1
|
Alejo JL, Girodat D, Hammerling MJ, Willi JA, Jewett MC, Engelhart AE, Adamala KP. Alternate conformational trajectories in ribosome translocation. PLoS Comput Biol 2024; 20:e1012319. [PMID: 39141679 PMCID: PMC11346969 DOI: 10.1371/journal.pcbi.1012319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 08/26/2024] [Accepted: 07/12/2024] [Indexed: 08/16/2024] Open
Abstract
Translocation in protein synthesis entails the efficient and accurate movement of the mRNA-[tRNA]2 substrate through the ribosome after peptide bond formation. An essential conformational change during this process is the swiveling of the small subunit head domain about two rRNA 'hinge' elements. Using iterative selection and molecular dynamics simulations, we derive alternate hinge elements capable of translocation in vitro and in vivo and describe their effects on the conformational trajectory of the EF-G-bound, translocating ribosome. In these alternate conformational pathways, we observe a diversity of swivel kinetics, hinge motions, three-dimensional head domain trajectories and tRNA dynamics. By finding alternate conformational pathways of translocation, we identify motions and intermediates that are essential or malleable in this process. These findings highlight the plasticity of protein synthesis and provide a more thorough understanding of the available sequence and conformational landscape of a central biological process.
Collapse
Affiliation(s)
- Jose L. Alejo
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Dylan Girodat
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Michael J. Hammerling
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, United States of America
| | - Jessica A. Willi
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, United States of America
| | - Michael C. Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, United States of America
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
| | - Aaron E. Engelhart
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Katarzyna P. Adamala
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
2
|
Chowdhury AR, Sapkota D, Girodat D. Conformational changes of ribosomes during translation elongation resolved by molecular dynamics simulations. Curr Opin Struct Biol 2024; 86:102804. [PMID: 38569462 DOI: 10.1016/j.sbi.2024.102804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/06/2024] [Accepted: 03/04/2024] [Indexed: 04/05/2024]
Abstract
Molecular dynamics simulations have emerged as a powerful set of tools to unravel the intricate dynamics of ribosomes during protein synthesis. Recent advancements in this field have enabled simulations to delve deep into the conformational rearrangements of ribosomes and associated factors, providing invaluable insights into the intricacies of translation. Emphasis on simulations has recently been on translation elongation, such as tRNA selection, translocation, and ribosomal head-swivel motions. These studies have offered crucial structural interpretations of how genetic information is faithfully translated into proteins. This review outlines recent discoveries concerning ribosome conformational changes occurring during translation elongation, as elucidated through molecular dynamics simulations.
Collapse
Affiliation(s)
- Anuradha Rai Chowdhury
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, 72701, USA. https://twitter.com/atomcellplankl
| | - Divya Sapkota
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, 72701, USA; Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Dylan Girodat
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR, 72701, USA.
| |
Collapse
|
3
|
Singh V, Itoh Y, Del'Olio S, Hassan A, Naschberger A, Flygaard RK, Nobe Y, Izumikawa K, Aibara S, Andréll J, Whitford PC, Barrientos A, Taoka M, Amunts A. Mitoribosome structure with cofactors and modifications reveals mechanism of ligand binding and interactions with L1 stalk. Nat Commun 2024; 15:4272. [PMID: 38769321 PMCID: PMC11106087 DOI: 10.1038/s41467-024-48163-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 04/19/2024] [Indexed: 05/22/2024] Open
Abstract
The mitoribosome translates mitochondrial mRNAs and regulates energy conversion that is a signature of aerobic life forms. We present a 2.2 Å resolution structure of human mitoribosome together with validated mitoribosomal RNA (rRNA) modifications, including aminoacylated CP-tRNAVal. The structure shows how mitoribosomal proteins stabilise binding of mRNA and tRNA helping to align it in the decoding center, whereas the GDP-bound mS29 stabilizes intersubunit communication. Comparison between different states, with respect to tRNA position, allowed us to characterize a non-canonical L1 stalk, and molecular dynamics simulations revealed how it facilitates tRNA transitions in a way that does not require interactions with rRNA. We also report functionally important polyamines that are depleted when cells are subjected to an antibiotic treatment. The structural, biochemical, and computational data illuminate the principal functional components of the translation mechanism in mitochondria and provide a description of the structure and function of the human mitoribosome.
Collapse
Affiliation(s)
- Vivek Singh
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17165, Solna, Sweden
| | - Yuzuru Itoh
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17165, Solna, Sweden
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 113-0033, Tokyo, Japan
| | - Samuel Del'Olio
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Asem Hassan
- Department of Physics, Northeastern University, Boston, MA, 02115, USA
- Center for Theoretical Biological Physics, Northeastern University, Boston, MA, 02115, USA
| | - Andreas Naschberger
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17165, Solna, Sweden
- King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia
| | - Rasmus Kock Flygaard
- Department of Molecular Biology and Genetics, Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Aarhus University, 8000, Aarhus C, Denmark
| | - Yuko Nobe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo, 192-0397, Japan
| | - Keiichi Izumikawa
- Department of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose-shi, Tokyo, 204-8588, Japan
| | - Shintaro Aibara
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17165, Solna, Sweden
| | - Juni Andréll
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Paul C Whitford
- Department of Physics, Northeastern University, Boston, MA, 02115, USA
- Center for Theoretical Biological Physics, Northeastern University, Boston, MA, 02115, USA
| | - Antoni Barrientos
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Masato Taoka
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Minami-osawa 1-1, Hachioji-shi, Tokyo, 192-0397, Japan
| | - Alexey Amunts
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, 17165, Solna, Sweden.
- Westlake University, Hangzhou, China.
| |
Collapse
|
4
|
Byju S, Hassan A, Whitford PC. The energy landscape of the ribosome. Biopolymers 2024; 115:e23570. [PMID: 38051695 DOI: 10.1002/bip.23570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/17/2023] [Accepted: 11/08/2023] [Indexed: 12/07/2023]
Abstract
The ribosome is a prototypical assembly that can be used to establish general principles and techniques for the study of biological molecular machines. Motivated by the fact that the dynamics of every biomolecule is governed by an underlying energy landscape, there has been great interest to understand and quantify ribosome energetics. In the present review, we will focus on theoretical and computational strategies for probing the interactions that shape the energy landscape of the ribosome, with an emphasis on more recent studies of the elongation cycle. These efforts include the application of quantum mechanical methods for describing chemical kinetics, as well as classical descriptions to characterize slower (microsecond to millisecond) large-scale (10-100 Å) rearrangements, where motion is described in terms of diffusion across an energy landscape. Together, these studies provide broad insights into the factors that control a diverse range of dynamical processes in this assembly.
Collapse
Affiliation(s)
- Sandra Byju
- Center for Theoretical Biological Physics, Northeastern University, Boston, Massachusetts, USA
- Department of Physics, Northeastern University, Boston, Massachusetts, USA
| | - Asem Hassan
- Department of Chemistry, The University of Texas at Austin, Austin, Texas, United States
| | - Paul C Whitford
- Center for Theoretical Biological Physics, Northeastern University, Boston, Massachusetts, USA
- Department of Physics, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Kravchenko OV, Baymukhametov TN, Afonina ZA, Vassilenko KS. High-Resolution Structure and Internal Mobility of a Plant 40S Ribosomal Subunit. Int J Mol Sci 2023; 24:17453. [PMID: 38139282 PMCID: PMC10743738 DOI: 10.3390/ijms242417453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Ribosome is a major part of the protein synthesis machinery, and analysis of its structure is of paramount importance. However, the structure of ribosomes from only a limited number of organisms has been resolved to date; it especially concerns plant ribosomes and ribosomal subunits. Here, we report a high-resolution cryo-electron microscopy reconstruction of the small subunit of the Triticum aestivum (common wheat) cytoplasmic ribosome. A detailed atomic model was built that includes the majority of the rRNA and some of the protein modifications. The analysis of the obtained data revealed structural peculiarities of the 40S subunit in the monocot plant ribosome. We applied the 3D Flexible Refinement approach to analyze the internal mobility of the 40S subunit and succeeded in decomposing it into four major motions, describing rotations of the head domain and a shift in the massive rRNA expansion segment. It was shown that these motions are almost uncorrelated and that the 40S subunit is flexible enough to spontaneously adopt any conformation it takes as a part of a translating ribosome or ribosomal complex. Here, we introduce the first high-resolution structure of an isolated plant 40S subunit and the first quantitative analysis of the flexibility of small ribosomal subunits, hoping that it will help in studying various aspects of ribosome functioning.
Collapse
Affiliation(s)
- Olesya V. Kravchenko
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (O.V.K.)
| | - Timur N. Baymukhametov
- National Research Center, “Kurchatov Institute”, Akademika Kurchatova pl. 1, 123182 Moscow, Russia;
| | - Zhanna A. Afonina
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia; (O.V.K.)
| | | |
Collapse
|
6
|
Zhou J, Wang A, Song Y, Liu N, Wang J, Li Y, Liang X, Li G, Chu H, Wang HW. Structural insights into the mechanism of GTP initiation of microtubule assembly. Nat Commun 2023; 14:5980. [PMID: 37749104 PMCID: PMC10519996 DOI: 10.1038/s41467-023-41615-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 09/08/2023] [Indexed: 09/27/2023] Open
Abstract
In eukaryotes, the dynamic assembly of microtubules (MT) plays an important role in numerous cellular processes. The underlying mechanism of GTP triggering MT assembly is still unknown. Here, we present cryo-EM structures of tubulin heterodimer at their GTP- and GDP-bound states, intermediate assembly states of GTP-tubulin, and final assembly stages of MT. Both GTP- and GDP-tubulin heterodimers adopt similar curved conformations with subtle flexibility differences. In head-to-tail oligomers of tubulin heterodimers, the inter-dimer interface of GDP-tubulin exhibits greater flexibility, particularly in tangential bending. Cryo-EM of the intermediate assembly states reveals two types of tubulin lateral contacts, "Tube-bond" and "MT-bond". Further, molecular dynamics (MD) simulations show that GTP triggers lateral contact formation in MT assembly in multiple sequential steps, gradually straightening the curved tubulin heterodimers. Therefore, we propose a flexible model of GTP-initiated MT assembly, including the formation of longitudinal and lateral contacts, to explain the nucleation and assembly of MT.
Collapse
Affiliation(s)
- Ju Zhou
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Beijing Frontier Research Center for Biological Structures, Tsinghua University, Beijing, 100084, China
- University of California Berkeley, Berkeley, CA, USA
| | - Anhui Wang
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023, China
| | - Yinlong Song
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Nan Liu
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Beijing Frontier Research Center for Biological Structures, Tsinghua University, Beijing, 100084, China
| | - Jia Wang
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Beijing Frontier Research Center for Biological Structures, Tsinghua University, Beijing, 100084, China
| | - Yan Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023, China
| | - Xin Liang
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Guohui Li
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023, China
| | - Huiying Chu
- Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, 457 Zhongshan Road, Dalian, 116023, China.
| | - Hong-Wei Wang
- State Key Laboratory of Membrane Biology, Tsinghua University, Beijing, 100084, China.
- Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Beijing Frontier Research Center for Biological Structures, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
7
|
Wang YH, Dai H, Zhang L, Wu Y, Wang J, Wang C, Xu CH, Hou H, Yang B, Zhu Y, Zhang X, Zhou J. Cryo-electron microscopy structure and translocation mechanism of the crenarchaeal ribosome. Nucleic Acids Res 2023; 51:8909-8924. [PMID: 37604686 PMCID: PMC10516650 DOI: 10.1093/nar/gkad661] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 06/29/2023] [Accepted: 08/02/2023] [Indexed: 08/23/2023] Open
Abstract
Archaeal ribosomes have many domain-specific features; however, our understanding of these structures is limited. We present 10 cryo-electron microscopy (cryo-EM) structures of the archaeal ribosome from crenarchaeota Sulfolobus acidocaldarius (Sac) at 2.7-5.7 Å resolution. We observed unstable conformations of H68 and h44 of ribosomal RNA (rRNA) in the subunit structures, which may interfere with subunit association. These subunit structures provided models for 12 rRNA expansion segments and 3 novel r-proteins. Furthermore, the 50S-aRF1 complex structure showed the unique domain orientation of aRF1, possibly explaining P-site transfer RNA (tRNA) release after translation termination. Sac 70S complexes were captured in seven distinct steps of the tRNA translocation reaction, confirming conserved structural features during archaeal ribosome translocation. In aEF2-engaged 70S ribosome complexes, 3D classification of cryo-EM data based on 30S head domain identified two new translocation intermediates with 30S head domain tilted 5-6° enabling its disengagement from the translocated tRNA and its release post-translocation. Additionally, we observed conformational changes to aEF2 during ribosome binding and switching from three different states. Our structural and biochemical data provide new insights into archaeal translation and ribosome translocation.
Collapse
Affiliation(s)
- Ying-Hui Wang
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Hong Dai
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Ling Zhang
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yun Wu
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jingfen Wang
- Center for Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Department of Pathology of Sir Run Run Shaw Hospital, and Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Chen Wang
- Center for Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Department of Pathology of Sir Run Run Shaw Hospital, and Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Cai-Huang Xu
- Center for Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Department of Pathology of Sir Run Run Shaw Hospital, and Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Hai Hou
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, China
| | - Bing Yang
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yongqun Zhu
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Xing Zhang
- Center for Cryo-Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Department of Pathology of Sir Run Run Shaw Hospital, and Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Jie Zhou
- Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
8
|
Singh V, Itoh Y, Del'Olio S, Hassan A, Naschberger A, Flygaard RK, Nobe Y, Izumikawa K, Aibara S, Andréll J, Whitford PC, Barrientos A, Taoka M, Amunts A. Structure of mitoribosome reveals mechanism of mRNA binding, tRNA interactions with L1 stalk, roles of cofactors and rRNA modifications. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.24.542018. [PMID: 37503168 PMCID: PMC10369894 DOI: 10.1101/2023.05.24.542018] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The mitoribosome translates mitochondrial mRNAs and regulates energy conversion that is a signature of aerobic life forms. We present a 2.2 Å resolution structure of human mitoribosome together with validated mitoribosomal RNA (rRNA) modifications, including aminoacylated CP-tRNA Val . The structure shows how mitoribosomal proteins stabilise binding of mRNA and tRNA helping to align it in the decoding center, whereas the GDP-bound mS29 stabilizes intersubunit communication. Comparison between different states, with respect to tRNA position, allowed to characterize a non-canonical L1 stalk, and molecular dynamics simulations revealed how it facilitates tRNA transition in a way that does not require interactions with rRNA. We also report functionally important polyamines that are depleted when cells are subjected to an antibiotic treatment. The structural, biochemical, and computational data illuminate the principal functional components of the translation mechanism in mitochondria and provide the most complete description so far of the structure and function of the human mitoribosome.
Collapse
|
9
|
Yu J, Zhang ZW, Yang HY, Liu CJ, Lu WC. Study of fusion peptide release for the spike protein of SARS-CoV-2. RSC Adv 2023; 13:16970-16983. [PMID: 37288377 PMCID: PMC10242618 DOI: 10.1039/d3ra01764h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/11/2023] [Indexed: 06/09/2023] Open
Abstract
The spike protein of SARS-CoV-2 can recognize the ACE2 membrane protein on the host cell and plays a key role in the membrane fusion process between the virus envelope and the host cell membrane. However, to date, the mechanism for the spike protein recognizing host cells and initiating membrane fusion remains unknown. In this study, based on the general assumption that all three S1/S2 junctions of the spike protein are cleaved, structures with different forms of S1 subunit stripping and S2' site cleavage were constructed. Then, the minimum requirement for the release of the fusion peptide was studied by all-atom structure-based MD simulations. The results from simulations showed that stripping an S1 subunit from the A-, B- or C-chain of the spike protein and cleaving the specific S2' site on the B-chain (C-chain or A-chain) may result in the release of the fusion peptide, suggesting that the requirement for the release of FP may be more relaxed than previously expected.
Collapse
Affiliation(s)
- Jie Yu
- College of Physics, Qingdao University Qingdao 266071 Shandong P. R. China
| | - Zhi-Wei Zhang
- College of Physics, Qingdao University Qingdao 266071 Shandong P. R. China
| | - Han-Yu Yang
- College of Physics, Qingdao University Qingdao 266071 Shandong P. R. China
| | - Chong-Jin Liu
- College of Physics, Qingdao University Qingdao 266071 Shandong P. R. China
| | - Wen-Cai Lu
- College of Physics, Qingdao University Qingdao 266071 Shandong P. R. China
| |
Collapse
|
10
|
Rodnina MV. Decoding and Recoding of mRNA Sequences by the Ribosome. Annu Rev Biophys 2023; 52:161-182. [PMID: 37159300 DOI: 10.1146/annurev-biophys-101922-072452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Faithful translation of messenger RNA (mRNA) into protein is essential to maintain protein homeostasis in the cell. Spontaneous translation errors are very rare due to stringent selection of cognate aminoacyl transfer RNAs (tRNAs) and the tight control of the mRNA reading frame by the ribosome. Recoding events, such as stop codon readthrough, frameshifting, and translational bypassing, reprogram the ribosome to make intentional mistakes and produce alternative proteins from the same mRNA. The hallmark of recoding is the change of ribosome dynamics. The signals for recoding are built into the mRNA, but their reading depends on the genetic makeup of the cell, resulting in cell-specific changes in expression programs. In this review, I discuss the mechanisms of canonical decoding and tRNA-mRNA translocation; describe alternative pathways leading to recoding; and identify the links among mRNA signals, ribosome dynamics, and recoding.
Collapse
Affiliation(s)
- Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany;
| |
Collapse
|
11
|
Sinha S, Pindi C, Ahsan M, Arantes PR, Palermo G. Machines on Genes through the Computational Microscope. J Chem Theory Comput 2023; 19:1945-1964. [PMID: 36947696 PMCID: PMC10104023 DOI: 10.1021/acs.jctc.2c01313] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Macromolecular machines acting on genes are at the core of life's fundamental processes, including DNA replication and repair, gene transcription and regulation, chromatin packaging, RNA splicing, and genome editing. Here, we report the increasing role of computational biophysics in characterizing the mechanisms of "machines on genes", focusing on innovative applications of computational methods and their integration with structural and biophysical experiments. We showcase how state-of-the-art computational methods, including classical and ab initio molecular dynamics to enhanced sampling techniques, and coarse-grained approaches are used for understanding and exploring gene machines for real-world applications. As this review unfolds, advanced computational methods describe the biophysical function that is unseen through experimental techniques, accomplishing the power of the "computational microscope", an expression coined by Klaus Schulten to highlight the extraordinary capability of computer simulations. Pushing the frontiers of computational biophysics toward a pragmatic representation of large multimegadalton biomolecular complexes is instrumental in bridging the gap between experimentally obtained macroscopic observables and the molecular principles playing at the microscopic level. This understanding will help harness molecular machines for medical, pharmaceutical, and biotechnological purposes.
Collapse
Affiliation(s)
- Souvik Sinha
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA 52512, United States
| | - Chinmai Pindi
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA 52512, United States
| | - Mohd Ahsan
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA 52512, United States
| | - Pablo R. Arantes
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA 52512, United States
| | - Giulia Palermo
- Department of Bioengineering, University of California Riverside, 900 University Avenue, Riverside, CA 52512, United States
- Department of Chemistry, University of California Riverside, 900 University Avenue, Riverside, CA 52512, United States
| |
Collapse
|
12
|
Hassan A, Byju S, Freitas F, Roc C, Pender N, Nguyen K, Kimbrough E, Mattingly J, Gonzalez Jr. R, de Oliveira R, Dunham C, Whitford P. Ratchet, swivel, tilt and roll: a complete description of subunit rotation in the ribosome. Nucleic Acids Res 2023; 51:919-934. [PMID: 36583339 PMCID: PMC9881166 DOI: 10.1093/nar/gkac1211] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/31/2022] Open
Abstract
Protein synthesis by the ribosome requires large-scale rearrangements of the 'small' subunit (SSU; ∼1 MDa), including inter- and intra-subunit rotational motions. However, with nearly 2000 structures of ribosomes and ribosomal subunits now publicly available, it is exceedingly difficult to design experiments based on analysis of all known rotation states. To overcome this, we developed an approach where the orientation of each SSU head and body is described in terms of three angular coordinates (rotation, tilt and tilt direction) and a single translation. By considering the entire RCSB PDB database, we describe 1208 fully-assembled ribosome complexes and 334 isolated small subunits, which span >50 species. This reveals aspects of subunit rearrangements that are universal, and others that are organism/domain-specific. For example, we show that tilt-like rearrangements of the SSU body (i.e. 'rolling') are pervasive in both prokaryotic and eukaryotic (cytosolic and mitochondrial) ribosomes. As another example, domain orientations associated with frameshifting in bacteria are similar to those found in eukaryotic ribosomes. Together, this study establishes a common foundation with which structural, simulation, single-molecule and biochemical efforts can more precisely interrogate the dynamics of this prototypical molecular machine.
Collapse
Affiliation(s)
- Asem Hassan
- Department of Physics, Northeastern University, Dana Research Center 111, 360 Huntington Ave, Boston, MA 02115, USA
- Center for Theoretical Biological Physics, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA
| | - Sandra Byju
- Department of Physics, Northeastern University, Dana Research Center 111, 360 Huntington Ave, Boston, MA 02115, USA
- Center for Theoretical Biological Physics, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA
| | - Frederico Campos Freitas
- Laboratório de Biofísica Teórica, Departamento de Física, Instituto de Ciências Exatas, Naturais e Educação, Universidade Federal do Triângulo Mineiro, Uberaba, MG 38064-200, Brazil
| | - Claude Roc
- Department of Physics, Northeastern University, Dana Research Center 111, 360 Huntington Ave, Boston, MA 02115, USA
| | - Nisaa Pender
- Department of Physics, Northeastern University, Dana Research Center 111, 360 Huntington Ave, Boston, MA 02115, USA
| | - Kien Nguyen
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Evelyn M Kimbrough
- Department of Biochemistry, Emory University, Rollins Research Center 4027, 1510 Clifton Rd NE, Atlanta, GA 30322, USA
- Department of Chemistry, Emory University, 1515 Dickey Dr, Atlanta, GA 30322, USA
| | - Jacob M Mattingly
- Department of Biochemistry, Emory University, Rollins Research Center 4027, 1510 Clifton Rd NE, Atlanta, GA 30322, USA
| | | | - Ronaldo Junio de Oliveira
- Laboratório de Biofísica Teórica, Departamento de Física, Instituto de Ciências Exatas, Naturais e Educação, Universidade Federal do Triângulo Mineiro, Uberaba, MG 38064-200, Brazil
| | - Christine M Dunham
- Department of Biochemistry, Emory University, Rollins Research Center 4027, 1510 Clifton Rd NE, Atlanta, GA 30322, USA
| | - Paul C Whitford
- Department of Physics, Northeastern University, Dana Research Center 111, 360 Huntington Ave, Boston, MA 02115, USA
- Center for Theoretical Biological Physics, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA
| |
Collapse
|
13
|
Hassan A, Whitford PC. Identifying Strategies to Experimentally Probe Multidimensional Dynamics in the Ribosome. J Phys Chem B 2022; 126:8460-8471. [PMID: 36256879 DOI: 10.1021/acs.jpcb.2c05706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The ribosome is a complex biomolecular machine that utilizes large-scale conformational rearrangements to synthesize proteins. For example, during the elongation cycle, the "head" domain of the ribosomal small subunit (SSU) is known to undergo transient rotation events that allow for movement of tRNA molecules (i.e., translocation). While the head may exhibit rigid-body-like properties, the precise relationship between experimentally accessible probes and multidimensional rotations has yet to be established. To address this gap, we perform molecular dynamics simulations of the translocation step of the elongation cycle in the ribosome, where the SSU head spontaneously undergoes rotation and tilt-like motions. With this data set (1250 simulated events), we used statistical and information-theory-based measures to identify possible single-molecule probes that can isolate SSU head rotation and head tilting. This analysis provides a molecular interpretation for previous single-molecule measurements, while establishing a framework for the design of next-generation experiments that may precisely probe the mechanistic and kinetic aspects of the ribosome.
Collapse
Affiliation(s)
- Asem Hassan
- Department of Physics, Northeastern University, Dana Research Center 111, 360 Huntington Avenue, Boston, Massachusetts02115, United States.,Center for Theoretical Biological Physics, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts02115, United States
| | - Paul C Whitford
- Department of Physics, Northeastern University, Dana Research Center 111, 360 Huntington Avenue, Boston, Massachusetts02115, United States.,Center for Theoretical Biological Physics, Northeastern University, 360 Huntington Avenue, Boston, Massachusetts02115, United States
| |
Collapse
|
14
|
Srinivas P, Keiler KC, Dunham CM. Druggable differences: Targeting mechanistic differences between trans-translation and translation for selective antibiotic action. Bioessays 2022; 44:e2200046. [PMID: 35719031 PMCID: PMC9308750 DOI: 10.1002/bies.202200046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 02/03/2023]
Abstract
Bacteria use trans-translation to rescue stalled ribosomes and target incomplete proteins for proteolysis. Despite similarities between tRNAs and transfer-messenger RNA (tmRNA), the key molecule for trans-translation, new structural and biochemical data show important differences between translation and trans-translation at most steps of the pathways. tmRNA and its binding partner, SmpB, bind in the A site of the ribosome but do not trigger the same movements of nucleotides in the rRNA that are required for codon recognition by tRNA. tmRNA-SmpB moves from the A site to the P site of the ribosome without subunit rotation to generate hybrid states, and moves from the P site to a site outside the ribosome instead of to the E site. During catalysis, transpeptidation to tmRNA appears to require the ribosomal protein bL27, which is dispensable for translation, suggesting that this protein may be conserved in bacteria due to trans-translation. These differences provide insights into the fundamental nature of trans-translation, and provide targets for new antibiotics that may have decrease cross-reactivity with eukaryotic ribosomes.
Collapse
Affiliation(s)
- Pooja Srinivas
- Emory University School of Medicine, Department of Biochemistry, Atlanta, GA, USA
| | - Kenneth C. Keiler
- The Pennsylvania State University, Department of Biochemistry & Molecular Biology, University Park, PA, USA,Corresponding authors: Kenneth C. Keiler, , Christine M. Dunham,
| | - Christine M. Dunham
- Emory University School of Medicine, Department of Biochemistry, Atlanta, GA, USA,Corresponding authors: Kenneth C. Keiler, , Christine M. Dunham,
| |
Collapse
|
15
|
Nishima W, Girodat D, Holm M, Rundlet EJ, Alejo JL, Fischer K, Blanchard SC, Sanbonmatsu KY. Hyper-swivel head domain motions are required for complete mRNA-tRNA translocation and ribosome resetting. Nucleic Acids Res 2022; 50:8302-8320. [PMID: 35808938 DOI: 10.1093/nar/gkac597] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 06/15/2022] [Accepted: 07/05/2022] [Indexed: 11/14/2022] Open
Abstract
Translocation of messenger RNA (mRNA) and transfer RNA (tRNA) substrates through the ribosome during protein synthesis, an exemplar of directional molecular movement in biology, entails a complex interplay of conformational, compositional, and chemical changes. The molecular determinants of early translocation steps have been investigated rigorously. However, the elements enabling the ribosome to complete translocation and reset for subsequent protein synthesis reactions remain poorly understood. Here, we have combined molecular simulations with single-molecule fluorescence resonance energy transfer imaging to gain insights into the rate-limiting events of the translocation mechanism. We find that diffusive motions of the ribosomal small subunit head domain to hyper-swivelled positions, governed by universally conserved rRNA, can maneuver the mRNA and tRNAs to their fully translocated positions. Subsequent engagement of peptidyl-tRNA and disengagement of deacyl-tRNA from mRNA, within their respective small subunit binding sites, facilitate the ribosome resetting mechanism after translocation has occurred to enable protein synthesis to resume.
Collapse
Affiliation(s)
- Wataru Nishima
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- New Mexico Consortium, Los Alamos, NM 87544, USA
| | - Dylan Girodat
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- New Mexico Consortium, Los Alamos, NM 87544, USA
| | - Mikael Holm
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Emily J Rundlet
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
- Tri-Institutional PhD Program in Chemical Biology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jose L Alejo
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kara Fischer
- New Mexico Consortium, Los Alamos, NM 87544, USA
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Karissa Y Sanbonmatsu
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- New Mexico Consortium, Los Alamos, NM 87544, USA
| |
Collapse
|
16
|
de Oliveira AB, Contessoto VG, Hassan A, Byju S, Wang A, Wang Y, Dodero‐Rojas E, Mohanty U, Noel JK, Onuchic JN, Whitford PC. SMOG 2 and OpenSMOG: Extending the limits of structure-based models. Protein Sci 2022; 31:158-172. [PMID: 34655449 PMCID: PMC8740843 DOI: 10.1002/pro.4209] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 01/03/2023]
Abstract
Applying simulations with structure-based G o ¯ - like models has proven to be an effective strategy for investigating the factors that control biomolecular dynamics. The common element of these models is that some (or all) of the intra/inter-molecular interactions are explicitly defined to stabilize an experimentally determined structure. To facilitate the development and application of this broad class of models, we previously released the SMOG 2 software package. This suite allows one to easily customize and distribute structure-based (i.e., SMOG) models for any type of polymer-ligand system. The force fields generated by SMOG 2 may then be used to perform simulations in highly optimized MD packages, such as Gromacs, NAMD, LAMMPS, and OpenMM. Here, we describe extensions to the software and demonstrate the capabilities of the most recent version (SMOG v2.4.2). Changes include new tools that aid user-defined customization of force fields, as well as an interface with the OpenMM simulation libraries (OpenSMOG v1.1.0). The OpenSMOG module allows for arbitrary user-defined contact potentials and non-bonded potentials to be employed in SMOG models, without source-code modifications. To illustrate the utility of these advances, we present applications to systems with millions of atoms, long polymers and explicit ions, as well as models that include non-structure-based (e.g., AMBER-based) energetic terms. Examples include large-scale rearrangements of the SARS-CoV-2 Spike protein, the HIV-1 capsid with explicit ions, and crystallographic lattices of ribosomes and proteins. In summary, SMOG 2 and OpenSMOG provide robust support for researchers who seek to develop and apply structure-based models to large and/or intricate biomolecular systems.
Collapse
Affiliation(s)
| | | | - Asem Hassan
- Department of PhysicsNortheastern University, Dana Research CenterBostonMassachusettsUSA
- Center for Theoretical Biological PhysicsNortheastern UniversityBostonMassachusettsUSA
| | - Sandra Byju
- Department of PhysicsNortheastern University, Dana Research CenterBostonMassachusettsUSA
- Center for Theoretical Biological PhysicsNortheastern UniversityBostonMassachusettsUSA
| | - Ailun Wang
- Center for Theoretical Biological PhysicsNortheastern UniversityBostonMassachusettsUSA
| | - Yang Wang
- Department of ChemistryBoston CollegeChestnut HillMassachusettsUSA
| | | | - Udayan Mohanty
- Department of ChemistryBoston CollegeChestnut HillMassachusettsUSA
| | - Jeffrey K. Noel
- CrystallographyMax Delbrück Center for Molecular MedicineBerlinGermany
- Present address:
Electric Ant Lab, Science Park 106AmsterdamThe Netherlands
| | - Jose N. Onuchic
- Center for Theoretical Biological PhysicsRice UniversityHoustonTexasUSA
- Department of Physics & AstronomyRice UniversityHoustonTexasUSA
- Department of ChemistryRice UniversityHoustonTexasUSA
- Department of BiosciencesRice UniversityHoustonTexasUSA
| | - Paul C. Whitford
- Department of PhysicsNortheastern University, Dana Research CenterBostonMassachusettsUSA
- Center for Theoretical Biological PhysicsNortheastern UniversityBostonMassachusettsUSA
| |
Collapse
|
17
|
Hassan A, Byju S, Whitford PC. The energetics of subunit rotation in the ribosome. Biophys Rev 2021; 13:1029-1037. [PMID: 35059025 PMCID: PMC8724491 DOI: 10.1007/s12551-021-00877-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022] Open
Abstract
Protein synthesis in the cell is controlled by an elaborate sequence of conformational rearrangements in the ribosome. The composition of a ribosome varies by species, though they typically contain ∼ 50-100 RNA and protein molecules. While advances in structural techniques have revolutionized our understanding of long-lived conformational states, a vast range of transiently visited configurations can not be directly observed. In these cases, computational/simulation methods can be used to understand the mechanical properties of the ribosome. Insights from these approaches can then help guide next-generation experimental measurements. In this short review, we discuss theoretical strategies that have been deployed to quantitatively describe the energetics of collective rearrangements in the ribosome. We focus on efforts to probe large-scale subunit rotation events, which involve the coordinated displacement of large numbers of atoms (tens of thousands). These investigations are revealing how the molecular structure of the ribosome encodes the mechanical properties that control large-scale dynamics.
Collapse
Affiliation(s)
- Asem Hassan
- Center for Theoretical Biological Physics, 360 Huntington Ave, Boston, 02115 MA USA
- Physics Department, Northeastern University, 360 Huntington Ave, Boston, 02115 MA USA
| | - Sandra Byju
- Center for Theoretical Biological Physics, 360 Huntington Ave, Boston, 02115 MA USA
- Physics Department, Northeastern University, 360 Huntington Ave, Boston, 02115 MA USA
| | - Paul C. Whitford
- Center for Theoretical Biological Physics, 360 Huntington Ave, Boston, 02115 MA USA
- Physics Department, Northeastern University, 360 Huntington Ave, Boston, 02115 MA USA
| |
Collapse
|
18
|
Dodero-Rojas E, Onuchic JN, Whitford PC. Sterically confined rearrangements of SARS-CoV-2 Spike protein control cell invasion. eLife 2021; 10:70362. [PMID: 34463614 PMCID: PMC8456623 DOI: 10.7554/elife.70362] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/06/2021] [Indexed: 12/13/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is highly contagious, and transmission involves a series of processes that may be targeted by vaccines and therapeutics. During transmission, host cell invasion is controlled by a large-scale (200–300 Å) conformational change of the Spike protein. This conformational rearrangement leads to membrane fusion, which creates transmembrane pores through which the viral genome is passed to the host. During Spike-protein-mediated fusion, the fusion peptides must be released from the core of the protein and associate with the host membrane. While infection relies on this transition between the prefusion and postfusion conformations, there has yet to be a biophysical characterization reported for this rearrangement. That is, structures are available for the endpoints, though the intermediate conformational processes have not been described. Interestingly, the Spike protein possesses many post-translational modifications, in the form of branched glycans that flank the surface of the assembly. With the current lack of data on the pre-to-post transition, the precise role of glycans during cell invasion has also remained unclear. To provide an initial mechanistic description of the pre-to-post rearrangement, an all-atom model with simplified energetics was used to perform thousands of simulations in which the protein transitions between the prefusion and postfusion conformations. These simulations indicate that the steric composition of the glycans can induce a pause during the Spike protein conformational change. We additionally show that this glycan-induced delay provides a critical opportunity for the fusion peptides to capture the host cell. In contrast, in the absence of glycans, the viral particle would likely fail to enter the host. This analysis reveals how the glycosylation state can regulate infectivity, while providing a much-needed structural framework for studying the dynamics of this pervasive pathogen.
Collapse
Affiliation(s)
- Esteban Dodero-Rojas
- Center for Theoretical Biological Physics, Rice University, Houston, United States
| | - Jose N Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, United States.,Department of Physics and Astronomy, Rice University, Houston, United States.,Department of Chemistry, Rice University, Houston, United States.,Department of Biosciences, Rice University, Houston, United States
| | - Paul Charles Whitford
- Center for Theoretical Biological Physics, Northeastern University, Boston, United States.,Department of Physics, Northeastern University, Boston, United States
| |
Collapse
|
19
|
Bheemireddy S, Sandhya S, Srinivasan N. Comparative Analysis of Structural and Dynamical Features of Ribosome Upon Association With mRNA Reveals Potential Role of Ribosomal Proteins. Front Mol Biosci 2021; 8:654164. [PMID: 34409066 PMCID: PMC8365230 DOI: 10.3389/fmolb.2021.654164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 07/21/2021] [Indexed: 11/24/2022] Open
Abstract
Ribosomes play a critical role in maintaining cellular proteostasis. The binding of messenger RNA (mRNA) to the ribosome regulates kinetics of protein synthesis. To generate an understanding of the structural, mechanistic, and dynamical features of mRNA recognition in the ribosome, we have analysed mRNA-protein interactions through a structural comparison of the ribosomal complex in the presence and absence of mRNA. To do so, we compared the 3-Dimensional (3D) structures of components of the two assembly structures and analysed their structural differences because of mRNA binding, using elastic network models and structural network-based analysis. We observe that the head region of 30S ribosomal subunit undergoes structural displacement and subunit rearrangement to accommodate incoming mRNA. We find that these changes are observed in proteins that lie far from the mRNA-protein interface, implying allostery. Further, through perturbation response scanning, we show that the proteins S13, S19, and S20 act as universal sensors that are sensitive to changes in the inter protein network, upon binding of 30S complex with mRNA and other initiation factors. Our study highlights the significance of mRNA binding in the ribosome complex and identifies putative allosteric sites corresponding to alterations in structure and/or dynamics, in regions away from mRNA binding sites in the complex. Overall, our work provides fresh insights into mRNA association with the ribosome, highlighting changes in the interactions and dynamics of the ribosome assembly because of the binding.
Collapse
Affiliation(s)
- Sneha Bheemireddy
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, India
| | - Sankaran Sandhya
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, India
| | | |
Collapse
|
20
|
Structures of tmRNA and SmpB as they transit through the ribosome. Nat Commun 2021; 12:4909. [PMID: 34389707 PMCID: PMC8363625 DOI: 10.1038/s41467-021-24881-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 07/13/2021] [Indexed: 01/01/2023] Open
Abstract
In bacteria, trans-translation is the main rescue system, freeing ribosomes stalled on defective messenger RNAs. This mechanism is driven by small protein B (SmpB) and transfer-messenger RNA (tmRNA), a hybrid RNA known to have both a tRNA-like and an mRNA-like domain. Here we present four cryo-EM structures of the ribosome during trans-translation at resolutions from 3.0 to 3.4 Å. These include the high-resolution structure of the whole pre-accommodated state, as well as structures of the accommodated state, the translocated state, and a translocation intermediate. Together, they shed light on the movements of the tmRNA-SmpB complex in the ribosome, from its delivery by the elongation factor EF-Tu to its passage through the ribosomal A and P sites after the opening of the B1 bridges. Additionally, we describe the interactions between the tmRNA-SmpB complex and the ribosome. These explain why the process does not interfere with canonical translation.
Collapse
|
21
|
Freitas FC, Fuchs G, de Oliveira RJ, Whitford PC. The dynamics of subunit rotation in a eukaryotic ribosome. BIOPHYSICA 2021; 1:204-221. [PMID: 37484008 PMCID: PMC10361705 DOI: 10.3390/biophysica1020016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Protein synthesis by the ribosome is coordinated by an intricate series of large-scale conformational rearrangements. Structural studies can provide information about long-lived states, however biological kinetics are controlled by the intervening free-energy barriers. While there has been progress describing the energy landscapes of bacterial ribosomes, very little is known about the energetics of large-scale rearrangements in eukaryotic systems. To address this topic, we constructed an all-atom model with simplified energetics and performed simulations of subunit rotation in the yeast ribosome. In these simulations, the small subunit (SSU; ~1MDa) undergoes spontaneous and reversible rotations (~8°). By enabling the simulation of this rearrangement under equilibrium conditions, these calculations provide initial insights into the molecular factors that control dynamics in eukaryotic ribosomes. Through this, we are able to identify specific inter-subunit interactions that have a pronounced influence on the rate-limiting free-energy barrier. We also show that, as a result of changes in molecular flexibility, the thermodynamic balance between the rotated and unrotated states is temperature-dependent. This effect may be interpreted in terms of differential molecular flexibility within the rotated and unrotated states. Together, these calculations provide a foundation, upon which the field may begin to dissect the energetics of these complex molecular machines.
Collapse
Affiliation(s)
- Frederico Campos Freitas
- Laboratório de Biofísica Teórica, Departamento de Física, Instituto de Ciências Exatas, Naturais e Educação, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil
| | - Gabriele Fuchs
- Department of Biological Sciences, The RNA Institute, University at Albany 1400 Washington Ave, Albany, NY,12222
| | - Ronaldo Junio de Oliveira
- Laboratório de Biofísica Teórica, Departamento de Física, Instituto de Ciências Exatas, Naturais e Educação, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil
| | - Paul Charles Whitford
- Department of Physics, Northeastern University, 360 Huntington Ave, Boston, MA 02115
- Center for Theoretical Biological Physics, Northeastern University, 360 Huntington Ave, Boston, MA 02115
| |
Collapse
|
22
|
Schlick T, Portillo-Ledesma S, Myers CG, Beljak L, Chen J, Dakhel S, Darling D, Ghosh S, Hall J, Jan M, Liang E, Saju S, Vohr M, Wu C, Xu Y, Xue E. Biomolecular Modeling and Simulation: A Prospering Multidisciplinary Field. Annu Rev Biophys 2021; 50:267-301. [PMID: 33606945 PMCID: PMC8105287 DOI: 10.1146/annurev-biophys-091720-102019] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We reassess progress in the field of biomolecular modeling and simulation, following up on our perspective published in 2011. By reviewing metrics for the field's productivity and providing examples of success, we underscore the productive phase of the field, whose short-term expectations were overestimated and long-term effects underestimated. Such successes include prediction of structures and mechanisms; generation of new insights into biomolecular activity; and thriving collaborations between modeling and experimentation, including experiments driven by modeling. We also discuss the impact of field exercises and web games on the field's progress. Overall, we note tremendous success by the biomolecular modeling community in utilization of computer power; improvement in force fields; and development and application of new algorithms, notably machine learning and artificial intelligence. The combined advances are enhancing the accuracy andscope of modeling and simulation, establishing an exemplary discipline where experiment and theory or simulations are full partners.
Collapse
Affiliation(s)
- Tamar Schlick
- Department of Chemistry, New York University, New York, New York 10003, USA;
- Courant Institute of Mathematical Sciences, New York University, New York, New York 10012, USA
- New York University-East China Normal University Center for Computational Chemistry, New York University Shanghai, Shanghai 200122, China
| | | | - Christopher G Myers
- Department of Chemistry, New York University, New York, New York 10003, USA;
| | - Lauren Beljak
- College of Arts and Science, New York University, New York, New York 10003, USA
| | - Justin Chen
- College of Arts and Science, New York University, New York, New York 10003, USA
| | - Sami Dakhel
- College of Arts and Science, New York University, New York, New York 10003, USA
| | - Daniel Darling
- College of Arts and Science, New York University, New York, New York 10003, USA
| | - Sayak Ghosh
- College of Arts and Science, New York University, New York, New York 10003, USA
| | - Joseph Hall
- College of Arts and Science, New York University, New York, New York 10003, USA
| | - Mikaeel Jan
- College of Arts and Science, New York University, New York, New York 10003, USA
| | - Emily Liang
- College of Arts and Science, New York University, New York, New York 10003, USA
| | - Sera Saju
- College of Arts and Science, New York University, New York, New York 10003, USA
| | - Mackenzie Vohr
- College of Arts and Science, New York University, New York, New York 10003, USA
| | - Chris Wu
- College of Arts and Science, New York University, New York, New York 10003, USA
| | - Yifan Xu
- College of Arts and Science, New York University, New York, New York 10003, USA
| | - Eva Xue
- College of Arts and Science, New York University, New York, New York 10003, USA
| |
Collapse
|
23
|
Sosorev A, Kharlanov O. Organic nanoelectronics inside us: charge transport and localization in RNA could orchestrate ribosome operation. Phys Chem Chem Phys 2021; 23:7037-7047. [PMID: 33448272 DOI: 10.1039/d0cp04970k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Translation - protein synthesis at the ribonucleic acid (RNA) based molecular machine, the ribosome, - proceeds in a similar manner in all life forms. However, despite several decades of research, the physics underlying this process remains enigmatic. Specifically, during translation, a ribosome undergoes large-scale conformational changes of its distant parts, and these motions are coordinated by an unknown mechanism. In this study, we suggest that such a mechanism could be related to charge (electron hole) transport along and between the RNA molecules, localization of these charges at certain sites and successive relaxation of the molecular geometry. Thus, we suppose that RNA-based molecular machines, e.g., the ribosome, could be electronically controlled, having "wires", "actuators", "a battery", and other "circuitry". Taking transfer RNA as an example, we justify the reasonability of our suggestion using ab initio and atomistic simulations. Specifically, very large hole transfer integrals between the nucleotides (up to above 100 meV) are observed so that the hole can migrate over nearly the whole tRNA molecule. Hole localization at several guanines located at functionally important sites (G27, G10, G34 and G63) is predicted, which is shown to induce geometry changes in these sites, their neighborhoods and even rather distant moieties. If our hypothesis is right, we anticipate that our findings will qualitatively advance the understanding of the key biological processes and could inspire novel approaches in medicine.
Collapse
Affiliation(s)
- Andrey Sosorev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Ulitsa Miklukho-Maklaya, 16/10, Moscow, GSP-7, 117997, Russia.
| | | |
Collapse
|
24
|
A steric gate controls P/E hybrid-state formation of tRNA on the ribosome. Nat Commun 2020; 11:5706. [PMID: 33177497 PMCID: PMC7658246 DOI: 10.1038/s41467-020-19450-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/15/2020] [Indexed: 12/19/2022] Open
Abstract
The ribosome is a biomolecular machine that undergoes multiple large-scale structural rearrangements during protein elongation. Here, we focus on a conformational rearrangement during translocation, known as P/E hybrid-state formation. Using a model that explicitly represents all non-hydrogen atoms, we simulated more than 120 spontaneous transitions, where the tRNA molecule is displaced between the P and E sites of the large subunit. In addition to predicting a free-energy landscape that is consistent with previous experimental observations, the simulations reveal how a six-residue gate-like region can limit P/E formation, where sub-angstrom structural perturbations lead to an order-of-magnitude change in kinetics. Thus, this precisely defined set of residues represents a novel target that may be used to control functional dynamics in bacterial ribosomes. This theoretical analysis establishes a direct relationship between ribosome structure and large-scale dynamics, and it suggests how next-generation experiments may precisely dissect the energetics of hybrid formation on the ribosome. The ribosome undergoes multiple large-scale structural rearrangements during protein elongation. Here the authors present an all-atom model of the ribosome to study the energetics of P/E hybrid-state formation, an early conformational rearrangement occurring during translocation.
Collapse
|
25
|
Simulations of Phage T7 Capsid Expansion Reveal the Role of Molecular Sterics on Dynamics. Viruses 2020; 12:v12111273. [PMID: 33171826 PMCID: PMC7695174 DOI: 10.3390/v12111273] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 12/30/2022] Open
Abstract
Molecular dynamics techniques provide numerous strategies for investigating biomolecular energetics, though quantitative analysis is often only accessible for relatively small (frequently monomeric) systems. To address this limit, we use simulations in combination with a simplified energetic model to study complex rearrangements in a large assembly. We use cryo-EM reconstructions to simulate the DNA packaging-associated 3 nm expansion of the protein shell of an initially assembled phage T7 capsid (called procapsid or capsid I). This is accompanied by a disorder-order transition and expansion-associated externalization displacement of the 420 N-terminal tails of the shell proteins. For the simulations, we use an all-atom structure-based model (1.07 million atoms), which is specifically designed to probe the influence of molecular sterics on dynamics. We find that the rate at which the N-terminal tails undergo translocation depends heavily on their position within hexons and pentons. Specifically, trans-shell displacements of the hexon E subunits are the most frequent and hexon A subunits are the least frequent. The simulations also implicate numerous tail translocation intermediates during tail translocation that involve topological traps, as well as sterically induced barriers. The presented study establishes a foundation for understanding the precise relationship between molecular structure and phage maturation.
Collapse
|
26
|
Hoffer ED, Hong S, Sunita S, Maehigashi T, Gonzalez RL, Whitford PC, Dunham CM. Structural insights into mRNA reading frame regulation by tRNA modification and slippery codon-anticodon pairing. eLife 2020; 9:51898. [PMID: 33016876 PMCID: PMC7577736 DOI: 10.7554/elife.51898] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/02/2020] [Indexed: 01/10/2023] Open
Abstract
Modifications in the tRNA anticodon loop, adjacent to the three-nucleotide anticodon, influence translation fidelity by stabilizing the tRNA to allow for accurate reading of the mRNA genetic code. One example is the N1-methylguanosine modification at guanine nucleotide 37 (m1G37) located in the anticodon loop andimmediately adjacent to the anticodon nucleotides 34, 35, 36. The absence of m1G37 in tRNAPro causes +1 frameshifting on polynucleotide, slippery codons. Here, we report structures of the bacterial ribosome containing tRNAPro bound to either cognate or slippery codons to determine how the m1G37 modification prevents mRNA frameshifting. The structures reveal that certain codon–anticodon contexts and the lack of m1G37 destabilize interactions of tRNAPro with the P site of the ribosome, causing large conformational changes typically only seen during EF-G-mediated translocation of the mRNA-tRNA pairs. These studies provide molecular insights into how m1G37 stabilizes the interactions of tRNAPro with the ribosome in the context of a slippery mRNA codon.
Collapse
Affiliation(s)
- Eric D Hoffer
- Department of Biochemistry, Emory University School of Medicine, Atlanta, United States
| | - Samuel Hong
- Department of Biochemistry, Emory University School of Medicine, Atlanta, United States
| | - S Sunita
- Department of Biochemistry, Emory University School of Medicine, Atlanta, United States
| | - Tatsuya Maehigashi
- Department of Biochemistry, Emory University School of Medicine, Atlanta, United States
| | - Ruben L Gonzalez
- Department of Chemistry, Columbia University, New York, United States
| | - Paul C Whitford
- Department of Physics, Northeastern University, Boston, United States
| | - Christine M Dunham
- Department of Biochemistry, Emory University School of Medicine, Atlanta, United States
| |
Collapse
|
27
|
Girodat D, Blanchard SC, Wieden HJ, Sanbonmatsu KY. Elongation Factor Tu Switch I Element is a Gate for Aminoacyl-tRNA Selection. J Mol Biol 2020; 432:3064-3077. [PMID: 32061931 DOI: 10.1016/j.jmb.2020.01.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/15/2020] [Accepted: 01/24/2020] [Indexed: 12/16/2022]
Abstract
Selection of correct aminoacyl (aa)-tRNA at the ribosomal A site is fundamental to maintaining translational fidelity. Aa-tRNA selection is a multistep process facilitated by the guanosine triphosphatase elongation factor (EF)-Tu. EF-Tu delivers aa-tRNA to the ribosomal A site and participates in tRNA selection. The structural mechanism of how EF-Tu is involved in proofreading remains to be fully resolved. Here, we provide evidence that switch I of EF-Tu facilitates EF-Tu's involvement during aa-tRNA selection. Using structure-based and explicit solvent molecular dynamics simulations based on recent cryo-electron microscopy reconstructions, we studied the conformational change of EF-Tu from the guanosine triphosphate to guanine diphosphate conformation during aa-tRNA accommodation. Switch I of EF-Tu rapidly converts from an α-helix into a β-hairpin and moves to interact with the acceptor stem of the aa-tRNA. In doing so, switch I gates the movement of the aa-tRNA during accommodation through steric interactions with the acceptor stem. Pharmacological inhibition of the aa-tRNA accommodation pathway prevents the proper positioning of switch I with the aa-tRNA acceptor stem, suggesting that the observed interactions are specific for cognate aa-tRNA substrates, and thus capable of contributing to the fidelity mechanism.
Collapse
Affiliation(s)
- Dylan Girodat
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Scott C Blanchard
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Hans-Joachim Wieden
- Department of Chemistry and Biochemistry, Alberta RNA Research and Training Institute, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Karissa Y Sanbonmatsu
- Theoretical Biology and Biophysics Group, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA; New Mexico Consortium, Los Alamos, NM, 87544.
| |
Collapse
|
28
|
Bandarkar P, Yang H, Henley RY, Wanunu M, Whitford PC. How Nanopore Translocation Experiments Can Measure RNA Unfolding. Biophys J 2020; 118:1612-1620. [PMID: 32075749 DOI: 10.1016/j.bpj.2020.01.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 10/25/2022] Open
Abstract
Electrokinetic translocation of biomolecules through solid-state nanopores represents a label-free single-molecule technique that may be used to measure biomolecular structure and dynamics. Recent investigations have attempted to distinguish individual transfer RNA (tRNA) species based on the associated pore translocation times, ion-current noise, and blockage currents. By manufacturing sufficiently smaller pores, each tRNA is required to undergo a deformation to translocate. Accordingly, differences in nanopore translocation times and distributions may be used to infer the mechanical properties of individual tRNA molecules. To bridge our understanding of tRNA structural dynamics and nanopore measurements, we apply molecular dynamics simulations using a simplified "structure-based" energetic model. Calculating the free-energy landscape for distinct tRNA species implicates transient unfolding of the terminal RNA helix during nanopore translocation. This provides a structural and energetic framework for interpreting current experiments, which can aid the design of methods for identifying macromolecules using nanopores.
Collapse
Affiliation(s)
- Prasad Bandarkar
- Department of Physics, Northeastern University, Boston, Massachusetts
| | - Huan Yang
- Department of Physics, Northeastern University, Boston, Massachusetts
| | - Robert Y Henley
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, California
| | - Meni Wanunu
- Department of Physics, Northeastern University, Boston, Massachusetts.
| | - Paul C Whitford
- Department of Physics, Northeastern University, Boston, Massachusetts.
| |
Collapse
|
29
|
Lind C, Esguerra M, Jespers W, Satpati P, Gutierrez-de-Terán H, Åqvist J. Free energy calculations of RNA interactions. Methods 2019; 162-163:85-95. [DOI: 10.1016/j.ymeth.2019.02.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/01/2019] [Accepted: 02/15/2019] [Indexed: 01/19/2023] Open
|
30
|
Studying ribosome dynamics with simplified models. Methods 2019; 162-163:128-140. [DOI: 10.1016/j.ymeth.2019.03.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/22/2019] [Accepted: 03/23/2019] [Indexed: 12/24/2022] Open
|
31
|
Levi M, Whitford PC. Dissecting the Energetics of Subunit Rotation in the Ribosome. J Phys Chem B 2019; 123:2812-2823. [PMID: 30844276 DOI: 10.1021/acs.jpcb.9b00178] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The accurate expression of proteins requires the ribosome to efficiently undergo elaborate conformational rearrangements. The most dramatic of these motions is subunit rotation, which is necessary for tRNA molecules to transition between ribosomal binding sites. While rigid-body descriptions provide a qualitative picture of the process, obtaining quantitative mechanistic insights requires one to account for the relationship between molecular flexibility and collective dynamics. Using simulated rotation events, we assess the quality of experimentally accessible measures for describing the collective displacement of the ∼4000-residue small subunit. For this, we ask whether each coordinate is able to identify the underlying free-energy barrier and transition state ensemble (TSE). We find that intuitive structurally motivated coordinates (e.g., rotation angle, interprotein distances) can distinguish between the endpoints, though they are poor indicators of barrier-crossing events, and they underestimate the free-energy barrier. In contrast, coordinates based on intersubunit bridges can identify the TSE. We additionally verify that the committor probability for the putative TSE configurations is 0.5, a hallmark feature of any transition state. In terms of structural properties, these calculations implicate a transition state in which flexibility allows for asynchronous rearrangements of the bridges, as the ribosome adopts a partially rotated orientation. This provides a theoretical foundation, upon which experimental techniques may precisely quantify the energy landscape of the ribosome.
Collapse
Affiliation(s)
- Mariana Levi
- Department of Physics , Northeastern University , Dana Research Center 111, 360 Huntington Avenue , Boston , Massachusetts 02115 , United States
| | - Paul C Whitford
- Department of Physics , Northeastern University , Dana Research Center 111, 360 Huntington Avenue , Boston , Massachusetts 02115 , United States
| |
Collapse
|
32
|
Opron K, Burton ZF. Ribosome Structure, Function, and Early Evolution. Int J Mol Sci 2018; 20:ijms20010040. [PMID: 30583477 PMCID: PMC6337491 DOI: 10.3390/ijms20010040] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/03/2018] [Accepted: 12/16/2018] [Indexed: 11/16/2022] Open
Abstract
Ribosomes are among the largest and most dynamic molecular motors. The structure and dynamics of translation initiation and elongation are reviewed. Three ribosome motions have been identified for initiation and translocation. A swivel motion between the head/beak and the body of the 30S subunit was observed. A tilting dynamic of the head/beak versus the body of the 30S subunit was detected using simulations. A reversible ratcheting motion was seen between the 30S and the 50S subunits that slide relative to one another. The 30S⁻50S intersubunit contacts regulate translocation. IF2, EF-Tu, and EF-G are homologous G-protein GTPases that cycle on and off the same site on the ribosome. The ribosome, aminoacyl-tRNA synthetase (aaRS) enzymes, transfer ribonucleic acid (tRNA), and messenger ribonucleic acid (mRNA) form the core of information processing in cells and are coevolved. Surprisingly, class I and class II aaRS enzymes, with distinct and incompatible folds, are homologs. Divergence of class I and class II aaRS enzymes and coevolution of the genetic code are described by analysis of ancient archaeal species.
Collapse
Affiliation(s)
- Kristopher Opron
- Bioinformatics Core, University of Michigan, Ann Arbor, MI 48109-0674, USA.
| | - Zachary F Burton
- Department of Biochemistry and Molecular Biology, 603 Wilson Rd., Michigan State University, MI 48824-1319, USA.
| |
Collapse
|
33
|
Yang H, Perrier J, Whitford PC. Disorder guides domain rearrangement in elongation factor Tu. Proteins 2018; 86:1037-1046. [DOI: 10.1002/prot.25575] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/07/2018] [Accepted: 06/22/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Huan Yang
- Department of Physics Northeastern University Boston Massachusetts
| | - Jonathan Perrier
- Department of Physics Northeastern University Boston Massachusetts
| | - Paul C. Whitford
- Department of Physics Northeastern University Boston Massachusetts
| |
Collapse
|
34
|
Shi XX, Chen H, Xie P. Dynamics of tRNA dissociation in early and later cycles of translation elongation by the ribosome. Biosystems 2018; 172:43-51. [PMID: 30184468 DOI: 10.1016/j.biosystems.2018.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 08/23/2018] [Accepted: 08/24/2018] [Indexed: 11/24/2022]
Abstract
Deacylated tRNA dissociation from E site and aminoacyl-tRNA binding to the A site of the ribosome play a critical role in repetitive cycles of protein synthesis. Available experimental data showed that in the small range of aminoacyl-tRNA concentrations, during the first few cycles of translation elongation (initiation phase of translation) the E-site tRNA can be dissociated either before or after the A-site tRNA binding, while during the later cycles of elongation (elongation phase) the E-site tRNA is mostly dissociated before the A-site tRNA binding. Here, based on our proposed model of translation elongation we study analytically the dynamics of the E-site tRNA dissociation and A-site tRNA binding, providing quantitative explanations of the available experimental data in both the initiation and elongation phases. In our model there exist two routes of state transitions within an elongation cycle in the initiation phase, with each route having stochastic E-site tRNA dissociation but with different dissociation rates. Thus, the E-site tRNA dissociation is governed by a stochastic competition between the tRNA dissociation and A-site tRNA association reactions, although in the small range of aminoacyl-tRNA concentrations used in the experiments it seems that such stochastic competition does not exist. Moreover, the detailed comparisons between the dynamics of tRNA dissociation in the initiation phase and that in the elongation phase are made.
Collapse
Affiliation(s)
- Xiao-Xuan Shi
- School of Materials Science and Energy Engineering, FoShan University, Guangdong, 528000, China; Key Laboratory of Soft Matter Physics and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Hong Chen
- School of Materials Science and Energy Engineering, FoShan University, Guangdong, 528000, China
| | - Ping Xie
- School of Materials Science and Energy Engineering, FoShan University, Guangdong, 528000, China; Key Laboratory of Soft Matter Physics and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
35
|
Levi M, Nguyen K, Dukaye L, Whitford PC. Quantifying the Relationship between Single-Molecule Probes and Subunit Rotation in the Ribosome. Biophys J 2018; 113:2777-2786. [PMID: 29262370 DOI: 10.1016/j.bpj.2017.10.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/12/2017] [Accepted: 10/16/2017] [Indexed: 11/18/2022] Open
Abstract
A major challenge in the study of biomolecular assemblies is to identify reaction coordinates that precisely monitor conformational rearrangements. This is central to the interpretation of single-molecule fluorescence resonance energy transfer measurements, where the observed dynamics depends on the labeling strategy. As an example, different probes of subunit rotation in the ribosome have provided qualitatively distinct descriptions. In one study, changes in fluorescence suggested that the 30S body undergoes a single rotation/back-rotation cycle during the process of mRNA-tRNA translocation. In contrast, an alternate assay implicated the presence of reversible rotation events before completing translocation. For future single-molecule experiments to unambiguously measure the relationship between subunit rotation and translocation, it is necessary to rationalize these conflicting descriptions. To this end, we have simulated hundreds of spontaneous subunit rotation events (≈8°) using a residue-level coarse-grained model of the ribosome. We analyzed nine different reaction coordinates and found that the apparently inconsistent measurements are likely a consequence of ribosomal flexibility. Further, we propose a metric for quantifying the degree of energetic coupling between experimentally measured degrees of freedom and subunit rotation. This analysis provides a physically grounded framework that can guide the development of more precise single-molecule techniques.
Collapse
Affiliation(s)
- Mariana Levi
- Department of Physics, Northeastern University, Boston, Massachusetts
| | - Kien Nguyen
- Department of Physics, Northeastern University, Boston, Massachusetts
| | - Liah Dukaye
- Department of Physics, Northeastern University, Boston, Massachusetts
| | | |
Collapse
|
36
|
Bock LV, Kolář MH, Grubmüller H. Molecular simulations of the ribosome and associated translation factors. Curr Opin Struct Biol 2017; 49:27-35. [PMID: 29202442 DOI: 10.1016/j.sbi.2017.11.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/15/2017] [Accepted: 11/16/2017] [Indexed: 01/15/2023]
Abstract
The ribosome is a macromolecular complex which is responsible for protein synthesis in all living cells according to their transcribed genetic information. Using X-ray crystallography and, more recently, cryo-electron microscopy (cryo-EM), the structure of the ribosome was resolved at atomic resolution in many functional and conformational states. Molecular dynamics simulations have added information on dynamics and energetics to the available structural information, thereby have bridged the gap to the kinetics obtained from single-molecule and bulk experiments. Here, we review recent computational studies that brought notable insights into ribosomal structure and function.
Collapse
Affiliation(s)
- Lars V Bock
- Department of Theoretical and Computational Biophysics, Am Faßberg 11, Göttingen, Germany
| | - Michal H Kolář
- Department of Theoretical and Computational Biophysics, Am Faßberg 11, Göttingen, Germany
| | - Helmut Grubmüller
- Department of Theoretical and Computational Biophysics, Am Faßberg 11, Göttingen, Germany.
| |
Collapse
|
37
|
Xie P, Chen H. Mechanism of ribosome translation through mRNA secondary structures. Int J Biol Sci 2017; 13:712-722. [PMID: 28655997 PMCID: PMC5485627 DOI: 10.7150/ijbs.19508] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 03/07/2017] [Indexed: 02/03/2023] Open
Abstract
A ribosome is a macromolecular machine that is responsible for translating the genetic codes in messenger RNA (mRNA) into polypeptide chains. It has been determined that besides translating through the single-stranded region, the ribosome can also translate through the duplex region of mRNA by unwinding the duplex. To understand the mechanism of ribosome translation through the duplex, several models have been proposed to study the dynamics of mRNA unwinding. Here, we present a comprehensive review of these models and also discuss other possible models. We evaluate each model and discuss the consistency and/or inconsistency between the theoretical results that are obtained based on each model and the available experimental data, thus determining which model is the most reasonable one to describe the mRNA unwinding mechanism and dynamics of the ribosome. Moreover, a framework for future studies in this subject is provided.
Collapse
Affiliation(s)
- Ping Xie
- School of Materials Science and Energy Engineering, FoShan University, Guangdong, 528000, China.,Key Laboratory of Soft Matter Physics and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Hong Chen
- School of Materials Science and Energy Engineering, FoShan University, Guangdong, 528000, China
| |
Collapse
|
38
|
Minges A, Ciupka D, Winkler C, Höppner A, Gohlke H, Groth G. Structural intermediates and directionality of the swiveling motion of Pyruvate Phosphate Dikinase. Sci Rep 2017; 7:45389. [PMID: 28358005 PMCID: PMC5371819 DOI: 10.1038/srep45389] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/23/2017] [Indexed: 12/13/2022] Open
Abstract
Pyruvate phosphate dikinase (PPDK) is a vital enzyme in cellular energy metabolism catalyzing the ATP- and Pi-dependent formation of phosphoenolpyruvate from pyruvate in C4 -plants, but the reverse reaction forming ATP in bacteria and protozoa. The multi-domain enzyme is considered an efficient molecular machine that performs one of the largest single domain movements in proteins. However, a comprehensive understanding of the proposed swiveling domain motion has been limited by not knowing structural intermediates or molecular dynamics of the catalytic process. Here, we present crystal structures of PPDKs from Flaveria, a model genus for studying the evolution of C4 -enzymes from phylogenetic ancestors. These structures resolve yet unknown conformational intermediates and provide the first detailed view on the large conformational transitions of the protein in the catalytic cycle. Independently performed unrestrained MD simulations and configurational free energy calculations also identified these intermediates. In all, our experimental and computational data reveal strict coupling of the CD swiveling motion to the conformational state of the NBD. Moreover, structural asymmetries and nucleotide binding states in the PPDK dimer support an alternate binding change mechanism for this intriguing bioenergetic enzyme.
Collapse
Affiliation(s)
- Alexander Minges
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute of Biochemical Plant Physiology, Heinrich Heine University Düsseldorf, 40204 Düsseldorf, Germany
| | - Daniel Ciupka
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40204 Düsseldorf, Germany
| | - Christian Winkler
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute of Biochemical Plant Physiology, Heinrich Heine University Düsseldorf, 40204 Düsseldorf, Germany
| | - Astrid Höppner
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute of Biochemical Plant Physiology, Heinrich Heine University Düsseldorf, 40204 Düsseldorf, Germany
| | - Holger Gohlke
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, 40204 Düsseldorf, Germany
| | - Georg Groth
- Cluster of Excellence on Plant Sciences (CEPLAS), Institute of Biochemical Plant Physiology, Heinrich Heine University Düsseldorf, 40204 Düsseldorf, Germany
| |
Collapse
|
39
|
Abstract
When given an option to choose among a set of alternatives and only one selection is right, one might stop and reflect over which one is best. However, the ribosome has no time to stop and make such reflections, proteins need to be produced and very fast. Eukaryotic translation initiation is an example of such a conundrum. Here, scanning for the correct codon match must be fast, efficient and accurate. We highlight our recent computational findings, which show how the initiation machinery manages to recognize one specific codon among many possible challengers, by fine-tuning the energetic landscape of base-pairing with the aid of the initiation factors eIF1 and eIF1A. Using a recent 3-dimensional structure of the eukaryotic initiation complex we have performed simulations of codon recognition in atomic detail. These calculations provide an in-depth energetic and structural view of how discrimination against near-cognate codons is achieved by the initiation complex.
Collapse
Affiliation(s)
- Christoffer Lind
- a Department of Cell and Molecular Biology , Uppsala University , Uppsala , Sweden
| | - Mauricio Esguerra
- a Department of Cell and Molecular Biology , Uppsala University , Uppsala , Sweden
| | - Johan Åqvist
- a Department of Cell and Molecular Biology , Uppsala University , Uppsala , Sweden
| |
Collapse
|
40
|
Nguyen K, Yang H, Whitford PC. How the Ribosomal A-Site Finger Can Lead to tRNA Species-Dependent Dynamics. J Phys Chem B 2017; 121:2767-2775. [PMID: 28276690 DOI: 10.1021/acs.jpcb.7b01072] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Proteins are synthesized by the joint action of the ribosome and tRNA molecules, where the rate of synthesis can be affected by numerous factors, such as the concentration of tRNA, the binding affinity of tRNA for the ribosome, or post-transcriptional modifications. Here, we expand this range of contributors by demonstrating how differences in tRNA structure can give rise to tRNA species-specific dynamics in the ribosome. To show this, we perform simulations of A/P hybrid-state formation for two tRNA species (tRNAPhe and tRNALeu), which differ in the size of their variable loops (VLs). These calculations reveal that steric interactions between the VL and the ribosomal A-site finger (ASF, i.e., H38 of 23S rRNA) can directly modulate the free-energy landscape for each tRNA species. We also find that tRNA and ASF motions are highly correlated, where fluctuations of the ASF are predictive of tRNA transition events. Finally, by introducing perturbations to the model, we demonstrate that ASF flexibility is a determinant of the rate of A/P hybrid-state formation.
Collapse
Affiliation(s)
- Kien Nguyen
- Department of Physics, Northeastern University , Dana Research Center 111, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Huan Yang
- Department of Physics, Northeastern University , Dana Research Center 111, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Paul C Whitford
- Department of Physics, Northeastern University , Dana Research Center 111, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
41
|
|
42
|
Xie P. Dynamic relationships between ribosomal conformational and RNA positional changes during ribosomal translocation. Heliyon 2016; 2:e00214. [PMID: 28070564 PMCID: PMC5219732 DOI: 10.1016/j.heliyon.2016.e00214] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/17/2016] [Accepted: 12/08/2016] [Indexed: 12/15/2022] Open
Abstract
Ribosomal translocation catalyzed by EF-G hydrolyzing GTP entails multiple conformational changes of ribosome and positional changes of tRNAs and mRNA in the ribosome. However, the detailed dynamic relations among these changes and EF-G sampling are not clear. Here, based on our proposed pathway of ribosomal translocation, we study theoretically the dynamic relations among these changes exhibited in the single molecule data and those exhibited in the ensemble kinetic data. It is shown that the timing of these changes in the single molecule data and that in the ensemble kinetic data show very different. The theoretical results are in agreement with both the available ensemble kinetic experimental data and the single molecule experimental data.
Collapse
Affiliation(s)
- Ping Xie
- Key Laboratory of Soft Matter Physics and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
43
|
Giri Rao VVH, Desikan R, Ayappa KG, Gosavi S. Capturing the Membrane-Triggered Conformational Transition of an α-Helical Pore-Forming Toxin. J Phys Chem B 2016; 120:12064-12078. [DOI: 10.1021/acs.jpcb.6b09400] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- V. V. Hemanth Giri Rao
- Simons
Centre for the Study of Living Machines, National Centre for Biological
Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| | - Rajat Desikan
- Department
of Chemical Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - K. Ganapathy Ayappa
- Department
of Chemical Engineering, Indian Institute of Science, Bengaluru 560012, India
- Centre
for Biosystems Science and Engineering, Indian Institute of Science, Bengaluru 560012, India
| | - Shachi Gosavi
- Simons
Centre for the Study of Living Machines, National Centre for Biological
Sciences, Tata Institute of Fundamental Research, Bengaluru 560065, India
| |
Collapse
|
44
|
Nguyen K, Whitford PC. Capturing Transition States for tRNA Hybrid-State Formation in the Ribosome. J Phys Chem B 2016; 120:8768-75. [PMID: 27479146 DOI: 10.1021/acs.jpcb.6b04476] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In order to quantitatively describe the energetics of biomolecular rearrangements, it is necessary to identify reaction coordinates that accurately capture the relevant transition events. Here, we perform simulations of A-site tRNA movement (∼20 Å) during hybrid-state formation in the ribosome and quantify the ability of interatomic distances to capture the transition state ensemble. Numerous coordinates are found to be accurate indicators of the transition state, allowing tRNA rearrangements to be described as diffusion across a one-dimensional free-energy surface. In addition to providing insights into the physical-chemical relationship between biomolecular structure and dynamics, these results can help enable single-molecule techniques to probe the free-energy landscape of the ribosome.
Collapse
Affiliation(s)
- Kien Nguyen
- Department of Physics, Northeastern University , Dana Research Center 123, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| | - Paul C Whitford
- Department of Physics, Northeastern University , Dana Research Center 123, 360 Huntington Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
45
|
Xie P. On the pathway of ribosomal translocation. Int J Biol Macromol 2016; 92:401-415. [PMID: 27431796 DOI: 10.1016/j.ijbiomac.2016.07.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/12/2016] [Accepted: 07/14/2016] [Indexed: 11/29/2022]
Abstract
The translocation of tRNAs coupled with mRNA in the ribosome is a critical process in the elongation cycle of protein synthesis. The translocation entails large-scale conformational changes of the ribosome and involves several intermediate states with tRNAs in different positions with respect to 30S and 50S ribosomal subunits. However, the detailed role of the intermediate states is unknown and the detailed mechanism and pathway of translocation is unclear. Here based on previous structural, biochemical and single-molecule data we present a translocation pathway by incorporating several intermediate states. With the pathway, we study theoretically (i) the kinetics of 30S head rotation associated with translocation catalyzed by wild-type EF-G, (ii) the dynamics of fluctuations between different tRNA states during translocation interfered with EF-G mutants and translocation-specific antibiotics, (iii) the kinetics of tRNA movement in 50S subunit and mRNA movement in 30S subunit in the presence of wild-type EF-G, EF-G mutants and translocation-specific antibiotics, (iv) the dynamics of EF-G sampling to the ribosome during translocation, etc., providing consistent and quantitative explanations of various available biochemical and single-molecule experimental data published in the literature. Moreover, we study the kinetics of 30S head rotation in the presence of EF-G mutants, providing predicted results. These have significant implications for the molecular mechanism and pathway of ribosomal translocation.
Collapse
Affiliation(s)
- Ping Xie
- Key Laboratory of Soft Matter Physics and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
46
|
Ling C, Ermolenko DN. Structural insights into ribosome translocation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2016; 7:620-36. [PMID: 27117863 PMCID: PMC4990484 DOI: 10.1002/wrna.1354] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 03/15/2016] [Accepted: 03/18/2016] [Indexed: 11/23/2022]
Abstract
During protein synthesis, tRNA and mRNA are translocated from the A to P to E sites of the ribosome thus enabling the ribosome to translate one codon of mRNA after the other. Ribosome translocation along mRNA is induced by the universally conserved ribosome GTPase, elongation factor G (EF‐G) in bacteria and elongation factor 2 (EF‐2) in eukaryotes. Recent structural and single‐molecule studies revealed that tRNA and mRNA translocation within the ribosome is accompanied by cyclic forward and reverse rotations between the large and small ribosomal subunits parallel to the plane of the intersubunit interface. In addition, during ribosome translocation, the ‘head’ domain of small ribosomal subunit undergoes forward‐ and back‐swiveling motions relative to the rest of the small ribosomal subunit around the axis that is orthogonal to the axis of intersubunit rotation. tRNA/mRNA translocation is also coupled to the docking of domain IV of EF‐G into the A site of the small ribosomal subunit that converts the thermally driven motions of the ribosome and tRNA into the forward translocation of tRNA/mRNA inside the ribosome. Despite recent and enormous progress made in the understanding of the molecular mechanism of ribosome translocation, the sequence of structural rearrangements of the ribosome, EF‐G and tRNA during translocation is still not fully established and awaits further investigation. WIREs RNA 2016, 7:620–636. doi: 10.1002/wrna.1354 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Clarence Ling
- Department of Biochemistry and Biophysics & Center for RNA Biology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - Dmitri N Ermolenko
- Department of Biochemistry and Biophysics & Center for RNA Biology, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|