1
|
Torres Robles J, Lou HJ, Shi G, Pan PL, Turk BE. Linear motif specificity in signaling through p38α and ERK2 mitogen-activated protein kinases. Proc Natl Acad Sci U S A 2023; 120:e2316599120. [PMID: 37988460 PMCID: PMC10691213 DOI: 10.1073/pnas.2316599120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/26/2023] [Indexed: 11/23/2023] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades are essential for eukaryotic cells to integrate and respond to diverse stimuli. Maintaining specificity in signaling through MAPK networks is key to coupling distinct inputs to appropriate cellular responses. Docking sites-short linear motifs found in MAPK substrates, regulators, and scaffolds-can promote signaling specificity through selective interactions, but how they do so remains unresolved. Here, we screened a proteomic library for sequences interacting with the MAPKs extracellular signal-regulated kinase 2 (ERK2) and p38α, identifying selective and promiscuous docking motifs. Sequences specific for p38α had high net charge and lysine content, and selective binding depended on a pair of acidic residues unique to the p38α docking interface. Finally, we validated a set of full-length proteins harboring docking sites selected in our screens to be authentic MAPK interactors and substrates. This study identifies features that help define MAPK signaling networks and explains how specific docking motifs promote signaling integrity.
Collapse
Affiliation(s)
- Jaylissa Torres Robles
- Department of Chemistry, Yale University, New Haven, CT06520
- Department of Pharmacology, Yale School of Medicine, New Haven, CT06520
| | - Hua Jane Lou
- Department of Pharmacology, Yale School of Medicine, New Haven, CT06520
| | - Guangda Shi
- Department of Pharmacology, Yale School of Medicine, New Haven, CT06520
| | | | - Benjamin E. Turk
- Department of Pharmacology, Yale School of Medicine, New Haven, CT06520
| |
Collapse
|
2
|
Innocenti M. Investigating Mammalian Formins with SMIFH2 Fifteen Years in: Novel Targets and Unexpected Biology. Int J Mol Sci 2023; 24:ijms24109058. [PMID: 37240404 DOI: 10.3390/ijms24109058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
The mammalian formin family comprises fifteen multi-domain proteins that regulate actin dynamics and microtubules in vitro and in cells. Evolutionarily conserved formin homology (FH) 1 and 2 domains allow formins to locally modulate the cell cytoskeleton. Formins are involved in several developmental and homeostatic processes, as well as human diseases. However, functional redundancy has long hampered studies of individual formins with genetic loss-of-function approaches and prevents the rapid inhibition of formin activities in cells. The discovery of small molecule inhibitor of formin homology 2 domains (SMIFH2) in 2009 was a disruptive change that provided a powerful chemical tool to explore formins' functions across biological scales. Here, I critically discuss the characterization of SMIFH2 as a pan-formin inhibitor, as well as growing evidence of unexpected off-target effects. By collating the literature and information hidden in public repositories, outstanding controversies and fundamental open questions about the substrates and mechanism of action of SMIFH2 emerge. Whenever possible, I propose explanations for these discrepancies and roadmaps to address the paramount open questions. Furthermore, I suggest that SMIFH2 be reclassified as a multi-target inhibitor for its appealing activities on proteins involved in pathological formin-dependent processes. Notwithstanding all drawbacks and limitations, SMIFH2 will continue to prove useful in studying formins in health and disease in the years to come.
Collapse
Affiliation(s)
- Metello Innocenti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| |
Collapse
|
3
|
Shi G, Song C, Torres Robles J, Salichos L, Lou HJ, Lam TT, Gerstein M, Turk BE. Proteome-wide screening for mitogen-activated protein kinase docking motifs and interactors. Sci Signal 2023; 16:eabm5518. [PMID: 36626580 PMCID: PMC9995140 DOI: 10.1126/scisignal.abm5518] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Essential functions of mitogen-activated protein kinases (MAPKs) depend on their capacity to selectively phosphorylate a limited repertoire of substrates. MAPKs harbor a conserved groove located outside of the catalytic cleft that binds to short linear sequence motifs found in substrates and regulators. However, the weak and transient nature of these "docking" interactions poses a challenge to defining MAPK interactomes and associated sequence motifs. Here, we describe a yeast-based genetic screening pipeline to evaluate large collections of MAPK docking sequences in parallel. Using this platform, we analyzed a combinatorial library based on the docking sequences from the MAPK kinases MKK6 and MKK7, defining features critical for binding to the stress-activated MAPKs JNK1 and p38α. Our screen of a library consisting of ~12,000 sequences from the human proteome revealed multiple MAPK-selective interactors, including many that did not conform to previously defined docking motifs. Analysis of p38α/JNK1 exchange mutants identified specific docking groove residues that mediate selective binding. Last, we verified that docking sequences identified in the screen functioned in substrate recruitment in vitro and in cultured cells. Together, these studies establish an approach to characterize MAPK docking sequences and provide a resource for future investigation of signaling downstream of p38 and JNK.
Collapse
Affiliation(s)
- Guangda Shi
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Claire Song
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jaylissa Torres Robles
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA.,Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Leonidas Salichos
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA
| | - Hua Jane Lou
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - TuKiet T Lam
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA.,Keck MS and Proteomics Resource, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Mark Gerstein
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA
| | - Benjamin E Turk
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
4
|
Liu Y, Zhang J, Du Z, Huang J, Cheng Y, Yi W, Li T, Yang J, Chen C. Comprehensive analysis of PTPN family expression and prognosis in acute myeloid leukemia. Front Genet 2023; 13:1087938. [PMID: 36699453 PMCID: PMC9868563 DOI: 10.3389/fgene.2022.1087938] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
Background: Tyrosyl phosphorylation is carried out by a group of enzymes known as non-receptor protein tyrosine phosphatases (PTPNs). In the current investigation, it is hoped to shed light on the relationships between the expression patterns of PTPN family members and the prognosis of acute myeloid leukemia (AML). Methods: PTPN expression was examined using GEPIA and GEO databases. To investigate the connection between PTPN expression and survival in AML patients, we downloaded data from the Broad TCGA Firehose and Clinical Proteomic Tumor Analysis (CPTAC) of the Cancer Genome Atlas (TCGA). We used quantitative real-time PCR (qRT-PCR) to confirm that essential genes were performed in clinical samples and cell lines. We then used western blot to verify that the genes expressed in the above databases were positive in normal tissues, AML patient samples, and AML cell lines. Next, we investigated associations between genome-wide expression profiles and PTPN6 expression using the GEO datasets. We investigated the interactive exploration of multidimensional cancer genomics using the cBioPortal datasets. Using the DAVID database, a study of gene ontology enrichment was performed. The protein-protein interaction (PPI) network was created using the STRING portal, and the gene-gene interaction network was performed using GeneMANIA. Results: Data from GEO and GEPIA revealed that most PTPN family members were linked to AML. Patients with leukemia have elevated levels of several PTPN members. All of the AML patients' poor overall survival (OS, p < .05) was significantly linked with higher expression of PTPN1, PTPN6, and PTPN7. Additionally, clinical samples showed that the expression of PTPN 6, PTPN 7, PTPN 13, and PTPN 14 was higher than normal in AML patients (p = .0116, p = .0034, p = .0092, and p = .0057, respectively) and AML cell lines (p = .0004, p = .0035, p = .0357, and p = .0177, respectively). Western blotting results showed that the expression of PTPN6 in AML samples and AML cell lines was significantly higher than that in normal control samples. Conclusion: Differentially expressed PTPN family members were found in AML. The prognosis of patients and PTPN gene expression were shown to be correlated. PTPN6 is one of these members and may be used as an AML diagnostic and prognostic marker.
Collapse
Affiliation(s)
- Yong Liu
- Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Jing Zhang
- Department of Breast and Thyroid Surgery, Guangzhou Women and Children’s Medical Center, Guangzhou, China
| | - Zefan Du
- Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Junbin Huang
- Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Yucai Cheng
- Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Wenfang Yi
- Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Tianwen Li
- Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Jing Yang
- Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Chun Chen
- Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| |
Collapse
|
5
|
Dorival J, Moraïs S, Labourel A, Rozycki B, Cazade PA, Dabin J, Setter-Lamed E, Mizrahi I, Thompson D, Thureau A, Bayer EA, Czjzek M. Mapping the deformability of natural and designed cellulosomes in solution. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:68. [PMID: 35725490 PMCID: PMC9210761 DOI: 10.1186/s13068-022-02165-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/08/2022] [Indexed: 12/02/2022]
Abstract
BACKGROUND Natural cellulosome multi-enzyme complexes, their components, and engineered 'designer cellulosomes' (DCs) promise an efficient means of breaking down cellulosic substrates into valuable biofuel products. Their broad uptake in biotechnology relies on boosting proximity-based synergy among the resident enzymes, but the modular architecture challenges structure determination and rational design. RESULTS We used small angle X-ray scattering combined with molecular modeling to study the solution structure of cellulosomal components. These include three dockerin-bearing cellulases with distinct substrate specificities, original scaffoldins from the human gut bacterium Ruminococcus champanellensis (ScaA, ScaH and ScaK) and a trivalent cohesin-bearing designer scaffoldin (Scaf20L), followed by cellulosomal complexes comprising these components, and the nonavalent fully loaded Clostridium thermocellum CipA in complex with Cel8A from the same bacterium. The size analysis of Rg and Dmax values deduced from the scattering curves and corresponding molecular models highlight their variable aspects, depending on composition, size and spatial organization of the objects in solution. CONCLUSIONS Our data quantifies variability of form and compactness of cellulosomal components in solution and confirms that this native plasticity may well be related to speciation with respect to the substrate that is targeted. By showing that scaffoldins or components display enhanced compactness compared to the free objects, we provide new routes to rationally enhance their stability and performance in their environment of action.
Collapse
Affiliation(s)
- Jonathan Dorival
- Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Sorbonne Université, CNRS, 29680, Roscoff, Bretagne, France
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, 37232, USA
| | - Sarah Moraïs
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 7610001, Rehovot, Israel
- Faculty of Natural Sciences, Ben-Gurion University of the Negev, 8499000, Beer-Sheva, Israel
| | - Aurore Labourel
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Bartosz Rozycki
- Institute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668, Warsaw, Poland
| | - Pierre-Andre Cazade
- Department of Physics, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Jérôme Dabin
- Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Sorbonne Université, CNRS, 29680, Roscoff, Bretagne, France
| | - Eva Setter-Lamed
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Itzhak Mizrahi
- Faculty of Natural Sciences, Ben-Gurion University of the Negev, 8499000, Beer-Sheva, Israel
| | - Damien Thompson
- Department of Physics, Bernal Institute, University of Limerick, Limerick, Ireland
| | | | - Edward A Bayer
- Department of Biomolecular Sciences, The Weizmann Institute of Science, 7610001, Rehovot, Israel
- Faculty of Natural Sciences, Ben-Gurion University of the Negev, 8499000, Beer-Sheva, Israel
| | - Mirjam Czjzek
- Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Sorbonne Université, CNRS, 29680, Roscoff, Bretagne, France.
| |
Collapse
|
6
|
Kumar GS, Page R, Peti W. The interaction of p38 with its upstream kinase MKK6. Protein Sci 2021; 30:908-913. [PMID: 33554397 DOI: 10.1002/pro.4039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 02/06/2023]
Abstract
Mitogen-activated protein kinase (MAPK; p38, ERK, and JNK) cascades are evolutionarily conserved signaling pathways that regulate the cellular response to a variety of extracellular stimuli, such as growth factors and interleukins. The MAPK p38 is activated by its specific upstream MAPK kinases, MKK6 and MKK3. However, a comprehensive molecular understanding of how these cognate upstream kinases bind and activate p38 is still missing. Here, we combine NMR spectroscopy and isothermal titration calorimetry to define the binding interface between full-length MKK6 and p38. It was shown that p38 engages MKK6 not only via its hydrophobic docking groove, but also influences helix αF, a secondary structural element that plays a key role in organizing the kinase core. It was also shown that, unlike MAPK phosphatases, the p38 conserved docking (CD) site is much less affected by MKK6 binding. Finally, it was demonstrated that these interactions with p38 are conserved independent of the MKK6 activation state. Together, the results revealed differences between specificity markers of p38 regulation by upstream kinases, which do not effectively engage the CD site, and downstream phosphatases, which require the CD site for productive binding.
Collapse
Affiliation(s)
- Ganesan Senthil Kumar
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Rebecca Page
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Wolfgang Peti
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut, USA
| |
Collapse
|
7
|
Kumar S, Akabayov SR, Kessler N, Cohen LS, Solanki J, Naider F, Kay LE, Anglister J. The methyl 13C-edited/ 13C-filtered transferred NOE for studying protein interactions with short linear motifs. JOURNAL OF BIOMOLECULAR NMR 2020; 74:681-693. [PMID: 32997264 DOI: 10.1007/s10858-020-00340-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
Many proteins interact with their ligand proteins by recognition of short linear motifs that are often intrinsically disordered. These interactions are usually weak and are characterized by fast exchange. NMR spectroscopy is a powerful tool to study weak interactions. The methods that have been commonly used are analysis of chemicals shift perturbations (CSP) upon ligand binding and saturation transfer difference spectroscopy. These two methods identify residues at the binding interface between the protein and its ligand. In the present study, we used a combination of transferred-NOE, specific methyl-labeling and an optimized isotope-edited/isotope-filtered NOESY experiment to study specific interactions between the 42 kDa p38α mitogen-activated protein kinase and the kinase interaction motif (KIM) on the STEP phosphatase. These measurements distinguished between residues that both exhibit CSPs upon ligand binding and interact with the KIM peptide from residues that exhibit CSPs but do not interact with the peptide. In addition, these results provide information about pairwise interactions that is important for a more reliable docking of the KIM peptide into its interacting surface on p38α. This combination of techniques should be applicable for many protein-peptide complexes up to 80 kDa for which methyl resonance assignment can be achieved.
Collapse
Affiliation(s)
- Suresh Kumar
- Department of Structural Biology, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Sabine R Akabayov
- Department of Structural Biology, Weizmann Institute of Science, 76100, Rehovot, Israel.
| | - Naama Kessler
- Department of Structural Biology, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Leah S Cohen
- Department of Chemistry and Macromolecular Assembly Institute, College of Staten Island of the City University of New York, Staten Island, NY, 10314, USA
- The Graduate Center of the City University of New York, New York, NY, 10016, USA
| | - Jacob Solanki
- Department of Chemistry and Macromolecular Assembly Institute, College of Staten Island of the City University of New York, Staten Island, NY, 10314, USA
- The Graduate Center of the City University of New York, New York, NY, 10016, USA
| | - Fred Naider
- Department of Chemistry and Macromolecular Assembly Institute, College of Staten Island of the City University of New York, Staten Island, NY, 10314, USA
- The Graduate Center of the City University of New York, New York, NY, 10016, USA
| | - Lewis E Kay
- Department of Molecular Genetics, The University of Toronto, Toronto, ON, M5S1A8, Canada
- Department of Biochemistry, The University of Toronto, Toronto, ON, M5S1A8, Canada
- Department of Chemistry, The University of Toronto, Toronto, ON, M5S1A8, Canada
- Hospital for Sick Children, Program in Molecular Medicine, 555 University Avenue, Toronto, ON, M5G 1X8, Canada
| | - Jacob Anglister
- Department of Structural Biology, Weizmann Institute of Science, 76100, Rehovot, Israel.
| |
Collapse
|
8
|
Capturing the Conformational Ensemble of the Mixed Folded Polyglutamine Protein Ataxin-3. Structure 2020; 29:70-81.e5. [PMID: 33065068 DOI: 10.1016/j.str.2020.09.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/22/2020] [Accepted: 09/24/2020] [Indexed: 01/31/2023]
Abstract
Ataxin-3 is a deubiquitinase involved in protein quality control and other essential cellular functions. It preferentially interacts with polyubiquitin chains of four or more units attached to proteins delivered to the ubiquitin-proteasome system. Ataxin-3 is composed of an N-terminal Josephin domain and a flexible C terminus that contains two or three ubiquitin-interacting motifs (UIMs) and a polyglutamine tract, which, when expanded beyond a threshold, leads to protein aggregation and misfolding and causes spinocerebellar ataxia type 3. The high-resolution structure of the Josephin domain is available, but the structural and dynamical heterogeneity of ataxin-3 has so far hindered the structural description of the full-length protein. Here, we characterize non-expanded and expanded variants of ataxin-3 in terms of conformational ensembles adopted by the proteins in solution by jointly using experimental data from nuclear magnetic resonance and small-angle X-ray scattering with coarse-grained simulations. Our results pave the way to a molecular understanding of polyubiquitin recognition.
Collapse
|
9
|
Chen J, Zhao X, Yuan Y, Jing JJ. The expression patterns and the diagnostic/prognostic roles of PTPN family members in digestive tract cancers. Cancer Cell Int 2020; 20:238. [PMID: 32536826 PMCID: PMC7291430 DOI: 10.1186/s12935-020-01315-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 06/02/2020] [Indexed: 02/06/2023] Open
Abstract
Background Non-receptor protein tyrosine phosphatases (PTPNs) are a set of enzymes involved in the tyrosyl phosphorylation. The present study intended to clarify the associations between the expression patterns of PTPN family members, and diagnosis as well as the prognosis of digestive tract cancers. Methods Oncomine and Ualcan were used to analyze PTPN expressions. Data from The Cancer Genome Atlas (TCGA) were downloaded through UCSC Xena for validation and to explore the relationship of the PTPN expression with diagnosis, clinicopathological parameters and survival of digestive tract cancers. Gene ontology enrichment analysis was conducted using the DAVID database. The gene–gene interaction network was performed by GeneMANIA and the protein–protein interaction (PPI) network was built using STRING portal coupled with Cytoscape. The expression of differentially expressed PTPNs in cancer cell lines were explored using CCLE. Moreover, by histological verification, the expression of four PTPNs in digestive tract cancers were further analyzed. Results Most PTPN family members were associated with digestive tract cancers according to Oncomine, Ualcan and TCGA data. Several PTPN members were differentially expressed in digestive tract cancers. For esophageal carcinoma (ESCA), PTPN1 and PTPN12 levels were correlated with incidence; PTPN20 was associated with poor prognosis. For stomach adenocarcinoma (STAD), PTPN2 and PTPN12 levels were correlated with incidence; PTPN3, PTPN5, PTPN7, PTPN11, PTPN13, PTPN14, PTPN18 and PTPN23 were correlated with pathological grade; PTPN20 expression was related with both TNM stage and N stage; PTPN22 was associated with T stage and pathological grade; decreased expression of PTPN5 and PTPN13 implied worse overall survival of STAD, while elevated PTPN6 expression indicated better prognosis. For colorectal cancer (CRC), PTPN2, PTPN21 and PTPN22 levels were correlated with incidence; expression of PTPN5, PTPN12, and PTPN14 was correlated with TNM stage and N stage; high PTPN5 or PTPN7 expression was associated with increased hazards of death. CCLE analyses showed that in esophagus cancer cell lines, PTPN1, PTPN4 and PTPN12 were highly expressed; in gastric cancer cell lines, PTPN2 and PTPN12 were highly expressed; in colorectal cancer cell lines, PTPN12 was highly expressed while PTPN22 was downregulated. Results of histological verification experiment showed differential expressions of PTPN22 in CRC, and PTPN12 in GC and CRC. Conclusions Members of PTPN family were differentially expressed in digestive tract cancers. Correlations were found between PTPN genes and clinicopathological parameters of patients. Expression of PTPN12 was upregulated in both STAD and CRC, and thus could be used as a diagnostic biomarker. Differential expression of PTPN12 in GC and CRC, and PTPN22 in CRC were presented in our histological verification experiment.
Collapse
Affiliation(s)
- Jing Chen
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North NanjingBei Street, Heping District, Shenyang, 110001 Liaoning People's Republic of China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001 China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001 China
| | - Xu Zhao
- Mathematical Computer Teaching and Research Office, Liaoning Vocational College of Medicine, Shenyang, 110101 China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North NanjingBei Street, Heping District, Shenyang, 110001 Liaoning People's Republic of China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001 China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001 China
| | - Jing-Jing Jing
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North NanjingBei Street, Heping District, Shenyang, 110001 Liaoning People's Republic of China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001 China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001 China
| |
Collapse
|
10
|
Larsen AH, Wang Y, Bottaro S, Grudinin S, Arleth L, Lindorff-Larsen K. Combining molecular dynamics simulations with small-angle X-ray and neutron scattering data to study multi-domain proteins in solution. PLoS Comput Biol 2020; 16:e1007870. [PMID: 32339173 PMCID: PMC7205321 DOI: 10.1371/journal.pcbi.1007870] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 05/07/2020] [Accepted: 04/13/2020] [Indexed: 11/18/2022] Open
Abstract
Many proteins contain multiple folded domains separated by flexible linkers, and the ability to describe the structure and conformational heterogeneity of such flexible systems pushes the limits of structural biology. Using the three-domain protein TIA-1 as an example, we here combine coarse-grained molecular dynamics simulations with previously measured small-angle scattering data to study the conformation of TIA-1 in solution. We show that while the coarse-grained potential (Martini) in itself leads to too compact conformations, increasing the strength of protein-water interactions results in ensembles that are in very good agreement with experiments. We show how these ensembles can be refined further using a Bayesian/Maximum Entropy approach, and examine the robustness to errors in the energy function. In particular we find that as long as the initial simulation is relatively good, reweighting against experiments is very robust. We also study the relative information in X-ray and neutron scattering experiments and find that refining against the SAXS experiments leads to improvement in the SANS data. Our results suggest a general strategy for studying the conformation of multi-domain proteins in solution that combines coarse-grained simulations with small-angle X-ray scattering data that are generally most easy to obtain. These results may in turn be used to design further small-angle neutron scattering experiments that exploit contrast variation through 1H/2H isotope substitutions.
Collapse
Affiliation(s)
- Andreas Haahr Larsen
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- X-ray and Neutron Science, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Yong Wang
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Sandro Bottaro
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Sergei Grudinin
- Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LJK, Grenoble, France
| | - Lise Arleth
- X-ray and Neutron Science, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory, Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Orioli S, Larsen AH, Bottaro S, Lindorff-Larsen K. How to learn from inconsistencies: Integrating molecular simulations with experimental data. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 170:123-176. [PMID: 32145944 DOI: 10.1016/bs.pmbts.2019.12.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Molecular simulations and biophysical experiments can be used to provide independent and complementary insights into the molecular origin of biological processes. A particularly useful strategy is to use molecular simulations as a modeling tool to interpret experimental measurements, and to use experimental data to refine our biophysical models. Thus, explicit integration and synergy between molecular simulations and experiments is fundamental for furthering our understanding of biological processes. This is especially true in the case where discrepancies between measured and simulated observables emerge. In this chapter, we provide an overview of some of the core ideas behind methods that were developed to improve the consistency between experimental information and numerical predictions. We distinguish between situations where experiments are used to refine our understanding and models of specific systems, and situations where experiments are used more generally to refine transferable models. We discuss different philosophies and attempt to unify them in a single framework. Until now, such integration between experiments and simulations have mostly been applied to equilibrium data, and we discuss more recent developments aimed to analyze time-dependent or time-resolved data.
Collapse
Affiliation(s)
- Simone Orioli
- Structural Biology and NMR Laboratory & Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark; Structural Biophysics, Niels Bohr Institute, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Haahr Larsen
- Structural Biology and NMR Laboratory & Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark; Structural Biophysics, Niels Bohr Institute, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Sandro Bottaro
- Structural Biology and NMR Laboratory & Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark; Atomistic Simulations Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory & Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
12
|
Aoto PC, Stanfield RL, Wilson IA, Dyson HJ, Wright PE. A Dynamic Switch in Inactive p38γ Leads to an Excited State on the Pathway to an Active Kinase. Biochemistry 2019; 58:5160-5172. [PMID: 31794659 DOI: 10.1021/acs.biochem.9b00932] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The inactive state of mitogen-activated protein kinases (MAPKs) adopts an open conformation while the active state exists in a compact form stabilized by phosphorylation. In the active state, eukaryotic kinases undergo breathing motions related to substrate binding and product release that have not previously been detected in the inactive state. However, docking interactions of partner proteins with inactive MAPK kinases exhibit allostery in binding of activating kinases. Interactions at a site distant from the activation loop are coupled to the configuration of the activation loop, suggesting that the inactive state may also undergo concerted dynamics. X-ray crystallographic studies of nonphosphorylated, inactive p38γ reveal differences in domain orientations and active site structure in the two molecules in the asymmetric unit. One molecule resembles an inactive kinase with an open active site. The second molecule has a rotation of the N-lobe that leads to partial compaction of the active site, resulting in a conformation that is intermediate between the inactive open state and the fully closed state of the activated kinase. Although the compact state of apo p38γ displays several of the features of the activated enzyme, it remains catalytically inert. In solution, the kinase fluctuates on a millisecond time scale between the open ground state and a weakly populated excited state that is similar in structure to the compact state observed in the crystal. The nuclear magnetic resonance and crystal structure data imply that interconversion between the open and compact states involves a molecular switch associated with the DFG loop.
Collapse
|
13
|
Chalupska D, Różycki B, Klima M, Boura E. Structural insights into Acyl-coenzyme A binding domain containing 3 (ACBD3) protein hijacking by picornaviruses. Protein Sci 2019; 28:2073-2079. [PMID: 31583778 DOI: 10.1002/pro.3738] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 01/20/2023]
Abstract
Many picornaviruses hijack the Golgi resident Acyl-coenzyme A binding domain containing 3 (ACBD3) protein in order to recruit the phosphatidylinositol 4-kinase B (PI4KB) to viral replication organelles (ROs). PI4KB, once recruited and activated by ACBD3 protein, produces the lipid phosphatidylinositol 4-phosphate (PI4P), which is a key step in the biogenesis of viral ROs. To do so, picornaviruses use their small nonstructural protein 3A that binds the Golgi dynamics domain of the ACBD3 protein. Here, we present the analysis of the highly flexible ACBD3 proteins and the viral 3A protein in solution using small-angle X-ray scattering and computer simulations. Our analysis revealed that both the ACBD3 protein and the 3A:ACBD3 protein complex have an extended and flexible conformation in solution.
Collapse
Affiliation(s)
- Dominika Chalupska
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Bartosz Różycki
- Institute of Physics of the Polish Academy of Sciences, Warsaw, Poland
| | - Martin Klima
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
14
|
Abstract
Phosphorylation is a ubiquitous posttranslational modification that is essential for the regulation of many cellular processes. The human genome consists of more than 200,000 phosphorylation sites, whose phosphorylation is tightly controlled by ≥500 kinases and ~200 phosphatases. Given the large number of phosphorylation sites and the key role phosphorylation plays in regulating cellular processes, it is essential to characterize the impact of phosphorylation on substrate structure, dynamics, and function. However, a major challenge is the large-scale production of phosphorylated proteins in vitro for these structural, functional, and dynamic studies. Here, we describe an efficient protocol used routinely in our laboratory for the production of phosphorylated proteins. We also describe the methods used for identifying, characterizing, and separating the resulting phosphorylated proteins for subsequent studies.
Collapse
Affiliation(s)
- Ganesan Senthil Kumar
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, United States
| | - Rebecca Page
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, United States
| | - Wolfgang Peti
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, United States.
| |
Collapse
|
15
|
Recent Advances in Coarse-Grained Models for Biomolecules and Their Applications. Int J Mol Sci 2019; 20:ijms20153774. [PMID: 31375023 PMCID: PMC6696403 DOI: 10.3390/ijms20153774] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/28/2019] [Accepted: 07/30/2019] [Indexed: 12/23/2022] Open
Abstract
Molecular dynamics simulations have emerged as a powerful tool to study biological systems at varied length and timescales. The conventional all-atom molecular dynamics simulations are being used by the wider scientific community in routine to capture the conformational dynamics and local motions. In addition, recent developments in coarse-grained models have opened the way to study the macromolecular complexes for time scales up to milliseconds. In this review, we have discussed the principle, applicability and recent development in coarse-grained models for biological systems. The potential of coarse-grained simulation has been reviewed through state-of-the-art examples of protein folding and structure prediction, self-assembly of complexes, membrane systems and carbohydrates fiber models. The multiscale simulation approaches have also been discussed in the context of their emerging role in unravelling hierarchical level information of biosystems. We conclude this review with the future scope of coarse-grained simulations as a constantly evolving tool to capture the dynamics of biosystems.
Collapse
|
16
|
Köfinger J, Stelzl LS, Reuter K, Allande C, Reichel K, Hummer G. Efficient Ensemble Refinement by Reweighting. J Chem Theory Comput 2019; 15:3390-3401. [PMID: 30939006 PMCID: PMC6727217 DOI: 10.1021/acs.jctc.8b01231] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Indexed: 01/24/2023]
Abstract
Ensemble refinement produces structural ensembles of flexible and dynamic biomolecules by integrating experimental data and molecular simulations. Here we present two efficient numerical methods to solve the computationally challenging maximum-entropy problem arising from a Bayesian formulation of ensemble refinement. Recasting the resulting constrained weight optimization problem into an unconstrained form enables the use of gradient-based algorithms. In two complementary formulations that differ in their dimensionality, we optimize either the log-weights directly or the generalized forces appearing in the explicit analytical form of the solution. We first demonstrate the robustness, accuracy, and efficiency of the two methods using synthetic data. We then use NMR J-couplings to reweight an all-atom molecular dynamics simulation ensemble of the disordered peptide Ala-5 simulated with the AMBER99SB*-ildn-q force field. After reweighting, we find a consistent increase in the population of the polyproline-II conformations and a decrease of α-helical-like conformations. Ensemble refinement makes it possible to infer detailed structural models for biomolecules exhibiting significant dynamics, such as intrinsically disordered proteins, by combining input from experiment and simulation in a balanced manner.
Collapse
Affiliation(s)
- Jürgen Köfinger
- Department
of Theoretical Biophysics, Max Planck Institute
of Biophysics, Max-von-Laue-Straße
3, 60438 Frankfurt
am Main, Germany
| | - Lukas S. Stelzl
- Department
of Theoretical Biophysics, Max Planck Institute
of Biophysics, Max-von-Laue-Straße
3, 60438 Frankfurt
am Main, Germany
| | - Klaus Reuter
- Max Planck Computing and
Data Facility, Gießenbachstr. 2, 85748 Garching, Germany
| | - César Allande
- Max Planck Computing and
Data Facility, Gießenbachstr. 2, 85748 Garching, Germany
| | - Katrin Reichel
- Department
of Theoretical Biophysics, Max Planck Institute
of Biophysics, Max-von-Laue-Straße
3, 60438 Frankfurt
am Main, Germany
| | - Gerhard Hummer
- Department
of Theoretical Biophysics, Max Planck Institute
of Biophysics, Max-von-Laue-Straße
3, 60438 Frankfurt
am Main, Germany
- Institute for Biophysics, Goethe University, 60438 Frankfurt
am Main, Germany
| |
Collapse
|
17
|
Köfinger J, Różycki B, Hummer G. Inferring Structural Ensembles of Flexible and Dynamic Macromolecules Using Bayesian, Maximum Entropy, and Minimal-Ensemble Refinement Methods. Methods Mol Biol 2019; 2022:341-352. [PMID: 31396910 DOI: 10.1007/978-1-4939-9608-7_14] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The flexible and dynamic nature of biomolecules and biomolecular complexes is essential for many cellular functions in living organisms but poses a challenge for experimental methods to determine high-resolution structural models. To meet this challenge, experiments are combined with molecular simulations. The latter propose models for structural ensembles, and the experimental data can be used to steer these simulations and to select ensembles that most likely underlie the experimental data. Here, we explain in detail how the "Bayesian Inference Of ENsembles" (BioEn) method can be used to refine such ensembles using a wide range of experimental data. The "Ensemble Refinement of SAXS" (EROS) method is a special case of BioEn, inspired by the Gull-Daniell formulation of maximum entropy image processing and focused originally on X-ray solution scattering experiments (SAXS) and then extended to integrative structural modeling. We also briefly sketch the "minimum ensemble method," a maximum-parsimony refinement method that seeks to represent an ensemble with a minimal number of representative structures.
Collapse
Affiliation(s)
- Jürgen Köfinger
- Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
| | - Bartosz Różycki
- Institute of Physics, Polish Academy of Sciences, Warsaw, Poland
| | - Gerhard Hummer
- Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
- Department of Physics, Goethe University Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
18
|
Dynamic activation and regulation of the mitogen-activated protein kinase p38. Proc Natl Acad Sci U S A 2018; 115:4655-4660. [PMID: 29666261 DOI: 10.1073/pnas.1721441115] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Mitogen-activated protein kinases, which include p38, are essential for cell differentiation and autophagy. The current model for p38 activation involves activation-loop phosphorylation with subsequent substrate binding leading to substrate phosphorylation. Despite extensive efforts, the molecular mechanism of activation remains unclear. Here, using NMR spectroscopy, we show how the modulation of protein dynamics across timescales activates p38. We find that activation-loop phosphorylation does not change the average conformation of p38; rather it quenches the loop ps-ns dynamics. We then show that substrate binding to nonphosphorylated and phosphorylated p38 results in uniform µs-ms backbone dynamics at catalytically essential regions and across the entire molecule, respectively. Together, these results show that phosphorylation and substrate binding flatten the energy landscape of the protein, making essential elements of allostery and activation dynamically accessible. The high degree of structural conservation among ser/thr kinases suggests that elements of this mechanism may be conserved across the kinase family.
Collapse
|
19
|
Machado LESF, Page R, Peti W. 1H, 15N and 13C sequence specific backbone assignment of the vanadate inhibited hematopoietic tyrosine phosphatase. BIOMOLECULAR NMR ASSIGNMENTS 2018; 12:5-9. [PMID: 28856606 PMCID: PMC5832517 DOI: 10.1007/s12104-017-9770-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/28/2017] [Indexed: 06/07/2023]
Abstract
The sequence-specific backbone assignment of hematopoietic protein tyrosine phosphatase (HePTP; PTPN7) in presence of vanadate has been determined, based on triple-resonance experiments using uniformly [13C,15N]-labeled protein. These assignments facilitate further studies of HePTP in the presence of inhibitors to target leukemia and provide further insights into the function of protein tyrosine phosphatases.
Collapse
Affiliation(s)
- Luciana E S F Machado
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI, 02912, USA
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA
| | - Rebecca Page
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02912, USA
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA
| | - Wolfgang Peti
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI, 02912, USA.
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
20
|
Miller CJ, Turk BE. Homing in: Mechanisms of Substrate Targeting by Protein Kinases. Trends Biochem Sci 2018; 43:380-394. [PMID: 29544874 DOI: 10.1016/j.tibs.2018.02.009] [Citation(s) in RCA: 125] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/08/2018] [Accepted: 02/15/2018] [Indexed: 01/21/2023]
Abstract
Protein phosphorylation is the most common reversible post-translational modification in eukaryotes. Humans have over 500 protein kinases, of which more than a dozen are established targets for anticancer drugs. All kinases share a structurally similar catalytic domain, yet each one is uniquely positioned within signaling networks controlling essentially all aspects of cell behavior. Kinases are distinguished from one another based on their modes of regulation and their substrate repertoires. Coupling specific inputs to the proper signaling outputs requires that kinases phosphorylate a limited number of sites to the exclusion of hundreds of thousands of off-target phosphorylation sites. Here, we review recent progress in understanding mechanisms of kinase substrate specificity and how they function to shape cellular signaling networks.
Collapse
Affiliation(s)
- Chad J Miller
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Benjamin E Turk
- Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
21
|
Różycki B, Cazade PA, O'Mahony S, Thompson D, Cieplak M. The length but not the sequence of peptide linker modules exerts the primary influence on the conformations of protein domains in cellulosome multi-enzyme complexes. Phys Chem Chem Phys 2018; 19:21414-21425. [PMID: 28758665 DOI: 10.1039/c7cp04114d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cellulosomes are large multi-protein catalysts produced by various anaerobic microorganisms to efficiently degrade plant cell-wall polysaccharides down into simple sugars. X-ray and physicochemical structural characterisations show that cellulosomes are composed of numerous protein domains that are connected by unstructured polypeptide segments, yet the properties and possible roles of these 'linker' peptides are largely unknown. We have performed coarse-grained and all-atom molecular dynamics computer simulations of a number of cellulosomal linkers of different lengths and compositions. Our data demonstrates that the effective stiffness of the linker peptides, as quantified by the equilibrium fluctuations in the end-to-end distances, depends primarily on the length of the linker and less so on the specific amino acid sequence. The presence of excluded volume - provided by the domains that are connected - dampens the motion of the linker residues and reduces the effective stiffness of the linkers. Simultaneously, the presence of the linkers alters the conformations of the protein domains that are connected. We demonstrate that short, stiff linkers induce significant rearrangements in the folded domains of the mini-cellulosome composed of endoglucanase Cel8A in complex with scaffoldin ScafT (Cel8A-ScafT) of Clostridium thermocellum as well as in a two-cohesin system derived from the scaffoldin ScaB of Acetivibrio cellulolyticus. We give experimentally testable predictions on structural changes in protein domains that depend on the length of linkers.
Collapse
Affiliation(s)
- Bartosz Różycki
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland.
| | | | | | | | | |
Collapse
|
22
|
Zhu G, Liu W, Bao C, Tong D, Ji H, Shen Z, Yang D, Lu L. Investigating energy-based pool structure selection in the structure ensemble modeling with experimental distance constraints: The example from a multidomain protein Pub1. Proteins 2018; 86:501-514. [PMID: 29383828 DOI: 10.1002/prot.25468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 12/26/2017] [Accepted: 01/23/2018] [Indexed: 12/25/2022]
Abstract
The structural variations of multidomain proteins with flexible parts mediate many biological processes, and a structure ensemble can be determined by selecting a weighted combination of representative structures from a simulated structure pool, producing the best fit to experimental constraints such as interatomic distance. In this study, a hybrid structure-based and physics-based atomistic force field with an efficient sampling strategy is adopted to simulate a model di-domain protein against experimental paramagnetic relaxation enhancement (PRE) data that correspond to distance constraints. The molecular dynamics simulations produce a wide range of conformations depicted on a protein energy landscape. Subsequently, a conformational ensemble recovered with low-energy structures and the minimum-size restraint is identified in good agreement with experimental PRE rates, and the result is also supported by chemical shift perturbations and small-angle X-ray scattering data. It is illustrated that the regularizations of energy and ensemble-size prevent an arbitrary interpretation of protein conformations. Moreover, energy is found to serve as a critical control to refine the structure pool and prevent data overfitting, because the absence of energy regularization exposes ensemble construction to the noise from high-energy structures and causes a more ambiguous representation of protein conformations. Finally, we perform structure-ensemble optimizations with a topology-based structure pool, to enhance the understanding on the ensemble results from different sources of pool candidates.
Collapse
Affiliation(s)
- Guanhua Zhu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Wei Liu
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | - Chenglong Bao
- Department of Mathematics, National University of Singapore, 10 Lower Kent Ridge Road, Singapore, 119076, Singapore.,Yau Mathematical Sciences Center, Tsinghua University, Haidian District, Beijing, 100084, China
| | - Dudu Tong
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Hui Ji
- Department of Mathematics, National University of Singapore, 10 Lower Kent Ridge Road, Singapore, 119076, Singapore
| | - Zuowei Shen
- Department of Mathematics, National University of Singapore, 10 Lower Kent Ridge Road, Singapore, 119076, Singapore
| | - Daiwen Yang
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | - Lanyuan Lu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| |
Collapse
|
23
|
Delaforge E, Kragelj J, Tengo L, Palencia A, Milles S, Bouvignies G, Salvi N, Blackledge M, Jensen MR. Deciphering the Dynamic Interaction Profile of an Intrinsically Disordered Protein by NMR Exchange Spectroscopy. J Am Chem Soc 2018; 140:1148-1158. [PMID: 29276882 DOI: 10.1021/jacs.7b12407] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Intrinsically disordered proteins (IDPs) display a large number of interaction modes including folding-upon-binding, binding without major structural transitions, or binding through highly dynamic, so-called fuzzy, complexes. The vast majority of experimental information about IDP binding modes have been inferred from crystal structures of proteins in complex with short peptides of IDPs. However, crystal structures provide a mainly static view of the complexes and do not give information about the conformational dynamics experienced by the IDP in the bound state. Knowledge of the dynamics of IDP complexes is of fundamental importance to understand how IDPs engage in highly specific interactions without concomitantly high binding affinity. Here, we combine rotating-frame R1ρ, Carr-Purcell-Meiboom Gill relaxation dispersion as well as chemical exchange saturation transfer to decipher the dynamic interaction profile of an IDP in complex with its partner. We apply the approach to the dynamic signaling complex formed between the mitogen-activated protein kinase (MAPK) p38α and the intrinsically disordered regulatory domain of the MAPK kinase MKK4. Our study demonstrates that MKK4 employs a subtle combination of interaction modes in order to bind to p38α, leading to a complex displaying significantly different dynamics across the bound regions.
Collapse
Affiliation(s)
- Elise Delaforge
- Université Grenoble Alpes, CNRS, CEA, IBS , F-38000 Grenoble, France
| | - Jaka Kragelj
- Université Grenoble Alpes, CNRS, CEA, IBS , F-38000 Grenoble, France
| | - Laura Tengo
- Université Grenoble Alpes, CNRS, CEA, IBS , F-38000 Grenoble, France
| | - Andrés Palencia
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes , F-38000 Grenoble, France
| | - Sigrid Milles
- Université Grenoble Alpes, CNRS, CEA, IBS , F-38000 Grenoble, France
| | - Guillaume Bouvignies
- Laboratoire des Biomolécules, Département de Chimie, École Normale Supérieur, UPMC Université Paris 06, CNRS, PSL Research University , 24 rue Lhomond, 75005 Paris, France.,Sorbonne Universités, UPMC Université Paris 06 , École Normale Supérieur, CNRS, Laboratoire des Biomolécules (LBM), 75005 Paris, France
| | - Nicola Salvi
- Université Grenoble Alpes, CNRS, CEA, IBS , F-38000 Grenoble, France
| | - Martin Blackledge
- Université Grenoble Alpes, CNRS, CEA, IBS , F-38000 Grenoble, France
| | | |
Collapse
|
24
|
Abstract
NMR spectroscopy and other solution methods are increasingly being used to obtain novel insights into the mechanisms by which MAPK regulatory proteins bind and direct the activity of MAPKs. Here, we describe how interactions between the MAPK p38α and its regulatory proteins are studied using NMR spectroscopy, isothermal titration calorimetry, and small angle X-ray scattering (SAXS).
Collapse
Affiliation(s)
- Wolfgang Peti
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI, 02912, USA. .,Department of Chemistry, Brown University, Providence, RI, 02912, USA.
| | - Rebecca Page
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02912, USA
| |
Collapse
|
25
|
Peti W, Page R, Boura E, Różycki B. Structures of Dynamic Protein Complexes: Hybrid Techniques to Study MAP Kinase Complexes and the ESCRT System. Methods Mol Biol 2018; 1688:375-389. [PMID: 29151218 DOI: 10.1007/978-1-4939-7386-6_17] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The integration of complementary molecular methods (including X-ray crystallography, NMR spectroscopy, small angle X-ray/neutron scattering, and computational techniques) is frequently required to obtain a comprehensive understanding of dynamic macromolecular complexes. In particular, these techniques are critical for studying intrinsically disordered protein regions (IDRs) or intrinsically disordered proteins (IDPs) that are part of large protein:protein complexes. Here, we explain how to prepare IDP samples suitable for study using NMR spectroscopy, and describe a novel SAXS modeling method (ensemble refinement of SAXS; EROS) that integrates the results from complementary methods, including crystal structures and NMR chemical shift perturbations, among others, to accurately model SAXS data and describe ensemble structures of dynamic macromolecular complexes.
Collapse
Affiliation(s)
- Wolfgang Peti
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA.
| | - Rebecca Page
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85721, USA
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16610, Prague, Czech Republic
| | - Bartosz Różycki
- Institute of Physics, Polish Academy of Sciences, 02668, Warsaw, Poland
| |
Collapse
|
26
|
Walter NM, Wentsch HK, Bührmann M, Bauer SM, Döring E, Mayer-Wrangowski S, Sievers-Engler A, Willemsen-Seegers N, Zaman G, Buijsman R, Lämmerhofer M, Rauh D, Laufer SA. Design, Synthesis, and Biological Evaluation of Novel Type I 1/ 2 p38α MAP Kinase Inhibitors with Excellent Selectivity, High Potency, and Prolonged Target Residence Time by Interfering with the R-Spine. J Med Chem 2017; 60:8027-8054. [PMID: 28834431 DOI: 10.1021/acs.jmedchem.7b00745] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We recently reported 1a (skepinone-L) as a type I p38α MAP kinase inhibitor with high potency and excellent selectivity in vitro and in vivo. However, as a type I inhibitor, it is entirely ATP-competitive and shows just a moderate residence time. Thus, the scope was to develop a new class of advanced compounds maintaining the structural binding features of skepinone-L scaffold like inducing a glycine flip at the hinge region and occupying both hydrophobic regions I and II. Extending this scaffold with suitable residues resulted in an interference with the kinase's R-Spine. By synthesizing 69 compounds, we could significantly prolong the target residence time with one example to 3663 s, along with an excellent selectivity score of 0.006 and an outstanding potency of 1.0 nM. This new binding mode was validated by cocrystallization, showing all binding interactions typifying type I1/2 binding. Moreover, microsomal studies showed convenient metabolic stability of the most potent, herein reported representatives.
Collapse
Affiliation(s)
- Niklas M Walter
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard-Karls-Universitaet Tuebingen , Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Heike K Wentsch
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard-Karls-Universitaet Tuebingen , Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Mike Bührmann
- Faculty of Chemistry and Chemical Biology, Technische Universitaet Dortmund , Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
| | - Silke M Bauer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard-Karls-Universitaet Tuebingen , Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Eva Döring
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard-Karls-Universitaet Tuebingen , Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Svenja Mayer-Wrangowski
- Faculty of Chemistry and Chemical Biology, Technische Universitaet Dortmund , Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
| | - Adrian Sievers-Engler
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard-Karls-Universitaet Tuebingen , Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Nicole Willemsen-Seegers
- Netherlands Translational Research Center B.V. (NTRC) , Pivot Park, RE1210, Molenstraat 110, 5342 CC Oss, The Netherlands
| | - Guido Zaman
- Netherlands Translational Research Center B.V. (NTRC) , Pivot Park, RE1210, Molenstraat 110, 5342 CC Oss, The Netherlands
| | - Rogier Buijsman
- Netherlands Translational Research Center B.V. (NTRC) , Pivot Park, RE1210, Molenstraat 110, 5342 CC Oss, The Netherlands
| | - Michael Lämmerhofer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard-Karls-Universitaet Tuebingen , Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| | - Daniel Rauh
- Faculty of Chemistry and Chemical Biology, Technische Universitaet Dortmund , Otto-Hahn-Strasse 4a, 44227 Dortmund, Germany
| | - Stefan A Laufer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard-Karls-Universitaet Tuebingen , Auf der Morgenstelle 8, 72076 Tuebingen, Germany
| |
Collapse
|
27
|
Bassi R, Burgoyne JR, DeNicola GF, Rudyk O, DeSantis V, Charles RL, Eaton P, Marber MS. Redox-dependent dimerization of p38α mitogen-activated protein kinase with mitogen-activated protein kinase kinase 3. J Biol Chem 2017; 292:16161-16173. [PMID: 28739872 PMCID: PMC5625047 DOI: 10.1074/jbc.m117.785410] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 07/13/2017] [Indexed: 11/08/2022] Open
Abstract
The kinase p38α MAPK (p38α) plays a pivotal role in many biological processes. p38α is activated by canonical upstream kinases that phosphorylate the activation region. The purpose of our study was to determine whether such activation may depend on redox-sensing cysteines within p38α. p38α was activated and formed a disulfide-bound heterodimer with MAP2K3 (MKK3) in rat cardiomyocytes and isolated hearts exposed to H2O2. This disulfide heterodimer was sensitive to reduction by mercaptoethanol and was enhanced by the thioredoxin-reductase inhibitor auranofin. We predicted that Cys-119 or Cys-162 of p38α, close to the known MKK3 docking domain, were relevant for these redox characteristics. The C119S mutation decreased whereas the C162S mutation increased the dimer formation, suggesting that these two Cys residues act as vicinal thiols, consistent with C119S/C162S being incapable of sensing H2O2. Similarly, disulfide heterodimer formation was abolished in H9C2 cells expressing both MKK3 and p38α C119S/C162S and subjected to simulated ischemia and reperfusion. However, the p38α C119S/C162S mutants did not exhibit appreciable alteration in activating dual phosphorylation. In contrast, the anti-inflammatory agent 10-nitro-oleic acid (NO2-OA), a component of the Mediterranean diet, reduced p38α activation and covalently modified Cys-119/Cys-162, probably obstructing MKK3 access. Moreover, NO2-OA reduced the dephosphorylation of p38α by hematopoietic tyrosine phosphatase (HePTP). Furthermore, steric obstruction of Cys-119/Cys-162 by NO2-OA pretreatment in Langendorff-perfused murine hearts prevented the p38-MKK3 disulfide dimer formation and attenuated H2O2-induced contractile dysfunction. Our findings suggest that cysteine residues within p38α act as redox sensors that can dynamically regulate the association between p38 and MKK3.
Collapse
Affiliation(s)
- Rekha Bassi
- From the King's College London British Heart Foundation Centre of Excellence, Department of Cardiology, The Rayne Institute, St. Thomas' Hospital, London SE1 7EH, United Kingdom
| | - Joseph R Burgoyne
- From the King's College London British Heart Foundation Centre of Excellence, Department of Cardiology, The Rayne Institute, St. Thomas' Hospital, London SE1 7EH, United Kingdom
| | - Gian F DeNicola
- From the King's College London British Heart Foundation Centre of Excellence, Department of Cardiology, The Rayne Institute, St. Thomas' Hospital, London SE1 7EH, United Kingdom
| | - Olena Rudyk
- From the King's College London British Heart Foundation Centre of Excellence, Department of Cardiology, The Rayne Institute, St. Thomas' Hospital, London SE1 7EH, United Kingdom
| | - Vittorio DeSantis
- From the King's College London British Heart Foundation Centre of Excellence, Department of Cardiology, The Rayne Institute, St. Thomas' Hospital, London SE1 7EH, United Kingdom
| | - Rebecca L Charles
- From the King's College London British Heart Foundation Centre of Excellence, Department of Cardiology, The Rayne Institute, St. Thomas' Hospital, London SE1 7EH, United Kingdom
| | - Philip Eaton
- From the King's College London British Heart Foundation Centre of Excellence, Department of Cardiology, The Rayne Institute, St. Thomas' Hospital, London SE1 7EH, United Kingdom
| | - Michael S Marber
- From the King's College London British Heart Foundation Centre of Excellence, Department of Cardiology, The Rayne Institute, St. Thomas' Hospital, London SE1 7EH, United Kingdom
| |
Collapse
|
28
|
Różycki B, Cieplak M. Stiffness of the C-terminal disordered linker affects the geometry of the active site in endoglucanase Cel8A. MOLECULAR BIOSYSTEMS 2017; 12:3589-3599. [PMID: 27714009 DOI: 10.1039/c6mb00606j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cellulosomes are complex multi-enzyme machineries which efficiently degrade plant cell-wall polysaccharides. The multiple domains of the cellulosome proteins are often tethered together by intrinsically disordered regions. The properties and functions of these disordered linkers are not well understood. In this work, we study endoglucanase Cel8A, which is a relevant enzymatic component of the cellulosomes of Clostridium thermocellum. We use both all-atom and coarse-grained simulations to investigate how the conformations of the catalytic domain of Cel8A are affected by the disordered linker at its C terminus. We find that when the endoglucanase is bound to its substrate, the effective stiffness of the linker can influence the distances between groups of amino-acid residues throughout the entire enzymatic domain. In particular, variations in the linker stiffness can lead to small changes in the geometry of the active-site cleft. We suggest that such geometrical changes may have an effect on the catalytic activity of the enzyme.
Collapse
Affiliation(s)
- Bartosz Różycki
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland.
| | - Marek Cieplak
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland.
| |
Collapse
|
29
|
Wentsch HK, Walter NM, Bührmann M, Mayer-Wrangowski S, Rauh D, Zaman GJR, Willemsen-Seegers N, Buijsman RC, Henning M, Dauch D, Zender L, Laufer S. Optimierte Bindungsdauer am Zielenzym: Typ-I1/2
-Inhibitoren der p38α-MAP-Kinase mit verbesserter Bindungskinetik durch direkte Interaktion mit der R-Spine. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201701185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Heike K. Wentsch
- Pharmazeutisches Institut; Pharmazeutische und Medizinische Chemie; Eberhard Karls Universität Tübingen; Auf der Morgenstelle 8 72076 Tübingen Deutschland
| | - Niklas M. Walter
- Pharmazeutisches Institut; Pharmazeutische und Medizinische Chemie; Eberhard Karls Universität Tübingen; Auf der Morgenstelle 8 72076 Tübingen Deutschland
| | - Mike Bührmann
- Fakultät für Chemie und Chemische Biologie; TU Dortmund; Deutschland
| | | | - Daniel Rauh
- Fakultät für Chemie und Chemische Biologie; TU Dortmund; Deutschland
| | - Guido J. R. Zaman
- Netherlands Translational Research Center B.V. (NTRC); Oss Niederlande
| | | | | | - Melanie Henning
- Klinische Tumorbiologie; Abteilung Innere Medizin VIII; Universitätsklinikum Tübingen; Deutschland
- Institut für Physiologie; Abteilung Physiologie I; Eberhard Karls Universität Tübingen; Deutschland
| | - Daniel Dauch
- Klinische Tumorbiologie; Abteilung Innere Medizin VIII; Universitätsklinikum Tübingen; Deutschland
- Institut für Physiologie; Abteilung Physiologie I; Eberhard Karls Universität Tübingen; Deutschland
| | - Lars Zender
- Klinische Tumorbiologie; Abteilung Innere Medizin VIII; Universitätsklinikum Tübingen; Deutschland
- Institut für Physiologie; Abteilung Physiologie I; Eberhard Karls Universität Tübingen; Deutschland
| | - Stefan Laufer
- Pharmazeutisches Institut; Pharmazeutische und Medizinische Chemie; Eberhard Karls Universität Tübingen; Auf der Morgenstelle 8 72076 Tübingen Deutschland
| |
Collapse
|
30
|
Wentsch HK, Walter NM, Bührmann M, Mayer-Wrangowski S, Rauh D, Zaman GJR, Willemsen-Seegers N, Buijsman RC, Henning M, Dauch D, Zender L, Laufer S. Optimized Target Residence Time: Type I1/2
Inhibitors for p38α MAP Kinase with Improved Binding Kinetics through Direct Interaction with the R-Spine. Angew Chem Int Ed Engl 2017; 56:5363-5367. [DOI: 10.1002/anie.201701185] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/09/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Heike K. Wentsch
- Institute of Pharmaceutical Sciences; Pharmaceutical and Medicinal Chemistry; Eberhard Karls Universität Tübingen; Auf der Morgenstelle 8 72076 Tübingen Germany
| | - Niklas M. Walter
- Institute of Pharmaceutical Sciences; Pharmaceutical and Medicinal Chemistry; Eberhard Karls Universität Tübingen; Auf der Morgenstelle 8 72076 Tübingen Germany
| | - Mike Bührmann
- Faculty of Chemistry and Chemical Biology; Technische Universität Dortmund; Germany
| | | | - Daniel Rauh
- Faculty of Chemistry and Chemical Biology; Technische Universität Dortmund; Germany
| | - Guido J. R. Zaman
- Netherlands Translational Research Center B.V. (NTRC); Oss The Netherlands
| | | | - Rogier C. Buijsman
- Netherlands Translational Research Center B.V. (NTRC); Oss The Netherlands
| | - Melanie Henning
- Department of Internal Medicine VIII; University Hospital Tübingen (Germany)
- Institute of Physiology; Department of Physiology I; Eberhard Karls Universität Tübingen; Germany
| | - Daniel Dauch
- Department of Internal Medicine VIII; University Hospital Tübingen (Germany)
- Institute of Physiology; Department of Physiology I; Eberhard Karls Universität Tübingen; Germany
| | - Lars Zender
- Department of Internal Medicine VIII; University Hospital Tübingen (Germany)
- Institute of Physiology; Department of Physiology I; Eberhard Karls Universität Tübingen; Germany
| | - Stefan Laufer
- Institute of Pharmaceutical Sciences; Pharmaceutical and Medicinal Chemistry; Eberhard Karls Universität Tübingen; Auf der Morgenstelle 8 72076 Tübingen Germany
| |
Collapse
|
31
|
Machado LESF, Shen TL, Page R, Peti W. The KIM-family protein-tyrosine phosphatases use distinct reversible oxidation intermediates: Intramolecular or intermolecular disulfide bond formation. J Biol Chem 2017; 292:8786-8796. [PMID: 28389559 DOI: 10.1074/jbc.m116.774174] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 04/07/2017] [Indexed: 11/06/2022] Open
Abstract
The kinase interaction motif (KIM) family of protein-tyrosine phosphatases (PTPs) includes hematopoietic protein-tyrosine phosphatase (HePTP), striatal-enriched protein-tyrosine phosphatase (STEP), and protein-tyrosine phosphatase receptor type R (PTPRR). KIM-PTPs bind and dephosphorylate mitogen-activated protein kinases (MAPKs) and thereby critically modulate cell proliferation and differentiation. PTP activity can readily be diminished by reactive oxygen species (ROS), e.g. H2O2, which oxidize the catalytically indispensable active-site cysteine. This initial oxidation generates an unstable sulfenic acid intermediate that is quickly converted into either a sulfinic/sulfonic acid (catalytically dead and irreversible inactivation) or a stable sulfenamide or disulfide bond intermediate (reversible inactivation). Critically, our understanding of ROS-mediated PTP oxidation is not yet sufficient to predict the molecular responses of PTPs to oxidative stress. However, identifying distinct responses will enable novel routes for PTP-selective drug design, important for managing diseases such as cancer and Alzheimer's disease. Therefore, we performed a detailed biochemical and molecular study of all KIM-PTP family members to determine their H2O2 oxidation profiles and identify their reversible inactivation mechanism(s). We show that despite having nearly identical 3D structures and sequences, each KIM-PTP family member has a unique oxidation profile. Furthermore, we also show that whereas STEP and PTPRR stabilize their reversibly oxidized state by forming an intramolecular disulfide bond, HePTP uses an unexpected mechanism, namely, formation of a reversible intermolecular disulfide bond. In summary, despite being closely related, KIM-PTPs significantly differ in oxidation profiles. These findings highlight that oxidation protection is critical when analyzing PTPs, for example, in drug screening.
Collapse
Affiliation(s)
| | | | - Rebecca Page
- Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island 02912
| | - Wolfgang Peti
- From the Departments of Molecular Pharmacology, Physiology and Biotechnology, .,Chemistry, and
| |
Collapse
|
32
|
Zhu G, Saw WG, Nalaparaju A, Grüber G, Lu L. Coarse-Grained Molecular Modeling of the Solution Structure Ensemble of Dengue Virus Nonstructural Protein 5 with Small-Angle X-ray Scattering Intensity. J Phys Chem B 2017; 121:2252-2264. [DOI: 10.1021/acs.jpcb.7b00051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Guanhua Zhu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Wuan Geok Saw
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Anjaiah Nalaparaju
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Gerhard Grüber
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Lanyuan Lu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| |
Collapse
|
33
|
Wang Z, Guo Q, Wang R, Xu G, Li P, Sun Y, She X, Liu Q, Chen Q, Yu Z, Liu C, Xiong J, Li G, Wu M. The D Domain of LRRC4 anchors ERK1/2 in the cytoplasm and competitively inhibits MEK/ERK activation in glioma cells. J Hematol Oncol 2016; 9:130. [PMID: 27884160 PMCID: PMC5123285 DOI: 10.1186/s13045-016-0355-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/08/2016] [Indexed: 12/30/2022] Open
Abstract
Background As a well-characterized key player in various signal transduction networks, extracellular-signal-regulated kinase (ERK1/2) has been widely implicated in the development of many malignancies. We previously found that Leucine-rich repeat containing 4 (LRRC4) was a tumor suppressor and a negative regulator of the ERK/MAPK pathway in glioma tumorigenesis. However, the precise molecular role of LRRC4 in ERK signal transmission is unclear. Methods The interaction between LRRC4 and ERK1/2 was assessed by co-immunoprecipitation and GST pull-down assays in vivo and in vitro. We also investigated the interaction of LRRC4 and ERK1/2 and the role of the D domain in ERK activation in glioma cells. Results Here, we showed that LRRC4 and ERK1/2 interact via the D domain and CD domain, respectively. Following EGF stimuli, the D domain of LRRC4 anchors ERK1/2 in the cytoplasm and abrogates ERK1/2 activation and nuclear translocation. In glioblastoma cells, ectopic LRRC4 expression competitively inhibited the interaction of endogenous mitogen-activated protein kinase (MEK) and ERK1/2. Mutation of the D domain decreased the LRRC4-mediated inhibition of MAPK signaling and its anti-proliferation and anti-invasion roles. Conclusions Our results demonstrated that the D domain of LRRC4 anchors ERK1/2 in the cytoplasm and competitively inhibits MEK/ERK activation in glioma cells. These findings identify a new mechanism underlying glioblastoma progression and suggest a novel therapeutic strategy by restoring the activity of LRRC4 to decrease MAPK cascade activation. Electronic supplementary material The online version of this article (doi:10.1186/s13045-016-0355-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zeyou Wang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.,Cancer Research Institute, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan, 410008, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China.,Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Qin Guo
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Rong Wang
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.,Cancer Research Institute, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan, 410008, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Gang Xu
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.,Cancer Research Institute, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan, 410008, China.,Medical College, University of South China, Hengyang, Hunan, 421001, China
| | - Peiyao Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.,Cancer Research Institute, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan, 410008, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Yingnan Sun
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China
| | - Xiaoling She
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.,Cancer Research Institute, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan, 410008, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China.,Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Qiang Liu
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Qiong Chen
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China
| | - Zhibin Yu
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.,Cancer Research Institute, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan, 410008, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Changhong Liu
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.,Cancer Research Institute, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan, 410008, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Jing Xiong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.,Cancer Research Institute, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan, 410008, China.,Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Guiyuan Li
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China. .,Cancer Research Institute, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan, 410008, China. .,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China.
| | - Minghua Wu
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China. .,Cancer Research Institute, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, Hunan, 410008, China. .,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China.
| |
Collapse
|
34
|
Pellegrini E, Palencia A, Braun L, Kapp U, Bougdour A, Belrhali H, Bowler MW, Hakimi MA. Structural Basis for the Subversion of MAP Kinase Signaling by an Intrinsically Disordered Parasite Secreted Agonist. Structure 2016; 25:16-26. [PMID: 27889209 PMCID: PMC5222587 DOI: 10.1016/j.str.2016.10.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/21/2016] [Accepted: 10/25/2016] [Indexed: 01/07/2023]
Abstract
The causative agent of toxoplasmosis, the intracellular parasite Toxoplasma gondii, delivers a protein, GRA24, into the cells it infects that interacts with the mitogen-activated protein (MAP) kinase p38α (MAPK14), leading to activation and nuclear translocation of the host kinase and a subsequent inflammatory response that controls the progress of the parasite. The purification of a recombinant complex of GRA24 and human p38α has allowed the molecular basis of this activation to be determined. GRA24 is shown to be intrinsically disordered, binding two kinases that act independently, and is the only factor required to bypass the canonical mitogen-activated protein kinase activation pathway. An adapted kinase interaction motif (KIM) forms a highly stable complex that competes with cytoplasmic regulatory partners. In addition, the recombinant complex forms a powerful in vitro tool to evaluate the specificity and effectiveness of p38α inhibitors that have advanced to clinical trials, as it provides a hitherto unavailable stable and highly active form of p38α. Toxoplasmosis controls its host immune response via a protein effector, GRA24 A recombinant complex of GRA24 and MAPK p38α demonstrates how the protein works An adapted KIM domain ensures activation and a sustained inflammatory response The recombinant complex is useful in the evaluation of p38 inhibitors
Collapse
Affiliation(s)
- Erika Pellegrini
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France; Unit for Virus Host Cell Interactions, Université Grenoble Alpes-EMBL-CNRS, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France
| | - Andrés Palencia
- IAB, Team Host-Pathogen Interactions & Immunity to Infection, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38700 Grenoble, France
| | - Laurence Braun
- IAB, Team Host-Pathogen Interactions & Immunity to Infection, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38700 Grenoble, France
| | - Ulrike Kapp
- Structural Biology Group, European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France
| | - Alexandre Bougdour
- IAB, Team Host-Pathogen Interactions & Immunity to Infection, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38700 Grenoble, France
| | - Hassan Belrhali
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France; Unit for Virus Host Cell Interactions, Université Grenoble Alpes-EMBL-CNRS, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France.
| | - Matthew W Bowler
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France; Unit for Virus Host Cell Interactions, Université Grenoble Alpes-EMBL-CNRS, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble, France.
| | - Mohamed-Ali Hakimi
- IAB, Team Host-Pathogen Interactions & Immunity to Infection, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38700 Grenoble, France.
| |
Collapse
|
35
|
Hummer G, Köfinger J. Bayesian ensemble refinement by replica simulations and reweighting. J Chem Phys 2016; 143:243150. [PMID: 26723635 DOI: 10.1063/1.4937786] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
We describe different Bayesian ensemble refinement methods, examine their interrelation, and discuss their practical application. With ensemble refinement, the properties of dynamic and partially disordered (bio)molecular structures can be characterized by integrating a wide range of experimental data, including measurements of ensemble-averaged observables. We start from a Bayesian formulation in which the posterior is a functional that ranks different configuration space distributions. By maximizing this posterior, we derive an optimal Bayesian ensemble distribution. For discrete configurations, this optimal distribution is identical to that obtained by the maximum entropy "ensemble refinement of SAXS" (EROS) formulation. Bayesian replica ensemble refinement enhances the sampling of relevant configurations by imposing restraints on averages of observables in coupled replica molecular dynamics simulations. We show that the strength of the restraints should scale linearly with the number of replicas to ensure convergence to the optimal Bayesian result in the limit of infinitely many replicas. In the "Bayesian inference of ensembles" method, we combine the replica and EROS approaches to accelerate the convergence. An adaptive algorithm can be used to sample directly from the optimal ensemble, without replicas. We discuss the incorporation of single-molecule measurements and dynamic observables such as relaxation parameters. The theoretical analysis of different Bayesian ensemble refinement approaches provides a basis for practical applications and a starting point for further investigations.
Collapse
Affiliation(s)
- Gerhard Hummer
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue Str. 3, 60438 Frankfurt am Main, Germany
| | - Jürgen Köfinger
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue Str. 3, 60438 Frankfurt am Main, Germany
| |
Collapse
|
36
|
Delaforge E, Milles S, Huang JR, Bouvier D, Jensen MR, Sattler M, Hart DJ, Blackledge M. Investigating the Role of Large-Scale Domain Dynamics in Protein-Protein Interactions. Front Mol Biosci 2016; 3:54. [PMID: 27679800 PMCID: PMC5020063 DOI: 10.3389/fmolb.2016.00054] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 08/30/2016] [Indexed: 12/21/2022] Open
Abstract
Intrinsically disordered linkers provide multi-domain proteins with degrees of conformational freedom that are often essential for function. These highly dynamic assemblies represent a significant fraction of all proteomes, and deciphering the physical basis of their interactions represents a considerable challenge. Here we describe the difficulties associated with mapping the large-scale domain dynamics and describe two recent examples where solution state methods, in particular NMR spectroscopy, are used to investigate conformational exchange on very different timescales.
Collapse
Affiliation(s)
- Elise Delaforge
- Institut de Biologie Structurale, CEA, Centre National de la Recherche Scientifique, University Grenoble Alpes Grenoble, France
| | - Sigrid Milles
- Institut de Biologie Structurale, CEA, Centre National de la Recherche Scientifique, University Grenoble Alpes Grenoble, France
| | - Jie-Rong Huang
- Institut de Biologie Structurale, CEA, Centre National de la Recherche Scientifique, University Grenoble Alpes Grenoble, France
| | - Denis Bouvier
- Institut de Biologie Structurale, CEA, Centre National de la Recherche Scientifique, University Grenoble Alpes Grenoble, France
| | - Malene Ringkjøbing Jensen
- Institut de Biologie Structurale, CEA, Centre National de la Recherche Scientifique, University Grenoble Alpes Grenoble, France
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum MünchenNeuherberg, Germany; Center for Integrated Protein Science Munich at Biomolecular NMR, Technische Universität MünchenGarching, Germany
| | - Darren J Hart
- Institut de Biologie Structurale, CEA, Centre National de la Recherche Scientifique, University Grenoble Alpes Grenoble, France
| | - Martin Blackledge
- Institut de Biologie Structurale, CEA, Centre National de la Recherche Scientifique, University Grenoble Alpes Grenoble, France
| |
Collapse
|
37
|
NMR Characterization of Information Flow and Allosteric Communities in the MAP Kinase p38γ. Sci Rep 2016; 6:28655. [PMID: 27353957 PMCID: PMC4926091 DOI: 10.1038/srep28655] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/07/2016] [Indexed: 02/01/2023] Open
Abstract
The intramolecular network structure of a protein provides valuable insights into allosteric sites and communication pathways. However, a straightforward method to comprehensively map and characterize these pathways is not currently available. Here we present an approach to characterize intramolecular network structure using NMR chemical shift perturbations. We apply the method to the mitogen activated protein kinase (MAPK) p38γ. p38γ contains allosteric sites that are conserved among eukaryotic kinases as well as unique to the MAPK family. How these regulatory sites communicate with catalytic residues is not well understood. Using our method, we observe and characterize for the first time information flux between regulatory sites through a conserved kinase infrastructure. This network is accessed, reinforced, and broken in various states of p38γ, reflecting the functional state of the protein. We demonstrate that the approach detects critical junctions in the network corresponding to biologically significant allosteric sites and pathways.
Collapse
|
38
|
Maisonneuve P, Caillet-Saguy C, Vaney MC, Bibi-Zainab E, Sawyer K, Raynal B, Haouz A, Delepierre M, Lafon M, Cordier F, Wolff N. Molecular Basis of the Interaction of the Human Protein Tyrosine Phosphatase Non-receptor Type 4 (PTPN4) with the Mitogen-activated Protein Kinase p38γ. J Biol Chem 2016; 291:16699-708. [PMID: 27246854 DOI: 10.1074/jbc.m115.707208] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Indexed: 11/06/2022] Open
Abstract
The human protein tyrosine phosphatase non-receptor type 4 (PTPN4) prevents cell death induction in neuroblastoma and glioblastoma cell lines in a PDZ·PDZ binding motifs-dependent manner, but the cellular partners of PTPN4 involved in cell protection are unknown. Here, we described the mitogen-activated protein kinase p38γ as a cellular partner of PTPN4. The main contribution to the p38γ·PTPN4 complex formation is the tight interaction between the C terminus of p38γ and the PDZ domain of PTPN4. We solved the crystal structure of the PDZ domain of PTPN4 bound to the p38γ C terminus. We identified the molecular basis of recognition of the C-terminal sequence of p38γ that displays the highest affinity among all endogenous partners of PTPN4. We showed that the p38γ C terminus is also an efficient inducer of cell death after its intracellular delivery. In addition to recruiting the kinase, the binding of the C-terminal sequence of p38γ to PTPN4 abolishes the catalytic autoinhibition of PTPN4 and thus activates the phosphatase, which can efficiently dephosphorylate the activation loop of p38γ. We presume that the p38γ·PTPN4 interaction promotes cellular signaling, preventing cell death induction.
Collapse
Affiliation(s)
- Pierre Maisonneuve
- From the Département de Biologie Structurale et Chimie, Unité de Résonance Magnétique Nucléaire des Biomolécules, UMR 3528 and Université Pierre et Marie Curie, Cellule Pasteur UPMC, 75005 Paris, France
| | - Célia Caillet-Saguy
- From the Département de Biologie Structurale et Chimie, Unité de Résonance Magnétique Nucléaire des Biomolécules, UMR 3528 and
| | - Marie-Christine Vaney
- Unité de Virologie Structurale, Département de Virologie, UMR 3569, CNRS, F-75724 Paris, France, and
| | - Edoo Bibi-Zainab
- From the Département de Biologie Structurale et Chimie, Unité de Résonance Magnétique Nucléaire des Biomolécules, UMR 3528 and
| | - Kristi Sawyer
- From the Département de Biologie Structurale et Chimie, Unité de Résonance Magnétique Nucléaire des Biomolécules, UMR 3528 and
| | - Bertrand Raynal
- UMR 3528 and Plate-Forme de Biophysique des Macromolécules, and
| | - Ahmed Haouz
- UMR 3528 and Plate-Forme de Cristallographie, Institut Pasteur, F-75724 Paris, France
| | - Muriel Delepierre
- From the Département de Biologie Structurale et Chimie, Unité de Résonance Magnétique Nucléaire des Biomolécules, UMR 3528 and
| | - Monique Lafon
- UMR 3569, CNRS, F-75724 Paris, France, and Unité de Neuro-Immunologie Virale, Département de Virologie
| | - Florence Cordier
- From the Département de Biologie Structurale et Chimie, Unité de Résonance Magnétique Nucléaire des Biomolécules, UMR 3528 and
| | - Nicolas Wolff
- From the Département de Biologie Structurale et Chimie, Unité de Résonance Magnétique Nucléaire des Biomolécules, UMR 3528 and
| |
Collapse
|
39
|
Falconer RJ. Applications of isothermal titration calorimetry - the research and technical developments from 2011 to 2015. J Mol Recognit 2016; 29:504-15. [PMID: 27221459 DOI: 10.1002/jmr.2550] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/05/2016] [Accepted: 04/14/2016] [Indexed: 12/12/2022]
Abstract
Isothermal titration calorimetry is a widely used biophysical technique for studying the formation or dissociation of molecular complexes. Over the last 5 years, much work has been published on the interpretation of isothermal titration calorimetry (ITC) data for single binding and multiple binding sites. As over 80% of ITC papers are on macromolecules of biological origin, this interpretation is challenging. Some researchers have attempted to link the thermodynamics constants to events at the molecular level. This review highlights work carried out using binding sites characterized using x-ray crystallography techniques that allow speculation about individual bond formation and the displacement of individual water molecules during ligand binding and link these events to the thermodynamic constants for binding. The review also considers research conducted with synthetic binding partners where specific binding events like anion-π and π-π interactions were studied. The revival of assays that enable both thermodynamic and kinetic information to be collected from ITC data is highlighted. Lastly, published criticism of ITC research from a physical chemistry perspective is appraised and practical advice provided for researchers unfamiliar with thermodynamics and its interpretation. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Robert J Falconer
- Department of Chemical and Biological Engineering, ChELSI Institute, University of Sheffield, Sheffield, S1 3JD, UK.
| |
Collapse
|
40
|
Bains W. Low potency toxins reveal dense interaction networks in metabolism. BMC SYSTEMS BIOLOGY 2016; 10:19. [PMID: 26897366 PMCID: PMC4761184 DOI: 10.1186/s12918-016-0262-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 01/29/2016] [Indexed: 11/13/2022]
Abstract
BACKGROUND The chemicals of metabolism are constructed of a small set of atoms and bonds. This may be because chemical structures outside the chemical space in which life operates are incompatible with biochemistry, or because mechanisms to make or utilize such excluded structures has not evolved. In this paper I address the extent to which biochemistry is restricted to a small fraction of the chemical space of possible chemicals, a restricted subset that I call Biochemical Space. I explore evidence that this restriction is at least in part due to selection again specific structures, and suggest a mechanism by which this occurs. RESULTS Chemicals that contain structures that our outside Biochemical Space (UnBiological groups) are more likely to be toxic to a wide range of organisms, even though they have no specifically toxic groups and no obvious mechanism of toxicity. This correlation of UnBiological with toxicity is stronger for low potency (millimolar) toxins. I relate this to the observation that most chemicals interact with many biological structures at low millimolar toxicity. I hypothesise that life has to select its components not only to have a specific set of functions but also to avoid interactions with all the other components of life that might degrade their function. CONCLUSIONS The chemistry of life has to form a dense, self-consistent network of chemical structures, and cannot easily be arbitrarily extended. The toxicity of arbitrary chemicals is a reflection of the disruption to that network occasioned by trying to insert a chemical into it without also selecting all the other components to tolerate that chemical. This suggests new ways to test for the toxicity of chemicals, and that engineering organisms to make high concentrations of materials such as chemical precursors or fuels may require more substantial engineering than just of the synthetic pathways involved.
Collapse
Affiliation(s)
- William Bains
- Earth, Atmospheric and Planetary Sciences Department, MIT, 77 Mass Avenue, Cambridge, MA, 02139, USA.
- Rufus Scientific Ltd., 37 The Moor, Melbourn, Royston, Herts, SG8 6ED, UK.
| |
Collapse
|
41
|
Bardwell AJ, Bardwell L. Two hydrophobic residues can determine the specificity of mitogen-activated protein kinase docking interactions. J Biol Chem 2015; 290:26661-74. [PMID: 26370088 DOI: 10.1074/jbc.m115.691436] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Indexed: 11/06/2022] Open
Abstract
MAPKs bind to many of their upstream regulators and downstream substrates via a short docking motif (the D-site) on their binding partner. MAPKs that are in different families (e.g. ERK, JNK, and p38) can bind selectively to D-sites in their authentic substrates and regulators while discriminating against D-sites in other pathways. Here we demonstrate that the short hydrophobic region at the distal end of the D-site plays a critical role in determining the high selectivity of JNK MAPKs for docking sites in their cognate MAPK kinases. Changing just 1 or 2 key hydrophobic residues in this submotif is sufficient to turn a weak JNK-binding D-site into a strong one, or vice versa. These specificity-determining differences are also found in the D-sites of the ETS family transcription factors Elk-1 and Net. Moreover, swapping two hydrophobic residues between these D-sites switches the relative efficiency of Elk-1 and Net as substrates for ERK versus JNK, as predicted. These results provide new insights into docking specificity and suggest that this specificity can evolve rapidly by changes to just 1 or 2 amino acids.
Collapse
Affiliation(s)
- A Jane Bardwell
- From the Department of Developmental and Cell Biology, Center for Complex Biological Systems, University of California, Irvine, California 92697
| | - Lee Bardwell
- From the Department of Developmental and Cell Biology, Center for Complex Biological Systems, University of California, Irvine, California 92697
| |
Collapse
|
42
|
Xiao Y, Warner LR, Latham MP, Ahn NG, Pardi A. Structure-Based Assignment of Ile, Leu, and Val Methyl Groups in the Active and Inactive Forms of the Mitogen-Activated Protein Kinase Extracellular Signal-Regulated Kinase 2. Biochemistry 2015; 54:4307-19. [PMID: 26132046 DOI: 10.1021/acs.biochem.5b00506] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Resonance assignments are the first step in most NMR studies of protein structure, function, and dynamics. Standard protein assignment methods employ through-bond backbone experiments on uniformly (13)C/(15)N-labeled proteins. For larger proteins, this through-bond assignment procedure often breaks down due to rapid relaxation and spectral overlap. The challenges involved in studies of larger proteins led to efficient methods for (13)C labeling of side chain methyl groups, which have favorable relaxation properties and high signal-to-noise. These methyls are often still assigned by linking them to the previously assigned backbone, thus limiting the applications for larger proteins. Here, a structure-based procedure is described for assignment of (13)C(1)H3-labeled methyls by comparing distance information obtained from three-dimensional methyl-methyl nuclear Overhauser effect (NOE) spectroscopy with the X-ray structure. The Ile, Leu, or Val (ILV) methyl type is determined by through-bond experiments, and the methyl-methyl NOE data are analyzed in combination with the known structure. A hierarchical approach was employed that maps the largest observed "NOE-methyl cluster" onto the structure. The combination of identification of ILV methyl type with mapping of the NOE-methyl clusters greatly simplifies the assignment process. This method was applied to the inactive and active forms of the 42-kDa ILV (13)C(1)H3-methyl labeled extracellular signal-regulated kinase 2 (ERK2), leading to assignment of 60% of the methyls, including 90% of Ile residues. A series of ILV to Ala mutants were analyzed, which helped confirm the assignments. These assignments were used to probe the local and long-range effects of ligand binding to inactive and active ERK2.
Collapse
Affiliation(s)
- Yao Xiao
- †Department of Chemistry and Biochemistry and ‡BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Lisa R Warner
- †Department of Chemistry and Biochemistry and ‡BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Michael P Latham
- †Department of Chemistry and Biochemistry and ‡BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Natalie G Ahn
- †Department of Chemistry and Biochemistry and ‡BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Arthur Pardi
- †Department of Chemistry and Biochemistry and ‡BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
43
|
Różycki B, Cieplak M, Czjzek M. Large conformational fluctuations of the multi-domain xylanase Z of Clostridium thermocellum. J Struct Biol 2015; 191:68-75. [DOI: 10.1016/j.jsb.2015.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 04/15/2015] [Accepted: 05/22/2015] [Indexed: 10/23/2022]
|
44
|
Chen KE, Li MY, Chou CC, Ho MR, Chen GC, Meng TC, Wang AJ. Substrate Specificity and Plasticity of FERM-Containing Protein Tyrosine Phosphatases. Structure 2015; 23:653-64. [DOI: 10.1016/j.str.2015.01.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 01/18/2015] [Accepted: 01/24/2015] [Indexed: 10/23/2022]
|
45
|
Abstract
Signaling specificity in the mitogen-activated protein kinase (MAPK) pathways is controlled by disordered domains of the MAPK kinases (MKKs) that specifically bind to their cognate MAPKs via linear docking motifs. MKK7 activates the c-Jun N-terminal kinase (JNK) pathway and is the only MKK containing three motifs within its regulatory domain. Here, we characterize the conformational behavior and interaction mechanism of the MKK7 regulatory domain. Using NMR spectroscopy, we develop an atomic resolution ensemble description of MKK7, revealing highly diverse intrinsic conformational propensities of the three docking sites, suggesting that prerecognition sampling of the bound-state conformation is not prerequisite for binding. Although the different sites exhibit similar affinities for JNK1, interaction kinetics differ considerably. Importantly, we determine the crystal structure of JNK1 in complex with the second docking site of MKK7, revealing two different binding modes of the docking motif correlating with observations from NMR exchange spectroscopy. Our results provide unique insight into how signaling specificity is regulated by linear motifs and, in general, into the role of conformational disorder in MAPK signaling.
Collapse
|
46
|
Kragelj J, Blackledge M, Jensen MR. Ensemble Calculation for Intrinsically Disordered Proteins Using NMR Parameters. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 870:123-47. [PMID: 26387101 DOI: 10.1007/978-3-319-20164-1_4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Intrinsically disordered proteins (IDPs) perform their function despite their lack of well-defined tertiary structure. Residual structure has been observed in IDPs, commonly described as transient/dynamic or expressed in terms of fractional populations. In order to understand how the protein primary sequence dictates the dynamic and structural properties of IDPs and in general to understand how IDPs function, atomic-level descriptions are needed. Nuclear magnetic resonance spectroscopy provides information about local and long-range structure in IDPs at amino acid specific resolution and can be used in combination with ensemble descriptions to represent the dynamic nature of IDPs. In this chapter we describe sample-and-select approaches for ensemble modelling of local structural propensities in IDPs with specific emphasis on validation of these ensembles.
Collapse
Affiliation(s)
- Jaka Kragelj
- IBS, University Grenoble Alpes, 38044, Grenoble, France.,IBS, CNRS, 38044, Grenoble, France.,IBS, CEA, 38044, Grenoble, France
| | - Martin Blackledge
- IBS, University Grenoble Alpes, 38044, Grenoble, France.,IBS, CNRS, 38044, Grenoble, France.,IBS, CEA, 38044, Grenoble, France
| | - Malene Ringkjøbing Jensen
- IBS, University Grenoble Alpes, 38044, Grenoble, France. .,IBS, CNRS, 38044, Grenoble, France. .,IBS, CEA, 38044, Grenoble, France.
| |
Collapse
|
47
|
Kachala M, Valentini E, Svergun DI. Application of SAXS for the Structural Characterization of IDPs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 870:261-89. [PMID: 26387105 DOI: 10.1007/978-3-319-20164-1_8] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Small-angle X-ray scattering (SAXS) is a powerful structural method allowing one to study the structure, folding state and flexibility of native particles and complexes in solution and to rapidly analyze structural changes in response to variations in external conditions. New high brilliance sources and novel data analysis methods significantly enhanced resolution and reliability of structural models provided by the technique. Automation of the SAXS experiment, data processing and interpretation make solution SAXS a streamline tool for large scale structural studies in molecular biology. The method provides low resolution macromolecular shapes ab initio and is readily combined with other structural and biochemical techniques in integrative studies. Very importantly, SAXS is sensitive to macromolecular flexibility being one of the few structural techniques applicable to flexible systems and intrinsically disordered proteins (IDPs). A major recent development is the use of SAXS to study particle dynamics in solution by ensemble approaches, which allow one to quantitatively characterize flexible systems. Of special interest is the joint use of SAXS with solution NMR, given that both methods yield highly complementary structural information, in particular, for IDPs. In this chapter, we present the basics of SAXS and also consider protocols of the experiment and data analysis for different scenarios depending on the type of the studied object. These include ab initio shape reconstruction, validation of available high resolution structures and rigid body modelling for folded macromolecules and also characterisation of flexible proteins with the ensemble methods. The methods are illustrated by examples of recent applications and further perspectives of the integrative use of SAXS with NMR in the studies of IDPs are discussed.
Collapse
Affiliation(s)
- Michael Kachala
- Hamburg Outstation, European Molecular Biology Laboratory, c/o DESY, Notkestrasse 85, 22603, Hamburg, Germany. .,Department of Chemistry, Hamburg University, Martin-Luther-King Platz 6, 20146, Hamburg, Germany.
| | - Erica Valentini
- Hamburg Outstation, European Molecular Biology Laboratory, c/o DESY, Notkestrasse 85, 22603, Hamburg, Germany.,Department of Chemistry, Hamburg University, Martin-Luther-King Platz 6, 20146, Hamburg, Germany
| | - Dmitri I Svergun
- Hamburg Outstation, European Molecular Biology Laboratory, c/o DESY, Notkestrasse 85, 22603, Hamburg, Germany.
| |
Collapse
|
48
|
Yang S. Methods for SAXS-based structure determination of biomolecular complexes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:7902-10. [PMID: 24888261 PMCID: PMC4285438 DOI: 10.1002/adma.201304475] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 03/10/2014] [Indexed: 05/20/2023]
Abstract
Measurements from small-angle X-ray scattering (SAXS) are highly informative to determine the structures of bimolecular complexes in solution. Here, current and recent SAXS-driven developments are described, with an emphasis on computational modeling. In particular, accurate methods to computing one theoretical scattering profile from a given structure model are discussed, with a key focus on structure factor coarse-graining and hydration contribution. Methods for reconstructing topological structures from an experimental SAXS profile are currently under active development. We report on several modeling tools designed for conformation generation that make use of either atomic-level or coarse-grained representations. Furthermore, since large, flexible biomolecules can adopt multiple well-defined conformations, a traditional single-conformation SAXS analysis is inappropriate, so we also discuss recent methods that utilize the concept of ensemble optimization, weighing in on the SAXS contributions of a heterogeneous mixture of conformations. These tools will ultimately posit the usefulness of SAXS data beyond a simple space-filling approach by providing a reliable structure characterization of biomolecular complexes under physiological conditions.
Collapse
Affiliation(s)
- Sichun Yang
- Center for Proteomics and Department of Pharmacology, Department of Physiology and Biophysics, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106-4988, USA
| |
Collapse
|
49
|
Różycki B, Boura E. Large, dynamic, multi-protein complexes: a challenge for structural biology. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2014; 26:463103. [PMID: 25335513 DOI: 10.1088/0953-8984/26/46/463103] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Structural biology elucidates atomic structures of macromolecules such as proteins, DNA, RNA, and their complexes to understand the basic mechanisms of their functions. Among proteins that pose the most difficult problems to current efforts are those which have several large domains connected by long, flexible polypeptide segments. Although abundant and critically important in biological cells, such proteins have proven intractable by conventional techniques. This gap has recently led to the advancement of hybrid methods that use state-of-the-art computational tools to combine complementary data from various high- and low-resolution experiments. In this review, we briefly discuss the individual experimental techniques to illustrate their strengths and limitations, and then focus on the use of hybrid methods in structural biology. We describe how representative structures of dynamic multi-protein complexes are obtained utilizing the EROS hybrid method that we have co-developed.
Collapse
Affiliation(s)
- Bartosz Różycki
- Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
| | | |
Collapse
|
50
|
Berlin K, Castañeda CA, Schneidman-Duhovny D, Sali A, Nava-Tudela A, Fushman D. Recovering a representative conformational ensemble from underdetermined macromolecular structural data. J Am Chem Soc 2014; 135:16595-609. [PMID: 24093873 DOI: 10.1021/ja4083717] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Structural analysis of proteins and nucleic acids is complicated by their inherent flexibility, conferred, for example, by linkers between their contiguous domains. Therefore, the macromolecule needs to be represented by an ensemble of conformations instead of a single conformation. Determining this ensemble is challenging because the experimental data are a convoluted average of contributions from multiple conformations. As the number of the ensemble degrees of freedom generally greatly exceeds the number of independent observables, directly deconvolving experimental data into a representative ensemble is an ill-posed problem. Recent developments in sparse approximations and compressive sensing have demonstrated that useful information can be recovered from underdetermined (ill-posed) systems of linear equations by using sparsity regularization. Inspired by these advances, we designed the Sparse Ensemble Selection (SES) method for recovering multiple conformations from a limited number of observations. SES is more general and accurate than previously published minimum-ensemble methods, and we use it to obtain representative conformational ensembles of Lys48-linked diubiquitin, characterized by the residual dipolar coupling data measured at several pH conditions. These representative ensembles are validated against NMR chemical shift perturbation data and compared to maximum-entropy results. The SES method reproduced and quantified the previously observed pH dependence of the major conformation of Lys48-linked diubiquitin, and revealed lesser-populated conformations that are preorganized for binding known diubiquitin receptors, thus providing insights into possible mechanisms of receptor recognition by polyubiquitin. SES is applicable to any experimental observables that can be expressed as a weighted linear combination of data for individual states.
Collapse
|