression of renal urate transporters, and suppressing inflammatory responses. This review summarizes recent advancements in the understanding of purine metabolism in clinically relevant malignancies and metabolic disorders. Additionally, we discuss the role of herbal interventions and the interaction between the host and gut microbiota in the regulation of purine homeostasis. This information will fuel the innovation of therapeutic strategies that target the disease-associated rewiring of purine metabolism for therapeutic applications.
Collapse
Affiliation(s)
- Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Shengqiang Yang
- School of Basic Medicine, Youjiang Medical University for Nationalities, Baise 533000, China
| | - Chenyang Yuan
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Kejia Zhang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Jiachen Tan
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Kaifeng Guan
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China.
| | - Hong Zeng
- School of Basic Medicine, Youjiang Medical University for Nationalities, Baise 533000, China.
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
| |
Collapse
|
2
|
Yamada S, Mizukoshi T, Sato A, Sakakibara SI. Purinosomes and Purine Metabolism in Mammalian Neural Development: A Review. Acta Histochem Cytochem 2024; 57:89-100. [PMID: 38988694 PMCID: PMC11231565 DOI: 10.1267/ahc.24-00027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 05/19/2024] [Indexed: 07/12/2024] Open
Abstract
Neural stem/progenitor cells (NSPCs) in specific brain regions require precisely regulated metabolite production during critical development periods. Purines-vital components of DNA, RNA, and energy carriers like ATP and GTP-are crucial metabolites in brain development. Purine levels are tightly controlled through two pathways: de novo synthesis and salvage synthesis. Enzymes driving de novo pathway are assembled into a large multienzyme complex termed the "purinosome." Here, we review purine metabolism and purinosomes as spatiotemporal regulators of neural development. Notably, around postnatal day 0 (P0) during mouse cortical development, purine synthesis transitions from the de novo pathway to the salvage pathway. Inhibiting the de novo pathway affects mTORC1 pathway and leads to specific forebrain malformations. In this review, we also explore the importance of protein-protein interactions of a newly identified NSPC protein-NACHT and WD repeat domain-containing 1 (Nwd1)-in purinosome formation. Reduced Nwd1 expression disrupts purinosome formation, impacting NSPC proliferation and neuronal migration, resulting in periventricular heterotopia. Nwd1 interacts directly with phosphoribosylaminoimidazole-succinocarboxamide synthetase (PAICS), an enzyme involved in de novo purine synthesis. We anticipate this review will be valuable for researchers investigating neural development, purine metabolism, and protein-protein interactions.
Collapse
Affiliation(s)
- Seiya Yamada
- Laboratory for Molecular Neurobiology, Faculty of Human Sciences, Waseda University, Saitama, Japan
- Neuroscience Center, HiLIFE-Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Tomoya Mizukoshi
- Laboratory for Molecular Neurobiology, Faculty of Human Sciences, Waseda University, Saitama, Japan
| | - Ayaka Sato
- Laboratory for Molecular Neurobiology, Faculty of Human Sciences, Waseda University, Saitama, Japan
| | - Shin-Ichi Sakakibara
- Laboratory for Molecular Neurobiology, Faculty of Human Sciences, Waseda University, Saitama, Japan
| |
Collapse
|
3
|
Martorelli Di Genova B. mSphere of Influence: Deciphering purine auxotrophy in protozoan parasites. mSphere 2024; 9:e0000724. [PMID: 38567972 PMCID: PMC11036795 DOI: 10.1128/msphere.00007-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2024] Open
Abstract
Bruno Martorelli Di Genova works in parasitology, focusing on Toxoplasma gondii metabolism. In this mSphere of Influence article, he reflects on how the articles "Metabolic Reprogramming during Purine Stress in the Protozoan Pathogen Leishmania donovani" and "Yeast-Based High-Throughput Screen Identifies Plasmodium falciparum Equilibrative Nucleoside Transporter 1 Inhibitors That Kill Malaria Parasites" impacted him, informing his research strategies and understanding of metabolic flexibility in Toxoplasma gondii.
Collapse
Affiliation(s)
- Bruno Martorelli Di Genova
- Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
4
|
Ayoub N, Gedeon A, Munier-Lehmann H. A journey into the regulatory secrets of the de novo purine nucleotide biosynthesis. Front Pharmacol 2024; 15:1329011. [PMID: 38444943 PMCID: PMC10912719 DOI: 10.3389/fphar.2024.1329011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/01/2024] [Indexed: 03/07/2024] Open
Abstract
De novo purine nucleotide biosynthesis (DNPNB) consists of sequential reactions that are majorly conserved in living organisms. Several regulation events take place to maintain physiological concentrations of adenylate and guanylate nucleotides in cells and to fine-tune the production of purine nucleotides in response to changing cellular demands. Recent years have seen a renewed interest in the DNPNB enzymes, with some being highlighted as promising targets for therapeutic molecules. Herein, a review of two newly revealed modes of regulation of the DNPNB pathway has been carried out: i) the unprecedent allosteric regulation of one of the limiting enzymes of the pathway named inosine 5'-monophosphate dehydrogenase (IMPDH), and ii) the supramolecular assembly of DNPNB enzymes. Moreover, recent advances that revealed the therapeutic potential of DNPNB enzymes in bacteria could open the road for the pharmacological development of novel antibiotics.
Collapse
Affiliation(s)
- Nour Ayoub
- Institut Pasteur, Université Paris Cité, INSERM UMRS-1124, Paris, France
| | - Antoine Gedeon
- Sorbonne Université, École Normale Supérieure, Université PSL, CNRS UMR7203, Laboratoire des Biomolécules, LBM, Paris, France
| | | |
Collapse
|
5
|
Pfeifer A, Mikhael M, Niemann B. Inosine: novel activator of brown adipose tissue and energy homeostasis. Trends Cell Biol 2024; 34:72-82. [PMID: 37188562 DOI: 10.1016/j.tcb.2023.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/17/2023]
Abstract
Extracellular purinergic molecules act as signaling molecules that bind to cellular receptors and regulate signaling pathways. Growing evidence suggests that purines regulate adipocyte function and whole-body metabolism. Here, we focus on one specific purine: inosine. Brown adipocytes, which are important regulators of whole-body energy expenditure (EE), release inosine when they are stressed or become apoptotic. Unexpectedly, inosine activates EE in neighboring brown adipocytes and enhances differentiation of brown preadipocytes. Increasing extracellular inosine, either directly by increasing inosine intake or indirectly via pharmacological inhibition of cellular inosine transporters, increases whole-body EE and counteracts obesity. Thus, inosine and other closely related purines might be a novel approach to tackle obesity and associated metabolic disorders by enhancing EE.
Collapse
Affiliation(s)
- Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany.
| | - Mickel Mikhael
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany
| | - Birte Niemann
- Institute of Pharmacology and Toxicology, University Hospital, University of Bonn, Bonn, Germany
| |
Collapse
|
6
|
Chou MC, Wang YH, Chen FY, Kung CY, Wu KP, Kuo JC, Chan SJ, Cheng ML, Lin CY, Chou YC, Ho MC, Firestine S, Huang JR, Chen RH. PAICS ubiquitination recruits UBAP2 to trigger phase separation for purinosome assembly. Mol Cell 2023; 83:4123-4140.e12. [PMID: 37848033 DOI: 10.1016/j.molcel.2023.09.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 07/10/2023] [Accepted: 09/22/2023] [Indexed: 10/19/2023]
Abstract
Purinosomes serve as metabolons to enhance de novo purine synthesis (DNPS) efficiency through compartmentalizing DNPS enzymes during stressed conditions. However, the mechanism underpinning purinosome assembly and its pathophysiological functions remains elusive. Here, we show that K6-polyubiquitination of the DNPS enzyme phosphoribosylaminoimidazole carboxylase and phosphoribosylaminoimidazolesuccinocarboxamide synthetase (PAICS) by cullin-5/ankyrin repeat and SOCS box containing 11 (Cul5/ASB11)-based ubiquitin ligase plays a driving role in purinosome assembly. Upon several purinosome-inducing cues, ASB11 is upregulated by relieving the H3K9me3/HP1α-mediated transcriptional silencing, thus stimulating PAICS polyubiquitination. The polyubiquitinated PAICS recruits ubiquitin-associated protein 2 (UBAP2), a ubiquitin-binding protein with multiple stretches of intrinsically disordered regions, thereby inducing phase separation to trigger purinosome assembly for enhancing DNPS pathway flux. In human melanoma, ASB11 is highly expressed to facilitate a constitutive purinosome formation to which melanoma cells are addicted for supporting their proliferation, viability, and tumorigenesis in a xenograft model. Our study identifies a driving mechanism for purinosome assembly in response to cellular stresses and uncovers the impact of purinosome formation on human malignancies.
Collapse
Affiliation(s)
- Ming-Chieh Chou
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Yi-Hsuan Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Fei-Yun Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Chun-Ying Kung
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Kuen-Phon Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Jean-Cheng Kuo
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Shu-Jou Chan
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Mei-Ling Cheng
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
| | - Chih-Yu Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yu-Chi Chou
- Biomedical Translation Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Meng-Chiao Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Steven Firestine
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Jie-Rong Huang
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Ruey-Hwa Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
7
|
Binder MJ, Pedley AM. The roles of molecular chaperones in regulating cell metabolism. FEBS Lett 2023; 597:1681-1701. [PMID: 37287189 PMCID: PMC10984649 DOI: 10.1002/1873-3468.14682] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/09/2023]
Abstract
Fluctuations in nutrient and biomass availability, often as a result of disease, impart metabolic challenges that must be overcome in order to sustain cell survival and promote proliferation. Cells adapt to these environmental changes and stresses by adjusting their metabolic networks through a series of regulatory mechanisms. Our understanding of these rewiring events has largely been focused on those genetic transformations that alter protein expression and the biochemical mechanisms that change protein behavior, such as post-translational modifications and metabolite-based allosteric modulators. Mounting evidence suggests that a class of proteome surveillance proteins called molecular chaperones also can influence metabolic processes. Here, we summarize several ways the Hsp90 and Hsp70 chaperone families act on human metabolic enzymes and their supramolecular assemblies to change enzymatic activities and metabolite flux. We further highlight how these chaperones can assist in the translocation and degradation of metabolic enzymes. Collectively, these studies provide a new view for how metabolic processes are regulated to meet cellular demand and inspire new avenues for therapeutic intervention.
Collapse
|
8
|
Cheung AHK, Hui CHL, Wong KY, Liu X, Chen B, Kang W, To KF. Out of the cycle: Impact of cell cycle aberrations on cancer metabolism and metastasis. Int J Cancer 2023; 152:1510-1525. [PMID: 36093588 DOI: 10.1002/ijc.34288] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/17/2022] [Accepted: 09/02/2022] [Indexed: 11/11/2022]
Abstract
The use of cell cycle inhibitors has necessitated a better understanding of the cell cycle in tumor biology to optimize the therapeutic approach. Cell cycle aberrations are common in cancers, and it is increasingly acknowledged that these aberrations exert oncogenic effects beyond the cell cycle. Multiple facets such as cancer metabolism, immunity and metastasis are also affected, all of which are beyond the effect of cell proliferation alone. This review comprehensively summarized the important recent findings and advances in these interrelated processes. In cancer metabolism, cell cycle regulators can modulate various pathways in aerobic glycolysis, glucose uptake and gluconeogenesis, mainly through transcriptional regulation and kinase activities. Amino acid metabolism is also regulated through cell cycle progression. On cancer metastasis, metabolic plasticity, immune evasion, tumor microenvironment adaptation and metastatic site colonization are intricately related to the cell cycle, with distinct regulatory mechanisms at each step of invasion and dissemination. Throughout the synthesis of current understanding, knowledge gaps and limitations in the literature are also highlighted, as are new therapeutic approaches such as combinational therapy and challenges in tackling emerging targeted therapy resistance. A greater understanding of how the cell cycle modulates diverse aspects of cancer biology can hopefully shed light on identifying new molecular targets by harnessing the vast potential of the cell cycle.
Collapse
Affiliation(s)
- Alvin Ho-Kwan Cheung
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, China
| | - Chris Ho-Lam Hui
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, China
| | - Kit Yee Wong
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoli Liu
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, China
| | - Bonan Chen
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, China
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.,Institute of Digestive Disease, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong, China.,State Key Laboratory of Translational Oncology, Sir Y.K. Pao Cancer Center, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
9
|
El Husseiny IM, El Kholy S, Mohamed AZ, Meshrif WS, Elbrense H. Alterations in biogenic amines levels associated with age-related muscular tissue impairment in Drosophila melanogaster. Saudi J Biol Sci 2022; 29:3739-3748. [PMID: 35844402 PMCID: PMC9280237 DOI: 10.1016/j.sjbs.2022.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 11/19/2022] Open
Abstract
While holding on youth may be a universal wish, aging is a natural process associated with physical and physiological impairment in living organisms. Drosophila provides useful insights into aging-related events. Hence, this study was conducted to investigate the age-related changes in muscle function and architecture in relation to the biogenic amine titers. To achieve this aim, visceral and skeletal muscles performance was tested in newly-eclosed, sexually mature and old adult flies using climbing and gut motility assays. In addition, age-related ultrastructural alterations of muscular tissue were observed using transmission electron microscopy (TEM). The titer of selected biogenic amines was measured using high-performance liquid chromatography (HPLC). The results demonstrated that old flies were dramatically slower in upward movement than either newly-eclosed or sexually mature flies. Similarly, gut contraction rate was significantly lower in old flies than the sexually mature, although it was markedly higher than that in the newly-eclosed flies. In TEM examination, there were several ultrastructural changes in the midgut epithelium, legs and thorax muscles of old flies. Regarding biogenic amine titers, the old flies had significantly lower concentrations of octopamine, dopamine and serotonin than the sexually mature. We concluded that aging has adverse effects on muscular system function and ultrastructure, synchronized with biogenic amine titers changes. Our results highlighted the need for more researches on therapeutics that may balance the levels of age-related alterations in biogenic amines.
Collapse
Affiliation(s)
- Iman M. El Husseiny
- Department of Zoology, Faculty of Science, Tanta University, 31527 Tanta, Egypt
| | - Samar El Kholy
- Department of Zoology, Faculty of Science, Tanta University, 31527 Tanta, Egypt
| | | | - Wesam S. Meshrif
- Department of Zoology, Faculty of Science, Tanta University, 31527 Tanta, Egypt
| | - Hanaa Elbrense
- Department of Zoology, Faculty of Science, Tanta University, 31527 Tanta, Egypt
| |
Collapse
|
10
|
Abstract
Over the past fifteen years, we have unveiled a new mechanism by which cells achieve greater efficiency in de novo purine biosynthesis. This mechanism relies on the compartmentalization of de novo purine biosynthetic enzymes into a dynamic complex called the purinosome. In this review, we highlight our current understanding of the purinosome with emphasis on its biophysical properties and function and on the cellular mechanisms that regulate its assembly. We propose a model for functional purinosomes in which they consist of at least ten enzymes that localize near mitochondria and carry out de novo purine biosynthesis by metabolic channeling. We conclude by discussing challenges and opportunities associated with studying the purinosome and analogous metabolons. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Anthony M Pedley
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA;
| | - Vidhi Pareek
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA; .,Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Stephen J Benkovic
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA;
| |
Collapse
|
11
|
An S, Parajuli P, Kennedy EL, Kyoung M. Multi-dimensional Fluorescence Live-Cell Imaging for Glucosome Dynamics in Living Human Cells. Methods Mol Biol 2022; 2487:15-26. [PMID: 35687227 PMCID: PMC9191769 DOI: 10.1007/978-1-0716-2269-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Fluorescence live-cell imaging that has contributed to our understanding of cell biology is now at the frontline of studying quantitative biochemistry in a cell. Particularly, technological advancements of fluorescence live-cell imaging and associated strategies in recent years have allowed us to discover various subcellular macromolecular assemblies in living human cells. Here we describe how real-time dynamics of a multienzyme metabolic assembly, the "glucosome," that is responsible for regulating glucose flux at subcellular levels, has been investigated in both 2- and 3-dimensional space of single human cells. We envision that such multi-dimensional fluorescence live-cell imaging will continue to revolutionize our understanding of how intracellular metabolic pathways and their network are functionally orchestrated at single-cell levels.
Collapse
Affiliation(s)
- Songon An
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD 21250,Program in Oncology, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201,Corresponding authors: &
| | - Prakash Parajuli
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD 21250
| | - Erin L. Kennedy
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD 21250
| | - Minjoung Kyoung
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD 21250,Program in Oncology, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201,Corresponding authors: &
| |
Collapse
|
12
|
Saftics A, Kurunczi S, Peter B, Szekacs I, Ramsden JJ, Horvath R. Data evaluation for surface-sensitive label-free methods to obtain real-time kinetic and structural information of thin films: A practical review with related software packages. Adv Colloid Interface Sci 2021; 294:102431. [PMID: 34330074 DOI: 10.1016/j.cis.2021.102431] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 04/16/2021] [Accepted: 04/18/2021] [Indexed: 02/07/2023]
Abstract
Interfacial layers are important in a wide range of applications in biomedicine, biosensing, analytical chemistry and the maritime industries. Given the growing number of applications, analysis of such layers and understanding their behavior is becoming crucial. Label-free surface sensitive methods are excellent for monitoring the formation kinetics, structure and its evolution of thin layers, even at the nanoscale. In this paper, we review existing and commercially available label-free techniques and demonstrate how the experimentally obtained data can be utilized to extract kinetic and structural information during and after formation, and any subsequent adsorption/desorption processes. We outline techniques, some traditional and some novel, based on the principles of optical and mechanical transduction. Our special focus is the current possibilities of combining label-free methods, which is a powerful approach to extend the range of detected and deduced parameters. We summarize the most important theoretical considerations for obtaining reliable information from measurements taking place in liquid environments and, hence, with layers in a hydrated state. A thorough treamtmaent of the various kinetic and structural quantities obtained from evaluation of the raw label-free data are provided. Such quantities include layer thickness, refractive index, optical anisotropy (and molecular orientation derived therefrom), degree of hydration, viscoelasticity, as well as association and dissociation rate constants and occupied area of subsequently adsorbed species. To demonstrate the effect of variations in model conditions on the observed data, simulations of kinetic curves at various model settings are also included. Based on our own extensive experience with optical waveguide lightmode spectroscopy (OWLS) and the quartz crystal microbalance (QCM), we have developed dedicated software packages for data analysis, which are made available to the scientific community alongside this paper.
Collapse
|
13
|
Arang N, Gutkind JS. G Protein-Coupled receptors and heterotrimeric G proteins as cancer drivers. FEBS Lett 2021; 594:4201-4232. [PMID: 33270228 DOI: 10.1002/1873-3468.14017] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/09/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022]
Abstract
G protein-coupled receptors (GPCRs) and heterotrimeric G proteins play central roles in a diverse array of cellular processes. As such, dysregulation of GPCRs and their coupled heterotrimeric G proteins can dramatically alter the signalling landscape and functional state of a cell. Consistent with their fundamental physiological functions, GPCRs and their effector heterotrimeric G proteins are implicated in some of the most prevalent human diseases, including a complex disease such as cancer that causes significant morbidity and mortality worldwide. GPCR/G protein-mediated signalling impacts oncogenesis at multiple levels by regulating tumour angiogenesis, immune evasion, metastasis, and drug resistance. Here, we summarize the growing body of research on GPCRs and their effector heterotrimeric G proteins as drivers of cancer initiation and progression, and as emerging antitumoural therapeutic targets.
Collapse
Affiliation(s)
- Nadia Arang
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - J Silvio Gutkind
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
14
|
Liu N, Wang Y, Li T, Feng X. G-Protein Coupled Receptors (GPCRs): Signaling Pathways, Characterization, and Functions in Insect Physiology and Toxicology. Int J Mol Sci 2021; 22:ijms22105260. [PMID: 34067660 PMCID: PMC8156084 DOI: 10.3390/ijms22105260] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
G-protein-coupled receptors (GPCRs) are known to play central roles in the physiology of many organisms. Members of this seven α-helical transmembrane protein family transduce the extracellular signals and regulate intracellular second messengers through coupling to heterotrimeric G-proteins, adenylate cyclase, cAMPs, and protein kinases. As a result of the critical function of GPCRs in cell physiology and biochemistry, they not only play important roles in cell biology and the medicines used to treat a wide range of human diseases but also in insects’ physiological functions. Recent studies have revealed the expression and function of GPCRs in insecticide resistance, improving our understanding of the molecular complexes governing the development of insecticide resistance. This article focuses on the review of G-protein coupled receptor (GPCR) signaling pathways in insect physiology, including insects’ reproduction, growth and development, stress responses, feeding, behaviors, and other physiological processes. Hormones and polypeptides that are involved in insect GPCR regulatory pathways are reviewed. The review also gives a brief introduction of GPCR pathways in organisms in general. At the end of the review, it provides the recent studies on the function of GPCRs in the development of insecticide resistance, focusing in particular on our current knowledge of the expression and function of GPCRs and their downstream regulation pathways and their roles in insecticide resistance and the regulation of resistance P450 gene expression. The latest insights into the exciting technological advances and new techniques for gene expression and functional characterization of the GPCRs in insects are provided.
Collapse
Affiliation(s)
- Nannan Liu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA; (Y.W.); (T.L.)
- Correspondence: ; Tel.: +1-334-844-5076
| | - Yifan Wang
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA; (Y.W.); (T.L.)
| | - Ting Li
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA; (Y.W.); (T.L.)
| | - Xuechun Feng
- Department of Biology Sciences, University of California, San Diego, CA 92093, USA;
| |
Collapse
|
15
|
Abstract
The focus of this review is the human de novo purine biosynthetic pathway. The pathway enzymes are enumerated, as well as the reactions they catalyze and their physical properties. Early literature evidence suggested that they might assemble into a multi-enzyme complex called a metabolon. The finding that fluorescently-tagged chimeras of the pathway enzymes form discrete puncta, now called purinosomes, is further elaborated in this review to include: a discussion of their assembly; the role of ancillary proteins; their locus at the microtubule/mitochondria interface; the elucidation that at endogenous levels, purinosomes function to channel intermediates from phosphoribosyl pyrophosphate to AMP and GMP; and the evidence for the purinosomes to exist as a protein condensate. The review concludes with a consideration of probable signaling pathways that might promote the assembly and disassembly of the purinosome, in particular the identification of candidate kinases given the extensive phosphorylation of the enzymes. These collective findings substantiate our current view of the de novo purine biosynthetic metabolon whose properties will be representative of how other metabolic pathways might be organized for their function.
Collapse
Affiliation(s)
- Vidhi Pareek
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | - Anthony M Pedley
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | - Stephen J Benkovic
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
16
|
Chua SM, Fraser JA. Surveying purine biosynthesis across the domains of life unveils promising drug targets in pathogens. Immunol Cell Biol 2020; 98:819-831. [PMID: 32748425 DOI: 10.1111/imcb.12389] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 12/11/2022]
Abstract
Purines play an integral role in cellular processes such as energy metabolism, cell signaling and encoding the genetic makeup of all living organisms-ensuring that the purine metabolic pathway is maintained across all domains of life. To gain a deeper understanding of purine biosynthesis via the de novo biosynthetic pathway, the genes encoding purine metabolic enzymes from 35 archaean, 69 bacterial and 99 eukaryotic species were investigated. While the classic elements of the canonical purine metabolic pathway were utilized in all domains, a subset of familiar biochemical roles was found to be performed by unrelated proteins in some members of the Archaea and Bacteria. In the Bacteria, a major differentiating feature of de novo purine biosynthesis is the increasing prevalence of gene fusions, where two or more purine biosynthesis enzymes that perform consecutive biochemical functions in the pathway are encoded by a single gene. All species in the Eukaryota exhibited the most common fusions seen in the Bacteria, in addition to new gene fusions to potentially increase metabolic flux. This complexity is taken further in humans, where a reversible biomolecular assembly of enzymes known as the purinosome has been identified, allowing short-term regulation in response to metabolic cues while expanding on the benefits that can come from gene fusion. By surveying purine metabolism across all domains of life, we have identified important features of the purine biosynthetic pathway that can potentially be exploited as prospective drug targets.
Collapse
Affiliation(s)
- Sheena Mh Chua
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - James A Fraser
- Australian Infectious Diseases Research Centre, School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
17
|
Liu P, Tian W. Identification of DNA methylation patterns and biomarkers for clear-cell renal cell carcinoma by multi-omics data analysis. PeerJ 2020; 8:e9654. [PMID: 32832275 PMCID: PMC7409785 DOI: 10.7717/peerj.9654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/13/2020] [Indexed: 12/30/2022] Open
Abstract
Background Tumorigenesis is highly heterogeneous, and using clinicopathological signatures only is not enough to effectively distinguish clear cell renal cell carcinoma (ccRCC) and improve risk stratification of patients. DNA methylation (DNAm) with the stability and reversibility often occurs in the early stage of tumorigenesis. Disorders of transcription and metabolism are also an important molecular mechanisms of tumorigenesis. Therefore, it is necessary to identify effective biomarkers involved in tumorigenesis through multi-omics analysis, and these biomarkers also provide new potential therapeutic targets. Method The discovery stage involved 160 pairs of ccRCC and matched normal tissues for investigation of DNAm and biomarkers as well as 318 cases of ccRCC including clinical signatures. Correlation analysis of epigenetic, transcriptomic and metabolomic data revealed the connection and discordance among multi-omics and the deregulated functional modules. Diagnostic or prognostic biomarkers were obtained by the correlation analysis, the Least Absolute Shrinkage and Selection Operator (LASSO) and the LASSO-Cox methods. Two classifiers were established based on random forest (RF) and LASSO-Cox algorithms in training datasets. Seven independent datasets were used to evaluate robustness and universality. The molecular biological function of biomarkers were investigated using DAVID and GeneMANIA. Results Based on multi-omics analysis, the epigenetic measurements uniquely identified DNAm dysregulation of cellular mechanisms resulting in transcriptomic alterations, including cell proliferation, immune response and inflammation. Combination of the gene co-expression network and metabolic network identified 134 CpG sites (CpGs) as potential biomarkers. Based on the LASSO and RF algorithms, five CpGs were obtained to build a diagnostic classifierwith better classification performance (AUC > 99%). A eight-CpG-based prognostic classifier was obtained to improve risk stratification (hazard ratio (HR) > 4; log-rank test, p-value < 0.01). Based on independent datasets and seven additional cancers, the diagnostic and prognostic classifiers also had better robustness and stability. The molecular biological function of genes with abnormal methylation were significantly associated with glycolysis/gluconeogenesis and signal transduction. Conclusion The present study provides a comprehensive analysis of ccRCC using multi-omics data. These findings indicated that multi-omics analysis could identify some novel epigenetic factors, which were the most important causes of advanced cancer and poor clinical prognosis. Diagnostic and prognostic biomarkers were identified, which provided a promising avenue to develop effective therapies for ccRCC.
Collapse
Affiliation(s)
- Pengfei Liu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Department of Biostatistics and Computational Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Weidong Tian
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Department of Biostatistics and Computational Biology, School of Life Sciences, Fudan University, Shanghai, China.,Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
18
|
Doigneaux C, Pedley AM, Mistry IN, Papayova M, Benkovic SJ, Tavassoli A. Hypoxia drives the assembly of the multienzyme purinosome complex. J Biol Chem 2020; 295:9551-9566. [PMID: 32439803 PMCID: PMC7363121 DOI: 10.1074/jbc.ra119.012175] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 05/18/2020] [Indexed: 01/20/2023] Open
Abstract
The purinosome is a dynamic metabolic complex composed of enzymes responsible for de novo purine biosynthesis, whose formation has been associated with elevated purine demand. However, the physiological conditions that govern purinosome formation in cells remain unknown. Here, we report that purinosome formation is up-regulated in cells in response to a low-oxygen microenvironment (hypoxia). We demonstrate that increased purinosome assembly in hypoxic human cells requires the activation of hypoxia inducible factor 1 (HIF-1) and not HIF-2. Hypoxia-driven purinosome assembly was inhibited in cells lacking 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase (ATIC), a single enzyme in de novo purine biosynthesis, and in cells treated with a small molecule inhibitor of ATIC homodimerization. However, despite the increase in purinosome assembly in hypoxia, we observed no associated increase in de novo purine biosynthesis in cells. Our results indicate that this was likely due to a reduction in mitochondrial one-carbon metabolism, resulting in reduced mitochondrion-derived one-carbon units needed for de novo purine biosynthesis. The findings of our study further clarify and deepen our understanding of purinosome formation by revealing that this process does not solely depend on cellular purine demand.
Collapse
Affiliation(s)
- Cyrielle Doigneaux
- School of Chemistry, University of Southampton, Southampton, United Kingdom
| | - Anthony M Pedley
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Ishna N Mistry
- School of Chemistry, University of Southampton, Southampton, United Kingdom
| | - Monika Papayova
- School of Chemistry, University of Southampton, Southampton, United Kingdom
| | - Stephen J Benkovic
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Ali Tavassoli
- School of Chemistry, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
19
|
Debreczeni ML, Szekacs I, Kovacs B, Saftics A, Kurunczi S, Gál P, Dobó J, Cervenak L, Horvath R. Human primary endothelial label-free biochip assay reveals unpredicted functions of plasma serine proteases. Sci Rep 2020; 10:3303. [PMID: 32094469 PMCID: PMC7039951 DOI: 10.1038/s41598-020-60158-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/07/2020] [Indexed: 11/09/2022] Open
Abstract
Tissue-on-a-chip technologies are more and more important in the investigation of cellular function and in the development of novel drugs by allowing the direct screening of substances on human cells. Constituting the inner lining of vessel walls, endothelial cells are the key players in various physiological processes, moreover, they are the first to be exposed to most drugs currently used. However, to date, there is still no appropriate technology for the label-free, real-time and high-throughput monitoring of endothelial function. To this end, we developed an optical biosensor-based endothelial label-free biochip (EnLaB) assay that meets all the above requirements. Using our EnLaB platform, we screened a set of plasma serine proteases as possible endothelial cell activators, and first identified the endothelial cell activating function of three important serine proteases - namely kallikrein, C1r and mannan-binding lectin-associated serine-protease 2 (MASP-2) - and verified these results in well-established functional assays. EnLaB proved to be an effective tool for revealing novel cellular mechanisms as well as for the high-throughput screening of various compounds on endothelial cells.
Collapse
Affiliation(s)
| | - Inna Szekacs
- Nanobiosensorics Momentum Group, Institute of Technical Physics and Materials Science, Centre for Energy Research, Konkoly-Thege M. út 29-33, H-1120, Budapest, Hungary
| | - Boglarka Kovacs
- Nanobiosensorics Momentum Group, Institute of Technical Physics and Materials Science, Centre for Energy Research, Konkoly-Thege M. út 29-33, H-1120, Budapest, Hungary
| | - Andras Saftics
- Nanobiosensorics Momentum Group, Institute of Technical Physics and Materials Science, Centre for Energy Research, Konkoly-Thege M. út 29-33, H-1120, Budapest, Hungary
| | - Sándor Kurunczi
- Nanobiosensorics Momentum Group, Institute of Technical Physics and Materials Science, Centre for Energy Research, Konkoly-Thege M. út 29-33, H-1120, Budapest, Hungary
| | - Péter Gál
- Institute of Enzymology, Research Centre for Natural Sciences, H-1113, Budapest, Hungary
| | - József Dobó
- Institute of Enzymology, Research Centre for Natural Sciences, H-1113, Budapest, Hungary
| | - László Cervenak
- 3rd Department of Internal Medicine, Semmelweis University, Budapest, Hungary.
| | - Robert Horvath
- 3rd Department of Internal Medicine, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
20
|
Yin J, Ren W, Huang X, Deng J, Li T, Yin Y. Potential Mechanisms Connecting Purine Metabolism and Cancer Therapy. Front Immunol 2018; 9:1697. [PMID: 30105018 PMCID: PMC6077182 DOI: 10.3389/fimmu.2018.01697] [Citation(s) in RCA: 252] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/10/2018] [Indexed: 12/22/2022] Open
Abstract
Unrestricted cell proliferation is a hallmark of cancer. Purines are basic components of nucleotides in cell proliferation, thus impaired purine metabolism is associated with the progression of cancer. The de novo biosynthesis of purine depends on six enzymes to catalyze the conversion of phosphoribosylpyrophosphate to inosine 5'-monophosphate. These enzymes cluster around mitochondria and microtubules to form purinosome, which is a multi-enzyme complex involved in de novo purine biosynthesis and purine nucleotides requirement. In this review, we highlighted the purine metabolism and purinosome biology with emphasis on the therapeutic potential of manipulating of purine metabolism or purinosome in cancers. We also reviewed current advances in our understanding of mammalian target of rapamycin for regulating purinosome formation or purine metabolism in cancers and discussed the future prospects for targeting purinosome to treat cancers.
Collapse
Affiliation(s)
- Jie Yin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, Institute of Subtropical Animal Nutrition and Feed, South China Agricultural University, Guangzhou, China
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenkai Ren
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, Institute of Subtropical Animal Nutrition and Feed, South China Agricultural University, Guangzhou, China
| | - Xingguo Huang
- University of Chinese Academy of Sciences, Beijing, China
- Department of Animal Science, Hunan Agriculture University, Changsha, Hunan, China
| | - Jinping Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, Institute of Subtropical Animal Nutrition and Feed, South China Agricultural University, Guangzhou, China
| | - Tiejun Li
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Yulong Yin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, Institute of Subtropical Animal Nutrition and Feed, South China Agricultural University, Guangzhou, China
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| |
Collapse
|
21
|
Sweetlove LJ, Fernie AR. The role of dynamic enzyme assemblies and substrate channelling in metabolic regulation. Nat Commun 2018; 9:2136. [PMID: 29849027 PMCID: PMC5976638 DOI: 10.1038/s41467-018-04543-8] [Citation(s) in RCA: 251] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 05/08/2018] [Indexed: 11/08/2022] Open
Abstract
Transient physical association between enzymes appears to be a cardinal feature of metabolic systems, yet the purpose of this metabolic organisation remains enigmatic. It is generally assumed that substrate channelling occurs in these complexes. However, there is a lack of information concerning the mechanisms and extent of substrate channelling and confusion regarding the consequences of substrate channelling. In this review, we outline recent advances in the structural characterisation of enzyme assemblies and integrate this with new insights from reaction-diffusion modelling and synthetic biology to clarify the mechanistic and functional significance of the phenomenon.
Collapse
Affiliation(s)
- Lee J Sweetlove
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK.
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, 14476, Germany.
| |
Collapse
|
22
|
|
23
|
Hu HH, Deng H, Ling S, Sun H, Kenakin T, Liang X, Fang Y. Chemical genomic analysis of GPR35 signaling. Integr Biol (Camb) 2018; 9:451-463. [PMID: 28425521 DOI: 10.1039/c7ib00005g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
GPR35, a family A orphan G protein-coupled receptor, has been implicated in inflammatory, neurological, and cardiovascular diseases. However, not much is known about the signaling and functions of GPR35. We performed a label-free kinome short hairpin RNA screen and identified a putative signaling network of GPR35 in HT-29 cells, some of which was validated using gene expression, biochemical and cellular assays. The results showed that GPR35 induced hypoxia-inducible factor 1α, and was involved in synaptic transmission, sensory perception, the immune system, and morphogenetic processes. Collectively, our data suggest that GPR35 may play an important role in response to hypoxic stress and be a potential target for the treatment of inflammatory, cardiovascular, and neurological disorders.
Collapse
Affiliation(s)
- Heidi Haibei Hu
- Biochemical Technologies, Corning R&D Corporation, Corning Incorporated, Corning, NY 14831, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Wang W, Zhang D, Xu C, Wu Y, Duan H, Li S, Tan Q. Heritability and Genome-Wide Association Analyses of Serum Uric Acid in Middle and Old-Aged Chinese Twins. Front Endocrinol (Lausanne) 2018; 9:75. [PMID: 29559957 PMCID: PMC5845532 DOI: 10.3389/fendo.2018.00075] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 02/19/2018] [Indexed: 12/13/2022] Open
Abstract
Serum uric acid (SUA), as the end product of purine metabolism, has proven emerging roles in human disorders. Here based on a sample of 379 middle and old-aged Chinese twin pairs, we aimed to explore the magnitude of genetic impact on SUA variation by performing sex-limitation twin modeling analyses and further detect specific genetic variants related to SUA by conducting a genome-wide association study. Monozygotic (MZ) twin correlation for SUA level (rMZ = 0.56) was larger than for dizygotic (DZ) twin correlation (rDZ = 0.39). The common effects sex-limitation model provided the best fit with additive genetic parameter (A) accounting for 46.3%, common or shared environmental parameter (C) accounting for 26.3% and unique/nonshared environmental parameter (E) accounting for 27.5% for females and 29.9, 33.1, and 37.0% for males, respectively. Although no SUA-related genetic variants reached genome-wide significance level, 25 SNPs were suggestive of association (P < 1 × 10-5). Most of the SNPs were located in an intronic region and detected to have regulatory effects on gene transcription. The cell-type specific enhancer of skeletal muscle was detected which has been reported to implicate SUA. Two promising genetic regions on chromosome 17 around rs2253277 and chromosome 14 around rs11621523 were found. Gene-based analysis found 167 genes nominally associated with SUA level (P < 0.05), including PTGR2, ENTPD5, well-known SLC2A9, etc. Enrichment analysis identified one pathway of transmembrane transport of small molecules and 20 GO gene sets involving in ion transport, transmembrane transporter activity, hydrolase activity acting on acid anhydrides, etc. In conclusion, SUA shows moderate heritability in women and low heritability in men in the Chinese population and genetic variations are significantly involved in functional genes and regulatory domains that mediate SUA level. Our findings provide clues to further elucidate molecular physiology of SUA homeostasis and identify new diagnostic biomarkers and therapeutic targets for hyperuricemia and gout.
Collapse
Affiliation(s)
- Weijing Wang
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, China
- Epidemiology and Biostatistics, Department of Public Health, University of Southern Denmark, Odense, Denmark
| | - Dongfeng Zhang
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, China
- *Correspondence: Dongfeng Zhang,
| | - Chunsheng Xu
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, China
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, China
- Qingdao Institute of Preventive Medicine, Qingdao, China
| | - Yili Wu
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, China
| | - Haiping Duan
- Department of Epidemiology and Health Statistics, Public Health College, Qingdao University, Qingdao, China
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao, China
| | - Shuxia Li
- Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Qihua Tan
- Epidemiology and Biostatistics, Department of Public Health, University of Southern Denmark, Odense, Denmark
- Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
25
|
Grundmann M, Kostenis E. Holistic Methods for the Analysis of cNMP Effects. Handb Exp Pharmacol 2017; 238:339-357. [PMID: 26721676 DOI: 10.1007/164_2015_42] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Cyclic nucleotide monophosphates (cNMPs) typify the archetype second messenger in living cells and serve as molecular switches with broad functionality. cAMP and cGMP are the best-described cNMPs; however, there is a growing body of evidence indicating that also cCMP and cUMP play a substantial role in signal transduction. Despite research efforts, to date, relatively little is known about the biology of these noncanonical cNMPs, which is due, at least in part, to methodological issues in the past entailing setbacks of the entire field. Only recently, with the use of state-of-the-art techniques, it was possible to revive noncanonical cNMP research. While high-sensitive detection methods disclosed relevant levels of cCMP and cUMP in mammalian cells, knowledge about the biological effectors and their physiological interplay is still incomplete. Holistic biophysical readouts capture cell responses label-free and in an unbiased fashion with the advantage to detect concealed aspects of cell signaling that are arduous to access via traditional biochemical assay approaches. In this chapter, we introduce the dynamic mass redistribution (DMR) technology to explore cell signaling beyond established receptor-controlled mechanisms. Both common and distinctive features in the signaling structure of cCMP and cUMP were identified. Moreover, the integrated response of whole live cells revealed a hitherto undisclosed additional effector of the noncanonical cNMPs. Future studies will show how holistic methods will become integrated into the methodological arsenal of contemporary cNMP research.
Collapse
Affiliation(s)
- Manuel Grundmann
- Molecular-, Cellular- and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115, Bonn, Germany.
| | - Evi Kostenis
- Molecular-, Cellular- and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115, Bonn, Germany
| |
Collapse
|
26
|
Abstract
All cellular behaviors arise through the coordinated actions of numerous intracellular biochemical pathways. Over the past 20 years, efforts to probe intracellular biochemical processes have undergone a fundamental transformation brought about by advances in fluorescence imaging, such as the development of genetically encoded fluorescent reporters and new imaging technologies; the impact of these approaches on our understanding of the molecular underpinnings of biological function cannot be understated. In particular, the ability to obtain information on the spatiotemporal regulation of biochemical processes unfolding in real time in the native context of a living cell has crystallized the view, long a matter of speculation, that cells achieve specific biological outcomes through the imposition of spatial control over the distribution of various biomolecules, and their associated biochemical activities, within the cellular environment. Indeed, the compartmentalization of biochemical activities by cells is now known to be pervasive and to span a multitude of spatial scales, from the length of a cell to just a few enzymes. In this Perspective, part of this special issue on "Seeing into cells", we highlight several recent imaging studies that provide detailed insights into not just where molecules are but where molecules are active within cells, offering a glimpse into the emerging view of biochemical activity architecture as a complement to the physical architecture of a cell.
Collapse
Affiliation(s)
- Sohum Mehta
- Department of Pharmacology, University of California, San Diego , La Jolla, California 92093, United States
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego , La Jolla, California 92093, United States.,Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine , Baltimore, Maryland 21205, United States
| |
Collapse
|
27
|
Resonant Waveguide Grating Imager for Single Cell Monitoring of the Invasion of 3D Speheroid Cancer Cells Through Matrigel. Methods Mol Biol 2017. [PMID: 28281255 DOI: 10.1007/978-1-4939-6848-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
The invasion of cancer cells through their surrounding extracellular matrices is the first critical step to metastasis, a devastating event to cancer patients. However, in vitro cancer cell invasion is mostly studied using two-dimensional (2D) models. Three-dimensional (3D) multicellular spheroids may offer an advantageous cell model for cancer research and oncology drug discovery. This chapter describes a label-free, real-time, and single-cell approach to quantify the invasion of 3D spheroid colon cancer cells through Matrigel using a spatially resolved resonant waveguide grating imager.
Collapse
|
28
|
Cohen RD, Pielak GJ. A cell is more than the sum of its (dilute) parts: A brief history of quinary structure. Protein Sci 2017; 26:403-413. [PMID: 27977883 PMCID: PMC5326556 DOI: 10.1002/pro.3092] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 12/02/2016] [Accepted: 12/02/2016] [Indexed: 01/01/2023]
Abstract
Most knowledge of protein structure and function is derived from experiments performed with purified protein resuspended in dilute, buffered solutions. However, proteins function in the crowded, complex cellular environment. Although the first four levels of protein structure provide important information, a complete understanding requires consideration of quinary structure. Quinary structure comprises the transient interactions between macromolecules that provides organization and compartmentalization inside cells. We review the history of quinary structure in the context of several metabolic pathways, and the technological advances that have yielded recent insight into protein behavior in living cells. The evidence demonstrates that protein behavior in isolated solutions deviates from behavior in the physiological environment.
Collapse
Affiliation(s)
- Rachel D. Cohen
- Department of ChemistryUniversity of North CarolinaChapel HillNorth Carolina27599
| | - Gary J. Pielak
- Department of ChemistryUniversity of North CarolinaChapel HillNorth Carolina27599
- Department of Biochemistry and BiophysicsUniversity of North CarolinaChapel HillNorth Carolina27599
- Lineberger Comprehensive Cancer Center, University of North CarolinaChapel HillNorth Carolina27599
| |
Collapse
|
29
|
Chitrakar I, Kim-Holzapfel DM, Zhou W, French JB. Higher order structures in purine and pyrimidine metabolism. J Struct Biol 2017; 197:354-364. [PMID: 28115257 DOI: 10.1016/j.jsb.2017.01.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 01/14/2017] [Accepted: 01/18/2017] [Indexed: 10/20/2022]
Abstract
The recent discovery of several forms of higher order protein structures in cells has shifted the paradigm of how we think about protein organization and metabolic regulation. These dynamic and controllable protein assemblies, which are composed of dozens or hundreds of copies of an enzyme or related enzymes, have emerged as important players in myriad cellular processes. We are only beginning to appreciate the breadth of function of these types of macromolecular assemblies. These higher order structures, which can be assembled in response to varied cellular stimuli including changing metabolite concentrations or signaling cascades, give the cell the capacity to modulate levels of biomolecules both temporally and spatially. This provides an added level of control with distinct kinetics and unique features that can be harnessed as a subtle, yet powerful regulatory mechanism. Due, in large part, to advances in structural methods, such as crystallography and cryo-electron microscopy, and the advent of super-resolution microscopy techniques, a rapidly increasing number of these higher order structures are being identified and characterized. In this review, we detail what is known about the structure, function and control mechanisms of these mesoscale protein assemblies, with a particular focus on those involved in purine and pyrimidine metabolism. These structures have important implications both for our understanding of fundamental cellular processes and as fertile ground for new targets for drug discovery and development.
Collapse
Affiliation(s)
- Iva Chitrakar
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, United States
| | - Deborah M Kim-Holzapfel
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, United States
| | - Weijie Zhou
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, United States
| | - Jarrod B French
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, United States; Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, United States.
| |
Collapse
|
30
|
Pedley AM, Benkovic SJ. A New View into the Regulation of Purine Metabolism: The Purinosome. Trends Biochem Sci 2016; 42:141-154. [PMID: 28029518 DOI: 10.1016/j.tibs.2016.09.009] [Citation(s) in RCA: 363] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/23/2016] [Accepted: 09/26/2016] [Indexed: 10/20/2022]
Abstract
Other than serving as building blocks for DNA and RNA, purine metabolites provide a cell with the necessary energy and cofactors to promote cell survival and proliferation. A renewed interest in how purine metabolism may fuel cancer progression has uncovered a new perspective into how a cell regulates purine need. Under cellular conditions of high purine demand, the de novo purine biosynthetic enzymes cluster near mitochondria and microtubules to form dynamic multienzyme complexes referred to as 'purinosomes'. In this review, we highlight the purinosome as a novel level of metabolic organization of enzymes in cells, its consequences for regulation of purine metabolism, and the extent that purine metabolism is being targeted for the treatment of cancers.
Collapse
Affiliation(s)
- Anthony M Pedley
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Stephen J Benkovic
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
31
|
Schmitt DL, Cheng YJ, Park J, An S. Sequestration-Mediated Downregulation of de Novo Purine Biosynthesis by AMPK. ACS Chem Biol 2016; 11:1917-24. [PMID: 27128383 DOI: 10.1021/acschembio.6b00039] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dynamic partitioning of de novo purine biosynthetic enzymes into multienzyme compartments, purinosomes, has been associated with increased flux of de novo purine biosynthesis in human cells. However, we do not know of a mechanism by which de novo purine biosynthesis would be downregulated in cells. We have investigated the functional role of AMP-activated protein kinase (AMPK) in the regulation of de novo purine biosynthesis because of its regulatory action on lipid and carbohydrate biosynthetic pathways. Using pharmacological AMPK activators, we have monitored subcellular localizations of six pathway enzymes tagged with green fluorescent proteins under time-lapse fluorescence single-cell microscopy. We revealed that only one out of six pathway enzymes, formylglycinamidine ribonucleotide synthase (FGAMS), formed spatially distinct cytoplasmic granules after treatment with AMPK activators, indicating the formation of single-enzyme self-assemblies. In addition, subsequent biophysical studies using fluorescence recovery after photobleaching showed that the diffusion kinetics of FGAMS were slower when it localized inside the self-assemblies than within the purinosomes. Importantly, high-performance liquid chromatographic studies revealed that the formation of AMPK-promoted FGAMS self-assembly caused the reduction of purine metabolites in HeLa cells, indicating the downregulation of de novo purine biosynthesis. Collectively, we demonstrate here that the spatial sequestration of FGAMS by AMPK is a mechanism by which de novo purine biosynthesis is downregulated in human cells.
Collapse
Affiliation(s)
- Danielle L. Schmitt
- Department of Chemistry and Biochemistry, ‡Department of Mathematics and Statistics, University of Maryland Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| | - Yun-ju Cheng
- Department of Chemistry and Biochemistry, ‡Department of Mathematics and Statistics, University of Maryland Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| | - Junyong Park
- Department of Chemistry and Biochemistry, ‡Department of Mathematics and Statistics, University of Maryland Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| | - Songon An
- Department of Chemistry and Biochemistry, ‡Department of Mathematics and Statistics, University of Maryland Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| |
Collapse
|
32
|
Grundmann M, Tikhonova IG, Hudson BD, Smith NJ, Mohr K, Ulven T, Milligan G, Kenakin T, Kostenis E. A Molecular Mechanism for Sequential Activation of a G Protein-Coupled Receptor. Cell Chem Biol 2016; 23:392-403. [PMID: 26991104 DOI: 10.1016/j.chembiol.2016.02.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 02/11/2016] [Accepted: 02/22/2016] [Indexed: 01/05/2023]
Abstract
Ligands targeting G protein-coupled receptors (GPCRs) are currently classified as either orthosteric, allosteric, or dualsteric/bitopic. Here, we introduce a new pharmacological concept for GPCR functional modulation: sequential receptor activation. A hallmark feature of this is a stepwise ligand binding mode with transient activation of a first receptor site followed by sustained activation of a second topographically distinct site. We identify 4-CMTB (2-(4-chlorophenyl)-3-methyl-N-(thiazol-2-yl)butanamide), previously classified as a pure allosteric agonist of the free fatty acid receptor 2, as the first sequential activator and corroborate its two-step activation in living cells by tracking integrated responses with innovative label-free biosensors that visualize multiple signaling inputs in real time. We validate this unique pharmacology with traditional cellular readouts, including mutational and pharmacological perturbations along with computational methods, and propose a kinetic model applicable to the analysis of sequential receptor activation. We envision this form of dynamic agonism as a common principle of nature to spatiotemporally encode cellular information.
Collapse
Affiliation(s)
- Manuel Grundmann
- Molecular-, Cellular- and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, 53115 Bonn, Germany.
| | - Irina G Tikhonova
- Molecular Therapeutics, School of Pharmacy, Medical Biology Centre, Queen's University, Belfast BT7 1NN Northern Ireland
| | - Brian D Hudson
- Molecular Pharmacology Group, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ Scotland
| | - Nicola J Smith
- Molecular Pharmacology Group, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ Scotland; Molecular Cardiology Division, Victor Chang Cardiac Research Institute, Faculty of Medicine, University of New South Wales, Darlinghurst, NSW 2010, Australia
| | - Klaus Mohr
- Pharmacology and Toxicology, University of Bonn, 53347 Bonn, Germany
| | - Trond Ulven
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark
| | - Graeme Milligan
- Molecular Pharmacology Group, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ Scotland
| | - Terry Kenakin
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Evi Kostenis
- Molecular-, Cellular- and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, 53115 Bonn, Germany.
| |
Collapse
|
33
|
French JB, Jones SA, Deng H, Pedley AM, Kim D, Chan CY, Hu H, Pugh RJ, Zhao H, Zhang Y, Huang TJ, Fang Y, Zhuang X, Benkovic SJ. Spatial colocalization and functional link of purinosomes with mitochondria. Science 2016; 351:733-7. [PMID: 26912862 DOI: 10.1126/science.aac6054] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Purine biosynthetic enzymes organize into dynamic cellular bodies called purinosomes. Little is known about the spatiotemporal control of these structures. Using super-resolution microscopy, we demonstrated that purinosomes colocalized with mitochondria, and these results were supported by isolation of purinosome enzymes with mitochondria. Moreover, the number of purinosome-containing cells responded to dysregulation of mitochondrial function and metabolism. To explore the role of intracellular signaling, we performed a kinome screen using a label-free assay and found that mechanistic target of rapamycin (mTOR) influenced purinosome assembly. mTOR inhibition reduced purinosome-mitochondria colocalization and suppressed purinosome formation stimulated by mitochondria dysregulation. Collectively, our data suggest an mTOR-mediated link between purinosomes and mitochondria, and a general means by which mTOR regulates nucleotide metabolism by spatiotemporal control over protein association.
Collapse
Affiliation(s)
- Jarrod B French
- Department of Biochemistry and Cell Biology, Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Sara A Jones
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Huayun Deng
- Biochemical Technologies, Science and Technology Division, Corning Incorporated, Corning, NY 14831, USA
| | - Anthony M Pedley
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Doory Kim
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA. Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| | - Chung Yu Chan
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Haibei Hu
- Biochemical Technologies, Science and Technology Division, Corning Incorporated, Corning, NY 14831, USA
| | - Raymond J Pugh
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Hong Zhao
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Youxin Zhang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Tony Jun Huang
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Ye Fang
- Biochemical Technologies, Science and Technology Division, Corning Incorporated, Corning, NY 14831, USA.
| | - Xiaowei Zhuang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA. Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA. Department of Physics, Harvard University, Cambridge, MA 02138, USA.
| | - Stephen J Benkovic
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
34
|
Abstract
D-Luciferin (also known as beetle or firefly luciferin) is one of the most widely used bioluminescent reporters for monitoring in vitro or in vivo luciferase activity. The identification of several natural phenols and thieno[3,2-b]thiophene-2-carboxylic acid derivatives as agonists for GPR35, an orphan G protein-coupled receptor, had motivated us to examine the pharmacological activity of D-Luciferin, given that it also contains phenol and carboxylic acid moieties. Here, we describe label-free cell phenotypic assays that ascertain D-Luciferin as a partial agonist for GPR35. The agonistic activity of D-Luciferin at the GPR35 shall evoke careful interpretation of biological data when D-Luciferin or its analogues are used as probes.
Collapse
|
35
|
Fang Y. Total internal reflection fluorescence quantification of receptor pharmacology. BIOSENSORS-BASEL 2015; 5:223-40. [PMID: 25922915 PMCID: PMC4493547 DOI: 10.3390/bios5020223] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 04/15/2015] [Accepted: 04/17/2015] [Indexed: 12/30/2022]
Abstract
Total internal reflection fluorescence (TIRF) microscopy has been widely used as a single molecule imaging technique to study various fundamental aspects of cell biology, owing to its ability to selectively excite a very thin fluorescent volume immediately above the substrate on which the cells are grown. However, TIRF microscopy has found little use in high content screening due to its complexity in instrumental setup and experimental procedures. Inspired by the recent demonstration of label-free evanescent wave biosensors for cell phenotypic profiling and drug screening with high throughput, we had hypothesized and demonstrated that TIRF imaging is also amenable to receptor pharmacology profiling. This paper reviews key considerations and recent applications of TIRF imaging for pharmacology profiling.
Collapse
Affiliation(s)
- Ye Fang
- Biochemical Technologies, Science and Technology Division, Corning Incorporated, Corning, NY 14831, USA.
| |
Collapse
|
36
|
Chandrasekaran S, Deng H, Fang Y. PTEN deletion potentiates invasion of colorectal cancer spheroidal cells through 3D Matrigel. Integr Biol (Camb) 2015; 7:324-34. [PMID: 25625883 DOI: 10.1039/c4ib00298a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PTEN (phosphatase and tensin homolog), a tumour suppressor negatively regulating the PI3K signalling pathway, is the second most frequently mutated gene in human cancers. Decreased PTEN expression is correlated with colorectal cancer metastases and poor patient survival. Three dimensional (3D) multicellular spheroid models have been postulated to bridge the gap between 2D cell models and animal models for cancer research and drug discovery. However, little is known about the impact of PTEN deletion on the invasion of colon cancer spheroidal cells through a 3D extracellular matrix, and current techniques are limited in their ability to study in vitro 3D cell models in real-time. Here, we investigated the migration and invasion behaviours of the colon cancer cell line HCT116 and its PTEN-/- isogenic cell line using three different in vitro assays, wound healing, transwell invasion, and label-free single cell 3D(2) invasion assays enabled by a resonant waveguide grating (RWG) biosensor. Light microscopic and RWG imaging showed that PTEN deletion influences the spheroid formation of HCT116 cells at high seeding density, and accelerates the spontaneous transfer from the spheroid to substrate surfaces. In vitro migration and invasion assays showed that PTEN knockout increases the 2D migration speed of HCT116 cells, and the invasion rate of individual cells through Matrigel or cells in the spheroid through 3D Matrigel; moreover, the PI3K inhibitor treatment drastically reduces the invasiveness of both cell lines. This study suggests that PTEN knockout potentiates the invasiveness of colorectal cancer spheroidal cells through a 3D extracellular matrix, and the label-free single cell assay is a powerful tool for investigating cancer cell invasion, in particular using 3D cell models.
Collapse
Affiliation(s)
- Siddarth Chandrasekaran
- Biochemical Technologies, Science and Technology Division, Corning Incorporated, Corning, NY 14831, USA.
| | | | | |
Collapse
|
37
|
Zhao H, Chiaro CR, Zhang L, Smith PB, Chan CY, Pedley AM, Pugh RJ, French JB, Patterson AD, Benkovic SJ. Quantitative analysis of purine nucleotides indicates that purinosomes increase de novo purine biosynthesis. J Biol Chem 2015; 290:6705-13. [PMID: 25605736 DOI: 10.1074/jbc.m114.628701] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Enzymes in the de novo purine biosynthesis pathway are recruited to form a dynamic metabolic complex referred to as the purinosome. Previous studies have demonstrated that purinosome assembly responds to purine levels in culture medium. Purine-depleted medium or 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole (DMAT) treatment stimulates the purinosome assembly in HeLa cells. Here, several metabolomic technologies were applied to quantify the static cellular levels of purine nucleotides and measure the de novo biosynthesis rate of IMP, AMP, and GMP. Direct comparison of purinosome-rich cells (cultured in purine-depleted medium) and normal cells showed a 3-fold increase in IMP concentration in purinosome-rich cells and similar levels of AMP, GMP, and ratios of AMP/GMP and ATP/ADP for both. In addition, a higher level of IMP was also observed in HeLa cells treated with DMAT. Furthermore, increases in the de novo IMP/AMP/GMP biosynthetic flux rate under purine-depleted condition were observed. The synthetic enzymes, adenylosuccinate synthase (ADSS) and inosine monophosphate dehydrogenase (IMPDH), downstream of IMP were also shown to be part of the purinosome. Collectively, these results provide further evidence that purinosome assembly is directly related to activated de novo purine biosynthesis, consistent with the functionality of the purinosome.
Collapse
Affiliation(s)
| | | | - Limin Zhang
- Metabolomics Facility, Center for Molecular Toxicology and Carcinogenesis, and the CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences (CAS), Wuhan 430071, China, and
| | - Philip B Smith
- Metabolomics Facility, Center for Molecular Toxicology and Carcinogenesis, and
| | - Chung Yu Chan
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, Pennsylvania 16802
| | | | | | - Jarrod B French
- the Departments of Biochemistry and Cell Biology and Chemistry, Stony Brook University, Stony Brook, New York 11794
| | - Andrew D Patterson
- Metabolomics Facility, Center for Molecular Toxicology and Carcinogenesis, and
| | | |
Collapse
|
38
|
Abstract
The de novo purine biosynthetic pathway relies on six enzymes to catalyze the conversion of phosphoribosylpyrophosphate to inosine 5'-monophosphate. Under purine-depleted conditions, these enzymes form a multienzyme complex known as the purinosome. Previous studies have revealed the spatial organization and importance of the purinosome within mammalian cancer cells. In this study, time-lapse fluorescence microscopy was used to investigate the cell cycle dependency on purinosome formation in two cell models. Results in HeLa cells under purine-depleted conditions demonstrated a significantly higher number of cells with purinosomes in the G1 phase, which was further confirmed by cell synchronization. HGPRT-deficient fibroblast cells also exhibited the greatest purinosome formation in the G1 phase; however, elevated levels of purinosomes were also observed in the S and G2/M phases. The observed variation in cell cycle-dependent purinosome formation between the two cell models tested can be attributed to differences in purine biosynthetic mechanisms. Our results demonstrate that purinosome formation is closely related to the cell cycle.
Collapse
|
39
|
Kyoung M, Russell SJ, Kohnhorst CL, Esemoto NN, An S. Dynamic architecture of the purinosome involved in human de novo purine biosynthesis. Biochemistry 2015; 54:870-80. [PMID: 25540829 DOI: 10.1021/bi501480d] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Enzymes in human de novo purine biosynthesis have been demonstrated to form a reversible, transient multienzyme complex, the purinosome, upon purine starvation. However, characterization of purinosomes has been limited to HeLa cells and has heavily relied on qualitative examination of their subcellular localization and reversibility under wide-field fluorescence microscopy. Quantitative approaches, which are particularly compatible with human disease-relevant cell lines, are necessary to explicitly understand the purinosome in live cells. In this work, human breast carcinoma Hs578T cells have been utilized to demonstrate the preferential utilization of the purinosome under purine-depleted conditions. In addition, we have employed a confocal microscopy-based biophysical technique, fluorescence recovery after photobleaching, to characterize kinetic properties of the purinosome in live Hs578T cells. Quantitative characterization of the diffusion coefficients of all de novo purine biosynthetic enzymes reveals the significant reduction of their mobile kinetics upon purinosome formation, the dynamic partitioning of each enzyme into the purinosome, and the existence of three intermediate species in purinosome assembly under purine starvation. We also demonstrate that the diffusion coefficient of the purine salvage enzyme, hypoxanthine phosphoribosyltransferase 1, is not sensitive to purine starvation, indicating exclusion of the salvage pathway from the purinosome. Furthermore, our biophysical characterization of nonmetabolic enzymes clarifies that purinosomes are spatiotemporally different cellular bodies from stress granules and cytoplasmic protein aggregates in both Hs578T and HeLa cells. Collectively, quantitative analyses of the purinosome in Hs578T cells led us to provide novel insights for the dynamic architecture of the purinosome assembly.
Collapse
Affiliation(s)
- Minjoung Kyoung
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County , 1000 Hilltop Circle, Baltimore, Maryland 21250, United States
| | | | | | | | | |
Collapse
|
40
|
Abstract
About one third of currently marketed drugs target G protein-coupled receptors (GPCRs), which form the largest group of transmembrane proteins in the human proteome. GPCRs are ubiquitously expressed throughout the human body and play a pivotal role in a vast number of physiological and pathophysiological processes. Because of their intriguing complexity, their relevance, and yet unexploited potential in the treatment of diseases, GPCRs are studied intensively by both academic and industrial research labs.Classical biochemical and molecular biology techniques, including traditional second messenger assays, took biomedical research to the next level and represent the fascinating power of in vitro pharmacology. While extremely efficient in capturing one clearly defined cellular readout, those methods do not authentically portray the events taking place in living cells as a whole; hence the process of drug discovery runs the risk to lose sight of a wider context already in early stages. Label-free cell-based assays hold the promise to overcome these shortcomings by considering cellular processes holistically. If combined with diligent assay adjustments, dynamic mass redistribution (DMR) technology is an excellent tool to investigate GPCR signaling. In this article we aim to provide guidance for scientists seeking for information on how to set up and optimize DMR assays with the objective to establish a knowledge base on deciphering integrated cellular readouts. For this reason we focus on a basic DMR protocol for the investigation of the long-chain fatty acid FFA1 receptor as a model family A GPCR and complement it with information that allow a sophisticated approach to more specialized scientific questions with the use of this comparatively novel method.
Collapse
Affiliation(s)
- Manuel Grundmann
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115, Bonn, Germany,
| | | |
Collapse
|
41
|
Laursen T, Møller BL, Bassard JE. Plasticity of specialized metabolism as mediated by dynamic metabolons. TRENDS IN PLANT SCIENCE 2015; 20:20-32. [PMID: 25435320 DOI: 10.1016/j.tplants.2014.11.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/24/2014] [Accepted: 11/07/2014] [Indexed: 05/02/2023]
Abstract
The formation of specialized metabolites enables plants to respond to biotic and abiotic stresses, but requires the sequential action of multiple enzymes. To facilitate swift production and to avoid leakage of potentially toxic and labile intermediates, many of the biosynthetic pathways are thought to organize in multienzyme clusters termed metabolons. Dynamic assembly and disassembly enable the plant to rapidly switch the product profile and thereby prioritize its resources. The lifetime of metabolons is largely unknown mainly due to technological limitations. This review focuses on the factors that facilitate and stimulate the dynamic assembly of metabolons, including microenvironments, noncatalytic proteins, and allosteric regulation. Understanding how plants organize carbon fluxes within their metabolic grids would enable targeted bioengineering of high-value specialized metabolites.
Collapse
Affiliation(s)
- Tomas Laursen
- VILLUM Research Center for Plant Plasticity, Center for Synthetic Biology 'bioSYNergy', and Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark
| | - Birger Lindberg Møller
- VILLUM Research Center for Plant Plasticity, Center for Synthetic Biology 'bioSYNergy', and Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark; Carlsberg Laboratory, 10 Gamle Carlsberg Vej, DK-1799 Copenhagen V, Denmark.
| | - Jean-Etienne Bassard
- VILLUM Research Center for Plant Plasticity, Center for Synthetic Biology 'bioSYNergy', and Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, 40 Thorvaldsensvej, DK-1871 Frederiksberg C, Copenhagen, Denmark
| |
Collapse
|
42
|
Abstract
G protein-coupled receptors (GPCRs) represent the largest class of drug targets. Ligand-directed functional selectivity or biased agonism opens new possibility for discovering GPCR drugs with better efficacy and safety profiles. However, quantification of ligand bias is challenging. Herein, we present five different label-free dynamic mass redistribution (DMR) approaches to assess ligand bias acting at the β2-adrenergic receptor (β2AR). Multiparametric analysis of the DMR agonist profiles reveals divergent pharmacology of a panel of β2AR agonists. DMR profiling using catechol as a conformational probe detects the presence of multiple conformations of the β2AR. DMR assays under microfluidics, together with chemical biology tools, discover ligand-directed desensitization of the receptor. DMR antagonist reverse assays manifest biased antagonism. DMR profiling using distinct probe-modulated cells detects the biased agonism in the context of self-referenced pharmacological activity map.
Collapse
|
43
|
Li Z, Zhang Y, Su Y, Ouyang P, Ge J, Liu Z. Spatial co-localization of multi-enzymes by inorganic nanocrystal–protein complexes. Chem Commun (Camb) 2014; 50:12465-8. [DOI: 10.1039/c4cc05478d] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
44
|
Febles NK, Ferrie AM, Fang Y. Label-free single cell kinetics of the invasion of spheroidal colon cancer cells through 3D Matrigel. Anal Chem 2014; 86:8842-9. [PMID: 25118958 DOI: 10.1021/ac502269v] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This article reports label-free, real-time, and single-cell quantification of the invasion of spheroidal colon cancer cells through three-dimensional (3D) Matrigel using a resonant waveguide grating (RWG) imager. This imager employs a time-resolved swept wavelength interrogation scheme to monitor cell invasion and adhesion with a temporal resolution up to 3 s and a spatial resolution of 12 μm. As the model system, spheroids of human colorectal adenocarcinoma HT-29 cells are generated by culturing the cells in 96-well round-bottom ultralow attachment plates. 3D Matrigel is formed by its gelation in 384-well RWG biosensor microplates. The invasion and adhesion of spheroidal HT29 cells is initiated by placing individual spheroids onto the Matrigel-coated biosensors. The time series RWG images are obtained and used to extract the optical signatures arising from the adhesion after the cells are dissociated from the spheroids and invade through the 3D Matrigel. Compound profiling shows that epidermal growth factor accelerates cancer cell invasion, while vandetanib, a multitarget kinase inhibitor, dose-dependently inhibits invasion. This study demonstrates that the label-free imager can monitor in real-time the invasion of spheroidal cancer cells through 3D matrices.
Collapse
Affiliation(s)
- Nicole K Febles
- Biochemical Technologies, Science and Technology Division, Corning Incorporated , Corning, New York 14831, United States
| | | | | |
Collapse
|
45
|
Fang Y, French J, Zhao H, Benkovic S. G-protein-coupled receptor regulation of de novo purine biosynthesis: a novel druggable mechanism. Biotechnol Genet Eng Rev 2014; 29:31-48. [PMID: 24568251 DOI: 10.1080/02648725.2013.801237] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Spatial organization of metabolic enzymes may represent a general cellular mechanism to regulate metabolic flux. One recent example of this type of cellular phenomenon is the purinosome, a newly discovered multi-enzyme metabolic assembly that includes all of the enzymes within the de novo purine biosynthetic pathway. Our understanding of the components and regulation of purinosomes has significantly grown in recent years. This paper reviews the purine de novo biosynthesis pathway and its regulation, and presents the evidence supporting the purinosome assembly and disassembly processes under the control of G-protein-coupled receptor (GPCR) signaling. This paper also discusses the implications of purinosome and GPCR regulation in drug discovery.
Collapse
Affiliation(s)
- Ye Fang
- a Biochemical Technologies, Science and Technology Division , Corning Incorporated , Corning , New York , USA
| | | | | | | |
Collapse
|
46
|
Label-free cell phenotypic profiling decodes the composition and signaling of an endogenous ATP-sensitive potassium channel. Sci Rep 2014; 4:4934. [PMID: 24816792 PMCID: PMC4017216 DOI: 10.1038/srep04934] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 04/24/2014] [Indexed: 11/27/2022] Open
Abstract
Current technologies for studying ion channels are fundamentally limited because of their inability to functionally link ion channel activity to cellular pathways. Herein, we report the use of label-free cell phenotypic profiling to decode the composition and signaling of an endogenous ATP-sensitive potassium ion channel (KATP) in HepG2C3A, a hepatocellular carcinoma cell line. Label-free cell phenotypic agonist profiling showed that pinacidil triggered characteristically similar dynamic mass redistribution (DMR) signals in A431, A549, HT29 and HepG2C3A, but not in HepG2 cells. Reverse transcriptase PCR, RNAi knockdown, and KATP blocker profiling showed that the pinacidil DMR is due to the activation of SUR2/Kir6.2 KATP channels in HepG2C3A cells. Kinase inhibition and RNAi knockdown showed that the pinacidil activated KATP channels trigger signaling through Rho kinase and Janus kinase-3, and cause actin remodeling. The results are the first demonstration of a label-free methodology to characterize the composition and signaling of an endogenous ATP-sensitive potassium ion channel.
Collapse
|
47
|
Abstract
Current drug discovery is dominated by label-dependent molecular approaches, which screen drugs in the context of a predefined and target-based hypothesis in vitro. Given that target-based discovery has not transformed the industry, phenotypic screen that identifies drugs based on a specific phenotype of cells, tissues, or animals has gained renewed interest. However, owing to the intrinsic complexity in drug-target interactions, there is often a significant gap between the phenotype screened and the ultimate molecular mechanism of action sought. This paper presents a label-free strategy for early drug discovery. This strategy combines label-free cell phenotypic profiling with computational approaches, and holds promise to bridge the gap by offering a kinetic and holistic representation of the functional consequences of drugs in disease relevant cells that is amenable to mechanistic deconvolution.
Collapse
Affiliation(s)
- Ye Fang
- Biochemical Technologies, Science and Technology Division, Corning Incorporated Corning, NY, USA
| |
Collapse
|
48
|
Ferrie AM, Sun H, Zaytseva N, Fang Y. Divergent label-free cell phenotypic pharmacology of ligands at the overexpressed β₂-adrenergic receptors. Sci Rep 2014; 4:3828. [PMID: 24451999 PMCID: PMC3899747 DOI: 10.1038/srep03828] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 01/06/2014] [Indexed: 01/14/2023] Open
Abstract
We present subclone sensitive cell phenotypic pharmacology of ligands at the β2-adrenergic receptor (β2-AR) stably expressed in HEK-293 cells. The parental cell line was transfected with green fluorescent protein (GFP)-tagged β2-AR. Four stable subclones were established and used to profile a library of sixty-nine AR ligands. Dynamic mass redistribution (DMR) profiling resulted in a pharmacological activity map suggesting that HEK293 endogenously expresses functional Gi-coupled α2-AR and Gs-coupled β2-AR, and the label-free cell phenotypic activity of AR ligands are subclone dependent. Pathway deconvolution revealed that the DMR of epinephrine is originated mostly from the remodeling of actin microfilaments and adhesion complexes, to less extent from the microtubule networks and receptor trafficking, and certain agonists displayed different efficacy towards the cAMP-Epac pathway. We demonstrate that receptor signaling and ligand pharmacology is sensitive to the receptor expression level, and the organization of the receptor and its signaling circuitry.
Collapse
Affiliation(s)
- Ann M Ferrie
- 1] Biochemical Technologies, Science and Technology Division, Corning Incorporated, Corning, NY 14831, United States of America [2]
| | - Haiyan Sun
- 1] Biochemical Technologies, Science and Technology Division, Corning Incorporated, Corning, NY 14831, United States of America [2] [3]
| | - Natalya Zaytseva
- Biochemical Technologies, Science and Technology Division, Corning Incorporated, Corning, NY 14831, United States of America
| | - Ye Fang
- Biochemical Technologies, Science and Technology Division, Corning Incorporated, Corning, NY 14831, United States of America
| |
Collapse
|
49
|
Zhao A, Tsechansky M, Ellington AD, Marcotte EM. Revisiting and revising the purinosome. MOLECULAR BIOSYSTEMS 2014; 10:369-74. [PMID: 24413256 DOI: 10.1039/c3mb70397e] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Some metabolic pathway enzymes are known to organize into multi-enzyme complexes for reasons of catalytic efficiency, metabolite channeling, and other advantages of compartmentalization. It has long been an appealing prospect that de novo purine biosynthesis enzymes form such a complex, termed the "purinosome." Early work characterizing these enzymes garnered scarce but encouraging evidence for its existence. Recent investigations led to the discovery in human cell lines of purinosome bodies-cytoplasmic puncta containing transfected purine biosynthesis enzymes, which were argued to correspond to purinosomes. New discoveries challenge both the functional and physiological relevance of these bodies in favor of protein aggregation.
Collapse
Affiliation(s)
- Alice Zhao
- Center for Systems and Synthetic Biology, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA.
| | | | | | | |
Collapse
|
50
|
Zhang X, Deng H, Xiao Y, Xue X, Ferrie AM, Tran E, Liang X, Fang Y. Label-free cell phenotypic profiling identifies pharmacologically active compounds in two traditional Chinese medicinal plants. RSC Adv 2014. [DOI: 10.1039/c4ra03609c] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Label-free cell phenotypic profiling with three cell lines identified multiple pharmacologically active compounds including niacin in two TCM plants.
Collapse
Affiliation(s)
- Xiuli Zhang
- Key Laboratory of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian, China
| | - Huayun Deng
- Biochemical Technologies
- Science and Technology Division
- Corning Incorporated
- Corning, USA
| | - Yuansheng Xiao
- Key Laboratory of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian, China
| | - Xingya Xue
- Key Laboratory of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian, China
| | - Ann M. Ferrie
- Biochemical Technologies
- Science and Technology Division
- Corning Incorporated
- Corning, USA
| | - Elizabeth Tran
- Biochemical Technologies
- Science and Technology Division
- Corning Incorporated
- Corning, USA
| | - Xinmiao Liang
- Key Laboratory of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian, China
| | - Ye Fang
- Biochemical Technologies
- Science and Technology Division
- Corning Incorporated
- Corning, USA
| |
Collapse
|