1
|
Driver T, Mountney M, Wang J, Ortmann L, Al-Haddad A, Berrah N, Bostedt C, Champenois EG, DiMauro LF, Duris J, Garratt D, Glownia JM, Guo Z, Haxton D, Isele E, Ivanov I, Ji J, Kamalov A, Li S, Lin MF, Marangos JP, Obaid R, O'Neal JT, Rosenberger P, Shivaram NH, Wang AL, Walter P, Wolf TJA, Wörner HJ, Zhang Z, Bucksbaum PH, Kling MF, Landsman AS, Lucchese RR, Emmanouilidou A, Marinelli A, Cryan JP. Attosecond delays in X-ray molecular ionization. Nature 2024; 632:762-767. [PMID: 39169246 DOI: 10.1038/s41586-024-07771-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 07/01/2024] [Indexed: 08/23/2024]
Abstract
The photoelectric effect is not truly instantaneous but exhibits attosecond delays that can reveal complex molecular dynamics1-7. Sub-femtosecond-duration light pulses provide the requisite tools to resolve the dynamics of photoionization8-12. Accordingly, the past decade has produced a large volume of work on photoionization delays following single-photon absorption of an extreme ultraviolet photon. However, the measurement of time-resolved core-level photoionization remained out of reach. The required X-ray photon energies needed for core-level photoionization were not available with attosecond tabletop sources. Here we report measurements of the X-ray photoemission delay of core-level electrons, with unexpectedly large delays, ranging up to 700 as in NO near the oxygen K-shell threshold. These measurements exploit attosecond soft X-ray pulses from a free-electron laser to scan across the entire region near the K-shell threshold. Furthermore, we find that the delay spectrum is richly modulated, suggesting several contributions, including transient trapping of the photoelectron owing to shape resonances, collisions with the Auger-Meitner electron that is emitted in the rapid non-radiative relaxation of the molecule and multi-electron scattering effects. The results demonstrate how X-ray attosecond experiments, supported by comprehensive theoretical modelling, can unravel the complex correlated dynamics of core-level photoionization.
Collapse
Affiliation(s)
- Taran Driver
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
| | - Miles Mountney
- Department of Physics and Astronomy, University College London, London, UK
| | - Jun Wang
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Department of Applied Physics, Stanford University, Stanford, CA, USA
| | - Lisa Ortmann
- Department of Physics, The Ohio State University, Columbus, OH, USA
| | | | - Nora Berrah
- Department of Physics, University of Connecticut, Storrs, CT, USA
| | - Christoph Bostedt
- Paul Scherrer Institute, Villigen, Switzerland
- LUXS Laboratory for Ultrafast X-ray Sciences, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Elio G Champenois
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Louis F DiMauro
- Department of Physics, The Ohio State University, Columbus, OH, USA
| | - Joseph Duris
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Douglas Garratt
- The Blackett Laboratory, Imperial College London, London, UK
| | - James M Glownia
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Zhaoheng Guo
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Department of Applied Physics, Stanford University, Stanford, CA, USA
| | | | - Erik Isele
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Department of Applied Physics, Stanford University, Stanford, CA, USA
| | - Igor Ivanov
- Center for Relativistic Laser Science, Institute for Basic Science, Gwangju, Korea
| | - Jiabao Ji
- Laboratorium für Physikalische Chemie, ETH Zurich, Zurich, Switzerland
| | - Andrei Kamalov
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Siqi Li
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Ming-Fu Lin
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Jon P Marangos
- The Blackett Laboratory, Imperial College London, London, UK
| | - Razib Obaid
- Department of Physics, University of Connecticut, Storrs, CT, USA
| | - Jordan T O'Neal
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Philipp Rosenberger
- Physics Department, Ludwig-Maximilians-Universität, Munich, Germany
- Max Planck Institute of Quantum Optics, Garching, Germany
| | - Niranjan H Shivaram
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, USA
- Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, IN, USA
| | - Anna L Wang
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Peter Walter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Thomas J A Wolf
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Hans Jakob Wörner
- Laboratorium für Physikalische Chemie, ETH Zurich, Zurich, Switzerland
| | - Zhen Zhang
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Philip H Bucksbaum
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Department of Applied Physics, Stanford University, Stanford, CA, USA
| | - Matthias F Kling
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Physics Department, Ludwig-Maximilians-Universität, Munich, Germany
- Max Planck Institute of Quantum Optics, Garching, Germany
| | | | - Robert R Lucchese
- Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, IN, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Agostino Marinelli
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
| | - James P Cryan
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
| |
Collapse
|
2
|
Boyer A, Loriot V, Nandi S, Lépine F. Probing Photoionization Dynamics in Acetylene with Angle-Resolved Attosecond Interferometry. J Phys Chem A 2024; 128:840-847. [PMID: 38277696 DOI: 10.1021/acs.jpca.3c06533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
Photoionization of acetylene by extreme ultraviolet light results in a stand-alone contribution from the outermost valence orbital, followed by well-separated photoelectron bands from deeper molecular orbitals. This makes acetylene an ideal candidate for probing the photoionization dynamics in polyatomic molecules free from the spectral congestion often arising after interaction with an attosecond pulse train. Here, using an angle-resolved attosecond interferometric technique, we extract the photoionization time delays for the outermost valence orbital in acetylene relative to an atomic target, namely argon. Compared to argon, the photoemission from the acetylene molecule is found to be advanced by almost 28 attoseconds. The strong variation of the relative photoionization time delays as a function of the photoemission angle was interpreted using an analytical model based on semiclassical approximations to be the interplay between different short-range potentials along and perpendicular to the molecular axis. Our results highlight the importance of using attosecond time-resolved measurements to probe the nonspherical nature of the molecular potential, even in the case of relatively small, linear systems.
Collapse
Affiliation(s)
- Alexie Boyer
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, Villeurbanne F-69622, France
| | - Vincent Loriot
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, Villeurbanne F-69622, France
| | - Saikat Nandi
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, Villeurbanne F-69622, France
| | - Franck Lépine
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, Villeurbanne F-69622, France
| |
Collapse
|
3
|
Fu Y, Wang B, Wang K, Tang X, Li B, Yin Z, Han J, Lin CD, Jin C. Controlling laser-dressed resonance line shape using attosecond extreme-ultraviolet pulse with a spectral minimum. Proc Natl Acad Sci U S A 2024; 121:e2307836121. [PMID: 38170749 PMCID: PMC10786267 DOI: 10.1073/pnas.2307836121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
High-harmonic generation from a gas target exhibits sharp spectral features and rapid phase variation near the Cooper minimum. By applying spectral filtering, shaped isolated attosecond pulses can be generated where the pulse is split into two in the time domain. Using such shaped extreme-ultraviolet (XUV) pulses, we theoretically study attosecond transient absorption (ATA) spectra of helium [Formula: see text] autoionizing state which is resonantly coupled to the [Formula: see text] dark state by a time-delayed infrared laser. Our simulations show that the asymmetric [Formula: see text] Fano line shape can be readily tuned into symmetric Lorentzian within the time delay of a few tens of attoseconds. Such efficient control is due to the destructive interference in the generation of the [Formula: see text] state when it is excited by a strongly shaped XUV pulse. This is to be compared to prior experiments where tuning the line shape of a Fano resonance would take tens of femtoseconds. We also show that the predicted ATA spectral line shape can be observed experimentally after propagation in a gas medium. Our results suggest that strongly shaped attosecond XUV pulses offer the opportunity for controlling and probing fine features of narrow resonances on the few-ten attoseconds timescale.
Collapse
Affiliation(s)
- Yong Fu
- Department of Applied Physics, Nanjing University of Science and Technology, Nanjing, Jiangsu210094, China
| | - Bincheng Wang
- Department of Applied Physics, Nanjing University of Science and Technology, Nanjing, Jiangsu210094, China
| | - Kan Wang
- Department of Applied Physics, Nanjing University of Science and Technology, Nanjing, Jiangsu210094, China
| | - Xiangyu Tang
- Department of Applied Physics, Nanjing University of Science and Technology, Nanjing, Jiangsu210094, China
| | - Baochang Li
- Department of Applied Physics, Nanjing University of Science and Technology, Nanjing, Jiangsu210094, China
| | - Zhiming Yin
- Department of Applied Physics, Nanjing University of Science and Technology, Nanjing, Jiangsu210094, China
| | - Jiaxin Han
- Department of Applied Physics, Nanjing University of Science and Technology, Nanjing, Jiangsu210094, China
| | - C. D. Lin
- Department of Physics, James R. Macdonald Laboratory, Kansas State University, Manhattan, KS66506
| | - Cheng Jin
- Department of Applied Physics, Nanjing University of Science and Technology, Nanjing, Jiangsu210094, China
- Ministry of Industry and Information Technology Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing University of Science and Technology, Nanjing, Jiangsu210094, China
| |
Collapse
|
4
|
Jiang W, Armstrong GSJ, Han L, Xu Y, Zuo Z, Tong J, Lu P, Dahlström JM, Ueda K, Brown AC, van der Hart HW, Gong X, Wu J. Resolving Quantum Interference Black Box through Attosecond Photoionization Spectroscopy. PHYSICAL REVIEW LETTERS 2023; 131:203201. [PMID: 38039486 DOI: 10.1103/physrevlett.131.203201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/30/2023] [Accepted: 10/13/2023] [Indexed: 12/03/2023]
Abstract
Multiphoton light-matter interactions invoke a so-called "black box" in which the experimental observations contain the quantum interference between multiple pathways. Here, we employ polarization-controlled attosecond photoelectron metrology with a partial wave manipulator to deduce the pathway interference within this quantum 'black box" for the two-photon ionization of neon atoms. The angle-dependent and attosecond time-resolved photoelectron spectra are measured across a broad energy range. Two-photon phase shifts for each partial wave are reconstructed through the comprehensive analysis of these photoelectron spectra. We resolve the quantum interference between the degenerate p→d→p and p→s→p two-photon ionization pathways, in agreement with our theoretical simulations. Our approach thus provides an attosecond time-resolved microscope to look inside the "black box" of pathway interference in ultrafast dynamics of atoms, molecules, and condensed matter.
Collapse
Affiliation(s)
- Wenyu Jiang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Gregory S J Armstrong
- Centre for Light-Matter Interaction, School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, Northern Ireland, United Kingdom
| | - Lulu Han
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Yidan Xu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Zitan Zuo
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Jihong Tong
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Peifen Lu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | | | - Kiyoshi Ueda
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
- Department of Chemistry, Tohoku University, Sendai 980-8578, Japan
| | - Andrew C Brown
- Centre for Light-Matter Interaction, School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, Northern Ireland, United Kingdom
| | - Hugo W van der Hart
- Centre for Light-Matter Interaction, School of Mathematics and Physics, Queen's University Belfast, Belfast BT7 1NN, Northern Ireland, United Kingdom
| | - Xiaochun Gong
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Jian Wu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401121, China
- CAS Center for Excellence in Ultra-intense Laser Science, Shanghai 201800, China
| |
Collapse
|
5
|
Silva REF, Ivanov M, Jiménez-Galán Á. All-optical valley switch and clock of electronic dephasing. OPTICS EXPRESS 2022; 30:30347-30355. [PMID: 36242140 DOI: 10.1364/oe.460291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/30/2022] [Indexed: 06/16/2023]
Abstract
2D materials with broken inversion symmetry posses an extra degree of freedom, the valley pseudospin, that labels in which of the two energy-degenerate crystal momenta, K or K', the conducting carriers are located. It has been shown that shining circularly-polarized light allows to achieve close to 100% of valley polarization, opening the way to valley-based transistors. Yet, switching of the valley polarization is still a key challenge for the practical implementation of such devices due to the short valley lifetimes. Recent progress in ultrashort laser technology now allows to produce trains of attosecond pulses with controlled phase and polarization between the pulses. Taking advantage of such technology, we introduce a coherent control protocol to turn on, off and switch the valley polarization at faster timescales than electron-hole decoherence and valley depolarization, that is, an ultrafast optical valley switch. We theoretically demonstrate the protocol for hBN and MoS2 monolayers calculated from first principles. Additionally, using two time-delayed linearly-polarized pulses with perpendicular polarization, we show that we can extract the electronic dephasing time T2 from the valley Hall conductivity.
Collapse
|
6
|
Borrego-Varillas R, Lucchini M, Nisoli M. Attosecond spectroscopy for the investigation of ultrafast dynamics in atomic, molecular and solid-state physics. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:066401. [PMID: 35294930 DOI: 10.1088/1361-6633/ac5e7f] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
Since the first demonstration of the generation of attosecond pulses (1 as = 10-18s) in the extreme-ultraviolet spectral region, several measurement techniques have been introduced, at the beginning for the temporal characterization of the pulses, and immediately after for the investigation of electronic and nuclear ultrafast dynamics in atoms, molecules and solids with unprecedented temporal resolution. The attosecond spectroscopic tools established in the last two decades, together with the development of sophisticated theoretical methods for the interpretation of the experimental outcomes, allowed to unravel and investigate physical processes never observed before, such as the delay in photoemission from atoms and solids, the motion of electrons in molecules after prompt ionization which precede any notable nuclear motion, the temporal evolution of the tunneling process in dielectrics, and many others. This review focused on applications of attosecond techniques to the investigation of ultrafast processes in atoms, molecules and solids. Thanks to the introduction and ongoing developments of new spectroscopic techniques, the attosecond science is rapidly moving towards the investigation, understanding and control of coupled electron-nuclear dynamics in increasingly complex systems, with ever more accurate and complete investigation techniques. Here we will review the most common techniques presenting the latest results in atoms, molecules and solids.
Collapse
Affiliation(s)
- Rocío Borrego-Varillas
- Institute for Photonics and Nanotechnologies (IFN), Consiglio Nazionale delle Ricerche (CNR), Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Matteo Lucchini
- Institute for Photonics and Nanotechnologies (IFN), Consiglio Nazionale delle Ricerche (CNR), Piazza Leonardo da Vinci 32, 20133 Milano, Italy
- Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Mauro Nisoli
- Institute for Photonics and Nanotechnologies (IFN), Consiglio Nazionale delle Ricerche (CNR), Piazza Leonardo da Vinci 32, 20133 Milano, Italy
- Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
7
|
Autuori A, Platzer D, Lejman M, Gallician G, Maëder L, Covolo A, Bosse L, Dalui M, Bresteau D, Hergott JF, Tcherbakoff O, Marroux HJB, Loriot V, Lépine F, Poisson L, Taïeb R, Caillat J, Salières P. Anisotropic dynamics of two-photon ionization: An attosecond movie of photoemission. SCIENCE ADVANCES 2022; 8:eabl7594. [PMID: 35319974 PMCID: PMC8942362 DOI: 10.1126/sciadv.abl7594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Imaging in real time the complete dynamics of a process as fundamental as photoemission has long been out of reach because of the difficulty of combining attosecond temporal resolution with fine spectral and angular resolutions. Here, we achieve full decoding of the intricate angle-dependent dynamics of a photoemission process in helium, spectrally and anisotropically structured by two-photon transitions through intermediate bound states. Using spectrally and angularly resolved attosecond electron interferometry, we characterize the complex-valued transition probability amplitude toward the photoelectron quantum state. This allows reconstructing in space, time, and energy the complete formation of the photoionized wave packet.
Collapse
Affiliation(s)
- Alice Autuori
- Université Paris-Saclay, CEA, CNRS, LIDYL,91191 Gif-sur-Yvette, France
| | - Dominique Platzer
- Université Paris-Saclay, CEA, CNRS, LIDYL,91191 Gif-sur-Yvette, France
| | - Mariusz Lejman
- Université Paris-Saclay, CEA, CNRS, LIDYL,91191 Gif-sur-Yvette, France
| | | | - Lucie Maëder
- Université Paris-Saclay, CEA, CNRS, LIDYL,91191 Gif-sur-Yvette, France
| | - Antoine Covolo
- Université Paris-Saclay, CEA, CNRS, LIDYL,91191 Gif-sur-Yvette, France
| | - Lea Bosse
- Université Paris-Saclay, CEA, CNRS, LIDYL,91191 Gif-sur-Yvette, France
| | - Malay Dalui
- Université Paris-Saclay, CEA, CNRS, LIDYL,91191 Gif-sur-Yvette, France
| | - David Bresteau
- Université Paris-Saclay, CEA, CNRS, LIDYL,91191 Gif-sur-Yvette, France
| | | | | | | | - Vincent Loriot
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, 69622 Villeurbanne, France
| | - Franck Lépine
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, 69622 Villeurbanne, France
| | - Lionel Poisson
- Université Paris-Saclay, CEA, CNRS, LIDYL,91191 Gif-sur-Yvette, France
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d’Orsay,91405 Orsay, France
| | - Richard Taïeb
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement, 75005 Paris, France
| | - Jérémie Caillat
- Sorbonne Université, CNRS, Laboratoire de Chimie Physique-Matière et Rayonnement, 75005 Paris, France
| | - Pascal Salières
- Université Paris-Saclay, CEA, CNRS, LIDYL,91191 Gif-sur-Yvette, France
| |
Collapse
|
8
|
Cattaneo L, Pedrelli L, Bello RY, Palacios A, Keathley PD, Martín F, Keller U. Isolating Attosecond Electron Dynamics in Molecules where Nuclei Move Fast. PHYSICAL REVIEW LETTERS 2022; 128:063001. [PMID: 35213184 DOI: 10.1103/physrevlett.128.063001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/13/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Capturing electronic dynamics in real time has been the ultimate goal of attosecond science since its beginning. While for atomic targets the existing measurement techniques have been thoroughly validated, in molecules there are open questions due to the inevitable copresence of moving nuclei, which are not always mere spectators of the phototriggered electron dynamics. Previous work has shown that not only can nuclear motion affect the way electrons move in a molecule, but it can also lead to contradictory interpretations depending on the chosen experimental approach. In this Letter we investigate how nuclear motion affects and eventually distorts the electronic dynamics measured by using two of the most popular attosecond techniques, reconstruction of attosecond beating by interference of two-photon transitions and attosecond streaking. Both methods are employed, in combination with ab initio theoretical calculations, to retrieve photoionization delays in the dissociative ionization of H_{2}, H_{2}→H^{+}+H+e^{-}, in the region of the Q_{1} series of autoionizing states, where nuclear motion plays a prominent role. We find that the experimental reconstruction of attosecond beating by interference of two-photon transitions results are very sensitive to bond softening around the Q_{1} threshold (27.8 eV), even at relatively low infrared (IR) intensity (I_{0}∼1.4×10^{11} W/cm^{2}), due to the long duration of the probe pulse that is inherent to this technique. Streaking, on the other hand, seems to be a better choice to isolate attosecond electron dynamics, since shorter pulses can be used, thus reducing the role of bond softening. This conclusion is supported by very good agreement between our streaking measurements and the results of accurate theoretical calculations. Additionally, the streaking technique offers the necessary energy resolution to accurately retrieve the fast-oscillating phase of the photoionization matrix elements, an essential requirement for extending this technique to even more complicated molecular targets.
Collapse
Affiliation(s)
- Laura Cattaneo
- Physics Department, Institute of Quantum Electronics, ETH Zürich, 8093 Zürich, Switzerland
| | - Luca Pedrelli
- Physics Department, Institute of Quantum Electronics, ETH Zürich, 8093 Zürich, Switzerland
| | - Roger Y Bello
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley California 94720, USA
| | - Alicia Palacios
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Phillip D Keathley
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Fernando Martín
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Ursula Keller
- Physics Department, Institute of Quantum Electronics, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
9
|
Influence of shape resonances on the angular dependence of molecular photoionization delays. Nat Commun 2021; 12:7343. [PMID: 34930902 PMCID: PMC8688504 DOI: 10.1038/s41467-021-27360-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 11/03/2021] [Indexed: 11/22/2022] Open
Abstract
Characterizing time delays in molecular photoionization as a function of the ejected electron emission direction relative to the orientation of the molecule and the light polarization axis provides unprecedented insights into the attosecond dynamics induced by extreme ultraviolet or X-ray one-photon absorption, including the role of electronic correlation and continuum resonant states. Here, we report completely resolved experimental and computational angular dependence of single-photon ionization delays in NO molecules across a shape resonance, relying on synchrotron radiation and time-independent ab initio calculations. The angle-dependent time delay variations of few hundreds of attoseconds, resulting from the interference of the resonant and non-resonant contributions to the dynamics of the ejected electron, are well described using a multichannel Fano model where the time delay of the resonant component is angle-independent. Comparing these results with the same resonance computed in e-NO+ scattering highlights the connection of photoionization delays with Wigner scattering time delays.
Collapse
|
10
|
Paliwal P, Blech A, Koch CP, Narevicius E. Fano interference in quantum resonances from angle-resolved elastic scattering. Nat Commun 2021; 12:7249. [PMID: 34903758 PMCID: PMC8668881 DOI: 10.1038/s41467-021-27556-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022] Open
Abstract
Asymmetric spectral line shapes are a hallmark of interference of a quasi-bound state with a continuum of states. Such line shapes are well known for multichannel systems, for example, in photoionization or Feshbach resonances in molecular scattering. On the other hand, in resonant single channel scattering, the signature of such interference may disappear due to the orthogonality of partial waves. Here, we show that probing the angular dependence of the cross section allows us to unveil asymmetric Fano profiles also in a single channel shape resonance. We observe a shift in the peak of the resonance profile in the elastic collisions between metastable helium and deuterium molecules with detection angle, in excellent agreement with theoretical predictions from full quantum scattering calculations. Using a model description for the partial wave interference, we can disentangle the resonant and background contributions and extract the relative phase responsible for the characteristic Fano-like profiles from our experimental measurements.
Collapse
Affiliation(s)
- Prerna Paliwal
- Department of Chemical and Biological Physics, Weizmann Institute of Science, 76100, Rehovot, Israel
| | - Alexander Blech
- Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Christiane P Koch
- Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany.
| | - Edvardas Narevicius
- Department of Chemical and Biological Physics, Weizmann Institute of Science, 76100, Rehovot, Israel.
| |
Collapse
|
11
|
Borràs VJ, González-Vázquez J, Argenti L, Martín F. Molecular-Frame Photoelectron Angular Distributions of CO in the Vicinity of Feshbach Resonances: An XCHEM Approach. J Chem Theory Comput 2021; 17:6330-6339. [PMID: 34528784 DOI: 10.1021/acs.jctc.1c00480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The advent of ultrashort XUV pulses is pushing for the development of accurate theoretical calculations to describe ionization of molecules in regions where electron correlation plays a significant role. Here, we present an extension of the XCHEM methodology to evaluate laboratory- and molecular-frame photoelectron angular distributions in the region where Feshbach resonances are expected to appear. The performance of the method is demonstrated in the CO molecule, for which information on Feshbach resonances is very scarce. We show that photoelectron angular distributions are dramatically affected by the presence of resonances, to the point that they can completely reverse the preferred electron emission direction observed in direct nonresonant photoionization. This is the consequence of significant changes in the electronic structure of the molecule when resonances decay, an effect that is mostly driven by electron correlation in the ionization continuum. The present methodology can thus be helpful for the interpretation of angularly resolved photoionization time delays in this and more complex molecules.
Collapse
Affiliation(s)
- Vicent J Borràs
- Departamento de Química, Universidad Autónoma de Madrid, Módulo 13, 28049 Madrid, Spain
| | | | - Luca Argenti
- Department of Physics and CREOL, University of Central Florida, Orlando, Florida 32186, United States
| | - Fernando Martín
- Departamento de Química, Universidad Autónoma de Madrid, Módulo 13, 28049 Madrid, Spain.,Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Cantoblanco, 28049 Madrid, Spain.,Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
12
|
Multilevel Laser Induced Continuum Structure. ENTROPY 2021; 23:e23070891. [PMID: 34356432 PMCID: PMC8303234 DOI: 10.3390/e23070891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/09/2021] [Accepted: 07/11/2021] [Indexed: 11/16/2022]
Abstract
Laser-induced-continuum-structure (LICS) allows for coherent control techniques to be applied in a Raman type system with an intermediate continuum state. The standard LICS problem involves two bound states coupled to one or more continua. In this paper, we discuss the simplest non-trivial multistate generalization of LICS which couples two bound levels, each composed of two degenerate states through a common continuum state. We reduce the complexity of the system by switching to a rotated basis of the bound states, in which different sub-systems of lower dimension evolve independently. We derive the trapping condition and explore the dynamics of the sub-systems under different initial conditions.
Collapse
|
13
|
Bello RY, Martín F, Palacios A. Attosecond laser control of photoelectron angular distributions in XUV-induced ionization of H 2. Faraday Discuss 2021; 228:378-393. [PMID: 33566038 DOI: 10.1039/d0fd00114g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We investigate how attosecond XUV pump/IR probe schemes can be used to exert control on the ionization dynamics of the hydrogen molecule. The aim is to play with all available experimental parameters in the problem, namely the XUV pump-IR probe delay, the energy and emission direction of the produced photo-ions, as well as combinations of them, to uncover control strategies that can lead to preferential electron ejection directions. We do so by accurately solving the time-dependent Schrödinger equation, with inclusion of both electronic and nuclear motions, as well as the coupling between them. We show that both the IR pulse and the nuclear motion can be used to break the molecular inversion symmetry, thus leading to asymmetric molecular-frame photoelectron angular distributions. The preferential electron emission direction can thus be tuned by varying the pump-probe delay, by choosing specific ranges of proton kinetic energies, or both. We expect that similar control strategies could be used in more complex molecules containing light nuclei.
Collapse
Affiliation(s)
- Roger Y Bello
- Lawrence Berkeley National Laboratory, Chemical Sciences, Berkeley, California 94720, USA
| | | | | |
Collapse
|
14
|
Borrego-Varillas R, Lucchini M. Reconstruction of atomic resonances with attosecond streaking. OPTICS EXPRESS 2021; 29:9711-9722. [PMID: 33820125 DOI: 10.1364/oe.415463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
Recent development of spectroscopic techniques based on attosecond radiation has given the community the right tools to study the timing of the photoelectron process. In this work we investigate the effect of Fano resonances in attosecond streaking spectrograms and the application of standard phase-reconstruction algorithms. We show that while the existence of the infrared coupling (ac-Stark shift) hinders the applicability of FROG-like methods, under certain conditions it is still possible to use standard reconstruction algorithms to retrieve the photoemission delay of the bare resonance. Finally, we propose two strategies to study the strength of IR coupling using the attosecond streaking technique.
Collapse
|
15
|
Tracking attosecond electronic coherences using phase-manipulated extreme ultraviolet pulses. Nat Commun 2020; 11:883. [PMID: 32060288 PMCID: PMC7021897 DOI: 10.1038/s41467-020-14721-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 01/27/2020] [Indexed: 11/09/2022] Open
Abstract
The recent development of ultrafast extreme ultraviolet (XUV) coherent light sources bears great potential for a better understanding of the structure and dynamics of matter. Promising routes are advanced coherent control and nonlinear spectroscopy schemes in the XUV energy range, yielding unprecedented spatial and temporal resolution. However, their implementation has been hampered by the experimental challenge of generating XUV pulse sequences with precisely controlled timing and phase properties. In particular, direct control and manipulation of the phase of individual pulses within an XUV pulse sequence opens exciting possibilities for coherent control and multidimensional spectroscopy, but has not been accomplished. Here, we overcome these constraints in a highly time-stabilized and phase-modulated XUV-pump, XUV-probe experiment, which directly probes the evolution and dephasing of an inner subshell electronic coherence. This approach, avoiding any XUV optics for direct pulse manipulation, opens up extensive applications of advanced nonlinear optics and spectroscopy at XUV wavelengths.
Collapse
|
16
|
Orenstein G, Julie Uzan A, Gadasi S, Arusi-Parpar T, Krüger M, Cireasa R, Bruner BD, Dudovich N. Shaping electron-hole trajectories for solid-state high harmonic generation control. OPTICS EXPRESS 2019; 27:37835-37845. [PMID: 31878558 DOI: 10.1364/oe.27.037835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
Solid-state high-harmonic generation (HHG) by an intense infra-red (IR) laser field offers a new route to generate coherent attosecond light pulses in the extreme ultraviolet regime. The propagation of the IR driving field in the dense solid medium is accompanied by non-linear processes which shape the generating waveform. In this work, we introduce a monolithic scheme in which we both exploit the non-linear propagation to manipulate a two color driving field, as well as generate high harmonics within a single crystal. We show that the resulting non-commensurate, bi-chromatic, generating field provides precise control over the periodicity of the HHG process. This control enables us to manipulate the spectral positions of the discrete harmonic peaks. Our method advances solid-state HHG spectroscopy, and offers a simple route towards tunable, robust XUV sources.
Collapse
|
17
|
Busto D, Vinbladh J, Zhong S, Isinger M, Nandi S, Maclot S, Johnsson P, Gisselbrecht M, L'Huillier A, Lindroth E, Dahlström JM. Fano's Propensity Rule in Angle-Resolved Attosecond Pump-Probe Photoionization. PHYSICAL REVIEW LETTERS 2019; 123:133201. [PMID: 31697513 DOI: 10.1103/physrevlett.123.133201] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 05/24/2019] [Indexed: 06/10/2023]
Abstract
In a seminal article, Fano predicts that absorption of light occurs preferably with increase of angular momentum. We generalize Fano's propensity rule to laser-assisted photoionization, consisting of absorption of an extreme-ultraviolet photon followed by absorption or emission of an infrared photon. The predicted asymmetry between absorption and emission leads to incomplete quantum interference in attosecond photoelectron interferometry. It explains both the angular dependence of the photoionization time delays and the delay dependence of the photoelectron angular distributions. Our theory is verified by experimental results in Ar in the 20-40 eV range.
Collapse
Affiliation(s)
- David Busto
- Department of Physics, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden
| | - Jimmy Vinbladh
- Department of Physics, Stockholm University, AlbaNova University Center, SE-106 91 Stockholm, Sweden
| | - Shiyang Zhong
- Department of Physics, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden
| | - Marcus Isinger
- Department of Physics, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden
| | - Saikat Nandi
- Department of Physics, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden
| | - Sylvain Maclot
- Department of Physics, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden
- Biomedical and X-Ray Physics, Department of Applied Physics, AlbaNova University Center, KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden
| | - Per Johnsson
- Department of Physics, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden
| | | | - Anne L'Huillier
- Department of Physics, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden
| | - Eva Lindroth
- Department of Physics, Stockholm University, AlbaNova University Center, SE-106 91 Stockholm, Sweden
| | | |
Collapse
|
18
|
Donsa S, Douguet N, Burgdörfer J, Březinová I, Argenti L. Circular Holographic Ionization-Phase Meter. PHYSICAL REVIEW LETTERS 2019; 123:133203. [PMID: 31697555 DOI: 10.1103/physrevlett.123.133203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Indexed: 06/10/2023]
Abstract
We propose an attosecond extreme ultraviolet pump IR-probe photoionization protocol that employs pairs of counterrotating consecutive harmonics and angularly resolved photoelectron detection, thereby providing a direct measurement of ionization phases. The present method, which we call circular holographic ionization-phase meter, gives also access to the phase of photoemission amplitudes of even-parity continuum states from a single time-delay measurement since the relative phase of one- and two-photon ionization pathways is imprinted in the photoemission anisotropy. The method is illustrated with ab initio simulations of photoionization via autoionizing resonances in helium. The rapid phase excursion in the transition amplitude to both the dipole-allowed (2s2p)^{1}P^{o} and the dipole-forbidden (2p^{2})^{1}D^{e} states are faithfully reproduced.
Collapse
Affiliation(s)
- S Donsa
- Institute for Theoretical Physics, Vienna University of Technology, A-1040 Vienna, Austria, EU
| | - N Douguet
- Department of Physics, University of Central Florida, Orlando, Florida 32816, USA
| | - J Burgdörfer
- Institute for Theoretical Physics, Vienna University of Technology, A-1040 Vienna, Austria, EU
| | - I Březinová
- Institute for Theoretical Physics, Vienna University of Technology, A-1040 Vienna, Austria, EU
| | - L Argenti
- Department of Physics, University of Central Florida, Orlando, Florida 32816, USA
- CREOL, University of Central Florida, Orlando, Florida 32816, USA
| |
Collapse
|
19
|
Mauger F, Abanador PM, Scarborough TD, Gorman TT, Agostini P, DiMauro LF, Lopata K, Schafer KJ, Gaarde MB. High-harmonic spectroscopy of transient two-center interference calculated with time-dependent density-functional theory. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2019; 6:044101. [PMID: 31341934 PMCID: PMC6635122 DOI: 10.1063/1.5111349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 06/29/2019] [Indexed: 06/10/2023]
Abstract
We demonstrate high-harmonic spectroscopy in many-electron molecules using time-dependent density-functional theory. We show that a weak attosecond-pulse-train ionization seed that is properly synchronized with the strong driving mid-infrared laser field can produce experimentally relevant high-harmonic generation (HHG) signals, from which we extract both the spectral amplitude and the target-specific phase (group delay). We also show that further processing of the HHG signal can be used to achieve molecular-frame resolution, i.e., to resolve the contributions from rescattering on different sides of an oriented molecule. In this framework, we investigate transient two-center interference in CO2 and OCS, and how subcycle polarization effects shape the oriented/aligned angle-resolved spectra.
Collapse
Affiliation(s)
- François Mauger
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Paul M Abanador
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | | | - Timothy T Gorman
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Pierre Agostini
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Louis F DiMauro
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Kenneth Lopata
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Kenneth J Schafer
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Mette B Gaarde
- Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| |
Collapse
|
20
|
Barreau L, Petersson CLM, Klinker M, Camper A, Marante C, Gorman T, Kiesewetter D, Argenti L, Agostini P, González-Vázquez J, Salières P, DiMauro LF, Martín F. Disentangling Spectral Phases of Interfering Autoionizing States from Attosecond Interferometric Measurements. PHYSICAL REVIEW LETTERS 2019; 122:253203. [PMID: 31347882 DOI: 10.1103/physrevlett.122.253203] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/15/2019] [Indexed: 06/10/2023]
Abstract
We have determined spectral phases of Ne autoionizing states from extreme ultraviolet and midinfrared attosecond interferometric measurements and ab initio full-electron time-dependent theoretical calculations in an energy interval where several of these states are coherently populated. The retrieved phases exhibit a complex behavior as a function of photon energy, which is the consequence of the interference between paths involving various resonances. In spite of this complexity, we show that phases for individual resonances can still be obtained from experiment by using an extension of the Fano model of atomic resonances. As simultaneous excitation of several resonances is a common scenario in many-electron systems, the present work paves the way to reconstruct electron wave packets coherently generated by attosecond pulses in systems larger than helium.
Collapse
Affiliation(s)
- Lou Barreau
- LIDYL, CEA, CNRS, and Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - C Leon M Petersson
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Markus Klinker
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Antoine Camper
- The Ohio State University, Department of Physics, Columbus, Ohio 43210, USA
| | - Carlos Marante
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Timothy Gorman
- The Ohio State University, Department of Physics, Columbus, Ohio 43210, USA
| | | | - Luca Argenti
- Department of Physics and CREOL, University of Central Florida, Orlando, Florida 32816, USA
| | - Pierre Agostini
- The Ohio State University, Department of Physics, Columbus, Ohio 43210, USA
| | | | - Pascal Salières
- LIDYL, CEA, CNRS, and Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Louis F DiMauro
- The Ohio State University, Department of Physics, Columbus, Ohio 43210, USA
| | - Fernando Martín
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Cantoblanco, 28049 Madrid, Spain
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
21
|
Song X, Shi G, Zhang G, Xu J, Lin C, Chen J, Yang W. Attosecond Time Delay of Retrapped Resonant Ionization. PHYSICAL REVIEW LETTERS 2018; 121:103201. [PMID: 30240251 DOI: 10.1103/physrevlett.121.103201] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/10/2018] [Indexed: 06/08/2023]
Abstract
A recent ultrafast pump-probe technique has allowed measurement of time delays during photoemission in a variety of systems ranging from atoms and molecules to solids with unprecedented temporal resolution. However, identifying the underlying physics is still a challenge especially in complicated multichannel above-threshold ionization (ATI) experiments. Here we demonstrate that the time delays of different ionization pathways in ATI can be clearly resolved and extracted with a semiclassical statistical method. The remarkable phase shift of near threshold photoelectrons can be attributed to a temporary retrapping of a photoelectron by the atomic potential in a quasibound state after emerging in the continuum state. This continuum-bound-continuum scattering manifests as a new resonant effect in strong-field photoemission. Our results unify the seemingly opposing quantum Eisenbud-Wigner-Smith time delay and classical Coulomb-induced time delay by highlighting the same physical picture, which holds promise for an intuitive interpretation of time-resolved fundamental electronic processes in strong-field experiments and epistemological reexamination of the quantum-classical correspondence.
Collapse
Affiliation(s)
- Xiaohong Song
- Department of Physics, College of Science, Shantou University, Shantou, Guangdong 515063, China
| | - Guangluo Shi
- Department of Physics, College of Science, Shantou University, Shantou, Guangdong 515063, China
| | - Guojun Zhang
- Department of Physics, College of Science, Shantou University, Shantou, Guangdong 515063, China
| | - Jingwen Xu
- Department of Physics, College of Science, Shantou University, Shantou, Guangdong 515063, China
| | - Cheng Lin
- Department of Physics, College of Science, Shantou University, Shantou, Guangdong 515063, China
| | - Jing Chen
- Key Laboratory of High Energy Density Physics Simulation, Center for Applied Physics and Technology, Peking University, Beijing 100084, China
- Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088, China
- Collaborative Innovation Center of Inertial Fusion Sciences and Applications, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Weifeng Yang
- Department of Physics, College of Science, Shantou University, Shantou, Guangdong 515063, China
| |
Collapse
|
22
|
Finkelstein-Shapiro D, Pullerits T, Hansen T. Two-dimensional Fano lineshapes: Excited-state absorption contributions. J Chem Phys 2018; 148:184201. [PMID: 29764148 DOI: 10.1063/1.5019376] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Fano interferences in nanostructures are influenced by dissipation effects as well as many-body interactions. Two-dimensional coherent spectroscopies have just begun to be applied to these systems where the spectroscopic signatures of a discrete-continuum structure are not known. In this article, we calculate the excited-state absorption contribution for different models of higher lying excited states. We find that the characteristic asymmetry of one-dimensional spectroscopies is recovered from the many-body contributions and that the higher lying excited manifolds have distorted lineshapes that are not anticipated from discrete-level Hamiltonians. We show that the Stimulated Emission cannot have contributions from a flat continuum of states. This work completes the Ground-State Bleach and Stimulated Emission signals that were calculated previously [D. Finkelstein-Shapiro et al., Phys. Rev. B 94, 205137 (2016)]. The model reproduces the observations reported for molecules on surfaces probed by 2DIR.
Collapse
Affiliation(s)
| | - Tõnu Pullerits
- Division of Chemical Physics, Lund University, P.O. Box 124, 221 00 Lund, Sweden
| | - Thorsten Hansen
- Department of Chemistry, University of Copenhagen, DK 2100 Copenhagen, Denmark
| |
Collapse
|
23
|
Anisotropic photoemission time delays close to a Fano resonance. Nat Commun 2018; 9:955. [PMID: 29511164 PMCID: PMC5840338 DOI: 10.1038/s41467-018-03009-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 01/12/2018] [Indexed: 11/24/2022] Open
Abstract
Electron correlation and multielectron effects are fundamental interactions that govern many physical and chemical processes in atomic, molecular and solid state systems. The process of autoionization, induced by resonant excitation of electrons into discrete states present in the spectral continuum of atomic and molecular targets, is mediated by electron correlation. Here we investigate the attosecond photoemission dynamics in argon in the 20–40 eV spectral range, in the vicinity of the 3s−1np autoionizing resonances. We present measurements of the differential photoionization cross section and extract energy and angle-dependent atomic time delays with an attosecond interferometric method. With the support of a theoretical model, we are able to attribute a large part of the measured time delay anisotropy to the presence of autoionizing resonances, which not only distort the phase of the emitted photoelectron wave packet but also introduce an angular dependence. Ionization time delays are of interest in understanding the photoionization mechanism in atoms and molecules in ultra-short time scales. Here the authors investigate the angular dependence of photoionization time delays in the presence of an autoionizing resonance in argon atom using RABBITT technique.
Collapse
|
24
|
Chacón A, Ruiz C. Attosecond delay in the molecular photoionization of asymmetric molecules. OPTICS EXPRESS 2018; 26:4548-4562. [PMID: 29475304 DOI: 10.1364/oe.26.004548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/15/2017] [Indexed: 06/08/2023]
Abstract
We report theoretical calculations of the delay in photoemission from CO with particular emphasis on the role of the ultrafast electronic bound dynamics. We study the delays in photoionization in the HOMO and HOMO-1 orbitals of the CO molecule by looking into the stereo Wigner time delay technique. That compares the delay in photoemission from electrons emitted to the left and right to extract structural and dynamical information of the ionization process. For this we apply two techniques: The attosecond streak camera and the time of flight technique. Although they should provide the same results we have found large discrepancies of up to 36 in the case of HOMO, while for the HOMO-1 we obtain the same results with the two techniques. We have found that the large time delays observed in the HOMO orbital with the streaking technique are a consequence of the resonant transition triggered by the streaking field. This resonant transition produces a bound electron wavepacket that modifies the measurements of delay in photoionization. As a result of this observation, our technique allows us to reconstruct the bound wavepacket dynamics induced by the streaking field. By measuring the expected value of the electron momentum along the polarization direction after the streaking field has finished, we can recover the relative phase between the complex amplitudes of the HOMO and LUMO orbitals. These theoretical calculations pave the way for the measurement of ultrafast bound-bound electron transitionsand its crucial role for the delay in photoemission observation.
Collapse
|
25
|
Douguet N, Schneider BI, Argenti L. Application of the complex Kohn variational method to attosecond spectroscopy. PHYSICAL REVIEW. A 2018; 98:10.1103/PhysRevA.98.023403. [PMID: 33313458 PMCID: PMC7727740 DOI: 10.1103/physreva.98.023403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The complex Kohn variational method is extended to compute light-driven electronic transitions between continuum wave functions in atomic and molecular systems. This development enables the study of multiphoton processes in the perturbative regime for arbitrary light polarization. As a proof of principle, we apply the method to compute the photoelectron spectrum arising from the pump-probe two-photon ionization of helium induced by a sequence of extreme ultraviolet and infrared light pulses. We compare several two-photon ionization pump-probe spectra, resonant with the (2s2p) 1P 1 o Feshbach resonance, with independent simulations based on the atomic B-spline close-coupling STOCK code, and find good agreement between the two approaches. This finite-pulse perturbative approach is a step towards the ab initio study of weak-field attosecond processes in polyelectronic molecules.
Collapse
Affiliation(s)
- N Douguet
- Department of Physics, University of Central Florida, Orlando, Florida 32186, USA
| | - B I Schneider
- Physics Division, National Science Foundation, Gaithersburg, Maryland 20899, USA
| | - L Argenti
- Department of Physics, University of Central Florida, Orlando, Florida 32186, USA
| |
Collapse
|
26
|
Beaulieu S, Comby A, Clergerie A, Caillat J, Descamps D, Dudovich N, Fabre B, Géneaux R, Légaré F, Petit S, Pons B, Porat G, Ruchon T, Taïeb R, Blanchet V, Mairesse Y. Attosecond-resolved photoionization of chiral molecules. Science 2017; 358:1288-1294. [DOI: 10.1126/science.aao5624] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/10/2017] [Indexed: 11/02/2022]
|
27
|
Isinger M, Squibb RJ, Busto D, Zhong S, Harth A, Kroon D, Nandi S, Arnold CL, Miranda M, Dahlström JM, Lindroth E, Feifel R, Gisselbrecht M, L’Huillier A. Photoionization in the time and frequency domain. Science 2017; 358:893-896. [DOI: 10.1126/science.aao7043] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 10/19/2017] [Indexed: 11/02/2022]
Abstract
Ultrafast processes in matter, such as the electron emission after light absorption, can now be studied using ultrashort light pulses of attosecond duration (10−18 seconds) in the extreme ultraviolet spectral range. The lack of spectral resolution due to the use of short light pulses has raised issues in the interpretation of the experimental results and the comparison with theoretical calculations. We determine photoionization time delays in neon atoms over a 40–electron volt energy range with an interferometric technique combining high temporal and spectral resolution. We spectrally disentangle direct ionization from ionization with shake-up, in which a second electron is left in an excited state, and obtain excellent agreement with theoretical calculations, thereby solving a puzzle raised by 7-year-old measurements.
Collapse
Affiliation(s)
- M. Isinger
- Department of Physics, Lund University, P.O. Box 118, SE-22 100 Lund, Sweden
| | - R. J. Squibb
- Department of Physics, University of Gothenburg, Origovägen 6B, SE-41 296 Göteborg, Sweden
| | - D. Busto
- Department of Physics, Lund University, P.O. Box 118, SE-22 100 Lund, Sweden
| | - S. Zhong
- Department of Physics, Lund University, P.O. Box 118, SE-22 100 Lund, Sweden
| | - A. Harth
- Department of Physics, Lund University, P.O. Box 118, SE-22 100 Lund, Sweden
| | - D. Kroon
- Department of Physics, Lund University, P.O. Box 118, SE-22 100 Lund, Sweden
| | - S. Nandi
- Department of Physics, Lund University, P.O. Box 118, SE-22 100 Lund, Sweden
| | - C. L. Arnold
- Department of Physics, Lund University, P.O. Box 118, SE-22 100 Lund, Sweden
| | - M. Miranda
- Department of Physics, Lund University, P.O. Box 118, SE-22 100 Lund, Sweden
| | - J. M. Dahlström
- Department of Physics, Lund University, P.O. Box 118, SE-22 100 Lund, Sweden
- Department of Physics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - E. Lindroth
- Department of Physics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - R. Feifel
- Department of Physics, University of Gothenburg, Origovägen 6B, SE-41 296 Göteborg, Sweden
| | - M. Gisselbrecht
- Department of Physics, Lund University, P.O. Box 118, SE-22 100 Lund, Sweden
| | - A. L’Huillier
- Department of Physics, Lund University, P.O. Box 118, SE-22 100 Lund, Sweden
| |
Collapse
|
28
|
Gallmann L, Jordan I, Wörner HJ, Castiglioni L, Hengsberger M, Osterwalder J, Arrell CA, Chergui M, Liberatore E, Rothlisberger U, Keller U. Photoemission and photoionization time delays and rates. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2017; 4:061502. [PMID: 29308414 PMCID: PMC5732014 DOI: 10.1063/1.4997175] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 11/02/2017] [Indexed: 05/20/2023]
Abstract
Ionization and, in particular, ionization through the interaction with light play an important role in fundamental processes in physics, chemistry, and biology. In recent years, we have seen tremendous advances in our ability to measure the dynamics of photo-induced ionization in various systems in the gas, liquid, or solid phase. In this review, we will define the parameters used for quantifying these dynamics. We give a brief overview of some of the most important ionization processes and how to resolve the associated time delays and rates. With regard to time delays, we ask the question: how long does it take to remove an electron from an atom, molecule, or solid? With regard to rates, we ask the question: how many electrons are emitted in a given unit of time? We present state-of-the-art results on ionization and photoemission time delays and rates. Our review starts with the simplest physical systems: the attosecond dynamics of single-photon and tunnel ionization of atoms in the gas phase. We then extend the discussion to molecular gases and ionization of liquid targets. Finally, we present the measurements of ionization delays in femto- and attosecond photoemission from the solid-vacuum interface.
Collapse
Affiliation(s)
- L Gallmann
- Department of Physics, Institute of Quantum Electronics, ETH Zurich, 8093 Zurich, Switzerland
| | - I Jordan
- Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - H J Wörner
- Laboratorium für Physikalische Chemie, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - L Castiglioni
- Department of Physics, University of Zurich, 8057 Zürich, Switzerland
| | - M Hengsberger
- Department of Physics, University of Zurich, 8057 Zürich, Switzerland
| | - J Osterwalder
- Department of Physics, University of Zurich, 8057 Zürich, Switzerland
| | - C A Arrell
- Laboratoire de Spectroscopie Ultrarapide (LSU), and Lausanne Centre for Ultrafast Science (LACUS), ISIC-FSB, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - M Chergui
- Laboratoire de Spectroscopie Ultrarapide (LSU), and Lausanne Centre for Ultrafast Science (LACUS), ISIC-FSB, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - E Liberatore
- Laboratory of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - U Rothlisberger
- Laboratory of Computational Chemistry and Biochemistry, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - U Keller
- Department of Physics, Institute of Quantum Electronics, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
29
|
Kaldun A, Blättermann A, Stooß V, Donsa S, Wei H, Pazourek R, Nagele S, Ott C, Lin CD, Burgdörfer J, Pfeifer T. Observing the ultrafast buildup of a Fano resonance in the time domain. Science 2017; 354:738-741. [PMID: 27846603 DOI: 10.1126/science.aah6972] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/30/2016] [Indexed: 11/02/2022]
Abstract
Although the time-dependent buildup of asymmetric Fano line shapes in absorption spectra has been of great theoretical interest in the past decade, experimental verification of the predictions has been elusive. Here, we report the experimental observation of the emergence of a Fano resonance in the prototype system of helium by interrupting the autoionization process of a correlated two-electron excited state with a strong laser field. The tunable temporal gate between excitation and termination of the resonance allows us to follow the formation of a Fano line shape in time. The agreement with ab initio calculations validates our experimental time-gating technique for addressing an even broader range of topics, such as the emergence of electron correlation, the onset of electron-internuclear coupling, and quasi-particle formation.
Collapse
Affiliation(s)
- A Kaldun
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - A Blättermann
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - V Stooß
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - S Donsa
- Institute for Theoretical Physics, Vienna University of Technology, Wiedner Hauptstraße 8, 1040 Vienna, Austria
| | - H Wei
- Department of Physics, Kansas State University, 230 Cardwell Hall, Manhattan, KS 66506, USA
| | - R Pazourek
- Institute for Theoretical Physics, Vienna University of Technology, Wiedner Hauptstraße 8, 1040 Vienna, Austria
| | - S Nagele
- Institute for Theoretical Physics, Vienna University of Technology, Wiedner Hauptstraße 8, 1040 Vienna, Austria
| | - C Ott
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - C D Lin
- Department of Physics, Kansas State University, 230 Cardwell Hall, Manhattan, KS 66506, USA
| | - J Burgdörfer
- Institute for Theoretical Physics, Vienna University of Technology, Wiedner Hauptstraße 8, 1040 Vienna, Austria
| | - T Pfeifer
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany. .,Center for Quantum Dynamics, Universität Heidelberg, 69120 Heidelberg, Germany, EU
| |
Collapse
|
30
|
Gruson V, Barreau L, Jiménez-Galan Á, Risoud F, Caillat J, Maquet A, Carré B, Lepetit F, Hergott JF, Ruchon T, Argenti L, Taïeb R, Martín F, Salières P. Attosecond dynamics through a Fano resonance: Monitoring the birth of a photoelectron. Science 2017; 354:734-738. [PMID: 27846602 DOI: 10.1126/science.aah5188] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 10/05/2016] [Indexed: 11/02/2022]
Abstract
The dynamics of quantum systems are encoded in the amplitude and phase of wave packets. However, the rapidity of electron dynamics on the attosecond scale has precluded the complete characterization of electron wave packets in the time domain. Using spectrally resolved electron interferometry, we were able to measure the amplitude and phase of a photoelectron wave packet created through a Fano autoionizing resonance in helium. In our setup, replicas obtained by two-photon transitions interfere with reference wave packets that are formed through smooth continua, allowing the full temporal reconstruction, purely from experimental data, of the resonant wave packet released in the continuum. In turn, this resolves the buildup of the autoionizing resonance on an attosecond time scale. Our results, in excellent agreement with ab initio time-dependent calculations, raise prospects for detailed investigations of ultrafast photoemission dynamics governed by electron correlation, as well as coherent control over structured electron wave packets.
Collapse
Affiliation(s)
- V Gruson
- LIDYL, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-Sur-Yvette, France
| | - L Barreau
- LIDYL, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-Sur-Yvette, France
| | - Á Jiménez-Galan
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - F Risoud
- Sorbonne Université, UPMC Université Paris 6, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, 75231 Paris Cedex 05, France, and CNRS, UMR 7614, LCPMR, Paris, France
| | - J Caillat
- Sorbonne Université, UPMC Université Paris 6, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, 75231 Paris Cedex 05, France, and CNRS, UMR 7614, LCPMR, Paris, France
| | - A Maquet
- Sorbonne Université, UPMC Université Paris 6, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, 75231 Paris Cedex 05, France, and CNRS, UMR 7614, LCPMR, Paris, France
| | - B Carré
- LIDYL, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-Sur-Yvette, France
| | - F Lepetit
- LIDYL, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-Sur-Yvette, France
| | - J-F Hergott
- LIDYL, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-Sur-Yvette, France
| | - T Ruchon
- LIDYL, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-Sur-Yvette, France
| | - L Argenti
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - R Taïeb
- Sorbonne Université, UPMC Université Paris 6, UMR 7614, Laboratoire de Chimie Physique-Matière et Rayonnement, 75231 Paris Cedex 05, France, and CNRS, UMR 7614, LCPMR, Paris, France
| | - F Martín
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain. .,Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Cantoblanco, 28049 Madrid, Spain.,Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - P Salières
- LIDYL, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-Sur-Yvette, France.
| |
Collapse
|
31
|
Nisoli M, Decleva P, Calegari F, Palacios A, Martín F. Attosecond Electron Dynamics in Molecules. Chem Rev 2017; 117:10760-10825. [DOI: 10.1021/acs.chemrev.6b00453] [Citation(s) in RCA: 261] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Mauro Nisoli
- Department
of Physics, Politecnico di Milano, 20133 Milano, Italy
- Institute for Photonics and Nanotechnologies, IFN-CNR, 20133 Milano, Italy
| | - Piero Decleva
- Dipartimento
di Scienze Chimiche e Farmaceutiche, Universitá di Trieste and IOM- CNR, 34127 Trieste, Italy
| | - Francesca Calegari
- Institute for Photonics and Nanotechnologies, IFN-CNR, 20133 Milano, Italy
- Center for Free-Electron Laser Science, DESY, 22607 Hamburg, Germany
- Department
of Physics, University of Hamburg, 20355 Hamburg, Germany
| | - Alicia Palacios
- Departamento
de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Fernando Martín
- Departamento
de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia, 28049 Madrid, Spain
- Condensed
Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
32
|
Baykusheva D, Wörner HJ. Theory of attosecond delays in molecular photoionization. J Chem Phys 2017; 146:124306. [PMID: 28388142 DOI: 10.1063/1.4977933] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Denitsa Baykusheva
- Laboratorium für Physikalische Chemie, ETH Zürich,
Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Hans Jakob Wörner
- Laboratorium für Physikalische Chemie, ETH Zürich,
Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
33
|
Schoun SB, Camper A, Salières P, Lucchese RR, Agostini P, DiMauro LF. Precise Access to the Molecular-Frame Complex Recombination Dipole through High-Harmonic Spectroscopy. PHYSICAL REVIEW LETTERS 2017; 118:033201. [PMID: 28157344 DOI: 10.1103/physrevlett.118.033201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Indexed: 06/06/2023]
Abstract
We report on spectral intensity and group delay measurements of the highest-occupied molecular-orbital (HOMO) recombination dipole moment of N_{2} in the molecular-frame using high harmonic spectroscopy. We take advantage of the long-wavelength 1.3 μm driving laser to isolate the HOMO in the near threshold region, 19-67 eV. The precision of our group delay measurements reveals previously unseen angle-resolved spectral features associated with autoionizing resonances, and allows quantitative comparison with cutting-edge correlated 8-channel photoionization dipole moment calculations.
Collapse
Affiliation(s)
- S B Schoun
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA
| | - A Camper
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA
| | - P Salières
- LIDYL, CEA, CNRS, Université Paris-Saclay, CEA Saclay, 91191 Gif-Sur-Yvette, France
| | - R R Lucchese
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA
| | - P Agostini
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA
| | - L F DiMauro
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
34
|
Eckstein M, Mayer N, Yang CH, Sansone G, Vrakking MJJ, Ivanov M, Kornilov O. Interference stabilization of autoionizing states in molecular N 2 studied by time- and angular-resolved photoelectron spectroscopy. Faraday Discuss 2016; 194:509-524. [PMID: 27711778 DOI: 10.1039/c6fd00093b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
An autoionizing resonance in molecular N2 is excited by an ultrashort XUV pulse and probed by a subsequent weak IR pulse, which ionizes the contributing Rydberg states. Time- and angular-resolved photoelectron spectra recorded with a velocity map imaging spectrometer reveal two electronic contributions with different angular distributions. One of them has an exponential decay rate of 20 ± 5 fs, while the other one is shorter than 10 fs. This observation is interpreted as a manifestation of interference stabilization involving the two overlapping discrete Rydberg states. A formalism of interference stabilization for molecular ionization is developed and applied to describe the autoionizing resonance. The results of calculations suggest, that the effect of the interference stabilization is facilitated by rotationally-induced couplings of electronic states with different symmetry.
Collapse
Affiliation(s)
- Martin Eckstein
- Max Born Institute, Max-Born-Straße 2A, 12489 Berlin, Germany.
| | - Nicola Mayer
- Max Born Institute, Max-Born-Straße 2A, 12489 Berlin, Germany.
| | - Chung-Hsin Yang
- Max Born Institute, Max-Born-Straße 2A, 12489 Berlin, Germany.
| | - Giuseppe Sansone
- Dipartimento di Fisica, Politecnico, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | | | - Misha Ivanov
- Max Born Institute, Max-Born-Straße 2A, 12489 Berlin, Germany.
| | - Oleg Kornilov
- Max Born Institute, Max-Born-Straße 2A, 12489 Berlin, Germany.
| |
Collapse
|
35
|
Cattaneo L, Vos J, Lucchini M, Gallmann L, Cirelli C, Keller U. Comparison of attosecond streaking and RABBITT. OPTICS EXPRESS 2016; 24:29060-29076. [PMID: 27958571 DOI: 10.1364/oe.24.029060] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Recent progress in the generation of ultra-short laser pulses has enabled the measurement of photoionization time delays with attosecond precision. For single photoemission time delays the most common techniques are based on attosecond streaking and the reconstruction of attosecond beating by interference of two-photon transitions (RABBITT). These are pump-probe techniques employing an extreme-ultraviolet (XUV) single attosecond pump pulse for streaking or an attosecond pump pulse train for RABBITT, and a phase-locked infrared (IR) probe pulse. These techniques can only extract relative timing information between electrons originating from different initial states within the same atom or different atoms. Here we address the question whether the two techniques give identical timing information. We present a complete study, supported by both experiments and simulations, comparing these two techniques for the measurement of the photoemission time delay difference between valence electrons emitted from the Ne 2p and Ar 3p ground states. We highlight not only the differences and similarities between the two techniques, but also critically investigate the reliability of the methods used to extract the timing information.
Collapse
|