1
|
Hu T, Ke X, Yu Y, Feng H, Zhang S, Cui Y, Zhang B, He M, Tang Y, Liu L, Lin Y, Ji Q, Chen C, Xu C, Hu C. NAPTUNE: nucleic acids and protein biomarkers testing via ultra-sensitive nucleases escalation. Nat Commun 2025; 16:1331. [PMID: 39900931 PMCID: PMC11790866 DOI: 10.1038/s41467-025-56653-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 01/23/2025] [Indexed: 02/05/2025] Open
Abstract
In an era where swift and precise diagnostic capabilities are paramount, we introduce NAPTUNE (Nucleic acids and Protein Biomarkers Testing via Ultra-sensitive Nucleases Escalation), an innovative platform for the amplification-free detection of nucleic acids and protein biomarkers in less than 45 minutes. Using a tandem cascade of endonucleases, NAPTUNE employs apurinic/apyrimidinic endonuclease 1 (APE1) to generate DNA guides, enabling the detection of target nucleic acids at femtomolar levels. The sensitivity is elevated to attomolar levels through the action of Pyrococcus furiosus Argonaute (PfAgo), which intensifies probe cleavage, thereby boosting both sensitivity and specificity within an innovative in-situ cascade circuit. This technology not only streamlines rapid, onsite diagnostics without pre-amplification but also demonstrates exceptional accuracy in identifying a broad spectrum of nucleic acids and crucial cancer-related protein biomarkers directly from clinical samples. The development of a portable device for point-of-care testing further underscores NAPTUNE's potential to transform diagnostic processes, especially in resource-limited environments, marking a significant diversity forward in medical diagnostics and patient care.
Collapse
Affiliation(s)
- Tao Hu
- Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China.
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore.
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, China.
| | - Xinxin Ke
- Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Yingying Yu
- Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongmei Feng
- Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, China
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Senfeng Zhang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Yinuo Cui
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Boyang Zhang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Min He
- Department of Surgical Oncology, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yinbing Tang
- Department of Surgical Oncology, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lei Liu
- Department of Pathology, Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yu Lin
- International Peace Maternity & Child Health Hospital, Shanghai Municipal Key Clinical Specialty, Institute of Embryo-Fetal Original Adult Disease, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Quanquan Ji
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Chuanxia Chen
- School of Materials Science and Engineering University of Jinan, Jinan, China.
| | | | - Chunyi Hu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Precision Medicine Translational Research Programme (TRP), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
2
|
Zheng S, Chen J, He Y, Lu J, Chen H, Liang Z, Zhang J, Liu Z, Li J, Zhuang C. The OsAGO2-OsNAC300-OsNAP module regulates leaf senescence in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2395-2411. [PMID: 39171847 PMCID: PMC11583845 DOI: 10.1111/jipb.13766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/28/2024] [Indexed: 08/23/2024]
Abstract
Leaves play a crucial role in the growth and development of rice (Oryza sativa) as sites for the production of photosynthesis. Early leaf senescence leads to substantial drops in rice yields. Whether and how DNA methylation regulates gene expression and affects leaf senescence remains elusive. Here, we demonstrate that mutations in rice ARGONAUTE 2 (OsAGO2) lead to premature leaf senescence, with chloroplasts in Osago2 having lower chlorophyll content and an abnormal thylakoid structure compared with those from wild-type plants. We show that OsAGO2 associates with a 24-nt microRNA and binds to the promoter region of OsNAC300, which causes DNA methylation and suppressed expression of OsNAC300. Overexpressing OsNAC300 causes the similar premature leaf senescence as Osago2 mutants and knocking out OsNAC300 in the Osago2 mutant background suppresses the early senescence of Osago2 mutants. Based on yeast one-hybrid, dual-luciferase, and electrophoresis mobility shift assays, we propose that OsNAC300 directly regulates transcription of the key rice aging gene NAC-like, activated by APETALA3/PISTILLATA (OsNAP) to control leaf senescence. Our results unravel a previously unknown epigenetic regulatory mechanism underlying leaf senescence in which OsAGO2-OsNAC300-OsNAP acts as a key regulatory module of leaf senescence to maintain leaf function.
Collapse
Affiliation(s)
- Shaoyan Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life SciencesSouth China Agricultural UniversityGuangzhou510642China
| | - Junyu Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life SciencesSouth China Agricultural UniversityGuangzhou510642China
| | - Ying He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life SciencesSouth China Agricultural UniversityGuangzhou510642China
| | - Jingqin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life SciencesSouth China Agricultural UniversityGuangzhou510642China
| | - Hong Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life SciencesSouth China Agricultural UniversityGuangzhou510642China
| | - Zipeng Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life SciencesSouth China Agricultural UniversityGuangzhou510642China
| | - Junqi Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life SciencesSouth China Agricultural UniversityGuangzhou510642China
| | - Zhenlan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life SciencesSouth China Agricultural UniversityGuangzhou510642China
| | - Jing Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life SciencesSouth China Agricultural UniversityGuangzhou510642China
| | - Chuxiong Zhuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life SciencesSouth China Agricultural UniversityGuangzhou510642China
| |
Collapse
|
3
|
Rahman M, Sahoo A, Almalki WH, Almujri SS, Altamimi ASA, Alhamyani A, Akhter S. Peptide spiders are emerging as novel therapeutic interventions for nucleic acid delivery. Drug Discov Today 2024; 29:104021. [PMID: 38750928 DOI: 10.1016/j.drudis.2024.104021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/27/2024] [Accepted: 05/08/2024] [Indexed: 05/21/2024]
Abstract
The FDA has approved many nucleic acid (NA)-based products. The presence of charges and biological barriers however affect stability and restrict widespread use. The electrostatic complexation of peptide with polyethylene glycol-nucleic acids (PEG-NAs) via nonreducible and reducible agents lead to three parts at one platform.. The reducible linkage made detachment of siRNA from PEG easy compared with a nonreducible linkage. A peptide spider produces a small hydrodynamic particle size, which can improve drug release and pharmacokinetics. Several examples of peptide spiders that enhance stability, protection and transfection efficiency are discussed. Moreover, this review also covers the challenges, future perspectives and unmet needs of peptide-PEG-NAs conjugates for NAs delivery.
Collapse
Affiliation(s)
- Mahfoozur Rahman
- Department of Pharmaceutical Sciences, Shalom Institute of Health & Allied Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad 211007, Uttar Pradesh, India.
| | - Ankit Sahoo
- College of Pharmacy, J.S. University, Shikohabad, Firozabad, Uttar Pradesh 283135, India
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Asir-Abha 61421, Saudi Arabia
| | | | - Abdurrahman Alhamyani
- Pharmaceuticals Chemistry Department, Faculty of Clinical Pharmacy, Al Baha University, Al Baha 65779, Saudi Arabia
| | - Sohail Akhter
- Senior Principal Scientist, Global R&D, Pfizer, Sandwich, UK
| |
Collapse
|
4
|
Spada M, Pugliesi C, Fambrini M, Pecchia S. Challenges and Opportunities Arising from Host- Botrytis cinerea Interactions to Outline Novel and Sustainable Control Strategies: The Key Role of RNA Interference. Int J Mol Sci 2024; 25:6798. [PMID: 38928507 PMCID: PMC11203536 DOI: 10.3390/ijms25126798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
The necrotrophic plant pathogenic fungus Botrytis cinerea (Pers., 1794), the causative agent of gray mold disease, causes significant losses in agricultural production. Control of this fungal pathogen is quite difficult due to its wide host range and environmental persistence. Currently, the management of the disease is still mainly based on chemicals, which can have harmful effects not only on the environment and on human health but also because they favor the development of strains resistant to fungicides. The flexibility and plasticity of B. cinerea in challenging plant defense mechanisms and its ability to evolve strategies to escape chemicals require the development of new control strategies for successful disease management. In this review, some aspects of the host-pathogen interactions from which novel and sustainable control strategies could be developed (e.g., signaling pathways, molecules involved in plant immune mechanisms, hormones, post-transcriptional gene silencing) were analyzed. New biotechnological tools based on the use of RNA interference (RNAi) are emerging in the crop protection scenario as versatile, sustainable, effective, and environmentally friendly alternatives to the use of chemicals. RNAi-based fungicides are expected to be approved soon, although they will face several challenges before reaching the market.
Collapse
Affiliation(s)
- Maria Spada
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Claudio Pugliesi
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Marco Fambrini
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Susanna Pecchia
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
5
|
Pal A, Vasudevan V, Houle F, Lantin M, Maniates K, Huberdeau MQ, Abbott A, Simard M. Defining the contribution of microRNA-specific Argonautes with slicer capability in animals. Nucleic Acids Res 2024; 52:5002-5015. [PMID: 38477356 PMCID: PMC11109967 DOI: 10.1093/nar/gkae173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
microRNAs regulate gene expression through interaction with an Argonaute protein. While some members of this protein family retain an enzymatic activity capable of cleaving RNA molecules complementary to Argonaute-bound small RNAs, the role of the slicer residues in the canonical microRNA pathway is still unclear in animals. To address this, we created Caenorhabditis elegans strains with mutated slicer residues in the endogenous ALG-1 and ALG-2, the only two slicing Argonautes essential for the miRNA pathway in this animal model. We observe that the mutation in ALG-1 and ALG-2 catalytic residues affects overall animal fitness and causes phenotypes reminiscent of miRNA defects only when grown and maintained at restrictive temperature. Furthermore, the analysis of global miRNA expression shows that the slicer residues of ALG-1 and ALG-2 contribute differentially to regulate the level of specific subsets of miRNAs in young adults. We also demonstrate that altering the catalytic tetrad of those miRNA-specific Argonautes does not result in any defect in the production of canonical miRNAs. Together, these data support that the slicer residues of miRNA-specific Argonautes contribute to maintaining levels of a set of miRNAs for optimal viability and fitness in animals particularly exposed to specific growing conditions.
Collapse
Affiliation(s)
- Anisha Pal
- CHU de Québec-Université Laval Research Center (Oncology Division), Quebec City, Quebec G1R 3S3, Canada
- Université Laval Cancer Research Centre, Quebec City, Quebec G1R 3S3, Canada
| | - Vaishnav Vasudevan
- CHU de Québec-Université Laval Research Center (Oncology Division), Quebec City, Quebec G1R 3S3, Canada
- Université Laval Cancer Research Centre, Quebec City, Quebec G1R 3S3, Canada
| | - François Houle
- CHU de Québec-Université Laval Research Center (Oncology Division), Quebec City, Quebec G1R 3S3, Canada
- Université Laval Cancer Research Centre, Quebec City, Quebec G1R 3S3, Canada
| | - Michael Lantin
- CHU de Québec-Université Laval Research Center (Oncology Division), Quebec City, Quebec G1R 3S3, Canada
- Université Laval Cancer Research Centre, Quebec City, Quebec G1R 3S3, Canada
| | - Katherine A Maniates
- Waksman Institute of Microbiology and Department of Genetics, Rutgers University, USA
| | - Miguel Quévillon Huberdeau
- CHU de Québec-Université Laval Research Center (Oncology Division), Quebec City, Quebec G1R 3S3, Canada
- Université Laval Cancer Research Centre, Quebec City, Quebec G1R 3S3, Canada
| | - Allison L Abbott
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - Martin J Simard
- CHU de Québec-Université Laval Research Center (Oncology Division), Quebec City, Quebec G1R 3S3, Canada
- Université Laval Cancer Research Centre, Quebec City, Quebec G1R 3S3, Canada
| |
Collapse
|
6
|
Mehta MJ, Kim HJ, Lim SB, Naito M, Miyata K. Recent Progress in the Endosomal Escape Mechanism and Chemical Structures of Polycations for Nucleic Acid Delivery. Macromol Biosci 2024; 24:e2300366. [PMID: 38226723 DOI: 10.1002/mabi.202300366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/22/2023] [Indexed: 01/17/2024]
Abstract
Nucleic acid-based therapies are seeing a spiralling surge. Stimuli-responsive polymers, especially pH-responsive ones, are gaining widespread attention because of their ability to efficiently deliver nucleic acids. These polymers can be synthesized and modified according to target requirements, such as delivery sites and the nature of nucleic acids. In this regard, the endosomal escape mechanism of polymer-nucleic acid complexes (polyplexes) remains a topic of considerable interest owing to various plausible escape mechanisms. This review describes current progress in the endosomal escape mechanism of polyplexes and state-of-the-art chemical designs for pH-responsive polymers. The importance is also discussed of the acid dissociation constant (i.e., pKa) in designing the new generation of pH-responsive polymers, along with assays to monitor and quantify the endosomal escape behavior. Further, the use of machine learning is addressed in pKa prediction and polymer design to find novel chemical structures for pH responsiveness. This review will facilitate the design of new pH-responsive polymers for advanced and efficient nucleic acid delivery.
Collapse
Affiliation(s)
- Mohit J Mehta
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Hyun Jin Kim
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
- Department of Biological Engineering, College of Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Sung Been Lim
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Mitsuru Naito
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kanjiro Miyata
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
7
|
Pal A, Vasudevan V, Houle F, Lantin M, Maniates KA, Quevillon Huberdeau M, Abbott A, Simard MJ. Defining the contribution of microRNA-specific slicing Argonautes in animals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.01.19.524781. [PMID: 36711744 PMCID: PMC9882343 DOI: 10.1101/2023.01.19.524781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
microRNAs regulate gene expression through interaction with an Argonaute protein family member. While some members of this protein family retain an enzymatic activity capable of cleaving RNA molecules complementary to Argonaute-bound small RNAs, the role of the slicing activity in the canonical microRNA pathway is still unclear in animals. To address the importance of slicing Argonautes in animals, we created Caenorhabditis elegans strains, carrying catalytically dead endogenous ALG-1 and ALG-2, the only two slicing Argonautes essential for the miRNA pathway in this animal model. We observe that the loss of ALG-1 and ALG-2 slicing activity affects overall animal fitness and causes phenotypes, reminiscent of miRNA defects, only when grown and maintained at restrictive temperature. Furthermore, the analysis of global miRNA expression shows that the catalytic activity of ALG-1 and ALG-2 differentially regulate the level of specific subsets of miRNAs in young adults. We also demonstrate that altering the slicing activity of those miRNA-specific Argonautes does not result in any defect in the production of canonical miRNAs. Together, these data support that the slicing activity of miRNA-specific Argonautes function to maintain the levels of a set of miRNAs for optimal viability and fitness in animals particularly exposed to specific growing conditions.
Collapse
|
8
|
Liu D, Asad M, Liao J, Chen J, Li J, Chu X, Pang S, Tariq M, Abbas AN, Yang G. The Potential Role of the Piwi Gene in the Development and Reproduction of Plutella xylostella. Int J Mol Sci 2023; 24:12321. [PMID: 37569697 PMCID: PMC10418840 DOI: 10.3390/ijms241512321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Piwi proteins play a significant role in germ cell development and the silencing of transposons in animals by associating with small non-coding RNAs known as Piwi-interacting RNAs (piRNAs). While the Piwi gene has been well characterized in various insect species, the role of the Piwi (PxPiwi) gene in the diamondback moth (Plutella xylostella), a globally distributed pest of cruciferous crops, remains unclear. Expression analysis demonstrated the upregulation of PxPiwi in pupae and testes. Furthermore, we generated a PxPiwi-knockout mutant using CRISPR/Cas9 technology, which resulted in a significantly prolonged pupal stage and the failure of pupae to develop into adults. Additionally, the knockdown of PxPiwi, through RNA interference (RNAi), led to a substantial decrease in the oviposition and hatchability of P. xylostella. These findings indicate that PxPiwi is specifically expressed and essential for the development and reproduction of P. xylostella. This is the first report indicating the involvement of the Piwi gene in the development of lepidopteran insects, except for reproduction and germ cell development, which provides a foundation for future investigations into the functions of PxPiwi.
Collapse
Affiliation(s)
- Dan Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.L.); (M.A.); (J.L.); (J.C.); (J.L.); (X.C.); (S.P.); (M.T.); (A.N.A.)
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou 350002, China
| | - Muhammad Asad
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.L.); (M.A.); (J.L.); (J.C.); (J.L.); (X.C.); (S.P.); (M.T.); (A.N.A.)
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou 350002, China
| | - Jianying Liao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.L.); (M.A.); (J.L.); (J.C.); (J.L.); (X.C.); (S.P.); (M.T.); (A.N.A.)
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou 350002, China
| | - Jing Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.L.); (M.A.); (J.L.); (J.C.); (J.L.); (X.C.); (S.P.); (M.T.); (A.N.A.)
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou 350002, China
| | - Jianwen Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.L.); (M.A.); (J.L.); (J.C.); (J.L.); (X.C.); (S.P.); (M.T.); (A.N.A.)
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou 350002, China
| | - Xuemei Chu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.L.); (M.A.); (J.L.); (J.C.); (J.L.); (X.C.); (S.P.); (M.T.); (A.N.A.)
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou 350002, China
| | - Senbo Pang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.L.); (M.A.); (J.L.); (J.C.); (J.L.); (X.C.); (S.P.); (M.T.); (A.N.A.)
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou 350002, China
| | - Mubashir Tariq
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.L.); (M.A.); (J.L.); (J.C.); (J.L.); (X.C.); (S.P.); (M.T.); (A.N.A.)
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou 350002, China
| | - Anam Noreen Abbas
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.L.); (M.A.); (J.L.); (J.C.); (J.L.); (X.C.); (S.P.); (M.T.); (A.N.A.)
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou 350002, China
| | - Guang Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (D.L.); (M.A.); (J.L.); (J.C.); (J.L.); (X.C.); (S.P.); (M.T.); (A.N.A.)
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China
- Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou 350002, China
| |
Collapse
|
9
|
Szelągowski A, Kozakiewicz M. A Glance at Biogenesis and Functionality of MicroRNAs and Their Role in the Neuropathogenesis of Parkinson's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:7759053. [PMID: 37333462 PMCID: PMC10270766 DOI: 10.1155/2023/7759053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 05/11/2023] [Accepted: 05/20/2023] [Indexed: 06/20/2023]
Abstract
MicroRNAs (miRNAs) are short, noncoding RNA transcripts. Mammalian miRNA coding sequences are located in introns and exons of genes encoding various proteins. As the central nervous system is the largest source of miRNA transcripts in living organisms, miRNA molecules are an integral part of the regulation of epigenetic activity in physiological and pathological processes. Their activity depends on many proteins that act as processors, transporters, and chaperones. Many variants of Parkinson's disease have been directly linked to specific gene mutations which in pathological conditions are cumulated resulting in the progression of neurogenerative changes. These mutations can often coexist with specific miRNA dysregulation. Dysregulation of different extracellular miRNAs has been confirmed in many studies on the PD patients. It seems reasonable to conduct further research on the role of miRNAs in the pathogenesis of Parkinson's disease and their potential use in future therapies and diagnosis of the disease. This review presents the current state of knowledge about the biogenesis and functionality of miRNAs in the human genome and their role in the neuropathogenesis of Parkinson's disease (PD)-one of the most common neurodegenerative disorders. The article also describes the process of miRNA formation which can occur in two ways-the canonical and noncanonical one. However, the main focus was on miRNA's use in in vitro and in vivo studies in the context of pathophysiology, diagnosis, and treatment of PD. Some issues, especially those regarding the usefulness of miRNAs in PD's diagnostics and especially its treatment, require further research. More standardization efforts and clinical trials on miRNAs are needed.
Collapse
Affiliation(s)
- Adam Szelągowski
- Nicolaus Copernicus University in Toruń Ludwik Rydygier Collegium Medicum in Bydgoszcz, Faculty of Health Sciences, Department of Geriatrics, Bydgoszcz, Poland
| | - Mariusz Kozakiewicz
- Nicolaus Copernicus University in Toruń Ludwik Rydygier Collegium Medicum in Bydgoszcz, Faculty of Health Sciences, Department of Geriatrics, Bydgoszcz, Poland
| |
Collapse
|
10
|
Datta D, Theile CS, Wassarman K, Qin J, Racie T, Schmidt K, Jiang Y, Sigel R, Janas MM, Egli M, Manoharan M. Rational optimization of siRNA to ensure strand bias in the interaction with the RNA-induced silencing complex. Chem Commun (Camb) 2023; 59:6347-6350. [PMID: 37144553 DOI: 10.1039/d3cc01143g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
To ensure specificity of small interfering RNAs (siRNAs), the antisense strand must be selected by the RNA-induced silencing complex (RISC). We have previously demonstrated that a 5'-morpholino-modified nucleotide at the 5'-end of the sense strand inhibits its interaction with RISC ensuring selection of the desired antisense strand. To improve this antagonizing binding property even further, a new set of morpholino-based analogues, Mo2 and Mo3, and a piperidine analogue, Pip, were designed based on the known structure of Argonaute2, the slicer enzyme component of RISC. Sense strands of siRNAs were modified with these new analogues, and the siRNAs were evaluated in vitro and in mice for RNAi activity. Our data demonstrated that Mo2 is the best RISC inhibitor among the modifications tested and that it effectively mitigates sense strand-based off-target activity of siRNA.
Collapse
Affiliation(s)
- Dhrubajyoti Datta
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, USA.
| | - Christopher S Theile
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, USA.
| | - Kelly Wassarman
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, USA.
| | - June Qin
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, USA.
| | - Tim Racie
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, USA.
| | - Karyn Schmidt
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, USA.
| | - Yongfeng Jiang
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, USA.
| | - Rachel Sigel
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, USA.
| | - Maja M Janas
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, USA.
| | - Martin Egli
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Muthiah Manoharan
- Alnylam Pharmaceuticals, 675 West Kendall Street, Cambridge, Massachusetts 02142, USA.
| |
Collapse
|
11
|
Zhao L, Chen Y, Xiao X, Gao H, Cao J, Zhang Z, Guo Z. AGO2a but not AGO2b mediates antiviral defense against infection of wild-type cucumber mosaic virus in tomato. HORTICULTURE RESEARCH 2023; 10:uhad043. [PMID: 37188058 PMCID: PMC10177002 DOI: 10.1093/hr/uhad043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/05/2023] [Indexed: 05/17/2023]
Abstract
Evolutionarily conserved antiviral RNA interference (RNAi) mediates a primary antiviral innate immunity preventing infection of broad-spectrum viruses in plants. However, the detailed mechanism in plants is still largely unknown, especially in important agricultural crops, including tomato. Varieties of pathogenic viruses evolve to possess viral suppressors of RNA silencing (VSRs) to suppress antiviral RNAi in the host. Due to the prevalence of VSRs, it is still unknown whether antiviral RNAi truly functions to prevent invasion by natural wild-type viruses in plants and animals. In this research, for the first time we applied CRISPR-Cas9 to generate ago2a, ago2b, or ago2ab mutants for two differentiated Solanum lycopersicum AGO2s, key effectors in antiviral RNAi. We found that AGO2a but not AGO2b was significantly induced to inhibit the propagation of not only VSR-deficient Cucumber mosaic virus (CMV) but also wild-type CMV-Fny in tomato; however, neither AGO2a nor AGO2b regulated disease induction after infection with either virus. Our findings firstly reveal a prominent role of AGO2a in antiviral RNAi innate immunity in tomato and demonstrate that antiviral RNAi evolves to defend against infection of natural wild-type CMV-Fny in tomato. However, AGO2a-mediated antiviral RNAi does not play major roles in promoting tolerance of tomato plants to CMV infection for maintaining health.
Collapse
Affiliation(s)
- Liling Zhao
- Vector-borne Virus Research Center, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002 China
- Key Laboratory of Agricultural Biotechnology of Yunnan Province, Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650221 China
| | - Yingfang Chen
- Vector-borne Virus Research Center, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002 China
| | - Xingming Xiao
- Vector-borne Virus Research Center, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002 China
| | - Haiying Gao
- Vector-borne Virus Research Center, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002 China
| | - Jiamin Cao
- Vector-borne Virus Research Center, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002 China
| | - Zhongkai Zhang
- Key Laboratory of Agricultural Biotechnology of Yunnan Province, Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650221 China
| | - Zhongxin Guo
- Vector-borne Virus Research Center, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002 China
| |
Collapse
|
12
|
Cubillas C, Sandoval Del Prado LE, Goldacker S, Fujii C, Pinski AN, Zielke J, Wang D. The alg-1 Gene Is Necessary for Orsay Virus Replication in Caenorhabditis elegans. J Virol 2023; 97:e0006523. [PMID: 37017532 PMCID: PMC10134801 DOI: 10.1128/jvi.00065-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/10/2023] [Indexed: 04/06/2023] Open
Abstract
The establishment of the Orsay virus-Caenorhabditis elegans infection model has enabled the identification of host factors essential for virus infection. Argonautes are RNA interacting proteins evolutionary conserved in the three domains of life that are key components of small RNA pathways. C. elegans encodes 27 argonautes or argonaute-like proteins. Here, we determined that mutation of the argonaute-like gene 1, alg-1, results in a greater than 10,000-fold reduction in Orsay viral RNA levels, which could be rescued by ectopic expression of alg-1. Mutation in ain-1, a known interactor of ALG-1 and component of the RNA-induced silencing complex, also resulted in a significant reduction in Orsay virus levels. Viral RNA replication from an endogenous transgene replicon system was impaired by the lack of ALG-1, suggesting that ALG-1 plays a role during the replication stage of the virus life cycle. Orsay virus RNA levels were unaffected by mutations in the ALG-1 RNase H-like motif that ablate the slicer activity of ALG-1. These findings demonstrate a novel function of ALG-1 in promoting Orsay virus replication in C. elegans. IMPORTANCE All viruses are obligate intracellular parasites that recruit the cellular machinery of the host they infect to support their own proliferation. We used Caenorhabditis elegans and its only known infecting virus, Orsay virus, to identify host proteins relevant for virus infection. We determined that ALG-1, a protein previously known to be important in influencing worm life span and the expression levels of thousands of genes, is required for Orsay virus infection of C. elegans. This is a new function attributed to ALG-1 that was not recognized before. In humans, it has been shown that AGO2, a close relative protein to ALG-1, is essential for hepatitis C virus replication. This demonstrates that through evolution from worms to humans, some proteins have maintained similar functions, and consequently, this suggests that studying virus infection in a simple worm model has the potential to provide novel insights into strategies used by viruses to proliferate.
Collapse
Affiliation(s)
- Ciro Cubillas
- Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Pathology & Immunology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Luis Enrique Sandoval Del Prado
- Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Pathology & Immunology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Sydney Goldacker
- Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Pathology & Immunology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Chika Fujii
- Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Pathology & Immunology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Amanda N. Pinski
- Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Pathology & Immunology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Jon Zielke
- Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Pathology & Immunology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - David Wang
- Department of Molecular Microbiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Pathology & Immunology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
13
|
Abstract
MicroRNAs (miRNAs) are small RNA molecules, with their role in gene silencing and translational repression by binding to the target mRNAs. Since it was discovered in 1993, miRNA is found in all eukaryotic cells conserved across the species. miRNA-size molecules are also known to be found in prokaryotes. Regulation of miRNAs is extensively studied for their role in biological processes as well as in development and progression of various human diseases including neurodegenerative diseases, cardiovascular disease, and cancer. miRNA-based therapy has a promising application, and with a good delivery system, miRNA therapeutics can potentially be a success. miRNAs and EVs have potential therapeutic and prognostic application in a range of disease models. This chapter summarizes miRNA biogenesis and explores their potential roles in a variety of diseases. miRNAs hold huge potential for diagnostic and prognostic biomarkers and as predictors of drug response.
Collapse
Affiliation(s)
- Anchal Vishnoi
- Department of Biophysics, University of Delhi, New Delhi, India
| | - Sweta Rani
- Department of Science, South East Technological University, Waterford, Ireland.
| |
Collapse
|
14
|
Kim IV, Demtröder T, Kuhn CD. Isolation and Library Preparation of Planarian piRNAs. Methods Mol Biol 2023; 2680:29-54. [PMID: 37428369 DOI: 10.1007/978-1-0716-3275-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
In planarian flatworms, piRNAs and SMEDWI (Schmidtea mediterranea PIWI) proteins are both essential for the animals' impressive regenerative ability and for their survival. A knockdown of SMEDWI proteins disrupts the specification of the planarian germline and impairs stem cell differentiation, resulting in lethal phenotypes. As the molecular targets of PIWI proteins and thus their biological function are determined by PIWI-bound small RNAs, termed piRNAs (for PIWI-interacting RNAs), it is imperative to study the wealth of PIWI-bound piRNAs using next-generation sequencing-based techniques. Prior to sequencing, piRNAs bound to individual SMEDWI proteins must be isolated. To that end, we established an immunoprecipitation protocol that can be applied to all planarian SMEDWI proteins. Co-immunoprecipitated piRNAs are visualized by using qualitative radioactive 5'-end labeling, which detects even trace amounts of small RNAs. Next, isolated piRNAs are subjected to a library preparation protocol that has been optimized for the efficient capture of piRNAs, whose 3'-ends carry a 2'-O-methyl modification. Successfully prepared piRNA libraries are subjected to Illumina-based next-generation sequencing. Obtained data are analyzed as presented in the accompanying manuscript.
Collapse
Affiliation(s)
- Iana V Kim
- RNA Biochemistry, University of Bayreuth, Bayreuth, Germany
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Tim Demtröder
- RNA Biochemistry, University of Bayreuth, Bayreuth, Germany
| | - Claus-D Kuhn
- RNA Biochemistry, University of Bayreuth, Bayreuth, Germany.
| |
Collapse
|
15
|
Jing X, Xu L, Huai X, Zhang H, Zhao F, Qiao Y. Genome-Wide Identification and Characterization of Argonaute, Dicer-like and RNA-Dependent RNA Polymerase Gene Families and Their Expression Analyses in Fragaria spp. Genes (Basel) 2023; 14:genes14010121. [PMID: 36672862 PMCID: PMC9859564 DOI: 10.3390/genes14010121] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/19/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
In the growth and development of plants, some non-coding small RNAs (sRNAs) not only mediate RNA interference at the post-transcriptional level, but also play an important regulatory role in chromatin modification at the transcriptional level. In these processes, the protein factors Argonaute (AGO), Dicer-like (DCL), and RNA-dependent RNA polymerase (RDR) play very important roles in the synthesis of sRNAs respectively. Though they have been identified in many plants, the information about these gene families in strawberry was poorly understood. In this study, using a genome-wide analysis and a phylogenetic approach, 13 AGO, six DCL, and nine RDR genes were identified in diploid strawberry Fragaria vesca. We also identified 33 AGO, 18 DCL, and 28 RDR genes in octoploid strawberry Fragaria × ananassa, studied the expression patterns of these genes in various tissues and developmental stages of strawberry, and researched the response of these genes to some hormones, finding that almost all genes respond to the five hormone stresses. This study is the first report of a genome-wide analysis of AGO, DCL, and RDR gene families in Fragaria spp., in which we provide basic genomic information and expression patterns for these genes. Additionally, this study provides a basis for further research on the functions of these genes and some evidence for the evolution between diploid and octoploid strawberries.
Collapse
Affiliation(s)
- Xiaotong Jing
- Laboratory of Fruit Crop Biotechnology, College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
| | - Linlin Xu
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Xinjia Huai
- Laboratory of Fruit Crop Biotechnology, College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
| | - Hong Zhang
- Laboratory of Fruit Crop Biotechnology, College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
| | - Fengli Zhao
- Laboratory of Fruit Crop Biotechnology, College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
| | - Yushan Qiao
- Laboratory of Fruit Crop Biotechnology, College of Horticulture, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
- Correspondence:
| |
Collapse
|
16
|
Jia Y, Zhao J, Yu T, Zhang X, Qi X, Hao T, Jin Z, Zhao X. PSMC3 promotes RNAi by maintaining AGO2 stability through USP14. Cell Mol Biol Lett 2022; 27:111. [PMID: 36528617 PMCID: PMC9759854 DOI: 10.1186/s11658-022-00411-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Argonaute 2 (AGO2), the only protein with catalytic activity in the human Argonaute family, is considered as a key component of RNA interference (RNAi) pathway. Here we performed a yeast two-hybrid screen using the human Argonaute 2 PIWI domain as bait to screen for new AGO2-interacting proteins and explored the specific mechanism through a series of molecular biology and biochemistry experiments. METHODS The yeast two-hybrid system was used to screen for AGO2-interacting proteins. Co-immunoprecipitation and immunofluorescence assays were used to further determine interactions and co-localization. Truncated plasmids were constructed to clarify the interaction domain. EGFP fluorescence assay was performed to determine the effect of PSMC3 on RNAi. Regulation of AGO2 protein expression and ubiquitination by PSMC3 and USP14 was examined by western blotting. RT-qPCR assays were applied to assess the level of AGO2 mRNA. Rescue assays were also performed. RESULTS We identified PSMC3 (proteasome 26S subunit, ATPase, 3) as a novel AGO2 binding partner. Biochemical and bioinformatic analysis demonstrates that this interaction is performed in an RNA-independent manner and the N-terminal coiled-coil motif of PSMC3 is required. Depletion of PSMC3 impairs the activity of the targeted cleavage mediated by small RNAs. Further studies showed that depletion of PSMC3 decreased AGO2 protein amount, whereas PSMC3 overexpression increased the expression of AGO2 at a post-translational level. Cycloheximide treatment indicated that PSMC3 depletion resulted in a decrease in cytoplasmic AGO2 amount due to an increase in AGO2 protein turnover. The absence of PSMC3 promoted ubiquitination of AGO2, resulting in its degradation by the 26S proteasome. Mechanistically, PSMC3 assists in the interaction of AGO2 with the deubiquitylase USP14(ubiquitin specific peptidase 14) and facilitates USP14-mediated deubiquitination of AGO2. As a result, AGO2 is stabilized, which then promotes RNAi. CONCLUSION Our findings demonstrate that PSMC3 plays an essential role in regulating the stability of AGO2 and thus in maintaining effective RNAi.
Collapse
Affiliation(s)
- Yan Jia
- grid.265021.20000 0000 9792 1228Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qi-Xiang- Tai Road, Tianjin, 300070 China
| | - Jianing Zhao
- grid.265021.20000 0000 9792 1228Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qi-Xiang- Tai Road, Tianjin, 300070 China
| | - Tao Yu
- grid.265021.20000 0000 9792 1228Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qi-Xiang- Tai Road, Tianjin, 300070 China
| | - Xue Zhang
- grid.265021.20000 0000 9792 1228Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qi-Xiang- Tai Road, Tianjin, 300070 China
| | - Xiaozhen Qi
- grid.265021.20000 0000 9792 1228Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qi-Xiang- Tai Road, Tianjin, 300070 China
| | - Tongxin Hao
- grid.265021.20000 0000 9792 1228Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qi-Xiang- Tai Road, Tianjin, 300070 China
| | - Zeyuan Jin
- grid.265021.20000 0000 9792 1228Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qi-Xiang- Tai Road, Tianjin, 300070 China
| | - Xiaoqing Zhao
- grid.452704.00000 0004 7475 0672Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong China
| |
Collapse
|
17
|
Sánchez-Correa MDS, Isidra-Arellano MC, Pozas-Rodríguez EA, Reyero-Saavedra MDR, Morales-Salazar A, del Castillo SMLC, Sanchez-Flores A, Jiménez-Jacinto V, Reyes JL, Formey D, Valdés-López O. Argonaute5 and its associated small RNAs modulate the transcriptional response during the rhizobia- Phaseolus vulgaris symbiosis. FRONTIERS IN PLANT SCIENCE 2022; 13:1034419. [PMID: 36466235 PMCID: PMC9714512 DOI: 10.3389/fpls.2022.1034419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/19/2022] [Indexed: 06/17/2023]
Abstract
Both plant- and rhizobia-derived small RNAs play an essential role in regulating the root nodule symbiosis in legumes. Small RNAs, in association with Argonaute proteins, tune the expression of genes participating in nodule development and rhizobial infection. However, the role of Argonaute proteins in this symbiosis has been overlooked. In this study, we provide transcriptional evidence showing that Argonaute5 (AGO5) is a determinant genetic component in the root nodule symbiosis in Phaseolus vulgaris. A spatio-temporal transcriptional analysis revealed that the promoter of PvAGO5 is active in lateral root primordia, root hairs from rhizobia-inoculated roots, nodule primordia, and mature nodules. Transcriptional analysis by RNA sequencing revealed that gene silencing of PvAGO5 affected the expression of genes involved in the biosynthesis of the cell wall and phytohormones participating in the rhizobial infection process and nodule development. PvAGO5 immunoprecipitation coupled to small RNA sequencing revealed the small RNAs bound to PvAGO5 during the root nodule symbiosis. Identification of small RNAs associated to PvAGO5 revealed miRNAs previously known to participate in this symbiotic process, further supporting a role for AGO5 in this process. Overall, the data presented shed light on the roles that PvAGO5 plays during the root nodule symbiosis in P. vulgaris.
Collapse
Affiliation(s)
- María del Socorro Sánchez-Correa
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
| | - Mariel C. Isidra-Arellano
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
| | - Eithan A. Pozas-Rodríguez
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
| | - María del Rocío Reyero-Saavedra
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
| | - Alfredo Morales-Salazar
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
| | | | - Alejandro Sanchez-Flores
- Unidad Universitaria de Secuenciación Masiva y Bioinformática, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Verónica Jiménez-Jacinto
- Unidad Universitaria de Secuenciación Masiva y Bioinformática, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Jose L. Reyes
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Damien Formey
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Oswaldo Valdés-López
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, Mexico
| |
Collapse
|
18
|
Alcaide C, Donaire L, Aranda MA. Transcriptome analyses unveiled differential regulation of AGO and DCL genes by pepino mosaic virus strains. MOLECULAR PLANT PATHOLOGY 2022; 23:1592-1607. [PMID: 35852033 PMCID: PMC9562736 DOI: 10.1111/mpp.13249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/21/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Pepino mosaic virus (PepMV) is a single-stranded (ss), positive-sense (+) RNA potexvirus that affects tomato crops worldwide. We have described an in planta antagonistic interaction between PepMV isolates of two strains in which the EU isolate represses the accumulation of the CH2 isolate during mixed infections. Reports describing transcriptomic responses to mixed infections are scant. We carried out transcriptomic analyses of tomato plants singly and mixed-infected with two PepMV isolates of both strains. Comparison of the transcriptomes of singly infected plants showed that deeper transcriptomic alterations occurred at early infection times, and also that each of the viral strains modulated the host transcriptome differentially. Mixed infections caused transcriptomic alterations similar to those for the sum of single infections at early infection times, but clearly differing at later times postinfection. We next tested the hypothesis that PepMV-EU, in either single or mixed infections, deregulates host gene expression differentially so that virus accumulation of both strains gets repressed. That seemed to be the case for the genes AGO1a, DCL2d, AGO2a, and DCL2b, which are involved in the antiviral silencing pathway and were upregulated by PepMV-EU but not by PepMV-CH2 at early times postinfection. The pattern of AGO2a expression was validated by reverse transcription-quantitative PCR in tomato and Nicotiana benthamiana plants. Using an N. benthamiana ago2 mutant line, we showed that AGO2 indeed plays an important role in the antiviral defence against PepMV, but it is not the primary determinant of the outcome of the antagonistic interaction between the two PepMV strains.
Collapse
Affiliation(s)
- Cristina Alcaide
- Department of Stress Biology and Plant PathologyCentro de Edafología y Biología Aplicada del Segura‐CSICMurciaSpain
| | - Livia Donaire
- Department of Stress Biology and Plant PathologyCentro de Edafología y Biología Aplicada del Segura‐CSICMurciaSpain
| | - Miguel A. Aranda
- Department of Stress Biology and Plant PathologyCentro de Edafología y Biología Aplicada del Segura‐CSICMurciaSpain
| |
Collapse
|
19
|
Li C, Zhang R, Zhang Z, Ren C, Wang X, He X, Mwacharo JM, Zhang X, Zhang J, Di R, Chu M. Expression characteristics of piRNAs in ovine luteal phase and follicular phase ovaries. Front Vet Sci 2022; 9:921868. [PMID: 36157184 PMCID: PMC9493120 DOI: 10.3389/fvets.2022.921868] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
PIWI-interacting RNAs (piRNAs), as a novel class of small non-coding RNAs that have been shown to be indispensable in germline integrity and stem cell development. However, the expressed characteristics and regulatory roles of piRNAs during different reproductive phases of animals remain unknown. In this study, we investigated the piRNAs expression profiles in ovaries of sheep during the luteal phase (LP) and follicular phase (FP) using the Solexa sequencing technique. A total of 85,219 and 1,27,156 piRNAs tags were identified in ovine ovaries across the two phases. Most expressed piRNAs start with uracil. piRNAs with a length of 24 nt or 27–29 nts accounted for the largest proportion. The obvious ping-pong signature appeared in the FP ovary. The piRNA clusters in the sheep ovary were unevenly distributed on the chromosomes, with high density on Chr 3 and 1. For genome distribution, piRNAs in sheep ovary were mainly derived from intron, CDS, and repeat sequence regions. Compared to the LP ovary, a greater number of expressed piRNA clusters were detected in the FP ovary. Simultaneously, we identified 271 differentially expressed (DE) piRNAs between LP and FP ovaries, with 96 piRNAs upregulated and 175 piRNAs downregulated, respectively. Functional enrichment analysis (GO and KEGG) indicated that their target genes were enriched in reproduction-related pathways including oocyte meiosis, PI3K-Akt, Wnt, and TGF-β signaling pathways. Together, our results highlighted the sequence and expression characteristics of the piRNAs in the sheep ovary, which will help us understand the roles of piRNAs in the ovine estrus cycle.
Collapse
Affiliation(s)
- Chunyan Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Rensen Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zijun Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Chunhuan Ren
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xiangyu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoyun He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Joram Mwashigadi Mwacharo
- Small Ruminant Genomics, International Center for Agricultural Research in the Dry Areas (ICARDA), Addis Ababa, Ethiopia
- Institute of Animal and Veterinary Sciences, Animal and Veterinary Sciences, SRUC and Center for Tropical Livestock Genetics and Health (CTLGH), Midlothian, United Kingdom
| | | | - Jinlong Zhang
- Tianjin Institute of Animal Sciences, Tianjin, China
| | - Ran Di
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Ran Di
| | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Mingxing Chu
| |
Collapse
|
20
|
Czaja AJ. Epigenetic Aspects and Prospects in Autoimmune Hepatitis. Front Immunol 2022; 13:921765. [PMID: 35844554 PMCID: PMC9281562 DOI: 10.3389/fimmu.2022.921765] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/12/2022] [Indexed: 12/12/2022] Open
Abstract
The observed risk of autoimmune hepatitis exceeds its genetic risk, and epigenetic factors that alter gene expression without changing nucleotide sequence may help explain the disparity. Key objectives of this review are to describe the epigenetic modifications that affect gene expression, discuss how they can affect autoimmune hepatitis, and indicate prospects for improved management. Multiple hypo-methylated genes have been described in the CD4+ and CD19+ T lymphocytes of patients with autoimmune hepatitis, and the circulating micro-ribonucleic acids, miR-21 and miR-122, have correlated with laboratory and histological features of liver inflammation. Both epigenetic agents have also correlated inversely with the stage of liver fibrosis. The reduced hepatic concentration of miR-122 in cirrhosis suggests that its deficiency may de-repress the pro-fibrotic prolyl-4-hydroxylase subunit alpha-1 gene. Conversely, miR-155 is over-expressed in the liver tissue of patients with autoimmune hepatitis, and it may signify active immune-mediated liver injury. Different epigenetic findings have been described in diverse autoimmune and non-autoimmune liver diseases, and these changes may have disease-specificity. They may also be responses to environmental cues or heritable adaptations that distinguish the diseases. Advances in epigenetic editing and methods for blocking micro-ribonucleic acids have improved opportunities to prove causality and develop site-specific, therapeutic interventions. In conclusion, the role of epigenetics in affecting the risk, clinical phenotype, and outcome of autoimmune hepatitis is under-evaluated. Full definition of the epigenome of autoimmune hepatitis promises to enhance understanding of pathogenic mechanisms and satisfy the unmet clinical need to improve therapy for refractory disease.
Collapse
Affiliation(s)
- Albert J. Czaja
- *Correspondence: Albert J. Czaja, ; orcid.org/0000-0002-5024-3065
| |
Collapse
|
21
|
Chilamkurthy R, White AA, Pater AA, Jensik PJ, Gagnon KT. Efficient Cloning and Sequence Validation of Repetitive and High GC-Content shRNAs. Hum Gene Ther 2022; 33:829-839. [PMID: 35726380 DOI: 10.1089/hum.2021.273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Short hairpin RNAs, or shRNAs, are a proven tool for gene knockdown and a promising therapeutic approach for suppression of disease-associated genes. The efficient preparation of shRNA-expressing vectors can sometimes become a bottleneck due to the complexity of shRNA hairpin sequence and structure, especially for repetitive or high GC-content targets. Here we present improved shRNA cloning and validation methods that enabled efficient and rapid cloning of several shRNAs targeting disease-associated repeat expansions, including GGGGCC, CAG, CTG, CCTG, and CGG into modified pLKO.1 vectors. Improvements included shRNA insert design and preparation, recombination-based cloning, and sequencing-based validation that included Sanger and nanopore long-read sequencing. This improved method should enable practical, efficient cloning of nearly any shRNA sequence.
Collapse
Affiliation(s)
- Ramadevi Chilamkurthy
- Southern Illinois University School of Medicine, 12249, Biochemistry & Molecular Biology, Carbondale, Illinois, United States;
| | - Adam A White
- Southern Illinois University School of Medicine, 12249, Biochemistry & Molecular Biology, Carbondale, Illinois, United States;
| | - Adrian A Pater
- Southern Illinois University Carbondale, 2254, Chemistry & Biochemistry, Carbondale, Illinois, United States;
| | - Philip J Jensik
- Southern Illinois University School of Medicine, 12249, Physiology, Carbondale, Illinois, United States;
| | - Keith T Gagnon
- Southern Illinois University Carbondale, 2254, Biochemistry & Molecular Biology, 1245 Lincoln Dr., 229 Neckers Bldg., Carbondale, Illinois, United States, 62901-6632;
| |
Collapse
|
22
|
Stoyko D, Genzor P, Haase AD. Hierarchical length and sequence preferences establish a single major piRNA 3'-end. iScience 2022; 25:104427. [PMID: 35669519 PMCID: PMC9162947 DOI: 10.1016/j.isci.2022.104427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/18/2022] [Accepted: 05/13/2022] [Indexed: 10/24/2022] Open
Abstract
PIWI-interacting RNAs (piRNAs) guard germline genomes against the deleterious action of mobile genetic elements. PiRNAs use extensive base-pairing to recognize their targets and variable 3'ends could change the specificity and efficacy of piRNA silencing. Here, we identify conserved rules that ensure the generation of a single major piRNA 3'end in flies and mice. Our data suggest that the PIWI proteins initially define a short interval on pre-piRNAs that grants access to the ZUC-processor complex. Within this Goldilocks zone, the preference to cut in front of Uridine determines the ultimate processing site. We observe a mouse-specific roadblock that relocates the Goldilocks zone and generates an opportunity for consecutive trimming. Our data reveal a conserved hierarchy between length and sequence preferences that controls the piRNA sequence space. The unanticipated precision of 3'end formation bolsters the emerging understanding that the functional piRNA sequence space is tightly controlled to ensure effective defense.
Collapse
Affiliation(s)
- Daniel Stoyko
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pavol Genzor
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Astrid D Haase
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
23
|
Czaja AJ. Examining micro-ribonucleic acids as diagnostic and therapeutic prospects in autoimmune hepatitis. Expert Rev Clin Immunol 2022; 18:591-607. [PMID: 35510750 DOI: 10.1080/1744666x.2022.2074839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Micro-ribonucleic acids modulate the immune response by affecting the post-transcriptional expression of genes that influence the proliferation and function of activated immune cells, including regulatory T cells. Individual expressions or patterns in peripheral blood and liver tissue may have diagnostic value, reflect treatment response, or become therapeutic targets. The goals of this review are to present the properties and actions of micro-ribonucleic acids, indicate the key individual expressions in autoimmune hepatitis, and describe prospective clinical applications in diagnosis and management. AREAS COVERED Abstracts were identified in PubMed using the search words "microRNAs", "microRNAs in liver disease", and "microRNAs in autoimmune hepatitis". The number of abstracts reviewed exceeded 2000, and the number of full-length articles reviewed was 108. EXPERT OPINION Individual micro-ribonucleic acids, miR-21, miR-122, and miR-155, have been associated with biochemical severity, histological grade of inflammation, and pivotal pathogenic mechanisms in autoimmune hepatitis. Antisense oligonucleotides that down-regulate deleterious individual gene expressions, engineered molecules that impair targeting of gene products, and drugs that non-selectively up-regulate the biogenesis of potentially deficient gene regulators are feasible treatment options. Micro-ribonucleic acids constitute an under-evaluated area in autoimmune hepatitis that promises to improve diagnosis, pathogenic concepts, and therapy.
Collapse
Affiliation(s)
- Albert J Czaja
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
24
|
Xu J, Li Y, Jia J, Xiong W, Zhong C, Huang G, Gou X, Meng Y, Shan W. Mutations in PpAGO3 Lead to Enhanced Virulence of Phytophthora parasitica by Activation of 25-26 nt sRNA-Associated Effector Genes. Front Microbiol 2022; 13:856106. [PMID: 35401482 PMCID: PMC8989244 DOI: 10.3389/fmicb.2022.856106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/03/2022] [Indexed: 12/04/2022] Open
Abstract
Oomycetes represent a unique group of plant pathogens that are destructive to a wide range of crops and natural ecosystems. Phytophthora species possess active small RNA (sRNA) silencing pathways, but little is known about the biological roles of sRNAs and associated factors in pathogenicity. Here we show that an AGO gene, PpAGO3, plays a major role in the regulation of effector genes hence the pathogenicity of Phytophthora parasitica. PpAGO3 was unique among five predicted AGO genes in P. parasitica, showing strong mycelium stage-specific expression. Using the CRISPR-Cas9 technology, we generated PpAGO3ΔRGG1-3 mutants that carried a deletion of 1, 2, or 3 copies of the N-terminal RGG motif (QRGGYD) but failed to obtain complete knockout mutants, which suggests its vital role in P. parasitica. These mutants showed increased pathogenicity on both Nicotiana benthamiana and Arabidopsis thaliana plants. Transcriptome and sRNA sequencing of PpAGO3ΔRGG1 and PpAGO3ΔRGG3 showed that these mutants were differentially accumulated with 25–26 nt sRNAs associated with 70 predicted cytoplasmic effector genes compared to the wild-type, of which 13 exhibited inverse correlation between gene expression and 25–26 nt sRNA accumulation. Transient overexpression of the upregulated RXLR effector genes, PPTG_01869 and PPTG_15425 identified in the mutants PpAGO3ΔRGG1 and PpAGO3ΔRGG3, strongly enhanced N. benthamiana susceptibility to P. parasitica. Our results suggest that PpAGO3 functions together with 25–26 nt sRNAs to confer dynamic expression regulation of effector genes in P. parasitica, thereby contributing to infection and pathogenicity of the pathogen.
Collapse
Affiliation(s)
- Junjie Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Yilin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
| | - Jinbu Jia
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Wenjing Xiong
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
| | - Chengcheng Zhong
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Guiyan Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, China
| | - Xiuhong Gou
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Yuling Meng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
| | - Weixing Shan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
| |
Collapse
|
25
|
Jin L, Chen M, Xiang M, Guo Z. RNAi-Based Antiviral Innate Immunity in Plants. Viruses 2022; 14:v14020432. [PMID: 35216025 PMCID: PMC8875485 DOI: 10.3390/v14020432] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/13/2022] Open
Abstract
Multiple antiviral immunities were developed to defend against viral infection in hosts. RNA interference (RNAi)-based antiviral innate immunity is evolutionarily conserved in eukaryotes and plays a vital role against all types of viruses. During the arms race between the host and virus, many viruses evolve viral suppressors of RNA silencing (VSRs) to inhibit antiviral innate immunity. Here, we reviewed the mechanism at different stages in RNAi-based antiviral innate immunity in plants and the counteractions of various VSRs, mainly upon infection of RNA viruses in model plant Arabidopsis. Some critical challenges in the field were also proposed, and we think that further elucidating conserved antiviral innate immunity may convey a broad spectrum of antiviral strategies to prevent viral diseases in the future.
Collapse
|
26
|
Sharma R, Sharma S, Thakur A, Singh A, Singh J, Nepali K, Liou JP. The Role of Epigenetic Mechanisms in Autoimmune, Neurodegenerative, Cardiovascular, and Imprinting Disorders. Mini Rev Med Chem 2022; 22:1977-2011. [PMID: 35176978 DOI: 10.2174/1389557522666220217103441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/01/2021] [Accepted: 11/11/2021] [Indexed: 11/22/2022]
Abstract
Epigenetic mutations like aberrant DNA methylation, histone modifications, or RNA silencing are found in a number of human diseases. This review article discusses the epigenetic mechanisms involved in neurodegenerative disorders, cardiovascular disorders, auto-immune disorder, and genomic imprinting disorders. In addition, emerging epigenetic therapeutic strategies for the treatment of such disorders are presented. Medicinal chemistry campaigns highlighting the efforts of the chemists invested towards the rational design of small molecule inhibitors have also been included. Pleasingly, several classes of epigenetic inhibitors, DNMT, HDAC, BET, HAT, and HMT inhibitors along with RNA based therapies have exhibited the potential to emerge as therapeutics in the longer run. It is quite hopeful that epigenetic modulator-based therapies will advance to clinical stage investigations by leaps and bounds.
Collapse
Affiliation(s)
- Ram Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Sachin Sharma
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Amandeep Thakur
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Arshdeep Singh
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Jagjeet Singh
- School of Pharmacy, University of Queensland, Brisbane, QLD, Australia.,Department of Pharmacy, Rayat-Bahara Group of Institutes, Hoshiarpur, India
| | - Kunal Nepali
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Jing Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
27
|
Kropocheva EV, Lisitskaya LA, Agapov AA, Musabirov AA, Kulbachinskiy AV, Esyunina DM. Prokaryotic Argonaute Proteins as a Tool for Biotechnology. Mol Biol 2022; 56:854-873. [PMID: 36060308 PMCID: PMC9427165 DOI: 10.1134/s0026893322060103] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 04/20/2022] [Accepted: 05/04/2022] [Indexed: 12/14/2022]
Abstract
Programmable nucleases are the most important tool for manipulating the genes and genomes of both prokaryotes and eukaryotes. Since the end of the 20th century, many approaches were developed for specific modification of the genome. The review briefly considers the advantages and disadvantages of the main genetic editors known to date. The main attention is paid to programmable nucleases from the family of prokaryotic Argonaute proteins. Argonaute proteins can recognize and cleave DNA sequences using small complementary guide molecules and play an important role in protecting prokaryotic cells from invading DNA. Argonaute proteins have already found applications in biotechnology for targeted cleavage and detection of nucleic acids and can potentially be used for genome editing.
Collapse
Affiliation(s)
- E. V. Kropocheva
- Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
| | - L. A. Lisitskaya
- Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
| | - A. A. Agapov
- Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
| | - A. A. Musabirov
- Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
| | - A. V. Kulbachinskiy
- Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
| | - D. M. Esyunina
- Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
| |
Collapse
|
28
|
Chikungunya virus non-structural protein nsP3 interacts with Aedes aegypti DEAD-box helicase RM62F. Virusdisease 2021; 32:657-665. [PMID: 34901322 DOI: 10.1007/s13337-021-00734-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/22/2021] [Indexed: 10/20/2022] Open
Abstract
The non-structural proteins (nsPs) of the chikungunya virus (CHIKV) form the virus's replication complex. They are known to participate in several functions that allow efficient replication of the virus in diverse host systems. One such function is evading the host defense system such as RNA interference (RNAi). Two nsPs of CHIKV, namely, nsP2 and nsP3, were found to suppress the host/vector RNAi machinery and exhibit RNAi suppressor activity. The present study was undertaken to identify interacting partners of CHIKV-nsP3 in Aedes aegypti. We performed pull-down assays with the mass spectrometry approach and showed the interaction of CHIKV-nsP3 with several Aedes proteins. Further co-immunoprecipitation assays revealed that CHIKV-nsP3 interacts with RM62F, a DEAD-box containing RNA known to play roles in multiple gene regulatory processes such as alternative splicing, RNA release, and also is a component of Ago2-RISC complex. Supplementary Information The online version contains supplementary material available at 10.1007/s13337-021-00734-y.
Collapse
|
29
|
Pre-Clinical and Clinical Applications of Small Interfering RNAs (siRNA) and Co-Delivery Systems for Pancreatic Cancer Therapy. Cells 2021; 10:cells10123348. [PMID: 34943856 PMCID: PMC8699513 DOI: 10.3390/cells10123348] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/17/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer (PC) is one of the leading causes of death and is the fourth most malignant tumor in men. The epigenetic and genetic alterations appear to be responsible for development of PC. Small interfering RNA (siRNA) is a powerful genetic tool that can bind to its target and reduce expression level of a specific gene. The various critical genes involved in PC progression can be effectively targeted using diverse siRNAs. Moreover, siRNAs can enhance efficacy of chemotherapy and radiotherapy in inhibiting PC progression. However, siRNAs suffer from different off target effects and their degradation by enzymes in serum can diminish their potential in gene silencing. Loading siRNAs on nanoparticles can effectively protect them against degradation and can inhibit off target actions by facilitating targeted delivery. This can lead to enhanced efficacy of siRNAs in PC therapy. Moreover, different kinds of nanoparticles such as polymeric nanoparticles, lipid nanoparticles and metal nanostructures have been applied for optimal delivery of siRNAs that are discussed in this article. This review also reveals that how naked siRNAs and their delivery systems can be exploited in treatment of PC and as siRNAs are currently being applied in clinical trials, significant progress can be made by translating the current findings into the clinical settings.
Collapse
|
30
|
Nazer E, Gómez Acuña L, Kornblihtt AR. Seeking the truth behind the myth: Argonaute tales from "nuclearland". Mol Cell 2021; 82:503-513. [PMID: 34856122 DOI: 10.1016/j.molcel.2021.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 12/19/2022]
Abstract
Argonaute proteins have been traditionally characterized as a highly evolutionary conserved family engaged in post-transcriptional gene silencing pathways. The Argonaute family is mainly grouped into the AGO and PIWI clades. The canonical role of Argonaute proteins relies on their ability to bind small-RNAs that recognize complementary sequences on target mRNAs to induce either mRNA degradation or translational repression. However, there is an increasing amount of evidence supporting that Argonaute proteins also exert multiple nuclear functions that subsequently regulate gene expression. In this line, genome-wide studies showed that members from the AGO clade regulate transcription, 3D chromatin organization, and splicing of active loci located within euchromatin. Here, we discuss recent work based on high-throughput technologies that have significantly contributed to shed light on the multivariate nuclear functions of AGO proteins in different model organisms. We also analyze data supporting that AGO proteins are able to execute these nuclear functions independently from small RNA pathways. Finally, we integrate these mechanistic insights with recent reports highlighting the clinical importance of AGO in breast and prostate cancer development.
Collapse
Affiliation(s)
- Ezequiel Nazer
- Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular and CONICET-UBA, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina.
| | - Luciana Gómez Acuña
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Alberto R Kornblihtt
- Universidad de Buenos Aires (UBA), Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología Molecular y Celular and CONICET-UBA, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| |
Collapse
|
31
|
Kunnummal M, Angelin M, Das AV. PIWI proteins and piRNAs in cervical cancer: a propitious dart in cancer stem cell-targeted therapy. Hum Cell 2021; 34:1629-1641. [PMID: 34374035 DOI: 10.1007/s13577-021-00590-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/02/2021] [Indexed: 11/27/2022]
Abstract
Any form of cancer is a result of uncontrolled cell growth caused by mutations and/or epigenetic alterations, implying that a balance of chromatin remodeling activities and epigenetic regulators is crucial to prevent the transformation of a normal cell to a cancer cell. Many of the chromatin remodelers do not recognize any specific sites on their targets and require guiding molecules to reach the respective targets. PIWI proteins and their interacting small non-coding RNAs (piRNAs) have proved to act as a guiding signal for such molecules. While epigenetic alterations lead to tumorigenesis, the stemness of cancer cells contributes to recurrence and metastasis of cancer. Various studies have propounded that the PIWI-piRNA complex also promotes stemness of cancer cells, providing new doors for target-mediated anti-cancer therapies. Despite the progress in diagnosis and development of vaccines, cervical cancer remains to be the second most prevalent cancer among women, due to the lack of cost-effective and accessible diagnostic and prevention methods. With the emergence of liquid biopsy, there is a significant demand for the ideal biomarker in the diagnosis of cancer. PIWI and piRNAs have been recommended to serve as prognostic and diagnostic markers, to differentiate early and later stages of cancer, including cervical cancer. This review discusses how PIWIs and piRNAs are involved in disease progression as well as their potential role in diagnostics and therapeutics in cervical cancer.
Collapse
Affiliation(s)
- Midhunaraj Kunnummal
- Cancer Research Program-12, Rajiv Gandhi Centre for Biotechnology, Thycaud, Thiruvananthapuram, Kerala, P.O. 695 014, India
- Manipal Academy of Higher Education, Tiger Circle Road, Madhav Nagar, Manipal, Karnataka, 576104, India
| | - Mary Angelin
- Cancer Research Program-12, Rajiv Gandhi Centre for Biotechnology, Thycaud, Thiruvananthapuram, Kerala, P.O. 695 014, India
| | - Ani V Das
- Cancer Research Program-12, Rajiv Gandhi Centre for Biotechnology, Thycaud, Thiruvananthapuram, Kerala, P.O. 695 014, India.
| |
Collapse
|
32
|
Fontenla S, Rinaldi G, Tort JF. Lost and Found: Piwi and Argonaute Pathways in Flatworms. Front Cell Infect Microbiol 2021; 11:653695. [PMID: 34123869 PMCID: PMC8191739 DOI: 10.3389/fcimb.2021.653695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
Platyhelminthes comprise one of the major phyla of invertebrate animals, inhabiting a wide range of ecosystems, and one of the most successful in adapting to parasitic life. Small non-coding RNAs have been implicated in regulating complex developmental transitions in model parasitic species. Notably, parasitic flatworms have lost Piwi RNA pathways but gained a novel Argonaute gene. Herein, we analyzed, contrasted and compared the conservation of small RNA pathways among several free-living species (a paraphyletic group traditionally known as ‘turbellarians’) and parasitic species (organized in the monophyletic clade Neodermata) to disentangle possible adaptations during the transition to parasitism. Our findings showed that complete miRNA and RNAi pathways are present in all analyzed free-living flatworms. Remarkably, whilst all ‘turbellarians’ have Piwi proteins, these were lost in parasitic Neodermantans. Moreover, two clusters of Piwi class Argonaute genes are present in all ‘turbellarians’. Interestingly, we identified a divergent Piwi class Argonaute in free living flatworms exclusively, which we named ‘Fliwi’. In addition, other key proteins of the Piwi pathways were conserved in ‘turbellarians’, while none of them were detected in Neodermatans. Besides Piwi and the canonical Argonaute proteins, a flatworm-specific class of Argonautes (FL-Ago) was identified in the analyzed species confirming its ancestrallity to all Platyhelminthes. Remarkably, this clade was expanded in parasitic Neodermatans, but not in free-living species. These phyla-specific Argonautes showed lower sequence conservation compared to other Argonaute proteins, suggesting that they might have been subjected to high evolutionary rates. However, key residues involved in the interaction with the small RNA and mRNA cleavage in the canonical Argonautes were more conserved in the FL-Agos than in the Piwi Argonautes. Whether this is related to specialized functions and adaptations to parasitism in Neodermatans remains unclear. In conclusion, differences detected in gene conservation, sequence and structure of the Argonaute family suggest tentative biological and evolutionary diversifications that are unique to Platyhelminthes. The remarkable divergencies in the small RNA pathways between free-living and parasitic flatworms indicate that they may have been involved in the adaptation to parasitism of Neodermatans.
Collapse
Affiliation(s)
- Santiago Fontenla
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UDELAR), Montevideo, Uruguay
| | | | - Jose F Tort
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UDELAR), Montevideo, Uruguay
| |
Collapse
|
33
|
Boisguérin P, Konate K, Josse E, Vivès E, Deshayes S. Peptide-Based Nanoparticles for Therapeutic Nucleic Acid Delivery. Biomedicines 2021; 9:583. [PMID: 34065544 PMCID: PMC8161338 DOI: 10.3390/biomedicines9050583] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/06/2021] [Accepted: 05/17/2021] [Indexed: 12/17/2022] Open
Abstract
Gene therapy offers the possibility to skip, repair, or silence faulty genes or to stimulate the immune system to fight against disease by delivering therapeutic nucleic acids (NAs) to a patient. Compared to other drugs or protein treatments, NA-based therapies have the advantage of being a more universal approach to designing therapies because of the versatility of NA design. NAs (siRNA, pDNA, or mRNA) have great potential for therapeutic applications for an immense number of indications. However, the delivery of these exogenous NAs is still challenging and requires a specific delivery system. In this context, beside other non-viral vectors, cell-penetrating peptides (CPPs) gain more and more interest as delivery systems by forming a variety of nanocomplexes depending on the formulation conditions and the properties of the used CPPs/NAs. In this review, we attempt to cover the most important biophysical and biological aspects of non-viral peptide-based nanoparticles (PBNs) for therapeutic nucleic acid formulations as a delivery system. The most relevant peptides or peptide families forming PBNs in the presence of NAs described since 2015 will be presented. All these PBNs able to deliver NAs in vitro and in vivo have common features, which are characterized by defined formulation conditions in order to obtain PBNs from 60 nm to 150 nm with a homogeneous dispersity (PdI lower than 0.3) and a positive charge between +10 mV and +40 mV.
Collapse
Affiliation(s)
| | | | | | | | - Sébastien Deshayes
- PhyMedExp, University of Montpellier, INSERM U1046, CNRS UMR 9214, 34295 Montpellier, France; (P.B.); (K.K.); (E.J.); (E.V.)
| |
Collapse
|
34
|
Alkhouri N, Reddy GK, Lawitz E. Oligonucleotide-Based Therapeutics: An Emerging Strategy for the Treatment of Chronic Liver Diseases. Hepatology 2021; 73:1581-1593. [PMID: 32978989 DOI: 10.1002/hep.31569] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/21/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Naim Alkhouri
- Texas Liver Institute, University of Texas Health San Antonio, San Antonio, TX
| | - G Kesava Reddy
- Texas Liver Institute, University of Texas Health San Antonio, San Antonio, TX
| | - Eric Lawitz
- Texas Liver Institute, University of Texas Health San Antonio, San Antonio, TX
| |
Collapse
|
35
|
Employing siRNA tool and its delivery platforms in suppressing cisplatin resistance: Approaching to a new era of cancer chemotherapy. Life Sci 2021; 277:119430. [PMID: 33789144 DOI: 10.1016/j.lfs.2021.119430] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/10/2021] [Accepted: 03/23/2021] [Indexed: 12/18/2022]
Abstract
Although chemotherapy is a first option in treatment of cancer patients, drug resistance has led to its failure, requiring strategies to overcome it. Cancer cells are capable of switching among molecular pathways to ensure their proliferation and metastasis, leading to their resistance to chemotherapy. The molecular pathways and mechanisms that are responsible for cancer progression and growth, can be negatively affected for providing chemosensitivity. Small interfering RNA (siRNA) is a powerful tool extensively applied in cancer therapy in both pre-clinical (in vitro and in vivo) and clinical studies because of its potential in suppressing tumor-promoting factors. As such oncogene pathways account for cisplatin (CP) resistance, their targeting by siRNA plays an important role in reversing chemoresistance. In the present review, application of siRNA for suppressing CP resistance is discussed. The first priority of using siRNA is sensitizing cancer cells to CP-mediated apoptosis via down-regulating survivin, ATG7, Bcl-2, Bcl-xl, and XIAP. The cancer stem cell properties and related molecular pathways including ID1, Oct-4 and nanog are inhibited by siRNA in CP sensitivity. Cell cycle arrest and enhanced accumulation of CP in cancer cells can be obtained using siRNA. In overcoming siRNA challenges such as off-targeting feature and degradation, carriers including nanoparticles and biological carriers have been applied. These carriers are important in enhancing cellular accumulation of siRNA, elevating gene silencing efficacy and reversing CP resistance.
Collapse
|
36
|
|
37
|
Cooper AMW, Song H, Shi X, Yu Z, Lorenzen M, Silver K, Zhang J, Zhu KY. Characterization, expression patterns, and transcriptional responses of three core RNA interference pathway genes from Ostrinia nubilalis. JOURNAL OF INSECT PHYSIOLOGY 2021; 129:104181. [PMID: 33359365 DOI: 10.1016/j.jinsphys.2020.104181] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/17/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
RNA interference (RNAi) is commonly used in the laboratory to analyze gene function, and RNAi-based pest management strategies are now being employed. Unfortunately, RNAi is hindered by inefficient and highly-variable results when different insects are targeted, especially lepidopterans, such as the European corn borer (ECB), Ostrinia nubilalis (Lepidoptera: Crambidae). Previous efforts to achieve RNAi-mediated gene suppression in ECB revealed low RNAi efficiency with both double-stranded RNA (dsRNA) injection and ingestion. One mechanism that can affect RNAi efficiency in insects is the expression and function of core RNAi pathway genes, such as those encoding Argonaut 2 (Ago2), Dicer 2 (Dcr2), and a dsRNA binding protein (R2D2). To determine if deficiencies in these core RNAi pathway genes contribute to low RNAi efficiency in ECB, full-length complementary DNAs encoding OnAgo2, OnDcr2, and OnR2D2 were cloned, sequenced, and characterized. A comparison of domain architecture suggested that all three predicted proteins contained the necessary domains to function. However, a comparison of evolutionary distances revealed potentially important variations in the first RNase III domain of OnDcr2, the double-stranded RNA binding domains of OnR2D2, and both the PAZ and PIWI domains of OnAgo2, which may indicate functional differences in enzymatic activity between species. Expression analysis indicated that transcripts for all three genes were expressed in all developmental stages and tissues investigated. Interestingly, the introduction of non-target dsRNA into ECB second-instar larvae via microinjection did not affect OnAgo2, OnDcr2, or OnR2D2 expression. In contrast, ingestion of the same dsRNAs resulted in upregulation of OnDcr2 but downregulation of OnR2D2. The unexpected transcriptional responses of the core machinery and the divergence in amino-acid sequence between specific domains in each core RNAi protein may possibly contribute to low RNAi efficiency in ECB. Understanding the contributions of different RNAi pathway components is critical to adapting this technology for use in controlling lepidopteran pests that exhibit low RNAi efficiency.
Collapse
Affiliation(s)
- Anastasia M W Cooper
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA.
| | - Huifang Song
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA; Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Xuekai Shi
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA; Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Zhitao Yu
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA
| | - Marcé Lorenzen
- Department of Entomology and Plant Pathology, Campus Box 7613, North Carolina State University, Raleigh, NC 27695, USA
| | - Kristopher Silver
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA
| | - Jianzhen Zhang
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA; Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Kun Yan Zhu
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
38
|
Alkhouri N, Gawrieh S. A perspective on RNA interference-based therapeutics for metabolic liver diseases. Expert Opin Investig Drugs 2021; 30:237-244. [PMID: 33470860 DOI: 10.1080/13543784.2021.1879792] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Therapeutic oligonucleotides have emerged as a promising new class of drug that could silence undruggable targets; they can potentially treat metabolic liver diseases such as nonalcoholic fatty liver disease (NAFLD), hereditary hemochromatosis and alpha 1 antitrypsin deficiency.Areas covered: This article illuminates the mechanism of action of, and drug delivery approaches for therapeutic oligonucleotides such as antisense oligonucleotides (ASOs), short interfering RNAs (siRNAs), and MicroRNAs (miRs). We reveal why the liver is the ideal organ for therapeutic oligonucleotides, discuss its unique architecture, and shed light on those susceptible molecular targets that can be modulated. We also examine preclinical and clinical data on the utility of oligonucleotides in silencing the expression of genes responsible for metabolic liver diseases.Expert opinion: The liver has numerous susceptible molecular therapeutic targets; hence, metabolic liver diseases can be treated effectively by modulating these targets via novel therapeutic oligonucleotides. Undoubtedly, these exciting developments integrate well with precision medicine progress. Specific therapeutic oligonucleotides can be designed based on the exact underlying molecular mechanism of the disease. So, there is a justification for furthering the development of therapeutic oligonucleotides for metabolic liver diseases. Safety concerns such as immunogenicity and off-target effects will however require careful monitoring.
Collapse
Affiliation(s)
- Naim Alkhouri
- Department of Hepatology, Arizona Liver Health, Chandler, AZ, USA
| | - Samer Gawrieh
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
39
|
Nganso BT, Sela N, Soroker V. A genome-wide screening for RNAi pathway proteins in Acari. BMC Genomics 2020; 21:791. [PMID: 33183236 PMCID: PMC7659050 DOI: 10.1186/s12864-020-07162-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 10/19/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND RNA interference (RNAi) is a highly conserved, sequence-specific gene silencing mechanism present in Eukaryotes. Three RNAi pathways are known, namely micro-RNA (miRNA), piwi-interacting RNA (piRNA) and short interfering RNA (siRNA). However, little knowledge exists about the proteins involved in these pathways in Acari. Moreover, variable successes has been obtained in gene knockdown via siRNA pathway in their functional genomics and management. We hypothesized that the clue may be in the variability of the composition and the efficacy of siRNA machinery among Acari. RESULTS Both comparative genomic analyses and domain annotation suggest that all the analyzed species have homologs of putative core proteins that mediate cleaving of targeted genes via the three RNAi pathways. We identified putative homologs of Caenorhabditis elegans RNA-dependent RNA polymerase (RdRP) protein in all species though no secondary Argonaute homologs that operate with this protein in siRNA amplification mechanism were found, suggesting that the siRNA amplification mechanism present in Acari may be distinct from that described in C. elegans. Moreover, the genomes of these species do not encode homologs of C. elegans systemic RNAi defective-1 (Sid-1) protein that mediate silencing of the mRNA target throughout the treated organisms suggesting that the phenomena of systemic RNAi that has been reported in some Acari species probably occur through a different mechanism. However, homologs of putative RNAi spreading defective-3 (Rsd-3) protein and scavenger receptors namely Eater and SR-CI that mediate endocytosis cellular update of dsRNA in C. elegans and Drosophila melanogaster were found in Acari genomes. This result suggests that cellular dsRNA uptake in Acari is endocytosis-dependent. Detailed phylogenetic analyses of core RNAi pathway proteins in the studied species revealed that their evolution is compatible with the proposed monophyletic evolution of this group. CONCLUSIONS Our analyses have revealed the potential activity of all three pathways in Acari. Still, much experimental work remains to be done to confirm the mechanisms behind these pathways in particular those that govern systemic/parental RNAi and siRNA amplification in Acari. Disclosure of these mechanisms will facilitate the development of new and specific management tools for the harmful species and enrichment of the beneficial species.
Collapse
Affiliation(s)
- Beatrice T Nganso
- Institute of Plant Protection, Agricultural Research Organization, the Volcani Center, P.O.B 15159, 7505101, Rishon leZion, Israel
| | - Noa Sela
- Institute of Plant Protection, Agricultural Research Organization, the Volcani Center, P.O.B 15159, 7505101, Rishon leZion, Israel
| | - Victoria Soroker
- Institute of Plant Protection, Agricultural Research Organization, the Volcani Center, P.O.B 15159, 7505101, Rishon leZion, Israel.
| |
Collapse
|
40
|
Silva-Martins G, Bolaji A, Moffett P. What does it take to be antiviral? An Argonaute-centered perspective on plant antiviral defense. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6197-6210. [PMID: 32835379 DOI: 10.1093/jxb/eraa377] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
RNA silencing is a major mechanism of constitutive antiviral defense in plants, mediated by a number of proteins, including the Dicer-like (DCL) and Argonaute (AGO) endoribonucleases. Both DCL and AGO protein families comprise multiple members. In particular, the AGO protein family has expanded considerably in different plant lineages, with different family members having specialized functions. Although the general mode of action of AGO proteins is well established, the properties that make different AGO proteins more or less efficient at targeting viruses are less well understood. In this report, we review methodologies used to study AGO antiviral activity and current knowledge about which AGO family members are involved in antiviral defense. In addition, we discuss what is known about the different properties of AGO proteins thought to be associated with this function.
Collapse
Affiliation(s)
| | - Ayooluwa Bolaji
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Peter Moffett
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
41
|
Saito-Tarashima N. [Chemical Approaches for RNAi Drug Development]. YAKUGAKU ZASSHI 2020; 140:1259-1268. [PMID: 32999205 DOI: 10.1248/yakushi.20-00157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
RNA interference (RNAi) is the standard method of suppressing gene expression because of its target specificity, potency, and ability to silence the expression of virtually any gene. Using 21-mer small interfering RNA (siRNA) is the general approach for inducing RNAi, as siRNA can be easily prepared using a DNA/RNA synthesizer. Synthetic siRNA can be chemically modified to increase the potency of RNAi activity and abrogate innate immune stimulation. However, designing chemically modified siRNA requires substantial experimentation. A practical method for understanding the interaction of siRNA and RNAi-related proteins and how modifications affect RNA-protein interactions is therefore needed. Plasmid DNA (pDNA) expressing short hairpin RNA (shRNA) can also be used to induce RNAi. pDNA produces numerous shRNAs that induce RNAi with potent and longterm RNAi activity, even if only one pDNA molecule is delivered to the nucleus. However, this approach has some drawbacks with regard to its therapeutic application, such as a low pDNA transfection efficiency due to its huge molecular size and innate immune responses induced by extra genes, such as CpG motifs. To overcome these issues with RNAi inducers (siRNA and pDNA), our group developed some chemical approaches using chemically modified oligonucleotides. This article focuses on our two original approaches. The first involves the groove modification of siRNA duplexes to understand siRNA-protein interactions using 7-bromo-7-deazaadenosine and 3-bromo-3-deazaadenosine as chemical probes, while the second involves the generation of RNAi medicine using chemically modified DNA, known as an intelligent shRNA expression device (iRed).
Collapse
|
42
|
Tao H, Xu H, Zuo L, Li C, Qiao G, Guo M, Zheng L, Leitgeb M, Lin X. Exosomes-coated bcl-2 siRNA inhibits the growth of digestive system tumors both in vitro and in vivo. Int J Biol Macromol 2020; 161:470-480. [DOI: 10.1016/j.ijbiomac.2020.06.052] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/30/2020] [Accepted: 06/07/2020] [Indexed: 12/21/2022]
|
43
|
Gong M, Wang Y, Zhang J, Zhao Y, Wan J, Shang J, Yang R, Wu Y, Li Y, Tan Q, Bao D. Chilling Stress Triggers VvAgo1-Mediated miRNA-Like RNA Biogenesis in Volvariella volvacea. Front Microbiol 2020; 11:523593. [PMID: 33042047 PMCID: PMC7522536 DOI: 10.3389/fmicb.2020.523593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 08/21/2020] [Indexed: 12/11/2022] Open
Abstract
In Volvariella volvacea, an important species of edible mushroom, cryogenic autolysis is a typical phenomenon that occurs during abnormal metabolism. Analysis of gene expression profiling and qPCR showed that chilling stress (CS) significantly and continuously upregulated only one type of Argonaute in V. volvacea, i.e., VvAgo1. Structural and evolutionary analysis revealed that VvAgo1 belongs to the Ago-like family, and its evolution has involved gene duplication, subsequent gene loss, and purifying selection. Analysis of its interaction network and expression suggested that CS triggers VvAgo1-mediated miRNA-like RNA (milRNA) biogenesis in V. volvacea V23 but not in VH3 (a composite mutant strain from V23 with improved CS resistance). Small RNA sequencing and qPCR analysis confirmed that CS triggered the increased milRNA expression in V23 and not in VH3. The predicted target genes of the increased milRNAs were enriched in several pathways, such as signal transduction and ubiquitination. Heatmap analysis showed that CS altered the expression profile of milRNAs with their target genes related to signal transduction and ubiquitination in V23. Combined analysis of transcriptome and proteome data confirmed that most of the target genes of the increased milRNAs were not translated into proteins. Our observations indicate that CS might trigger VvAgo1-mediated RNAi to facilitate the cryogenic autolysis of V. volvacea.
Collapse
Affiliation(s)
- Ming Gong
- Key Laboratory of Edible Fungi Resources and Utilization (South), National Engineering Research Center of Edible Fungi, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China.,Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| | - Ying Wang
- Key Laboratory of Edible Fungi Resources and Utilization (South), National Engineering Research Center of Edible Fungi, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jinsong Zhang
- Key Laboratory of Edible Fungi Resources and Utilization (South), National Engineering Research Center of Edible Fungi, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yan Zhao
- Key Laboratory of Edible Fungi Resources and Utilization (South), National Engineering Research Center of Edible Fungi, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jianing Wan
- Key Laboratory of Edible Fungi Resources and Utilization (South), National Engineering Research Center of Edible Fungi, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Junjun Shang
- Key Laboratory of Edible Fungi Resources and Utilization (South), National Engineering Research Center of Edible Fungi, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Ruiheng Yang
- Key Laboratory of Edible Fungi Resources and Utilization (South), National Engineering Research Center of Edible Fungi, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yingying Wu
- Key Laboratory of Edible Fungi Resources and Utilization (South), National Engineering Research Center of Edible Fungi, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yan Li
- Key Laboratory of Edible Fungi Resources and Utilization (South), National Engineering Research Center of Edible Fungi, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Qi Tan
- Key Laboratory of Edible Fungi Resources and Utilization (South), National Engineering Research Center of Edible Fungi, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Dapeng Bao
- Key Laboratory of Edible Fungi Resources and Utilization (South), National Engineering Research Center of Edible Fungi, Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
44
|
Zhang X, Bai J, Yin H, Long L, Zheng Z, Wang Q, Chen F, Yu X, Zhou Y. Exosomal miR-1255b-5p targets human telomerase reverse transcriptase in colorectal cancer cells to suppress epithelial-to-mesenchymal transition. Mol Oncol 2020; 14:2589-2608. [PMID: 32679610 PMCID: PMC7530775 DOI: 10.1002/1878-0261.12765] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 06/04/2020] [Accepted: 06/14/2020] [Indexed: 12/27/2022] Open
Abstract
Cancer cells undergo epithelial‐to‐mesenchymal transition (EMT) in response to hypoxia. Exosomes produced in tumor microenvironments carry microRNAs (miRNAs) that affect proliferation, metastasis, and EMT. Hypoxic regulation of EMT is associated with telomerase content and stability, but the underlying mechanisms remain unclear. We identified a targeting relationship between tumor‐suppressing miR‐1255b‐5p and human telomerase reverse transcriptase (hTERT) via clinical screening of serum samples in colorectal cancer (CRC) patients. EMT suppression via exosomal miR‐1255b‐5p delivery was investigated by assessing hTERT expression, Wnt/β‐catenin signaling, and telomerase activity. We revealed that hypoxia directly affected exosomal miR‐1255b‐5p content, the delivery of which between CRC cells significantly impacted cell invasion, EMT‐related protein expression, and telomerase stability. Specifically, miR‐1255b‐5p suppressed EMT by inhibiting Wnt/β‐catenin activation via hTERT inhibition. Hypoxia reduced exosomal miR‐1255b‐5p secretion by CRC cells, thereby increasing hTERT expression to enhance EMT and telomerase activity. In a mouse CRC model, hypoxic exosomes containing overexpressed miR‐1255b‐5p attenuated EMT, tumor progression, and liver metastasis. Our results suggest the antitumor role of miR‐1255b‐5p and its involvement in the regulation of hTERT‐mediated EMT. We propose that miRNA‐targeted regulation of telomerase is a promising therapeutic strategy for future CRC treatment.
Collapse
Affiliation(s)
- Xue Zhang
- Department of Radiation Oncology and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.,Hubei Cancer Clinical Study Center, Wuhan, China
| | - Jian Bai
- Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.,Hubei Cancer Clinical Study Center, Wuhan, China.,Department of Gastrointestinal Surgery & Department of Gastric and Colorectal Surgical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hang Yin
- Department of Radiation Oncology and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.,Hubei Cancer Clinical Study Center, Wuhan, China
| | - Long Long
- Department of Radiation Oncology and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.,Hubei Cancer Clinical Study Center, Wuhan, China
| | - Zhewen Zheng
- Department of Radiation Oncology and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.,Hubei Cancer Clinical Study Center, Wuhan, China
| | - Qingqing Wang
- Department of Radiation Oncology and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.,Hubei Cancer Clinical Study Center, Wuhan, China
| | - Fengxia Chen
- Department of Radiation Oncology and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.,Hubei Cancer Clinical Study Center, Wuhan, China
| | - Xiaoyan Yu
- Department of Radiation Oncology and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.,Hubei Cancer Clinical Study Center, Wuhan, China
| | - Yunfeng Zhou
- Department of Radiation Oncology and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China.,Hubei Key Laboratory of Tumor Biological Behaviors, Wuhan, China.,Hubei Cancer Clinical Study Center, Wuhan, China
| |
Collapse
|
45
|
Chitara D, Anand R, Sanjeev BS. Molecular crowding and conserved interface interactions of human argonaute protein-miRNA-target mRNA complex. J Biomol Struct Dyn 2020; 39:6370-6383. [PMID: 32752954 DOI: 10.1080/07391102.2020.1800511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
RNA interference (RNAi) has been of interest given its role in genetic interference. More significantly, recent studies provided evidence of it being one of the antiviral response mechanisms in humans. Argonaute (Ago) protein plays a central role in the RNA-induced silencing complex (RISC) that cleaves mRNA. Molecular crowding in cellular systems is known to impact dynamics and interactions of biomolecules. We present here the results from our molecular dynamics simulations based study on the interfaces between Ago, miRNA and Target RNA in presence of molecular crowders. 6 simulations at 3 crowder concentrations, including the aqueous condition, were performed. Our results indicate that crowding changes the dynamics, makes the complex stabler and aids binding free energy. More importantly, features conserved across the three systems and amino acid residues with crowding resilient interactions with RNA are identified.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Dheeraj Chitara
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, India
| | - Richa Anand
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, India
| | - B S Sanjeev
- Department of Applied Sciences, Indian Institute of Information Technology, Allahabad, India
| |
Collapse
|
46
|
Cui DL, Meng JY, Ren XY, Yue JJ, Fu HY, Huang MT, Zhang QQ, Gao SJ. Genome-wide identification and characterization of DCL, AGO and RDR gene families in Saccharum spontaneum. Sci Rep 2020; 10:13202. [PMID: 32764599 PMCID: PMC7413343 DOI: 10.1038/s41598-020-70061-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 07/23/2020] [Indexed: 12/25/2022] Open
Abstract
RNA silencing is a conserved mechanism in eukaryotic organisms to regulate gene expression. Argonaute (AGO), Dicer-like (DCL) and RNA-dependent RNA polymerase (RDR) proteins are critical components of RNA silencing, but how these gene families’ functions in sugarcane were largely unknown. Most stress-resistance genes in modern sugarcane cultivars (Saccharum spp.) were originated from wild species of Saccharum, for example S. spontaneum. Here, we used genome-wide analysis and a phylogenetic approach to identify four DCL, 21 AGO and 11 RDR genes in the S. spontaneum genome (termed SsDCL, SsAGO and SsRDR, respectively). Several genes, particularly some of the SsAGOs, appeared to have undergone tandem or segmental duplications events. RNA-sequencing data revealed that four SsAGO genes (SsAGO18c, SsAGO18b, SsAGO10e and SsAGO6b) and three SsRDR genes (SsRDR2b, SsRDR2d and SsRDR3) tended to have preferential expression in stem tissue, while SsRDR5 was preferentially expressed in leaves. qRT-PCR analysis showed that SsAGO10c, SsDCL2 and SsRDR6b expressions were strongly upregulated, whereas that of SsAGO18b, SsRDR1a, SsRDR2b/2d and SsRDR5 was significantly depressed in S. spontaneum plants exposed to PEG-induced dehydration stress or infected with Xanthomonas albilineans, causal agent of leaf scald disease of sugarcane, suggesting that these genes play important roles in responses of S. spontaneum to biotic and abiotic stresses.
Collapse
Affiliation(s)
- Dong-Li Cui
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Jian-Yu Meng
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Xiao-Yan Ren
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Jing-Jing Yue
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Hua-Ying Fu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Mei-Ting Huang
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Qing-Qi Zhang
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| | - San-Ji Gao
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| |
Collapse
|
47
|
The Role of MicroRNA in the Airway Surface Liquid Homeostasis. Int J Mol Sci 2020; 21:ijms21113848. [PMID: 32481719 PMCID: PMC7312818 DOI: 10.3390/ijms21113848] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 02/06/2023] Open
Abstract
Mucociliary clearance, mediated by a coordinated function of cilia bathing in the airway surface liquid (ASL) on the surface of airway epithelium, protects the host from inhaled pathogens and is an essential component of the innate immunity. ASL is composed of the superficial mucus layer and the deeper periciliary liquid. Ion channels, transporters, and pumps coordinate the transcellular and paracellular movement of ions and water to maintain the ASL volume and mucus hydration. microRNA (miRNA) is a class of non-coding, short single-stranded RNA regulating gene expression by post-transcriptional mechanisms. miRNAs have been increasingly recognized as essential regulators of ion channels and transporters responsible for ASL homeostasis. miRNAs also influence the airway host defense. We summarize the most up-to-date information on the role of miRNAs in ASL homeostasis and host-pathogen interactions in the airway and discuss concepts for miRNA-directed therapy.
Collapse
|
48
|
Niedojadło K, Kupiecka M, Kołowerzo-Lubnau A, Lenartowski R, Niedojadło J, Bednarska-Kozakiewicz E. Dynamic distribution of ARGONAUTE1 (AGO1) and ARGONAUTE4 (AGO4) in Hyacinthus orientalis L. pollen grains and pollen tubes growing in vitro. PROTOPLASMA 2020; 257:793-805. [PMID: 31916009 DOI: 10.1007/s00709-019-01463-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
The transcriptional and posttranscriptional AGO-mediated control of gene expression may play important roles during male monocot gametophyte development. In this report, we demonstrated dynamic changes in the spatiotemporal distribution of AGO1 and AGO4, which are key proteins of the RNA-induced silencing complex (RISC) in Hyacinthus orientalis male gametophyte development. During maturation of the bicellular pollen grains and in vitro pollen tube growth, the pattern of AGO1 localization was correlated with previously observed transcriptional activity of the cells. During the period of high transcriptional activity, AGO1 is associated with chromatin while the clustered distribution of AGO1 in the interchromatin areas is accompanied by condensation of chromatin and the gradual transcriptional silencing of both cells in mature, dehydrated pollen. During pollen tube growth and the restarting of RNA synthesis in the vegetative nucleus, AGO1 is dispersed in the chromatin. Additionally, the gradual increase in the cytoplasmic pool of AGO1 in the elongating pollen tube indicates the activation of the posttranscriptional gene silencing (PTGS) pathway. During pollen tube growth in the generative cell and in the sperm cells, AGO1 is present mainly in the areas between highly condensed chromatin clusters. Changes in the distribution of AGO4 that indicated the possibility of spatiotemporal organization in the RNA-directed DNA methylation (RdDM) process (cytoplasmic and nuclear steps) were also observed during hyacinth male gametophyte development. Based on our findings, we propose that in the germinating pollen tube, the cytoplasmic assembly of AGO4/siRNA takes place and that the mature complexes could be transported to the nucleus to carry out their function during the next steps of pollen tube growth.
Collapse
Affiliation(s)
- Katarzyna Niedojadło
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Torun, Poland.
- Centre For Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100, Torun, Poland.
| | - Małgorzata Kupiecka
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Torun, Poland
| | - Agnieszka Kołowerzo-Lubnau
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Torun, Poland
- Centre For Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100, Torun, Poland
| | - Robert Lenartowski
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Torun, Poland
| | - Janusz Niedojadło
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Torun, Poland
| | - Elżbieta Bednarska-Kozakiewicz
- Department of Cellular and Molecular Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100, Torun, Poland
| |
Collapse
|
49
|
Wu J, Yang J, Cho WC, Zheng Y. Argonaute proteins: Structural features, functions and emerging roles. J Adv Res 2020; 24:317-324. [PMID: 32455006 PMCID: PMC7235612 DOI: 10.1016/j.jare.2020.04.017] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/23/2020] [Accepted: 04/26/2020] [Indexed: 02/07/2023] Open
Abstract
Argonaute proteins are highly conserved in almost all organisms. They not only involve in the biogenesis of small regulatory RNAs, but also regulate gene expression and defend against foreign pathogen invasion via small RNA-mediated gene silencing pathways. As a key player in these pathways, the abnormal expression and/or mis-modifications of Argonaute proteins lead to the disorder of small RNA biogenesis and functions, thus influencing multiply biological processes and disease development, especially cancer. In this review, we focus on the post-translational modifications and novel functions of Argonaute proteins in alternative splicing, host defense and genome editing.
Collapse
Key Words
- AKT3, AKT serine/threonine kinase 3
- Argonaute protein
- CCR4-NOT, carbon catabolite repressor 4-negative on TATA
- CRISPR-Cas9, clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (cas9)
- DGCR8, DiGeorge syndrome critical region gene 8
- EGFR, epidermal growth factor receptor
- GW182 protein, glycine/tryptophan repeats-containing protein with molecular weight of 182 kDa
- H3K9, histone H3 lysine 9
- Hsp70/90, heat shock proteins 70/90
- JEV, Japanese encephalitis virus
- KRAS, Kirsten rat sarcoma oncogene
- P4H, prolyl 4-hydroxylase
- PAM, protospacer adjacent motif
- PAZ, PIWI-argonaute-zwille
- PIWI, P-element-induced wimpy testis
- Post-translational modification
- RISCs, small RNA-induced silencing complexes
- Small RNA
- TRBP, the transactivating response (TAR) RNA-binding protein
- TRIM71/LIN41, tripartite motif-containing 71, known as Lin41
- WSSV, white spot syndrome virus
- miRNAs
- piRNAs
Collapse
Affiliation(s)
- Jin'en Wu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou 730046, China
| | - Jing Yang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou 730046, China
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong Special Administrative Region
| | - Yadong Zheng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou 730046, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| |
Collapse
|
50
|
Karamyshev AL, Tikhonova EB, Karamysheva ZN. Translational Control of Secretory Proteins in Health and Disease. Int J Mol Sci 2020; 21:ijms21072538. [PMID: 32268488 PMCID: PMC7177344 DOI: 10.3390/ijms21072538] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/30/2020] [Accepted: 04/03/2020] [Indexed: 12/12/2022] Open
Abstract
Secretory proteins are synthesized in a form of precursors with additional sequences at their N-terminal ends called signal peptides. The signal peptides are recognized co-translationally by signal recognition particle (SRP). This interaction leads to targeting to the endoplasmic reticulum (ER) membrane and translocation of the nascent chains into the ER lumen. It was demonstrated recently that in addition to a targeting function, SRP has a novel role in protection of secretory protein mRNAs from degradation. It was also found that the quality of secretory proteins is controlled by the recently discovered Regulation of Aberrant Protein Production (RAPP) pathway. RAPP monitors interactions of polypeptide nascent chains during their synthesis on the ribosomes and specifically degrades their mRNAs if these interactions are abolished due to mutations in the nascent chains or defects in the targeting factor. It was demonstrated that pathological RAPP activation is one of the molecular mechanisms of human diseases associated with defects in the secretory proteins. In this review, we discuss recent progress in understanding of translational control of secretory protein biogenesis on the ribosome and pathological consequences of its dysregulation in human diseases.
Collapse
Affiliation(s)
- Andrey L. Karamyshev
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
- Correspondence: (A.L.K.); (Z.N.K.); Tel.: +1-806-743-4102 (A.L.K.); +1-806-834-5075 (Z.N.K.)
| | - Elena B. Tikhonova
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| | - Zemfira N. Karamysheva
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
- Correspondence: (A.L.K.); (Z.N.K.); Tel.: +1-806-743-4102 (A.L.K.); +1-806-834-5075 (Z.N.K.)
| |
Collapse
|