1
|
Spassov DS. Binding Affinity Determination in Drug Design: Insights from Lock and Key, Induced Fit, Conformational Selection, and Inhibitor Trapping Models. Int J Mol Sci 2024; 25:7124. [PMID: 39000229 PMCID: PMC11240957 DOI: 10.3390/ijms25137124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Binding affinity is a fundamental parameter in drug design, describing the strength of the interaction between a molecule and its target protein. Accurately predicting binding affinity is crucial for the rapid development of novel therapeutics, the prioritization of promising candidates, and the optimization of their properties through rational design strategies. Binding affinity is determined by the mechanism of recognition between proteins and ligands. Various models, including the lock and key, induced fit, and conformational selection, have been proposed to explain this recognition process. However, current computational strategies to predict binding affinity, which are based on these models, have yet to produce satisfactory results. This article explores the connection between binding affinity and these protein-ligand interaction models, highlighting that they offer an incomplete picture of the mechanism governing binding affinity. Specifically, current models primarily center on the binding of the ligand and do not address its dissociation. In this context, the concept of ligand trapping is introduced, which models the mechanisms of dissociation. When combined with the current models, this concept can provide a unified theoretical framework that may allow for the accurate determination of the ligands' binding affinity.
Collapse
Affiliation(s)
- Danislav S Spassov
- Drug Design and Bioinformatics Lab, Department of Chemistry, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| |
Collapse
|
2
|
Spassov DS, Atanasova M, Doytchinova I. Inhibitor Trapping in N-Myristoyltransferases as a Mechanism for Drug Potency. Int J Mol Sci 2023; 24:11610. [PMID: 37511367 PMCID: PMC10380619 DOI: 10.3390/ijms241411610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Predicting inhibitor potency is critical in drug design and development, yet it has remained one of computational biology's biggest unresolved challenges. Here, we show that in the case of the N-myristoyltransferase (NMT), this problem could be traced to the mechanisms by which the NMT enzyme is inhibited. NMT adopts open or closed conformations necessary for orchestrating the different steps of the catalytic process. The results indicate that the potency of the NMT inhibitors is determined by their ability to stabilize the enzyme conformation in the closed state, and that in this state, the small molecules themselves are trapped and locked inside the structure of the enzyme, creating a significant barrier for their dissociation. By using molecular dynamics simulations, we demonstrate that the conformational stabilization of the protein molecule in its closed form is highly correlated with the ligands activity and can be used to predict their potency. Hence, predicting inhibitor potency in silico might depend on modeling the conformational changes of the protein molecule upon binding of the ligand rather than estimating the changes in free binding energy that arise from their interaction.
Collapse
Affiliation(s)
- Danislav S Spassov
- Department of Chemistry, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Mariyana Atanasova
- Department of Chemistry, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| | - Irini Doytchinova
- Department of Chemistry, Faculty of Pharmacy, Medical University of Sofia, 1000 Sofia, Bulgaria
| |
Collapse
|
3
|
Yu RJ, Li Q, Liu SC, Ma H, Ying YL, Long YT. Simultaneous observation of the spatial and temporal dynamics of single enzymatic catalysis using a solid-state nanopore. NANOSCALE 2023; 15:7261-7266. [PMID: 37038732 DOI: 10.1039/d2nr06361a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
We developed a bipolar SiNx nanopore for the observation of single-molecule heterogeneous enzymatic dynamics. Single glucose oxidase was immobilized inside the nanopore and its electrocatalytic behaviour was real-time monitored via continuous recording of ionic flux amplification. The temporal heterogeneity in enzymatic properties and its spatial dynamic orientations were observed simultaneously, and these two properties were found to be closely correlated. We anticipate that this method offers new perspectives on the correlation of protein structure and function at the single-molecule level.
Collapse
Affiliation(s)
- Ru-Jia Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, P. R. China
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Qiao Li
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Shao-Chuang Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Hui Ma
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
| | - Yi-Lun Ying
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, P. R. China
| | - Yi-Tao Long
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
| |
Collapse
|
4
|
Deng H, Qin M, Liu Z, Yang Y, Wang Y, Yao L. Engineering the Active Site Lid Dynamics to Improve the Catalytic Efficiency of Yeast Cytosine Deaminase. Int J Mol Sci 2023; 24:ijms24076592. [PMID: 37047565 PMCID: PMC10095239 DOI: 10.3390/ijms24076592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
Conformational dynamics is important for enzyme catalysis. However, engineering dynamics to achieve a higher catalytic efficiency is still challenging. In this work, we develop a new strategy to improve the activity of yeast cytosine deaminase (yCD) by engineering its conformational dynamics. Specifically, we increase the dynamics of the yCD C-terminal helix, an active site lid that controls the product release. The C-terminal is extended by a dynamical single α-helix (SAH), which improves the product release rate by up to ~8-fold, and the overall catalytic rate kcat by up to ~2-fold. It is also shown that the kcat increase is due to the favorable activation entropy change. The NMR H/D exchange data indicate that the conformational dynamics of the transition state analog complex increases as the helix is extended, elucidating the origin of the enhanced catalytic entropy. This study highlights a novel dynamics engineering strategy that can accelerate the overall catalysis through the entropy-driven mechanism.
Collapse
Affiliation(s)
- Hanzhong Deng
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingming Qin
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
| | - Zhijun Liu
- National Facility for Protein Science, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Ying Yang
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
| | - Yefei Wang
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
| | - Lishan Yao
- Qingdao New Energy Shandong Laboratory, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Shandong Energy Institute, Qingdao 266101, China
| |
Collapse
|
5
|
Zhang W, Guang J, Fan W, Huang D. Three-Component Cycloaddition of Nitriles: Construction of Bicyclic 4-Aminopyrimidines and Their Photophysical Studies. J Org Chem 2022; 87:13598-13604. [PMID: 36223211 DOI: 10.1021/acs.joc.2c01206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A base-induced synthesis of bicyclic 4-aminopyrimidines by the cycloaddition of three types of nitriles is reported. The scope of the method is demonstrated with 44 examples. Products are found to have luminescence properties and show potential applications as organic luminescent layer materials.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Jin Guang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Weibin Fan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Deguang Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| |
Collapse
|
6
|
Olivieri C, Li GC, Wang Y, V.S. M, Walker C, Kim J, Camilloni C, De Simone A, Vendruscolo M, Bernlohr DA, Taylor SS, Veglia G. ATP-competitive inhibitors modulate the substrate binding cooperativity of a kinase by altering its conformational entropy. SCIENCE ADVANCES 2022; 8:eabo0696. [PMID: 35905186 PMCID: PMC9337769 DOI: 10.1126/sciadv.abo0696] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
ATP-competitive inhibitors are currently the largest class of clinically approved drugs for protein kinases. By targeting the ATP-binding pocket, these compounds block the catalytic activity, preventing substrate phosphorylation. A problem with these drugs, however, is that inhibited kinases may still recognize and bind downstream substrates, acting as scaffolds or binding hubs for signaling partners. Here, using protein kinase A as a model system, we show that chemically different ATP-competitive inhibitors modulate the substrate binding cooperativity by tuning the conformational entropy of the kinase and shifting the populations of its conformationally excited states. Since we found that binding cooperativity and conformational entropy of the enzyme are correlated, we propose a new paradigm for the discovery of ATP-competitive inhibitors, which is based on their ability to modulate the allosteric coupling between nucleotide and substrate-binding sites.
Collapse
Affiliation(s)
- Cristina Olivieri
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Geoffrey C. Li
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yingjie Wang
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
- Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Manu V.S.
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Caitlin Walker
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jonggul Kim
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| | - Carlo Camilloni
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano 20133, Italy
| | - Alfonso De Simone
- Department of Pharmacy, Università degli Studi di Napoli Federico II, Napoli 80131, Italy
| | | | - David A. Bernlohr
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Susan S. Taylor
- Department of Chemistry and Biochemistry, and Pharmacology, University of California at San Diego, CA 92093, USA
| | - Gianluigi Veglia
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
7
|
Wu S, Zhang W, Li W, Huang W, Kong Q, Chen Z, Wei W, Yan S. Dissecting the Protein Dynamics Coupled Ligand Binding with Kinetic Models and Single-Molecule FRET. Biochemistry 2022; 61:433-445. [PMID: 35226469 DOI: 10.1021/acs.biochem.1c00771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Protein-ligand interactions are crucial to many biological processes. Ligand binding and dissociation are the basic steps that allow proteins to function. Protein conformational dynamics have been shown to play important roles in ligand binding and dissociation. However, it is challenging to determine the ligand binding kinetics of dynamic proteins. Here, we undertook comprehensive single-molecule FRET (smFRET) measurements and kinetic model analysis to characterize the conformational dynamics coupled ligand binding of glutamine-binding protein (GlnBP). We showed that hinge and T118A mutations of GlnBP affect its conformational dynamics as well as the ligand binding affinity. Based on smFRET measurements, the kinetic model of ligand-GlnBP interactions was constructed. Using experimentally measured parameters, we solved the rate equations of the model and obtained the undetectable parameters of the model which allowed us to understand the ligand binding kinetics fully. Our results demonstrate that modulation of the conformational dynamics of GlnBP affects the ligand binding and dissociation rates. This study provides insights into the binding kinetics of ligands, which are related to the protein function itself.
Collapse
Affiliation(s)
- Shaowen Wu
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, China
| | - Wenyang Zhang
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, China
| | - Wenyan Li
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, China
| | - Wenjie Huang
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, China
| | - Qian Kong
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, China
| | - Zhongjian Chen
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, China
| | - Wenkang Wei
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, China
| | - Shijuan Yan
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, Guangdong, China
| |
Collapse
|
8
|
Zhang Y, Chowdhury S, Rodrigues JV, Shakhnovich E. Development of antibacterial compounds that constrain evolutionary pathways to resistance. eLife 2021; 10:64518. [PMID: 34279221 PMCID: PMC8331180 DOI: 10.7554/elife.64518] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 07/13/2021] [Indexed: 01/27/2023] Open
Abstract
Antibiotic resistance is a worldwide challenge. A potential approach to block resistance is to simultaneously inhibit WT and known escape variants of the target bacterial protein. Here, we applied an integrated computational and experimental approach to discover compounds that inhibit both WT and trimethoprim (TMP) resistant mutants of E. coli dihydrofolate reductase (DHFR). We identified a novel compound (CD15-3) that inhibits WT DHFR and its TMP resistant variants L28R, P21L and A26T with IC50 50–75 µM against WT and TMP-resistant strains. Resistance to CD15-3 was dramatically delayed compared to TMP in in vitro evolution. Whole genome sequencing of CD15-3-resistant strains showed no mutations in the target folA locus. Rather, gene duplication of several efflux pumps gave rise to weak (about twofold increase in IC50) resistance against CD15-3. Altogether, our results demonstrate the promise of strategy to develop evolution drugs - compounds which constrain evolutionary escape routes in pathogens.
Collapse
Affiliation(s)
- Yanmin Zhang
- School of Science, China Pharmaceutical University, Nanjing, China.,Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| | - Sourav Chowdhury
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| | - João V Rodrigues
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| | - Eugene Shakhnovich
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, United States
| |
Collapse
|
9
|
Babu CS, Lim C. Influence of solution ionic strength on the stabilities of M20 loop conformations in apo E. coli dihydrofolate reductase. J Chem Phys 2021; 154:195103. [PMID: 34240890 DOI: 10.1063/5.0048968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Interactions among ions and their specific interactions with macromolecular solutes are known to play a central role in biomolecular stability. However, similar effects in the conformational stability of protein loops that play functional roles, such as binding ligands, proteins, and DNA/RNA molecules, remain relatively unexplored. A well-characterized enzyme that has such a functional loop is Escherichia coli dihydrofolate reductase (ecDHFR), whose so-called M20 loop has been observed in three ordered conformations in crystal structures. To explore how solution ionic strengths may affect the M20 loop conformation, we proposed a reaction coordinate that could quantitatively describe the loop conformation and used it to classify the loop conformations in representative ecDHFR x-ray structures crystallized in varying ionic strengths. The Protein Data Bank survey indicates that at ionic strengths (I) below the intracellular ion concentration-derived ionic strength in E. coli (I ≤ 0.237M), the ecDHFR M20 loop tends to adopt open/closed conformations, and rarely an occluded loop state, but when I is >0.237M, the loop tends to adopt closed/occluded conformations. Distance-dependent electrostatic potentials around the most mobile M20 loop region from molecular dynamics simulations of ecDHFR in equilibrated CaCl2 solutions of varying ionic strengths show that high ionic strengths (I = 0.75/1.5M) can preferentially stabilize the loop in closed/occluded conformations. These results nicely correlate with conformations derived from ecDHFR structures crystallized in varying ionic strengths. Altogether, our results suggest caution in linking M20 loop conformations derived from crystal structures solved at ionic strengths beyond that tolerated by E. coli to the ecDHFR function.
Collapse
Affiliation(s)
- C Satheesan Babu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Carmay Lim
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
10
|
Davis CM, Gruebele M. Cellular Sticking Can Strongly Reduce Complex Binding by Speeding Dissociation. J Phys Chem B 2021; 125:3815-3823. [PMID: 33826329 DOI: 10.1021/acs.jpcb.1c00950] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
While extensive studies have been carried out to determine protein-RNA binding affinities, mechanisms, and dynamics in vitro, such studies do not take into consideration the effect of the many weak nonspecific interactions in a cell filled with potential binding partners. Here we experimentally tested the role of the cellular environment on affinity and binding dynamics between a protein and RNA in living U-2 OS cells. Our model system is the spliceosomal protein U1A and its binding partner SL2 of the U1 snRNA. The binding equilibrium was perturbed by a laser-induced temperature jump and monitored by Förster resonance energy transfer. The apparent binding affinity in live cells was reduced by up to 2 orders of magnitude compared to in vitro. The measured in-cell dissociation rate coefficients were up to 2 orders of magnitude larger, whereas no change in the measured association rate coefficient was observed. The latter is not what would be anticipated due to macromolecular crowding or nonspecific sticking of the uncomplexed U1A and SL2 in the cell. A quantitative model fits our experimental results, with the major cellular effect being that U1A and SL2 sticking to cellular components are capable of binding, just not as strongly as the free complex. This observation suggests that high binding affinities measured or designed in vitro are necessary for proper binding in vivo, where competition with many nonspecific interactions exists, especially for strongly interacting species with high charge or large hydrophobic surface areas.
Collapse
|
11
|
Dubey A, Takeuchi K, Reibarkh M, Arthanari H. The role of NMR in leveraging dynamics and entropy in drug design. JOURNAL OF BIOMOLECULAR NMR 2020; 74:479-498. [PMID: 32720098 PMCID: PMC7686249 DOI: 10.1007/s10858-020-00335-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/11/2020] [Indexed: 05/03/2023]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy has contributed to structure-based drug development (SBDD) in a unique way compared to the other biophysical methods. The potency of a ligand binding to a protein is dictated by the binding free energy, which is an intricate interplay between entropy and enthalpy. In addition to providing the atomic resolution structural information, NMR can help to identify protein-ligand interactions that potentially contribute to the enthalpic component of the free energy. NMR can also illuminate dynamic aspects of the interaction, which correspond to the entropic term of the free energy. The ability of NMR to access both terms in the free energy equation stems from the suite of experiments developed to shed light on various aspects that contribute to both entropy and enthalpy, deepening our understanding of the biological function of macromolecules and assisting to target them in physiological conditions. Here we provide a brief account of the contribution of NMR to SBDD, highlighting hallmark examples and discussing the challenges that demand further method development. In the era of integrated biology, the unique ability of NMR to directly ascertain structural and dynamical aspects of macromolecule and monitor changes in these properties upon engaging a ligand can be combined with computational and other structural and biophysical methods to provide a more complete picture of the energetics of drug engagement with the target. Such efforts can be used to engineer better drugs.
Collapse
Affiliation(s)
- Abhinav Dubey
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Koh Takeuchi
- Cellular and Molecular Biotechnology Research Institute & Molecular Profiling Research Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, 135-0064, Japan.
| | - Mikhail Reibarkh
- Analytical Research and Development, Merck & Co., Inc., Rahway, NJ, 07065, USA
| | - Haribabu Arthanari
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
12
|
Boulton S, Van K, VanSchouwen B, Augustine J, Akimoto M, Melacini G. Allosteric Mechanisms of Nonadditive Substituent Contributions to Protein-Ligand Binding. Biophys J 2020; 119:1135-1146. [PMID: 32882185 DOI: 10.1016/j.bpj.2020.07.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/30/2020] [Accepted: 07/06/2020] [Indexed: 02/07/2023] Open
Abstract
Quantifying chemical substituent contributions to ligand-binding free energies is challenging due to nonadditive effects. Protein allostery is a frequent cause of nonadditivity, but the underlying allosteric mechanisms often remain elusive. Here, we propose a general NMR-based approach to elucidate such mechanisms and we apply it to the HCN4 ion channel, whose cAMP-binding domain is an archetypal conformational switch. Using NMR, we show that nonadditivity arises not only from concerted conformational transitions, but also from conformer-specific effects, such as steric frustration. Our results explain how affinity-reducing functional groups may lead to affinity gains if combined. Surprisingly, our approach also reveals that nonadditivity depends markedly on the receptor conformation. It is negligible for the inhibited state but highly significant for the active state, opening new opportunities to tune potency and agonism of allosteric effectors.
Collapse
Affiliation(s)
- Stephen Boulton
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Katherine Van
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Bryan VanSchouwen
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Canada
| | - Jerry Augustine
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Madoka Akimoto
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Canada
| | - Giuseppe Melacini
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada; Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Canada.
| |
Collapse
|
13
|
Albuquerque SO, Barros TG, Dias LRS, Lima CHDS, Azevedo PHRDA, Flores-Junior LAP, Dos Santos EG, Loponte HF, Pinheiro S, Dias WB, Muri EMF, Todeschini AR. Biological evaluation and molecular modeling of peptidomimetic compounds as inhibitors for O-GlcNAc transferase (OGT). Eur J Pharm Sci 2020; 154:105510. [PMID: 32801002 DOI: 10.1016/j.ejps.2020.105510] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/24/2020] [Accepted: 08/10/2020] [Indexed: 01/19/2023]
Abstract
The vital enzyme O-linked β-N-acetylglucosamine transferase (OGT) catalyzes the O-GlcNAcylation of intracellular proteins coupling the metabolic status to cellular signaling and transcription pathways. Aberrant levels of O-GlcNAc and OGT have been linked to metabolic diseases as cancer and diabetes. Here, a new series of peptidomimetic OGT inhibitors was identified highlighting the compound LQMed 330, which presented better IC50 compared to the most potent inhibitors found in the literature. Molecular modeling study of selected inhibitors into the OGT binding site provided insight into the behavior by which these compounds interact with the enzyme. The results obtained in this study provided new perspectives on the design and synthesis of highly specific OGT inhibitors.
Collapse
Affiliation(s)
- Suraby O Albuquerque
- Laboratório de Glicobiologia Estrutural e Funcional, IBCCF, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Thalita G Barros
- Laboratório de Química Medicinal, Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Luiza R S Dias
- Laboratório de Química Medicinal, Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Camilo H da S Lima
- Universidade Federal do Rio de Janeiro, Instituto de Química, Rio de Janeiro, RJ, Brazil
| | - Pedro H R de A Azevedo
- Laboratório de Química Medicinal, Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Luiz A P Flores-Junior
- Laboratório de Química Medicinal, Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Eldio G Dos Santos
- Laboratório de Química Medicinal, Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Hector F Loponte
- Laboratório de Glicobiologia Estrutural e Funcional, IBCCF, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Sergio Pinheiro
- Instituto de Química, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Wagner B Dias
- Laboratório de Glicobiologia Estrutural e Funcional, IBCCF, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Estela M F Muri
- Laboratório de Química Medicinal, Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Adriane R Todeschini
- Laboratório de Glicobiologia Estrutural e Funcional, IBCCF, Universidade Federal do Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
14
|
Hall R, Dixon T, Dickson A. On Calculating Free Energy Differences Using Ensembles of Transition Paths. Front Mol Biosci 2020; 7:106. [PMID: 32582764 PMCID: PMC7291376 DOI: 10.3389/fmolb.2020.00106] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/06/2020] [Indexed: 12/30/2022] Open
Abstract
The free energy of a process is the fundamental quantity that determines its spontaneity or propensity at a given temperature. In particular, the binding free energy of a drug candidate to its biomolecular target is used as an objective quantity in drug design. Recently, binding kinetics—rates of association (kon) and dissociation (koff)—have also demonstrated utility for their ability to predict efficacy and in some cases have been shown to be more predictive than the binding free energy alone. Some methods exist to calculate binding kinetics from molecular simulations, although these are typically more difficult to calculate than the binding affinity as they depend on details of the transition path ensemble. Assessing these rate constants can be difficult, due to uncertainty in the definition of the bound and unbound states, large error bars and the lack of experimental data. As an additional consistency check, rate constants from simulation can be used to calculate free energies (using the log of their ratio) which can then be compared to free energies obtained experimentally or using alchemical free energy perturbation. However, in this calculation it is not straightforward to account for common, practical details such as the finite simulation volume or the particular definition of the “bound” and “unbound” states. Here we derive a set of correction terms that can be applied to calculations of binding free energies using full reactive trajectories. We apply these correction terms to revisit the calculation of binding free energies from rate constants for a host-guest system that was part of a blind prediction challenge, where significant deviations were observed between free energies calculated with rate ratios and those calculated from alchemical perturbation. The correction terms combine to significantly decrease the error with respect to computational benchmarks, from 3.4 to 0.76 kcal/mol. Although these terms were derived with weighted ensemble simulations in mind, some of the correction terms are generally applicable to free energies calculated using physical pathways via methods such as Markov state modeling, metadynamics, milestoning, or umbrella sampling.
Collapse
Affiliation(s)
- Robert Hall
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Tom Dixon
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, United States.,Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Alex Dickson
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, United States.,Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
15
|
Simultaneous Control of Endogenous and User-Defined Genetic Pathways Using Unique ecDHFR Pharmacological Chaperones. Cell Chem Biol 2020; 27:622-634.e6. [PMID: 32330442 DOI: 10.1016/j.chembiol.2020.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/04/2020] [Accepted: 03/06/2020] [Indexed: 12/12/2022]
Abstract
Destabilizing domains (DDs), such as a mutated form of Escherichia coli dihydrofolate reductase (ecDHFR), confer instability and promote protein degradation. However, when combined with small-molecule stabilizers (e.g., the antibiotic trimethoprim), DDs allow positive regulation of fusion protein abundance. Using a combinatorial screening approach, we identified and validated 17 unique 2,4-diaminopyrimidine/triazine-based ecDHFR DD stabilizers, at least 15 of which were ineffective antibiotics against E. coli and S. aureus. Identified stabilizers functioned in vivo to control an ecDHFR DD-firefly luciferase in the mouse eye and/or the liver. Next, stabilizers were leveraged to perform synergistic dual functions in vitro (HeLa cell death sensitization) and in vivo (repression of ocular inflammation) by stabilizing a user-defined ecDHFR DD while also controlling endogenous signaling pathways. Thus, these newly identified pharmacological chaperones allow for simultaneous control of compound-specific endogenous and user-defined genetic pathways, the combination of which may provide synergistic effects in complex biological scenarios.
Collapse
|
16
|
Babu CS, Lim C. Sensitivity of Functional Loop Conformations on Long-Range Electrostatics: Implications for M20 Loop Dynamics in E. coli Dihydrofolate Reductase. J Chem Theory Comput 2020; 16:2028-2033. [PMID: 32192329 DOI: 10.1021/acs.jctc.9b01285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In E. coli dihydrofolate reductase, unusual conformational motions of a functional M20 loop that interacts with substrate and coenzyme have been construed as evidence for dynamical effects in enzyme catalysis. By computing this loop's conformational free energies in the apoenzyme, we show that it is sensitive to the treatment of long-range electrostatic interactions and the solvation box size in modeling/simulations. These results provide important guidelines for computing reaction/binding free energy profiles of proteins with functional loops.
Collapse
Affiliation(s)
- C Satheesan Babu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Carmay Lim
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan.,Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
| |
Collapse
|
17
|
Affiliation(s)
- Si-Min Lu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yue-Yi Peng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yi-Lun Ying
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yi-Tao Long
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
18
|
Spotlight on the Ballet of Proteins: The Structural Dynamic Properties of Proteins Illuminated by Solution NMR. Int J Mol Sci 2020; 21:ijms21051829. [PMID: 32155847 PMCID: PMC7084655 DOI: 10.3390/ijms21051829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/01/2020] [Accepted: 03/04/2020] [Indexed: 12/22/2022] Open
Abstract
Solution NMR spectroscopy is a unique and powerful technique that has the ability to directly connect the structural dynamics of proteins in physiological conditions to their activity and function. Here, we summarize recent studies in which solution NMR contributed to the discovery of relationships between key dynamic properties of proteins and functional mechanisms in important biological systems. The capacity of NMR to quantify the dynamics of proteins over a range of time scales and to detect lowly populated protein conformations plays a critical role in its power to unveil functional protein dynamics. This analysis of dynamics is not only important for the understanding of biological function, but also in the design of specific ligands for pharmacologically important proteins. Thus, the dynamic view of structure provided by NMR is of importance in both basic and applied biology.
Collapse
|
19
|
Limongelli V. Ligand binding free energy and kinetics calculation in 2020. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2020. [DOI: 10.1002/wcms.1455] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Vittorio Limongelli
- Faculty of Biomedical Sciences, Institute of Computational Science – Center for Computational Medicine in Cardiology Università della Svizzera italiana (USI) Lugano Switzerland
- Department of Pharmacy University of Naples “Federico II” Naples Italy
| |
Collapse
|
20
|
Borisov DV, Veselovsky AV. [Ligand-receptor binding kinetics in drug design]. BIOMEDITSINSKAIA KHIMIIA 2020; 66:42-53. [PMID: 32116225 DOI: 10.18097/pbmc20206601042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Traditionally, the thermodynamic values of affinity are considered as the main criterion for the development of new drugs. Usually, these values for drugs are measured <i>in vitro</i> at steady concentrations of the receptor and ligand, which are differed from <i>in vivo</i> environment. Recent studies have shown that the kinetics of the process of drug binding to its receptor make significant contribution in the drug effectiveness. This has increased attention in characterizing and predicting the rate constants of association and dissociation of the receptor ligand at the stage of preclinical studies of drug candidates. A drug with a long residence time can determine ligand-receptor selectivity (kinetic selectivity), maintain pharmacological activity of the drug at its low concentration in vivo. The paper discusses the theoretical basis of protein-ligand binding, molecular determinants that control the kinetics of the drug-receptor binding. Understanding the molecular features underlying the kinetics of receptor-ligand binding will contribute to the rational design of drugs with desired properties.
Collapse
Affiliation(s)
- D V Borisov
- Institute of Biomedical Chemistry, Moscow, Russia
| | | |
Collapse
|
21
|
Abstract
Ligand-receptor interactions, which are ubiquitous in physiology, are described by theoretical models of receptor pharmacology. Structural evidence for graded efficacy receptor conformations predicted by receptor theory has been limited but is critical to fully validate theoretical models. We applied quantitative structure-function approaches to characterize the effects of structurally similar and structurally diverse agonists on the conformational ensemble of nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ). For all ligands, agonist functional efficacy is correlated to a shift in the conformational ensemble equilibrium from a ground state toward an active state, which is detected by NMR spectroscopy but not observed in crystal structures. For the structurally similar ligands, ligand potency and affinity are also correlated to efficacy and conformation, indicating ligand residence times among related analogs may influence receptor conformation and function. Our results derived from quantitative graded activity-conformation correlations provide experimental evidence and a platform with which to extend and test theoretical models of receptor pharmacology to more accurately describe and predict ligand-dependent receptor activity.
Collapse
|
22
|
Jagtap PKA, Asami S, Sippel C, Kaila VRI, Hausch F, Sattler M. Selective Inhibitors of FKBP51 Employ Conformational Selection of Dynamic Invisible States. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Pravin Kumar Ankush Jagtap
- Lehrstuhl für Biomolekulare NMR-SpektroskopieTechnische Universität München Lichtenbergstr. 4 85747 Garching Germany
| | - Sam Asami
- Lehrstuhl für Biomolekulare NMR-SpektroskopieTechnische Universität München Lichtenbergstr. 4 85747 Garching Germany
| | - Claudia Sippel
- Max Planck Institute of Psychiatry Kraepelinstr. 2–10 80804 Munich Germany
| | - Ville R. I. Kaila
- Department ChemieTechnische Universität München Lichtenbergstr. 4 85747 Garching Germany
| | - Felix Hausch
- Max Planck Institute of Psychiatry Kraepelinstr. 2–10 80804 Munich Germany
- Present address: Structure-Based Drug ResearchTechnische Universität Darmstadt Alarich-Weiss-Str. 4 64287 Darmstadt Germany
| | - Michael Sattler
- Lehrstuhl für Biomolekulare NMR-SpektroskopieTechnische Universität München Lichtenbergstr. 4 85747 Garching Germany
| |
Collapse
|
23
|
Jagtap PKA, Asami S, Sippel C, Kaila VRI, Hausch F, Sattler M. Selective Inhibitors of FKBP51 Employ Conformational Selection of Dynamic Invisible States. Angew Chem Int Ed Engl 2019; 58:9429-9433. [PMID: 31100184 DOI: 10.1002/anie.201902994] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/24/2019] [Indexed: 12/26/2022]
Abstract
The recently discovered SAFit class of inhibitors against the Hsp90 co-chaperone FKBP51 show greater than 10 000-fold selectivity over its closely related paralogue FKBP52. However, the mechanism underlying this selectivity remained unknown. By combining NMR spectroscopy, biophysical and computational methods with mutational analysis, we show that the SAFit molecules bind to a transient pocket in FKBP51. This represents a weakly populated conformation resembling the inhibitor-bound state of FKBP51, suggesting conformational selection rather than induced fit as the major binding mechanism. The inhibitor-bound conformation of FKBP51 is stabilized by an allosteric network of residues located away from the inhibitor-binding site. These residues stabilize the Phe67 side chain in a dynamic outward conformation and are distinct in FKBP52, thus rationalizing the basis for the selectivity of SAFit inhibitors. Our results represent a paradigm for the selective inhibition of transient binding pockets.
Collapse
Affiliation(s)
- Pravin Kumar Ankush Jagtap
- Lehrstuhl für Biomolekulare NMR-Spektroskopie, Technische Universität München, Lichtenbergstr. 4, 85747, Garching, Germany
| | - Sam Asami
- Lehrstuhl für Biomolekulare NMR-Spektroskopie, Technische Universität München, Lichtenbergstr. 4, 85747, Garching, Germany
| | - Claudia Sippel
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804, Munich, Germany
| | - Ville R I Kaila
- Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85747, Garching, Germany
| | - Felix Hausch
- Max Planck Institute of Psychiatry, Kraepelinstr. 2-10, 80804, Munich, Germany.,Present address: Structure-Based Drug Research, Technische Universität Darmstadt, Alarich-Weiss-Str. 4, 64287, Darmstadt, Germany
| | - Michael Sattler
- Lehrstuhl für Biomolekulare NMR-Spektroskopie, Technische Universität München, Lichtenbergstr. 4, 85747, Garching, Germany
| |
Collapse
|
24
|
Su L, Li J, Zhou Z, Huang D, Zhang Y, Pei H, Guo W, Wu H, Wang X, Liu M, Yang CG, Chen Y. Design, synthesis and evaluation of hybrid of tetrahydrocarbazole with 2,4-diaminopyrimidine scaffold as antibacterial agents. Eur J Med Chem 2019; 162:203-211. [DOI: 10.1016/j.ejmech.2018.11.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 10/25/2018] [Accepted: 11/06/2018] [Indexed: 12/14/2022]
|
25
|
van Zundert GCP, Hudson BM, de Oliveira SHP, Keedy DA, Fonseca R, Heliou A, Suresh P, Borrelli K, Day T, Fraser JS, van den Bedem H. qFit-ligand Reveals Widespread Conformational Heterogeneity of Drug-Like Molecules in X-Ray Electron Density Maps. J Med Chem 2018; 61:11183-11198. [PMID: 30457858 DOI: 10.1021/acs.jmedchem.8b01292] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Proteins and ligands sample a conformational ensemble that governs molecular recognition, activity, and dissociation. In structure-based drug design, access to this conformational ensemble is critical to understand the balance between entropy and enthalpy in lead optimization. However, ligand conformational heterogeneity is currently severely underreported in crystal structures in the Protein Data Bank, owing in part to a lack of automated and unbiased procedures to model an ensemble of protein-ligand states into X-ray data. Here, we designed a computational method, qFit-ligand, to automatically resolve conformationally averaged ligand heterogeneity in crystal structures, and applied it to a large set of protein receptor-ligand complexes. In an analysis of the cancer related BRD4 domain, we found that up to 29% of protein crystal structures bound with drug-like molecules present evidence of unmodeled, averaged, relatively isoenergetic conformations in ligand-receptor interactions. In many retrospective cases, these alternate conformations were adventitiously exploited to guide compound design, resulting in improved potency or selectivity. Combining qFit-ligand with high-throughput screening or multitemperature crystallography could therefore augment the structure-based drug design toolbox.
Collapse
Affiliation(s)
| | - Brandi M Hudson
- Department of Bioengineering and Therapeutic Sciences , UCSF , San Francisco , California 94158 , United States
| | - Saulo H P de Oliveira
- SLAC National Accelerator Laboratory , Stanford University , Menlo Park , California 94025 United States
| | - Daniel A Keedy
- Department of Bioengineering and Therapeutic Sciences , UCSF , San Francisco , California 94158 , United States
| | - Rasmus Fonseca
- Department of Molecular and Cellular Physiology , Stanford University , Stanford , California 94305 , United States
| | - Amelie Heliou
- LIX, Ecole Polytechnique, CNRS, Inria , Université Paris-Saclay , 91128 Palaiseau , France
| | - Pooja Suresh
- Department of Bioengineering and Therapeutic Sciences , UCSF , San Francisco , California 94158 , United States
| | | | - Tyler Day
- Schrödinger , New York , New York 10036 , United States
| | - James S Fraser
- Department of Bioengineering and Therapeutic Sciences , UCSF , San Francisco , California 94158 , United States
| | - Henry van den Bedem
- Department of Bioengineering and Therapeutic Sciences , UCSF , San Francisco , California 94158 , United States.,SLAC National Accelerator Laboratory , Stanford University , Menlo Park , California 94025 United States
| |
Collapse
|
26
|
Johnson TW, Bolanos B, Brooun A, Gallego RA, Gehlhaar D, Jalaie M, McTigue M, Timofeevski S. Reviving B-Factors: Activating ALK Mutations Increase Protein Dynamics of the Unphosphorylated Kinase. ACS Med Chem Lett 2018; 9:872-877. [PMID: 30258533 DOI: 10.1021/acsmedchemlett.8b00348] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 08/24/2018] [Indexed: 12/14/2022] Open
Abstract
Anaplastic lymphoma kinase (ALK) is a receptor tyrosine kinase that can become oncogenic by activating mutations or overexpression. Full kinetic characterization of both phosphorylated and nonphosphorylated wildtype and mutant ALK kinase domain was done. Our structure-based drug design programs directed at ALK allowed us to interrogate whether X-ray crystallography data could be used to support the hypothesis that activation of ALK by mutation occurs due to increased protein dynamics. Crystallographic B-factors were converted to normalized B-factors, which allowed analysis of wildtype ALK, ALK-C1156Y, and ALK-L1196M. This data suggests that mobility of the P-loop, αC-helix, and activation loop (A-loop) may be important in catalytic activity increases, with or without phosphorylation. Both molecular dynamics simulations and hydrogen-deuterium exchange experimental data corroborated the normalized B-factors data.
Collapse
Affiliation(s)
- Ted W. Johnson
- Pfizer Worldwide Research and Development, La Jolla Oncology, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Ben Bolanos
- Pfizer Worldwide Research and Development, La Jolla Oncology, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Alexei Brooun
- Pfizer Worldwide Research and Development, La Jolla Oncology, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Rebecca A. Gallego
- Pfizer Worldwide Research and Development, La Jolla Oncology, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Dan Gehlhaar
- Pfizer Worldwide Research and Development, La Jolla Oncology, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Mehran Jalaie
- Pfizer Worldwide Research and Development, La Jolla Oncology, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Michele McTigue
- Pfizer Worldwide Research and Development, La Jolla Oncology, 10770 Science Center Drive, San Diego, California 92121, United States
| | - Sergei Timofeevski
- Pfizer Worldwide Research and Development, La Jolla Oncology, 10770 Science Center Drive, San Diego, California 92121, United States
| |
Collapse
|
27
|
Paukovich N, Xue M, Elder JR, Redzic JS, Blue A, Pike H, Miller BG, Pitts TM, Pollock DD, Hansen K, D'Alessandro A, Eisenmesser EZ. Biliverdin Reductase B Dynamics Are Coupled to Coenzyme Binding. J Mol Biol 2018; 430:3234-3250. [PMID: 29932944 DOI: 10.1016/j.jmb.2018.06.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/05/2018] [Accepted: 06/06/2018] [Indexed: 12/28/2022]
Abstract
Biliverdin reductase B (BLVRB) is a newly identified cellular redox regulator that catalyzes the NADPH-dependent reduction of multiple substrates. Through mass spectrometry analysis, we identified high levels of BLVRB in mature red blood cells, highlighting the importance of BLVRB in redox regulation. The BLVRB conformational changes that occur during conezyme/substrate binding and the role of dynamics in BLVRB function, however, remain unknown. Through a combination of NMR, kinetics, and isothermal titration calorimetry studies, we determined that BLVRB binds its coenzyme 500-fold more tightly than its substrate. While the active site of apo BLVRB is highly dynamic on multiple timescales, active site dynamics are largely quenched within holo BLVRB, in which dynamics are redistributed to other regions of the enzyme. We show that a single point mutation of Arg78➔Ala leads to both an increase in active site micro-millisecond motions and an increase in the microscopic rate constants of coenzyme binding. This demonstrates that altering BLVRB active site dynamics can directly cause a change in functional characteristics. Our studies thus address the solution behavior of apo and holo BLVRB and identify a role of enzyme dynamics in coenzyme binding.
Collapse
Affiliation(s)
- Natasia Paukovich
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA
| | - Mengjun Xue
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA
| | - James R Elder
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA
| | - Jasmina S Redzic
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA
| | - Ashley Blue
- National High Magnetic Field Laboratory, Tallahassee, FL 32310, USA
| | - Hamish Pike
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA
| | - Brian G Miller
- Department of Chemistry & Biochemistry, Florida State University, Tallahassee, FL 32310, USA
| | - Todd M Pitts
- Division of Medical Oncology, School of Medicine, Aurora, CO 80045, USA
| | - David D Pollock
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA
| | - Kirk Hansen
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA
| | - Elan Zohar Eisenmesser
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
28
|
Van Meervelt V, Soskine M, Singh S, Schuurman-Wolters GK, Wijma HJ, Poolman B, Maglia G. Real-Time Conformational Changes and Controlled Orientation of Native Proteins Inside a Protein Nanoreactor. J Am Chem Soc 2017; 139:18640-18646. [PMID: 29206456 PMCID: PMC6150693 DOI: 10.1021/jacs.7b10106] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
Protein conformations play crucial
roles in most, if not all, biological
processes. Here we show that the current carried through a nanopore
by ions allows monitoring conformational changes of single and native
substrate-binding domains (SBD) of an ATP-Binding Cassette importer
in real-time. Comparison with single-molecule Förster Resonance
Energy Transfer and ensemble measurements revealed that proteins trapped
inside the nanopore have bulk-like properties. Two ligand-free and
two ligand-bound conformations of SBD proteins were inferred and their
kinetic constants were determined. Remarkably, internalized proteins
aligned with the applied voltage bias, and their orientation could
be controlled by the addition of a single charge to the protein surface.
Nanopores can thus be used to immobilize proteins on a surface with
a specific orientation, and will be employed as nanoreactors for single-molecule
studies of native proteins. Moreover, nanopores with internal protein
adaptors might find further practical applications in multianalyte
sensing devices.
Collapse
Affiliation(s)
- Veerle Van Meervelt
- Department of Chemistry, University of Leuven , Leuven B-3001, Belgium.,Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen 9747 AG, The Netherlands
| | - Misha Soskine
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen 9747 AG, The Netherlands
| | - Shubham Singh
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen 9747 AG, The Netherlands
| | - Gea K Schuurman-Wolters
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen 9747 AG, The Netherlands
| | - Hein J Wijma
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen 9747 AG, The Netherlands
| | - Bert Poolman
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen 9747 AG, The Netherlands
| | - Giovanni Maglia
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen , Groningen 9747 AG, The Netherlands
| |
Collapse
|
29
|
Zhu S, Khatun R, Lento C, Sheng Y, Wilson DJ. Enhanced Binding Affinity via Destabilization of the Unbound State: A Millisecond Hydrogen–Deuterium Exchange Study of the Interaction between p53 and a Pleckstrin Homology Domain. Biochemistry 2017; 56:4127-4133. [DOI: 10.1021/acs.biochem.7b00193] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shaolong Zhu
- Department
of Chemistry, York University, Toronto, Ontario, Canada M3J 1P3
| | - Rahima Khatun
- Department
of Biology, York University, Toronto, Ontario, Canada M3J 1P3
| | - Cristina Lento
- Department
of Chemistry, York University, Toronto, Ontario, Canada M3J 1P3
| | - Yi Sheng
- Department
of Biology, York University, Toronto, Ontario, Canada M3J 1P3
| | - Derek J. Wilson
- Department
of Chemistry, York University, Toronto, Ontario, Canada M3J 1P3
- Centre
for Research in Mass Spectrometry, York University, Toronto, Ontario, Canada M3J 1P3
| |
Collapse
|
30
|
Kivi R, Solovjova K, Haljasorg T, Arukuusk P, Järv J. Allosteric Effect of Adenosine Triphosphate on Peptide Recognition by 3'5'-Cyclic Adenosine Monophosphate Dependent Protein Kinase Catalytic Subunits. Protein J 2017; 35:459-466. [PMID: 27848106 DOI: 10.1007/s10930-016-9691-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The allosteric influence of adenosine triphosphate (ATP) on the binding effectiveness of a series of peptide inhibitors with the catalytic subunit of 3'5'-cyclic adenosine monophosphate dependent protein kinase was investigated, and the dependence of this effect on peptide structure was analyzed. The allosteric effect was calculated as ratio of peptide binding effectiveness with the enzyme-ATP complex and with the free enzyme, quantified by the competitive inhibition of the enzyme in the presence of ATP excess, and by the enzyme-peptide complex denaturation assay, respectively It was found that the principle "better binding-stronger allostery" holds for interactions of the studied peptides with the enzyme, indicating that allostery and peptide binding with the free enzyme are governed by the same specificity pattern. This means that the allosteric regulation does not include new ligand-protein interactions, but changes the intensity (strength) of the interatomic forces that govern the complex formation in the case of each individual ligand. We propose that the allosteric regulation can be explained by the alteration of the intrinsic dynamics of the protein by ligand binding, and that this phenomenon, in turn, modulates the ligand off-rate from its binding site as well as the binding affinity. The positive allostery could therefore be induced by a reduction in the enzyme's overall intrinsic dynamics.
Collapse
Affiliation(s)
- Rait Kivi
- Institute of Chemistry, University of Tartu, Tartu, Estonia.,Institute of Technology, University of Tartu, Tartu, Estonia
| | - Karina Solovjova
- Institute of Chemistry, University of Tartu, Tartu, Estonia.,CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Tõiv Haljasorg
- Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Piret Arukuusk
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Jaak Järv
- Institute of Chemistry, University of Tartu, Tartu, Estonia.
| |
Collapse
|
31
|
Ban D, Smith CA, de Groot BL, Griesinger C, Lee D. Recent advances in measuring the kinetics of biomolecules by NMR relaxation dispersion spectroscopy. Arch Biochem Biophys 2017; 628:81-91. [PMID: 28576576 DOI: 10.1016/j.abb.2017.05.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 05/26/2017] [Accepted: 05/29/2017] [Indexed: 12/25/2022]
Abstract
Protein function can be modulated or dictated by the amplitude and timescale of biomolecular motion, therefore it is imperative to study protein dynamics. Nuclear Magnetic Resonance (NMR) spectroscopy is a powerful technique capable of studying timescales of motion that range from those faster than molecular reorientation on the picosecond timescale to those that occur in real-time. Across this entire regime, NMR observables can report on the amplitude of atomic motion, and the kinetics of atomic motion can be ascertained with a wide variety of experimental techniques from real-time to milliseconds and several nanoseconds to picoseconds. Still a four orders of magnitude window between several nanoseconds and tens of microseconds has remained elusive. Here, we highlight new relaxation dispersion NMR techniques that serve to cover this "hidden-time" window up to hundreds of nanoseconds that achieve atomic resolution while studying the molecule under physiological conditions.
Collapse
Affiliation(s)
- David Ban
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville, 505 S. Hancock St., Louisville, KY 40202, USA
| | - Colin A Smith
- Department for Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen, 37077 Germany; Department of Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen, 37077 Germany
| | - Bert L de Groot
- Department for Theoretical and Computational Biophysics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen, 37077 Germany
| | - Christian Griesinger
- Department of Structural Biology, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, Göttingen, 37077 Germany
| | - Donghan Lee
- Department of Medicine, James Graham Brown Cancer Center, University of Louisville, 505 S. Hancock St., Louisville, KY 40202, USA.
| |
Collapse
|
32
|
Toyama Y, Kano H, Mase Y, Yokogawa M, Osawa M, Shimada I. Dynamic regulation of GDP binding to G proteins revealed by magnetic field-dependent NMR relaxation analyses. Nat Commun 2017; 8:14523. [PMID: 28223697 PMCID: PMC5322562 DOI: 10.1038/ncomms14523] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 01/10/2017] [Indexed: 11/30/2022] Open
Abstract
Heterotrimeric guanine-nucleotide-binding proteins (G proteins) serve as molecular switches in signalling pathways, by coupling the activation of cell surface receptors to intracellular responses. Mutations in the G protein α-subunit (Gα) that accelerate guanosine diphosphate (GDP) dissociation cause hyperactivation of the downstream effector proteins, leading to oncogenesis. However, the structural mechanism of the accelerated GDP dissociation has remained unclear. Here, we use magnetic field-dependent nuclear magnetic resonance relaxation analyses to investigate the structural and dynamic properties of GDP bound Gα on a microsecond timescale. We show that Gα rapidly exchanges between a ground-state conformation, which tightly binds to GDP and an excited conformation with reduced GDP affinity. The oncogenic D150N mutation accelerates GDP dissociation by shifting the equilibrium towards the excited conformation. Heterotrimeric guanine-nucleotide-binding proteins (G proteins) act as molecular switches. Here the authors use NMR relaxation analyses, which reveal the dynamics of G protein alpha subunit binding to GDP on a microsecond timescale.
Collapse
Affiliation(s)
- Yuki Toyama
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Japan Biological Informatics Consortium (JBiC), Aomi, Koto-ku, Tokyo 135-0064, Japan
| | - Hanaho Kano
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yoko Mase
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Mariko Yokogawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masanori Osawa
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ichio Shimada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
33
|
Cramer J, Krimmer SG, Fridh V, Wulsdorf T, Karlsson R, Heine A, Klebe G. Elucidating the Origin of Long Residence Time Binding for Inhibitors of the Metalloprotease Thermolysin. ACS Chem Biol 2017; 12:225-233. [PMID: 27959500 DOI: 10.1021/acschembio.6b00979] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Kinetic parameters of protein-ligand interactions are progressively acknowledged as valuable information for rational drug discovery. However, a targeted optimization of binding kinetics is not easy to achieve, and further systematic studies are necessary to increase the understanding about molecular mechanisms involved. We determined association and dissociation rate constants for 17 inhibitors of the metalloprotease thermolysin by surface plasmon resonance spectroscopy and correlated kinetic data with high-resolution crystal structures in complex with the protein. From the structure-kinetics relationship, we conclude that the strength of interaction with Asn112 correlates with the rate-limiting step of dissociation. This residue is located at the beginning of a β-strand motif that lines the binding cleft and is commonly believed to align a substrate for catalysis. A reduced mobility of the Asn112 side chain owing to an enhanced engagement in charge-assisted hydrogen bonds prevents the conformational adjustment associated with ligand release and transformation of the enzyme to its open state. This hypothesis is supported by kinetic data of ZFPLA, a known pseudopeptidic inhibitor of thermolysin, which blocks the conformational transition of Asn112. Interference with this retrograde induced-fit mechanism results in variation of the residence time of thermolysin inhibitors by a factor of 74 000. The high conservation of this structural motif within the M4 and M13 metalloprotease families underpins the importance of this feature and has significant implications for drug discovery.
Collapse
Affiliation(s)
- Jonathan Cramer
- Institute
of Pharmaceutical Chemistry, University of Marburg, Marbacher
Weg 6, 35032 Marburg, Germany
| | - Stefan G. Krimmer
- Institute
of Pharmaceutical Chemistry, University of Marburg, Marbacher
Weg 6, 35032 Marburg, Germany
| | - Veronica Fridh
- GE Healthcare Bio-Sciences AB, SE-751 84 Uppsala, Sweden
| | - Tobias Wulsdorf
- Institute
of Pharmaceutical Chemistry, University of Marburg, Marbacher
Weg 6, 35032 Marburg, Germany
| | | | - Andreas Heine
- Institute
of Pharmaceutical Chemistry, University of Marburg, Marbacher
Weg 6, 35032 Marburg, Germany
| | - Gerhard Klebe
- Institute
of Pharmaceutical Chemistry, University of Marburg, Marbacher
Weg 6, 35032 Marburg, Germany
| |
Collapse
|
34
|
Holliday MJ, Camilloni C, Armstrong GS, Vendruscolo M, Eisenmesser EZ. Networks of Dynamic Allostery Regulate Enzyme Function. Structure 2017; 25:276-286. [PMID: 28089447 DOI: 10.1016/j.str.2016.12.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/28/2016] [Accepted: 12/12/2016] [Indexed: 11/16/2022]
Abstract
Many protein systems rely on coupled dynamic networks to allosterically regulate function. However, the broad conformational space sampled by non-coherently dynamic systems has precluded detailed analysis of their communication mechanisms. Here, we have developed a methodology that combines the high sensitivity afforded by nuclear magnetic resonance relaxation techniques and single-site multiple mutations, termed RASSMM, to identify two allosterically coupled dynamic networks within the non-coherently dynamic enzyme cyclophilin A. Using this methodology, we discovered two key hotspot residues, Val6 and Val29, that communicate through these networks, the mutation of which altered active-site dynamics, modulating enzymatic turnover of multiple substrates. Finally, we utilized molecular dynamics simulations to identify the mechanism by which one of these hotspots is coupled to the larger dynamic networks. These studies confirm a link between enzyme dynamics and the catalytic cycle of cyclophilin A and demonstrate how dynamic allostery may be engineered to tune enzyme function.
Collapse
Affiliation(s)
- Michael Joseph Holliday
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, 12801 East 17th Avenue, MS 8101, Aurora, CO 80045, USA
| | - Carlo Camilloni
- Department of Chemistry, Institute for Advanced Study, Technische Universität München, 85748 Garching, Germany
| | | | | | - Elan Zohar Eisenmesser
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, 12801 East 17th Avenue, MS 8101, Aurora, CO 80045, USA.
| |
Collapse
|
35
|
Bhojane P, Duff MR, Bafna K, Rimmer GP, Agarwal PK, Howell EE. Aspects of Weak Interactions between Folate and Glycine Betaine. Biochemistry 2016; 55:6282-6294. [PMID: 27768285 PMCID: PMC5198541 DOI: 10.1021/acs.biochem.6b00873] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/19/2016] [Indexed: 01/22/2023]
Abstract
Folate, or vitamin B9, is an important compound in one-carbon metabolism. Previous studies have found weaker binding of dihydrofolate to dihydrofolate reductase in the presence of osmolytes. In other words, osmolytes are more difficult to remove from the dihydrofolate solvation shell than water; this shifts the equilibrium toward the free ligand and protein species. This study uses vapor-pressure osmometry to explore the interaction of folate with the model osmolyte, glycine betaine. This method yields a preferential interaction potential (μ23/RT value). This value is concentration-dependent as folate dimerizes. The μ23/RT value also tracks the deprotonation of folate's N3-O4 keto-enol group, yielding a pKa of 8.1. To determine which folate atoms interact most strongly with betaine, the interaction of heterocyclic aromatic compounds (as well as other small molecules) with betaine was monitored. Using an accessible surface area approach coupled with osmometry measurements, deconvolution of the μ23/RT values into α values for atom types was achieved. This allows prediction of μ23/RT values for larger molecules such as folate. Molecular dynamics simulations of folate show a variety of structures from extended to L-shaped. These conformers possess μ23/RT values from -0.18 to 0.09 m-1, where a negative value indicates a preference for solvation by betaine and a positive value indicates a preference for water. This range of values is consistent with values observed in osmometry and solubility experiments. As the average predicted folate μ23/RT value is near zero, this indicates folate interacts almost equally well with betaine and water. Specifically, the glutamate tail prefers to interact with water, while the aromatic rings prefer betaine. In general, the more protonated species in our small molecule survey interact better with betaine as they provide a source of hydrogens (betaine is not a hydrogen bond donor). Upon deprotonation of the small molecule, the preference swings toward water interaction because of its hydrogen bond donating capacities.
Collapse
Affiliation(s)
- Purva
P. Bhojane
- Department
of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996-0840, United States
| | - Michael R. Duff
- Department
of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996-0840, United States
| | - Khushboo Bafna
- Genome
Science and Technology Program, University
of Tennessee, Knoxville, Tennessee 37996-0840, United States
| | - Gabriella P. Rimmer
- Department
of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996-0840, United States
| | - Pratul K. Agarwal
- Department
of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996-0840, United States
- Genome
Science and Technology Program, University
of Tennessee, Knoxville, Tennessee 37996-0840, United States
- Computer
Science and Mathematics Division, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Elizabeth E. Howell
- Department
of Biochemistry and Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996-0840, United States
- Genome
Science and Technology Program, University
of Tennessee, Knoxville, Tennessee 37996-0840, United States
| |
Collapse
|
36
|
Abstract
Path-integral free energy perturbation (PI-FEP) theory is presented to directly determine the ratio of quantum mechanical partition functions of different isotopologs in a single simulation. Furthermore, a double averaging strategy is used to carry out the practical simulation, separating the quantum mechanical path integral exactly into two separate calculations, one corresponding to a classical molecular dynamics simulation of the centroid coordinates, and another involving free-particle path-integral sampling over the classical, centroid positions. An integrated centroid path-integral free energy perturbation and umbrella sampling (PI-FEP/UM, or simply, PI-FEP) method along with bisection sampling was summarized, which provides an accurate and fast convergent method for computing kinetic isotope effects for chemical reactions in solution and in enzymes. The PI-FEP method is illustrated by a number of applications, to highlight the computational precision and accuracy, the rule of geometrical mean in kinetic isotope effects, enhanced nuclear quantum effects in enzyme catalysis, and protein dynamics on temperature dependence of kinetic isotope effects.
Collapse
Affiliation(s)
- J Gao
- Theoretical Chemistry Institute, Jilin University, Changchun, Jilin Province, PR China; University of Minnesota, Minneapolis, MN, United States.
| |
Collapse
|
37
|
Wei G, Xi W, Nussinov R, Ma B. Protein Ensembles: How Does Nature Harness Thermodynamic Fluctuations for Life? The Diverse Functional Roles of Conformational Ensembles in the Cell. Chem Rev 2016; 116:6516-51. [PMID: 26807783 PMCID: PMC6407618 DOI: 10.1021/acs.chemrev.5b00562] [Citation(s) in RCA: 279] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
All soluble proteins populate conformational ensembles that together constitute the native state. Their fluctuations in water are intrinsic thermodynamic phenomena, and the distributions of the states on the energy landscape are determined by statistical thermodynamics; however, they are optimized to perform their biological functions. In this review we briefly describe advances in free energy landscape studies of protein conformational ensembles. Experimental (nuclear magnetic resonance, small-angle X-ray scattering, single-molecule spectroscopy, and cryo-electron microscopy) and computational (replica-exchange molecular dynamics, metadynamics, and Markov state models) approaches have made great progress in recent years. These address the challenging characterization of the highly flexible and heterogeneous protein ensembles. We focus on structural aspects of protein conformational distributions, from collective motions of single- and multi-domain proteins, intrinsically disordered proteins, to multiprotein complexes. Importantly, we highlight recent studies that illustrate functional adjustment of protein conformational ensembles in the crowded cellular environment. We center on the role of the ensemble in recognition of small- and macro-molecules (protein and RNA/DNA) and emphasize emerging concepts of protein dynamics in enzyme catalysis. Overall, protein ensembles link fundamental physicochemical principles and protein behavior and the cellular network and its regulation.
Collapse
Affiliation(s)
- Guanghong Wei
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (MOE), and Department of Physics, Fudan University, Shanghai, P. R. China
| | - Wenhui Xi
- State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (MOE), and Department of Physics, Fudan University, Shanghai, P. R. China
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, USA
- Sackler Inst. of Molecular Medicine Department of Human Genetics and Molecular Medicine Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc. Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland 21702, USA
| |
Collapse
|
38
|
Xue L, Prifti E, Johnsson K. A General Strategy for the Semisynthesis of Ratiometric Fluorescent Sensor Proteins with Increased Dynamic Range. J Am Chem Soc 2016; 138:5258-61. [DOI: 10.1021/jacs.6b03034] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Lin Xue
- Institute
of Chemical Sciences
and Engineering (ISIC), Institute of Bioengineering, National Centre
of Competence in Research (NCCR) Chemical Biology, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Efthymia Prifti
- Institute
of Chemical Sciences
and Engineering (ISIC), Institute of Bioengineering, National Centre
of Competence in Research (NCCR) Chemical Biology, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Kai Johnsson
- Institute
of Chemical Sciences
and Engineering (ISIC), Institute of Bioengineering, National Centre
of Competence in Research (NCCR) Chemical Biology, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
39
|
Yang CY, Delproposto J, Chinnaswamy K, Brown WC, Wang S, Stuckey JA, Wang X. Conformational Sampling and Binding Site Assessment of Suppression of Tumorigenicity 2 Ectodomain. PLoS One 2016; 11:e0146522. [PMID: 26735493 PMCID: PMC4703388 DOI: 10.1371/journal.pone.0146522] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 12/20/2015] [Indexed: 11/23/2022] Open
Abstract
Suppression of Tumorigenicity 2 (ST2), a member of the interleukin-1 receptor (IL-1R) family, activates type 2 immune responses to pathogens and tissue damage via binding to IL-33. Dysregulated responses contribute to asthma, graft-versus-host and autoinflammatory diseases and disorders. To study ST2 structure for inhibitor development, we performed the principal component (PC) analysis on the crystal structures of IL1-1R1, IL1-1R2, ST2 and the refined ST2 ectodomain (ST2ECD) models, constructed from previously reported small-angle X-ray scattering data. The analysis facilitates mapping of the ST2ECD conformations to PC subspace for characterizing structural changes. Extensive coverage of ST2ECD conformations was then obtained using the accelerated molecular dynamics simulations started with the IL-33 bound ST2ECD structure as instructed by their projected locations on the PC subspace. Cluster analysis of all conformations further determined representative conformations of ST2ECD ensemble in solution. Alignment of the representative conformations with the ST2/IL-33 structure showed that the D3 domain of ST2ECD (containing D1-D3 domains) in most conformations exhibits no clashes with IL-33 in the crystal structure. Our experimental binding data informed that the D1-D2 domain of ST2ECD contributes predominantly to the interaction between ST2ECD and IL-33 underscoring the importance of the D1-D2 domain in binding. Computational binding site assessment revealed one third of the total detected binding sites in the representative conformations may be suitable for binding to potent small molecules. Locations of these sites include the D1-D2 domain ST2ECD and modulation sites conformed to ST2ECD conformations. Our study provides structural models and analyses of ST2ECD that could be useful for inhibitor discovery.
Collapse
Affiliation(s)
- Chao-Yie Yang
- Department of Internal Medicine, Hematology and Oncology Division, University of Michigan, Ann Arbor, Michigan, 48109, United States of America
| | - James Delproposto
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States of America
| | - Krishnapriya Chinnaswamy
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States of America
| | - William Clay Brown
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States of America
| | - Shuying Wang
- Department of Microbiology and Immunology, National Cheng Kung University Medical College, Tainan 701, Taiwan; and Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan 701, Taiwan
| | - Jeanne A. Stuckey
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States of America
- Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States of America
| | - Xinquan Wang
- Ministry of Education Key Laboratory of Protein Science, Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
40
|
Abstract
The drug-target residence time model was first introduced in 2006 and has been broadly adopted across the chemical biology, biotechnology and pharmaceutical communities. While traditional in vitro methods view drug-target interactions exclusively in terms of equilibrium affinity, the residence time model takes into account the conformational dynamics of target macromolecules that affect drug binding and dissociation. The key tenet of this model is that the lifetime (or residence time) of the binary drug-target complex, and not the binding affinity per se, dictates much of the in vivo pharmacological activity. Here, this model is revisited and key applications of it over the past 10 years are highlighted.
Collapse
|
41
|
Walters BT, Jensen PF, Larraillet V, Lin K, Patapoff T, Schlothauer T, Rand KD, Zhang J. Conformational Destabilization of Immunoglobulin G Increases the Low pH Binding Affinity with the Neonatal Fc Receptor. J Biol Chem 2015; 291:1817-1825. [PMID: 26627822 DOI: 10.1074/jbc.m115.691568] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Indexed: 11/06/2022] Open
Abstract
Crystallographic evidence suggests that the pH-dependent affinity of IgG molecules for the neonatal Fc receptor (FcRn) receptor primarily arises from salt bridges involving IgG histidine residues, resulting in moderate affinity at mildly acidic conditions. However, this view does not explain the diversity in affinity found in IgG variants, such as the YTE mutant (M252Y,S254T,T256E), which increases affinity to FcRn by up to 10×. Here we compare hydrogen exchange measurements at pH 7.0 and pH 5.5 with and without FcRn bound with surface plasmon resonance estimates of dissociation constants and FcRn affinity chromatography. The combination of experimental results demonstrates that differences between an IgG and its cognate YTE mutant vary with their pH-sensitive dynamics prior to binding FcRn. The conformational dynamics of these two molecules are nearly indistinguishable upon binding FcRn. We present evidence that pH-induced destabilization in the CH2/3 domain interface of IgG increases binding affinity by breaking intramolecular H-bonds and increases side-chain adaptability in sites that form intermolecular contacts with FcRn. Our results provide new insights into the mechanism of pH-dependent affinity in IgG-FcRn interactions and exemplify the important and often ignored role of intrinsic conformational dynamics in a protein ligand, to dictate affinity for biologically important receptors.
Collapse
Affiliation(s)
- Benjamin T Walters
- From the Departments of Protein Analytical Chemistry,; Early Stage Pharmaceutical Development, and.
| | - Pernille F Jensen
- the Department of Pharmacy, University of Copenhagen, 1165 Copenhagen, Denmark
| | - Vincent Larraillet
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center, DE-82377 Penzberg, Germany, and
| | - Kevin Lin
- Analytical Operations, Genentech Inc., South San Francisco, California 94080-4990
| | | | - Tilman Schlothauer
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center, DE-82377 Penzberg, Germany, and
| | - Kasper D Rand
- the Department of Pharmacy, University of Copenhagen, 1165 Copenhagen, Denmark
| | | |
Collapse
|
42
|
Yang CJ, Takeda M, Terauchi T, Jee J, Kainosho M. Differential Large-Amplitude Breathing Motions in the Interface of FKBP12–Drug Complexes. Biochemistry 2015; 54:6983-95. [DOI: 10.1021/acs.biochem.5b00820] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Chun-Jiun Yang
- Department
of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 minami-ohsawa, Hachioji,
Tokyo 192-0397, Japan
| | - Mitsuhiro Takeda
- Structural
Biology Research Center, Graduate School of Science, Nagoya University, Furo-cho,
Chikusa-ku, Nagoya 464-8602, Japan
| | - Tsutomu Terauchi
- Department
of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 minami-ohsawa, Hachioji,
Tokyo 192-0397, Japan
| | - JunGoo Jee
- Department
of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 minami-ohsawa, Hachioji,
Tokyo 192-0397, Japan
| | - Masatsune Kainosho
- Department
of Chemistry, Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 minami-ohsawa, Hachioji,
Tokyo 192-0397, Japan
- Structural
Biology Research Center, Graduate School of Science, Nagoya University, Furo-cho,
Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
43
|
Aqueous Molecular Dynamics Simulations of the M. tuberculosis Enoyl-ACP Reductase-NADH System and Its Complex with a Substrate Mimic or Diphenyl Ethers Inhibitors. Int J Mol Sci 2015; 16:23695-722. [PMID: 26457706 PMCID: PMC4632722 DOI: 10.3390/ijms161023695] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/18/2015] [Accepted: 09/08/2015] [Indexed: 12/22/2022] Open
Abstract
Molecular dynamics (MD) simulations of 12 aqueous systems of the NADH-dependent enoyl-ACP reductase from Mycobacterium tuberculosis (InhA) were carried out for up to 20–40 ns using the GROMACS 4.5 package. Simulations of the holoenzyme, holoenzyme-substrate, and 10 holoenzyme-inhibitor complexes were conducted in order to gain more insight about the secondary structure motifs of the InhA substrate-binding pocket. We monitored the lifetime of the main intermolecular interactions: hydrogen bonds and hydrophobic contacts. Our MD simulations demonstrate the importance of evaluating the conformational changes that occur close to the active site of the enzyme-cofactor complex before and after binding of the ligand and the influence of the water molecules. Moreover, the protein-inhibitor total steric (ELJ) and electrostatic (EC) interaction energies, related to Gly96 and Tyr158, are able to explain 80% of the biological response variance according to the best linear equation, pKi = 7.772 − 0.1885 × Gly96 + 0.0517 × Tyr158 (R2 = 0.80; n = 10), where interactions with Gly96, mainly electrostatic, increase the biological response, while those with Tyr158 decrease. These results will help to understand the structure-activity relationships and to design new and more potent anti-TB drugs.
Collapse
|
44
|
Hoffmann C, Castro M, Rinken A, Leurs R, Hill SJ, Vischer HF. Ligand Residence Time at G-protein-Coupled Receptors-Why We Should Take Our Time To Study It. Mol Pharmacol 2015; 88:552-60. [PMID: 26152198 DOI: 10.1124/mol.115.099671] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/07/2015] [Indexed: 02/14/2025] Open
Abstract
Over the past decade the kinetics of ligand binding to a receptor have received increasing interest. The concept of drug-target residence time is becoming an invaluable parameter for drug optimization. It holds great promise for drug development, and its optimization is thought to reduce off-target effects. The success of long-acting drugs like tiotropium support this hypothesis. Nonetheless, we know surprisingly little about the dynamics and the molecular detail of the drug binding process. Because protein dynamics and adaptation during the binding event will change the conformation of the protein, ligand binding will not be the static process that is often described. This can cause problems because simple mathematical models often fail to adequately describe the dynamics of the binding process. In this minireview we will discuss the current situation with an emphasis on G-protein-coupled receptors. These are important membrane protein drug targets that undergo conformational changes upon agonist binding to communicate signaling information across the plasma membrane of cells.
Collapse
Affiliation(s)
- C Hoffmann
- Bio-Imaging-Center/Rudolf-Virchow-Zentrum and Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (C.H.); Molecular Pharmacology Laboratory, Biofarma Research Group (GI-1685), University of Santiago de Compostela, Center for Research in Molecular Medicine and Chronic Diseases, Spain (M.C.); Institute of Chemistry, University of Tartu, Tartu, Estonia (A.R.); Amsterdam Institute for Molecules, Medicines and Systems, Division of Medicinal Chemistry, Faculty of Sciences, VU University, Amsterdam, Amsterdam, The Netherlands (R.L., H.F.V.); and Cell Signalling Research Group, School of Life Sciences, Medical School, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom (S.J.H.)
| | - M Castro
- Bio-Imaging-Center/Rudolf-Virchow-Zentrum and Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (C.H.); Molecular Pharmacology Laboratory, Biofarma Research Group (GI-1685), University of Santiago de Compostela, Center for Research in Molecular Medicine and Chronic Diseases, Spain (M.C.); Institute of Chemistry, University of Tartu, Tartu, Estonia (A.R.); Amsterdam Institute for Molecules, Medicines and Systems, Division of Medicinal Chemistry, Faculty of Sciences, VU University, Amsterdam, Amsterdam, The Netherlands (R.L., H.F.V.); and Cell Signalling Research Group, School of Life Sciences, Medical School, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom (S.J.H.)
| | - A Rinken
- Bio-Imaging-Center/Rudolf-Virchow-Zentrum and Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (C.H.); Molecular Pharmacology Laboratory, Biofarma Research Group (GI-1685), University of Santiago de Compostela, Center for Research in Molecular Medicine and Chronic Diseases, Spain (M.C.); Institute of Chemistry, University of Tartu, Tartu, Estonia (A.R.); Amsterdam Institute for Molecules, Medicines and Systems, Division of Medicinal Chemistry, Faculty of Sciences, VU University, Amsterdam, Amsterdam, The Netherlands (R.L., H.F.V.); and Cell Signalling Research Group, School of Life Sciences, Medical School, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom (S.J.H.)
| | - R Leurs
- Bio-Imaging-Center/Rudolf-Virchow-Zentrum and Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (C.H.); Molecular Pharmacology Laboratory, Biofarma Research Group (GI-1685), University of Santiago de Compostela, Center for Research in Molecular Medicine and Chronic Diseases, Spain (M.C.); Institute of Chemistry, University of Tartu, Tartu, Estonia (A.R.); Amsterdam Institute for Molecules, Medicines and Systems, Division of Medicinal Chemistry, Faculty of Sciences, VU University, Amsterdam, Amsterdam, The Netherlands (R.L., H.F.V.); and Cell Signalling Research Group, School of Life Sciences, Medical School, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom (S.J.H.)
| | - S J Hill
- Bio-Imaging-Center/Rudolf-Virchow-Zentrum and Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (C.H.); Molecular Pharmacology Laboratory, Biofarma Research Group (GI-1685), University of Santiago de Compostela, Center for Research in Molecular Medicine and Chronic Diseases, Spain (M.C.); Institute of Chemistry, University of Tartu, Tartu, Estonia (A.R.); Amsterdam Institute for Molecules, Medicines and Systems, Division of Medicinal Chemistry, Faculty of Sciences, VU University, Amsterdam, Amsterdam, The Netherlands (R.L., H.F.V.); and Cell Signalling Research Group, School of Life Sciences, Medical School, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom (S.J.H.)
| | - H F Vischer
- Bio-Imaging-Center/Rudolf-Virchow-Zentrum and Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany (C.H.); Molecular Pharmacology Laboratory, Biofarma Research Group (GI-1685), University of Santiago de Compostela, Center for Research in Molecular Medicine and Chronic Diseases, Spain (M.C.); Institute of Chemistry, University of Tartu, Tartu, Estonia (A.R.); Amsterdam Institute for Molecules, Medicines and Systems, Division of Medicinal Chemistry, Faculty of Sciences, VU University, Amsterdam, Amsterdam, The Netherlands (R.L., H.F.V.); and Cell Signalling Research Group, School of Life Sciences, Medical School, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom (S.J.H.)
| |
Collapse
|
45
|
Abstract
Many receptors display conformational flexibility, in which the binding pocket has an open inactive conformation in the absence of ligand and a tight active conformation when bound to ligand. Here we study the bacterial adhesin FimH to address the role of the inactive conformation of the pocket for initiating binding by comparing two variants: a wild-type FimH variant that is in the inactive state when not bound to its target mannose, and an engineered activated variant that is always in the active state. Not surprisingly, activated FimH has a longer lifetime and higher affinity, and bacteria expressing activated FimH bound better in static conditions. However, bacteria expressing wild-type FimH bound better in flow. Wild-type and activated FimH demonstrated similar mechanical strength, likely because mechanical force induces the active state in wild-type FimH. However, wild-type FimH displayed a faster bond association rate than activated FimH. Moreover, the ability of different FimH variants to mediate adhesion in flow reflected the fraction of FimH in the inactive state. These results demonstrate a new model for ligand-associated conformational changes that we call the kinetic-selection model, in which ligand-binding selects the faster-binding inactive state and then induces the active state. This model predicts that in physiological conditions for cell adhesion, mechanical force will drive a nonequilibrium cycle that uses the fast binding rate of the inactive state and slow unbinding rate of the active state, for a higher effective affinity than is possible at equilibrium.
Collapse
|
46
|
Alloy AP, Kayode O, Wang R, Hockla A, Soares AS, Radisky ES. Mesotrypsin Has Evolved Four Unique Residues to Cleave Trypsin Inhibitors as Substrates. J Biol Chem 2015; 290:21523-35. [PMID: 26175157 DOI: 10.1074/jbc.m115.662429] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Indexed: 01/18/2023] Open
Abstract
Human mesotrypsin is highly homologous to other mammalian trypsins, and yet it is functionally unique in possessing resistance to inhibition by canonical serine protease inhibitors and in cleaving these inhibitors as preferred substrates. Arg-193 and Ser-39 have been identified as contributors to the inhibitor resistance and cleavage capability of mesotrypsin, but it is not known whether these residues fully account for the unusual properties of mesotrypsin. Here, we use human cationic trypsin as a template for engineering a gain of catalytic function, assessing mutants containing mesotrypsin-like mutations for resistance to inhibition by bovine pancreatic trypsin inhibitor (BPTI) and amyloid precursor protein Kunitz protease inhibitor (APPI), and for the ability to hydrolyze these inhibitors as substrates. We find that Arg-193 and Ser-39 are sufficient to confer mesotrypsin-like resistance to inhibition; however, compared with mesotrypsin, the trypsin-Y39S/G193R double mutant remains 10-fold slower at hydrolyzing BPTI and 2.5-fold slower at hydrolyzing APPI. We identify two additional residues in mesotrypsin, Lys-74 and Asp-97, which in concert with Arg-193 and Ser-39 confer the full catalytic capability of mesotrypsin for proteolysis of BPTI and APPI. Novel crystal structures of trypsin mutants in complex with BPTI suggest that these four residues function cooperatively to favor conformational dynamics that assist in dissociation of cleaved inhibitors. Our results reveal that efficient inhibitor cleavage is a complex capability to which at least four spatially separated residues of mesotrypsin contribute. These findings suggest that inhibitor cleavage represents a functional adaptation of mesotrypsin that may have evolved in response to positive selection pressure.
Collapse
Affiliation(s)
- Alexandre P Alloy
- From the Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida 32224 and
| | - Olumide Kayode
- From the Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida 32224 and
| | - Ruiying Wang
- From the Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida 32224 and
| | - Alexandra Hockla
- From the Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida 32224 and
| | - Alexei S Soares
- the Biology Department, Brookhaven National Laboratory, Upton, New York 11973
| | - Evette S Radisky
- From the Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida 32224 and
| |
Collapse
|
47
|
Design strategies to address kinetics of drug binding and residence time. Bioorg Med Chem Lett 2015; 25:2019-27. [DOI: 10.1016/j.bmcl.2015.02.027] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 02/06/2015] [Accepted: 02/11/2015] [Indexed: 02/06/2023]
|
48
|
Abstract
![]()
Biological activities of enzymes, including
regulation or coordination of mechanistic stages preceding or following
the chemical step, may depend upon kinetic or equilibrium changes
in protein conformations. Exchange of more open or flexible conformational
states with more closed or constrained states can influence inhibition,
allosteric regulation, substrate recognition, formation of the Michaelis
complex, side reactions, and product release. NMR spectroscopy has
long been applied to the study of conformational dynamic processes
in enzymes because these phenomena can be characterized over multiple
time scales with atomic site resolution. Laboratory-frame spin-relaxation
measurements, sensitive to reorientational motions on picosecond–nanosecond
time scales, and rotating-frame relaxation-dispersion measurements,
sensitive to chemical exchange processes on microsecond–millisecond
time scales, provide information on both conformational distributions
and kinetics. This Account reviews NMR spin relaxation studies of
the enzymes ribonuclease HI from mesophilic (Escherichia coli) and thermophilic (Thermus thermophilus) bacteria, E. coli AlkB, and Saccharomyces cerevisiae triosephosphate isomerase to illustrate the contributions of conformational
flexibility and dynamics to diverse steps in enzyme mechanism. Spin relaxation measurements and molecular dynamics (MD) simulations
of the bacterial ribonuclease H enzymes show that the handle region,
one of three loop regions that interact with substrates, interconverts
between two conformations. Comparison of these conformations with
the structure of the complex between Homo sapiens ribonuclease H and a DNA:RNA substrate suggests that the more closed
state is inhibitory to binding. The large population of the closed
conformation in T. thermophilus ribonuclease H contributes
to the increased Michaelis constant compared with the E. coli enzyme. NMR spin relaxation and fluorescence spectroscopy have characterized
a conformational transition in AlkB between an open state, in which
the side chains of methionine residues in the active site are disordered,
and a closed state, in which these residues are ordered. The open
state is highly populated in the AlkB/Zn(II) complex, and the closed
state is highly populated in the AlkB/Zn(II)/2OG/substrate complex,
in which 2OG is the 2-oxoglutarate cosubstrate and the substrate is
a methylated DNA oligonucleotide. The equilibrium is shifted to approximately
equal populations of the two conformations in the AlkB/Zn(II)/2OG
complex. The conformational shift induced by 2OG ensures that 2OG
binds to AlkB/Zn(II) prior to the substrate. In addition, the opening
rate of the closed conformation limits premature release of substrate,
preventing generation of toxic side products by reaction with water.
Closure of active site loop 6 in triosephosphate isomerase is critical
for forming the Michaelis complex, but reopening of the loop after
the reaction is (partially) rate limiting. NMR spin relaxation and
MD simulations of triosephosphate isomerase in complex with glycerol
3-phosphate demonstrate that closure of loop 6 is a highly correlated
rigid-body motion. The MD simulations also indicate that motions of
Gly173 in the most flexible region of loop 6 contribute to opening
of the active site loop for product release. Considered together,
these three enzyme systems illustrate the power of NMR spin relaxation
investigations in providing global insights into the role of conformational
dynamic processes in the mechanisms of enzymes from initial activation
to final product release.
Collapse
Affiliation(s)
- Arthur G. Palmer
- Department of Biochemistry and
Molecular Biophysics, Columbia University, 701 West 168th Street, New York, New York 10032, United States
| |
Collapse
|
49
|
Mercier E, Girodat D, Wieden HJ. A conserved P-loop anchor limits the structural dynamics that mediate nucleotide dissociation in EF-Tu. Sci Rep 2015; 5:7677. [PMID: 25566871 PMCID: PMC4286738 DOI: 10.1038/srep07677] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 12/05/2014] [Indexed: 01/11/2023] Open
Abstract
The phosphate-binding loop (P-loop) is a conserved sequence motif found in mononucleotide-binding proteins. Little is known about the structural dynamics of this region and its contribution to the observed nucleotide binding properties. Understanding the underlying design principles is of great interest for biomolecular engineering applications. We have used rapid-kinetics measurements in vitro and molecular dynamics (MD) simulations in silico to investigate the relationship between GTP-binding properties and P-loop structural dynamics in the universally conserved Elongation Factor (EF) Tu. Analysis of wild type EF-Tu and variants with substitutions at positions in or adjacent to the P-loop revealed a correlation between P-loop flexibility and the entropy of activation for GTP dissociation. The same variants demonstrate more backbone flexibility in two N-terminal amino acids of the P-loop during force-induced EF-Tu · GTP dissociation in Steered Molecular Dynamics simulations. Amino acids Gly18 and His19 are involved in stabilizing the P-loop backbone via interactions with the adjacent helix C. We propose that these P-loop/helix C interactions function as a conserved P-loop anchoring module and identify the presence of P-loop anchors within several GTPases and ATPases suggesting their evolutionary conservation.
Collapse
Affiliation(s)
- Evan Mercier
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Dylan Girodat
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Hans-Joachim Wieden
- Alberta RNA Research and Training Institute, Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|
50
|
Yang R, Li N, Rao K, Ma M, Wang Z. Combined action of estrogen receptor agonists and antagonists in two-hybrid recombinant yeast in vitro. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 111:228-235. [PMID: 25450938 DOI: 10.1016/j.ecoenv.2014.09.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 09/21/2014] [Accepted: 09/23/2014] [Indexed: 06/04/2023]
Abstract
Estrogen receptor (ER) antagonistic chemicals in aquatic environments are believed to influence the binding of both endogenous and exogenous estrogens to ERs in aquatic organisms. Although the combined effects of estrogenic compounds have attracted much scientific concern, little work has been done on the influence of such antiestrogens on the biological effects of estrogens. This study focused on how the presence of different amounts of antagonists affects the results of ER agonist activity tests. To achieve this, three questions were stated and answered in sequence. A two-hybrid recombinant yeast assay mediated by ER was adopted, providing a single mode of action and single target of action for this study. Mixtures created by an ER agonist and three antagonists following the fixed-ratio principle were assessed. The concentration of 17β-estradiol causing maximum induction was set as the fixed dose of estrogen in the antagonist activity test (question 1). When the two classes of chemicals coexisted, antiestrogens, which as a whole behaved according to the concentration addition model (question 2), decreased the response of estrogen and compressed the concentration-response curves along the y-axis in the agonist activity test (question 3). This may cause the estradiol equivalent to be underestimated and potentially mask the action of estrogenic effects in toxicity evaluation of environmental samples.
Collapse
Affiliation(s)
- Rong Yang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Na Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Kaifeng Rao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Mei Ma
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | - Zijian Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| |
Collapse
|