1
|
Li Z, Zhang Y, Ma M, Wang W, Hui H, Tian J, Chen Y. Targeted mitigation of neointimal hyperplasia via magnetic field-directed localization of superparamagnetic iron oxide nanoparticle-labeled endothelial progenitor cells following carotid balloon catheter injury in rats. Biomed Pharmacother 2024; 177:117022. [PMID: 38917756 DOI: 10.1016/j.biopha.2024.117022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/10/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND The transplantation of endothelial progenitor cells (EPCs) has been shown to reduce neointimal hyperplasia following arterial injury. However, the efficacy of this approach is hampered by limited homing of EPCs to the injury site. Additionally, the in vivo recruitment and metabolic activity of transplanted EPCs have not been continuously monitored. METHODS EPCs were labeled with indocyanine green (ICG)-conjugated superparamagnetic iron oxide nanoparticles (SPIONs) and subjected to external magnetic field targeting to enhance their delivery to a carotid balloon injury (BI) model in Sprague-Dawley rats. Magnetic particle imaging (MPI)/ fluorescence imaging (FLI) multimodal in vivo imaging, 3D MPI/CT imaging and MPI/FLI ex vivo imaging was performed after injury. Carotid arteries were collected and analyzed for pathology and immunofluorescence staining. The paracrine effects were analyzed by enzyme-linked immunosorbent assay. RESULTS The application of a magnetic field significantly enhanced the localization and retention of SPIONs@PEG-ICG-EPCs at the site of arterial injury, as evidenced by both in vivo continuous monitoring and ex vivo by observation. This targeted delivery approach effectively inhibited neointimal hyperplasia and increased the presence of CD31-positive cells at the injury site. Moreover, serum levels of SDF-1α, VEGF, IGF-1, and TGF-β1 were significantly elevated, indicating enhanced paracrine activity. CONCLUSIONS Our findings demonstrate that external magnetic field-directed delivery of SPIONs@PEG-ICG-EPCs to areas of arterial injury can significantly enhance their therapeutic efficacy. This enhancement is likely mediated through increased paracrine signaling. These results underscore the potential of magnetically guided SPIONs@PEG-ICG-EPCs delivery as a promising strategy for treating arterial injuries.
Collapse
Affiliation(s)
- Zhongxuan Li
- Senior Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China; Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing 100853, China
| | - Yingqian Zhang
- Senior Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Mingrui Ma
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing 100853, China
| | - Wei Wang
- Senior Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Hui Hui
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing 100190, China; Beijing Key Laboratory of Molecular Imaging, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100080, China; National Key Laboratory of Kidney Diseases, Beijing 100853, China.
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Beijing 100190, China; Beijing Key Laboratory of Molecular Imaging, Beijing 100190, China; School of Engineering Medicine & School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of China, Beijing 100191, China; National Key Laboratory of Kidney Diseases, Beijing 100853, China.
| | - Yundai Chen
- Senior Department of Cardiology, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China.
| |
Collapse
|
2
|
Jhajj HS, Schardt JS, Khalasawi N, Yao EL, Lwo TS, Kwon NY, O'Meara RL, Desai AA, Tessier PM. Facile generation of biepitopic antibodies with intrinsic agonism for activating tumor necrosis factor receptors. Cell Chem Biol 2024; 31:944-954.e5. [PMID: 38653243 PMCID: PMC11142405 DOI: 10.1016/j.chembiol.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/28/2024] [Accepted: 03/29/2024] [Indexed: 04/25/2024]
Abstract
Agonist antibodies are being pursued for therapeutic applications ranging from neurodegenerative diseases to cancer. For the tumor necrosis factor (TNF) receptor superfamily, higher-order clustering of three or more receptors is key to their activation, which can be achieved using antibodies that recognize two unique epitopes. However, the generation of biepitopic (i.e., biparatopic) antibodies typically requires animal immunization and is laborious and unpredictable. Here, we report a simple method for identifying biepitopic antibodies that potently activate TNF receptors without the need for additional animal immunization. Our approach uses existing, receptor-specific IgGs, which lack intrinsic agonist activity, to block their corresponding epitopes, then selects single-chain antibodies that bind accessible epitopes. The selected antibodies are fused to the light chains of IgGs to generate human tetravalent antibodies. We highlight the broad utility of this approach by converting several clinical-stage antibodies against OX40 and CD137 (4-1BB) into biepitopic antibodies with potent agonist activity.
Collapse
MESH Headings
- Humans
- Epitopes/immunology
- Epitopes/chemistry
- Animals
- Receptors, Tumor Necrosis Factor/agonists
- Receptors, Tumor Necrosis Factor/immunology
- Receptors, Tumor Necrosis Factor/metabolism
- Tumor Necrosis Factor Receptor Superfamily, Member 9/agonists
- Tumor Necrosis Factor Receptor Superfamily, Member 9/immunology
- Tumor Necrosis Factor Receptor Superfamily, Member 9/metabolism
- Tumor Necrosis Factor Receptor Superfamily, Member 9/antagonists & inhibitors
- Receptors, OX40/agonists
- Receptors, OX40/immunology
- Receptors, OX40/metabolism
- Receptors, OX40/antagonists & inhibitors
- Antibodies/immunology
- Single-Chain Antibodies/immunology
- Single-Chain Antibodies/chemistry
- Single-Chain Antibodies/pharmacology
- Mice
Collapse
Affiliation(s)
- Harkamal S Jhajj
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - John S Schardt
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Namir Khalasawi
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emily L Yao
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Timon S Lwo
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Na-Young Kwon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ryen L O'Meara
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alec A Desai
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter M Tessier
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
3
|
Jhajj HS, Schardt JS, Khalasawi N, Yao EL, Lwo TS, Kwon NY, O’Meara RL, Desai AA, Tessier PM. Facile generation of biepitopic antibodies with intrinsic agonism for activating receptors in the tumor necrosis factor superfamily. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.11.571146. [PMID: 38168220 PMCID: PMC10760063 DOI: 10.1101/2023.12.11.571146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Agonist antibodies that activate cellular receptors are being pursued for therapeutic applications ranging from neurodegenerative diseases to cancer. For the tumor necrosis factor (TNF) receptor superfamily, higher-order clustering of three or more receptors is key to their potent activation. This can be achieved using antibodies that recognize two unique epitopes on the same receptor and mediate receptor superclustering. However, identifying compatible pairs of antibodies to generate biepitopic antibodies (also known as biparatopic antibodies) for activating TNF receptors typically requires animal immunization and is a laborious and unpredictable process. Here, we report a simple method for systematically identifying biepitopic antibodies that potently activate TNF receptors without the need for additional animal immunization. Our approach uses off-the-shelf, receptor-specific IgG antibodies, which lack intrinsic (Fc-gamma receptor-independent) agonist activity, to first block their corresponding epitopes. Next, we perform selections for single-chain antibodies from human nonimmune libraries that bind accessible epitopes on the same ectodomains using yeast surface display and fluorescence-activated cell sorting. The selected single-chain antibodies are finally fused to the light chains of IgGs to generate human tetravalent antibodies that engage two different receptor epitopes and mediate potent receptor activation. We highlight the broad utility of this approach by converting several existing clinical-stage antibodies against TNF receptors, including ivuxolimab and pogalizumab against OX40 and utomilumab against CD137, into biepitopic antibodies with highly potent agonist activity. We expect that this widely accessible methodology can be used to systematically generate biepitopic antibodies for activating other receptors in the TNF receptor superfamily and many other receptors whose activation is dependent on strong receptor clustering.
Collapse
Affiliation(s)
- Harkamal S. Jhajj
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - John S. Schardt
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Namir Khalasawi
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emily L. Yao
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Timon S. Lwo
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Na-Young Kwon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ryen L O’Meara
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alec A. Desai
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter M. Tessier
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
4
|
Liu X, Luan L, Liu X, Jiang D, Deng J, Xu J, Yuan Y, Xing J, Chen B, Xing D, Huang H. A novel nanobody-based HER2-targeting antibody exhibits potent synergistic antitumor efficacy in trastuzumab-resistant cancer cells. Front Immunol 2023; 14:1292839. [PMID: 37954614 PMCID: PMC10634241 DOI: 10.3389/fimmu.2023.1292839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
Human epithelial growth factor receptor-2 (HER2) plays an oncogenic role in numerous tumors, including breast, gastric, and various other solid tumors. While anti-HER2 therapies are approved for the treatment of HER2-positive tumors, a necessity persists for creating novel HER2-targeted agents to resolve therapeutic resistance. Utilizing a synthetic nanobody library and affinity maturation, our study identified four anti-HER2 nanobodies that exhibited high affinity and specificity. These nanobodies recognized three distinct epitopes of HER2-ECD. Additionally, we constructed VHH-Fc and discovered that they facilitated superior internalization and showed moderate growth inhibition. Compared to the combination of trastuzumab and pertuzumab, the VHH-Fc combos or their combination with trastuzumab demonstrated greater or comparable antitumor activity in both ligand-independent and ligand-driven tumors. Most remarkably, A9B5-Fc, which targeted domain I of HER2-ECD, displayed significantly enhanced trastuzumab-synergistic antitumor efficacy compared to pertuzumab under trastuzumab-resistant conditions. Our findings offer anti-HER2 nanobodies with high affinity and non-overlapping epitope recognition. The novel nanobody-based HER2-targeted antibody, A9B5-Fc, binding to HER2-ECD I, mediates promising receptor internalization. It possesses the potential to serve as a potent synergistic partner with trastuzumab, contributing to overcoming acquired resistance.
Collapse
Affiliation(s)
- Xinlin Liu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Linli Luan
- Noventi Biopharmaceuticals Co., Ltd, Shanghai, China
| | - Xi Liu
- Bioworkshops (Suzhou) Limited, Souzhou, China
| | - Dingwen Jiang
- Noventi Biopharmaceuticals Co., Ltd, Shanghai, China
| | - Junwen Deng
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Jiazhen Xu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Yang Yuan
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Jiyao Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Bingguan Chen
- Noventi Biopharmaceuticals Co., Ltd, Shanghai, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Haiming Huang
- Noventi Biopharmaceuticals Co., Ltd, Shanghai, China
| |
Collapse
|
5
|
Akiba H, Fujita J, Ise T, Nishiyama K, Miyata T, Kato T, Namba K, Ohno H, Kamada H, Nagata S, Tsumoto K. Development of a 1:1-binding biparatopic anti-TNFR2 antagonist by reducing signaling activity through epitope selection. Commun Biol 2023; 6:987. [PMID: 37758868 PMCID: PMC10533564 DOI: 10.1038/s42003-023-05326-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Conventional bivalent antibodies against cell surface receptors often initiate unwanted signal transduction by crosslinking two antigen molecules. Biparatopic antibodies (BpAbs) bind to two different epitopes on the same antigen, thus altering crosslinking ability. In this study, we develop BpAbs against tumor necrosis factor receptor 2 (TNFR2), which is an attractive immune checkpoint target. Using different pairs of antibody variable regions specific to topographically distinct TNFR2 epitopes, we successfully regulate the size of BpAb-TNFR2 immunocomplexes to result in controlled agonistic activities. Our series of results indicate that the relative positions of the two epitopes recognized by the BpAb are critical for controlling its signaling activity. One particular antagonist, Bp109-92, binds TNFR2 in a 1:1 manner without unwanted signal transduction, and its structural basis is determined using cryo-electron microscopy. This antagonist suppresses the proliferation of regulatory T cells expressing TNFR2. Therefore, the BpAb format would be useful in designing specific and distinct antibody functions.
Collapse
Affiliation(s)
- Hiroki Akiba
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan.
- Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 562-0011, Japan.
| | - Junso Fujita
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
- JEOL YOKOGUSHI Research Alliance Laboratories, Osaka University, Suita, Osaka, 565-0871, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Tomoko Ise
- Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 562-0011, Japan
| | - Kentaro Nishiyama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Tomoko Miyata
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
- JEOL YOKOGUSHI Research Alliance Laboratories, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Takayuki Kato
- Institute of Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
- JEOL YOKOGUSHI Research Alliance Laboratories, Osaka University, Suita, Osaka, 565-0871, Japan
- RIKEN SPring-8 Center, Suita, Osaka, 565-0871, Japan
| | - Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
- Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 562-0011, Japan
| | - Haruhiko Kamada
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
- Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 562-0011, Japan
| | - Satoshi Nagata
- Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 562-0011, Japan.
| | - Kouhei Tsumoto
- Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, 562-0011, Japan.
- School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan.
- Institute of Medical Sciences, The University of Tokyo, Minato-ku, Tokyo, 108-8639, Japan.
| |
Collapse
|
6
|
Jonsdottir G, Smith M, Wood S, Hejleh TA, Furqan M. Activity of osimertinib in a patient with stage IV non-small cell lung cancer harboring HER2 exon 19, p.L755P mutation: case report. Transl Lung Cancer Res 2023; 12:927-932. [PMID: 37197637 PMCID: PMC10183391 DOI: 10.21037/tlcr-22-596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 02/03/2023] [Indexed: 03/29/2023]
Abstract
Background Recurrent in-frame insertions within exon 20 causing duplication of amino acids Tyrosine-Valine-Methionine-Alanine (YVMA) represent 80% of all HER2 alterations in non-small cell lung cancer (NSCLC). HER2 tyrosine kinase inhibitors (TKI), anti-HER2 monoclonal antibodies and HER2 directed antibody-drug conjugates have been evaluated in patients with HER2 mutated NSCLC. Limited data are available regarding the activity of these agents in exon 19 alterations. Osimertinib, a 3rd generation EGFR-TKI, has been found in pre-clinical studies to decrease growth of NSCLC with HER2 exon 19 aberrations. Case Description A 68-year-old female with a past medical history of type 2 diabetes and minimal smoking was diagnosed with stage IV NSCLC. Next generation sequencing on tumor tissue demonstrated an ERBB2 exon 19 c.2262_2264delinsTCC, p.(L755P) mutation. After five lines of treatment that included chemotherapy, chemoimmunotherapy and investigational agents the patient's disease was progressing. At this time her functional status remained good, therefore clinical trials were explored however, none were available. Based on findings from pre-clinical studies, the patient was commenced on osimertinib 80 mg OD and achieved a partial response (PR) according to RESIST criteria both intra- and extracranially. Conclusions This is the first report to our knowledge to demonstrate activity of osimertinib in a patient with NSCLC harboring HER2 exon 19, p.L755P mutation resulting in intra- and extracranial response. In the future, osimertinib could become a targeted treatment for patients harboring exon19 ERBB2 point mutations.
Collapse
Affiliation(s)
- Gudbjorg Jonsdottir
- Division of Hematology, Oncology, Blood and Marrow Transplantation, Department of Internal Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Mark Smith
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Samuel Wood
- Hall-Perrine Cancer Center, Cedar Rapids, IA, USA
| | - Taher Abu Hejleh
- Division of Hematology, Oncology, Blood and Marrow Transplantation, Department of Internal Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
- King Hussein Cancer Center, Amman, Jordan
| | - Muhammad Furqan
- Division of Hematology, Oncology, Blood and Marrow Transplantation, Department of Internal Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| |
Collapse
|
7
|
An anti-HER2 biparatopic antibody that induces unique HER2 clustering and complement-dependent cytotoxicity. Nat Commun 2023; 14:1394. [PMID: 36914633 PMCID: PMC10011572 DOI: 10.1038/s41467-023-37029-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 02/28/2023] [Indexed: 03/16/2023] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) is a receptor tyrosine kinase that plays an oncogenic role in breast, gastric and other solid tumors. However, anti-HER2 therapies are only currently approved for the treatment of breast and gastric/gastric esophageal junction cancers and treatment resistance remains a problem. Here, we engineer an anti-HER2 IgG1 bispecific, biparatopic antibody (Ab), zanidatamab, with unique and enhanced functionalities compared to both trastuzumab and the combination of trastuzumab plus pertuzumab (tras + pert). Zanidatamab binds adjacent HER2 molecules in trans and initiates distinct HER2 reorganization, as shown by polarized cell surface HER2 caps and large HER2 clusters, not observed with trastuzumab or tras + pert. Moreover, zanidatamab, but not trastuzumab nor tras + pert, elicit potent complement-dependent cytotoxicity (CDC) against high HER2-expressing tumor cells in vitro. Zanidatamab also mediates HER2 internalization and downregulation, inhibition of both cell signaling and tumor growth, antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis (ADCP), and also shows superior in vivo antitumor activity compared to tras + pert in a HER2-expressing xenograft model. Collectively, we show that zanidatamab has multiple and distinct mechanisms of action derived from the structural effects of biparatopic HER2 engagement.
Collapse
|
8
|
Mohamadzade Z, Hasannia Kolagar T, Nemati H, Javanmard A, Soltani BM. Molecular and cellular evidence for hsa‐miR‐1254 suppressor effect against HER2 signaling in breast cancer. J Cell Biochem 2022; 123:746-758. [DOI: 10.1002/jcb.30218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/24/2021] [Accepted: 01/10/2022] [Indexed: 01/18/2023]
Affiliation(s)
- Zahra Mohamadzade
- Department of Molecular Genetics, Faculty of Biological Sciences Tarbiat Modares University Tehran Iran
| | - Tabssom Hasannia Kolagar
- Department of Molecular Genetics, Faculty of Biological Sciences Tarbiat Modares University Tehran Iran
| | - Hossein Nemati
- Department of Molecular Genetics, Faculty of Biological Sciences Tarbiat Modares University Tehran Iran
| | - Amir‐Reza Javanmard
- Department of Molecular Genetics, Faculty of Biological Sciences Tarbiat Modares University Tehran Iran
| | - Bahram M. Soltani
- Department of Molecular Genetics, Faculty of Biological Sciences Tarbiat Modares University Tehran Iran
| |
Collapse
|
9
|
Xue C, Li G, Lu J, Li L. Crosstalk between circRNAs and the PI3K/AKT signaling pathway in cancer progression. Signal Transduct Target Ther 2021; 6:400. [PMID: 34815385 PMCID: PMC8611092 DOI: 10.1038/s41392-021-00788-w] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/30/2021] [Accepted: 10/08/2021] [Indexed: 02/06/2023] Open
Abstract
Circular RNAs (circRNAs), covalently closed noncoding RNAs, are widely expressed in eukaryotes and viruses. They can function by regulating target gene expression, linear RNA transcription and protein generation. The phosphoinositide 3-kinase (PI3K)/AKT signaling pathway plays key roles in many biological and cellular processes, such as cell proliferation, growth, invasion, migration, and angiogenesis. It also plays a pivotal role in cancer progression. Emerging data suggest that the circRNA/PI3K/AKT axis modulates the expression of cancer-associated genes and thus regulates tumor progression. Aberrant regulation of the expression of circRNAs in the circRNA/PI3K/AKT axis is significantly associated with clinicopathological characteristics and plays an important role in the regulation of biological functions. In this review, we summarized the expression and biological functions of PI3K-AKT-related circRNAs in vitro and in vivo and assessed their associations with clinicopathological characteristics. We also further discussed the important role of circRNAs in the diagnosis, prognostication, and treatment of cancers.
Collapse
Affiliation(s)
- Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Ganglei Li
- Department of Neurosurgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
10
|
Radom F, Vonrhein C, Mittl PRE, Plückthun A. Crystal structures of HER3 extracellular domain 4 in complex with the designed ankyrin-repeat protein D5. Acta Crystallogr F Struct Biol Commun 2021; 77:192-201. [PMID: 34196609 PMCID: PMC8248824 DOI: 10.1107/s2053230x21006002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/09/2021] [Indexed: 11/10/2022] Open
Abstract
The members of the human epidermal growth factor receptor (HER) family are among the most intensely studied oncological targets. HER3 (ErbB3), which had long been neglected, has emerged as a key oncogene, regulating the activity of other receptors and being involved in progression and tumor escape in multiple types of cancer. Designed ankyrin-repeat proteins (DARPins) serve as antibody mimetics that have proven to be useful in the clinic, in diagnostics and in research. DARPins have previously been selected against EGFR (HER1), HER2 and HER4. In particular, their combination into bivalent binders that separate or lock receptors in their inactive conformation has proved to be a promising strategy for the design of potent anticancer therapeutics. Here, the selection of DARPins targeting extracellular domain 4 of HER3 (HER3d4) is described. One of the selected DARPins, D5, in complex with HER3d4 crystallized in two closely related crystal forms that diffracted to 2.3 and 2.0 Å resolution, respectively. The DARPin D5 epitope comprises HER3d4 residues 568-577. These residues also contribute to interactions within the tethered (inactive) and extended (active) conformations of the extracellular domain of HER3.
Collapse
Affiliation(s)
- Filip Radom
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Clemens Vonrhein
- Global Phasing Ltd, Sheraton House, Castle Park, Cambridge CB3 0AX, United Kingdom
| | - Peer R. E. Mittl
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| |
Collapse
|
11
|
Stüber JC, Richter CP, Bellón JS, Schwill M, König I, Schuler B, Piehler J, Plückthun A. Apoptosis-inducing anti-HER2 agents operate through oligomerization-induced receptor immobilization. Commun Biol 2021; 4:762. [PMID: 34155320 PMCID: PMC8217238 DOI: 10.1038/s42003-021-02253-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 05/21/2021] [Indexed: 01/08/2023] Open
Abstract
Overexpression of the receptor tyrosine kinase HER2 plays a critical role in the development of various tumors. Biparatopic designed ankyrin repeat proteins (bipDARPins) potently induce apoptosis in HER2-addicted breast cancer cell lines. Here, we have investigated how the spatiotemporal receptor organization at the cell surface is modulated by these agents and is distinguished from other molecules, which do not elicit apoptosis. Binding of conventional antibodies is accompanied by moderate reduction of receptor mobility, in agreement with HER2 being dimerized by the bivalent IgG. In contrast, the most potent apoptosis-inducing bipDARPins lead to a dramatic arrest of HER2. Dual-color single-molecule tracking revealed that the HER2 "lockdown" by these bipDARPins is caused by the formation of HER2-DARPin oligomer chains, which are trapped in nanoscopic membrane domains. Our findings establish that efficient neutralization of receptor tyrosine kinase signaling can be achieved through intermolecular bipDARPin crosslinking alone, resulting in inactivated, locked-down bipDARPin-HER2 complexes.
Collapse
Affiliation(s)
- Jakob C Stüber
- Department of Biochemistry, University of Zurich, Zurich, Switzerland.,Roche Pharma Research & Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Christian P Richter
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Junel Sotolongo Bellón
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Martin Schwill
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Iwo König
- Department of Biochemistry, University of Zurich, Zurich, Switzerland.,Roche Diagnostics Int. AG, Rotkreuz, Switzerland
| | - Benjamin Schuler
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Jacob Piehler
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany.
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
12
|
Kast F, Schwill M, Stüber JC, Pfundstein S, Nagy-Davidescu G, Rodríguez JMM, Seehusen F, Richter CP, Honegger A, Hartmann KP, Weber TG, Kroener F, Ernst P, Piehler J, Plückthun A. Engineering an anti-HER2 biparatopic antibody with a multimodal mechanism of action. Nat Commun 2021; 12:3790. [PMID: 34145240 PMCID: PMC8213836 DOI: 10.1038/s41467-021-23948-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 05/25/2021] [Indexed: 02/07/2023] Open
Abstract
The receptor tyrosine kinase HER2 acts as oncogenic driver in numerous cancers. Usually, the gene is amplified, resulting in receptor overexpression, massively increased signaling and unchecked proliferation. However, tumors become frequently addicted to oncogenes and hence are druggable by targeted interventions. Here, we design an anti-HER2 biparatopic and tetravalent IgG fusion with a multimodal mechanism of action. The molecule first induces HER2 clustering into inactive complexes, evidenced by reduced mobility of surface HER2. However, in contrast to our earlier binders based on DARPins, clusters of HER2 are thereafter robustly internalized and quantitatively degraded. This multimodal mechanism of action is found only in few of the tetravalent constructs investigated, which must target specific epitopes on HER2 in a defined geometric arrangement. The inhibitory effect of our antibody as single agent surpasses the combination of trastuzumab and pertuzumab as well as its parental mAbs in vitro and it is effective in a xenograft model.
Collapse
Affiliation(s)
- Florian Kast
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Martin Schwill
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
- TOLREMO therapeutics AG, Muttenz, Switzerland
| | - Jakob C Stüber
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
- Roche Innovation Center Munich, Penzberg, Germany
| | - Svende Pfundstein
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
- Zurich Integrative Rodent Physiology (ZIRP), University of Zurich, Zurich, Switzerland
| | | | - Josep M Monné Rodríguez
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Frauke Seehusen
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Christian P Richter
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | | | | | | | | | - Patrick Ernst
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
- Dean's Office and Coordination Office of the Academic Medicine Zurich, University of Zurich, Zurich, Switzerland
| | - Jacob Piehler
- Department of Biology/Chemistry and Center for Cellular Nanoanalytics, Osnabrück University, Osnabrück, Germany
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
13
|
Modular transient nanoclustering of activated β2-adrenergic receptors revealed by single-molecule tracking of conformation-specific nanobodies. Proc Natl Acad Sci U S A 2020; 117:30476-30487. [PMID: 33214152 DOI: 10.1073/pnas.2007443117] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
None of the current superresolution microscopy techniques can reliably image the changes in endogenous protein nanoclustering dynamics associated with specific conformations in live cells. Single-domain nanobodies have been invaluable tools to isolate defined conformational states of proteins, and we reasoned that expressing these nanobodies coupled to single-molecule imaging-amenable tags could allow superresolution analysis of endogenous proteins in discrete conformational states. Here, we used anti-GFP nanobodies tagged with photoconvertible mEos expressed as intrabodies, as a proof-of-concept to perform single-particle tracking on a range of GFP proteins expressed in live cells, neurons, and small organisms. We next expressed highly specialized nanobodies that target conformation-specific endogenous β2-adrenoreceptor (β2-AR) in neurosecretory cells, unveiling real-time mobility behaviors of activated and inactivated endogenous conformers during agonist treatment in living cells. We showed that activated β2-AR (Nb80) is highly immobile and organized in nanoclusters. The Gαs-GPCR complex detected with Nb37 displayed higher mobility with surprisingly similar nanoclustering dynamics to that of Nb80. Activated conformers are highly sensitive to dynamin inhibition, suggesting selective targeting for endocytosis. Inactivated β2-AR (Nb60) molecules are also largely immobile but relatively less sensitive to endocytic blockade. Expression of single-domain nanobodies therefore provides a unique opportunity to capture highly transient changes in the dynamic nanoscale organization of endogenous proteins.
Collapse
|
14
|
Mohamadzade Z, Mahjoubi F, Soltani BM. Introduction of hsa-miR-512-3p as a new regulator of HER2 signaling pathway in breast cancer. Breast Cancer Res Treat 2020; 185:95-106. [PMID: 32974790 DOI: 10.1007/s10549-020-05937-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 09/12/2020] [Indexed: 11/28/2022]
Abstract
PURPOSE Dysregulation of HER2 signaling pathway in breast cancer is well documented. Our bioinformatics analysis predicted hsa-miR-512-3p (miR-512-3p) as a bona fide regulator of HER2 as well as HER3, PIK3R2, and AKT1 genes. Then, we intended to examine the effect of miR-512-3p on the predicted target genes that are involved in HER2 signaling pathway. METHODS AND RESULTS RT-qPCR results indicated lower expression of miR-512-3p in breast cancer specimens, compared to their normal pairs. Overexpression of miR-512-3p resulted in HER2, HER3, PIK3R2, and AKT1 gene downregulation, detected by RT-qPCR and the result was confirmed by western analysis and ELIZA test against p-AKT, BAX, FADD, and HER2 proteins in SKBR3 cells, respectively. Then, dual-luciferase assay supported the direct interaction of miR-512-3p with 3'UTR sequences of HER2, HER3, PIK3R2, and AKT1 target genes. When miR-512-3p was overexpressed, BAX/BCL2 expression ratio and proportion of sub-G1 cell population were increased in transfected SKBR3 cells, detected by RT-qPCR and flow cytometry, respectively. These results were consistent with the decreased viability of transfected cells, documented by MTT assay. In addition, results were consistent with the upregulation of BAX, BAK, BOK, PTEN, P53, and P21 genes and downregulation of CCND1 gene in SKBR3 cells. Although the overexpression of miR-512 resulted in cell cycle arrest at Sub-G1 stage in MDA-MB-231 cells, this effect seemed independent of targeting HER2, HER3, PIK3R2, and AKT1 target genes. CONCLUSION Overall, results indicated that miR-512-3p acts as a cell-type-specific tumor suppressor, through targeting HER2, HER3, PIK3R2, and AKT1 transcripts. These results suggest miR-512-3p as a potential candidate marker for breast cancer diagnosis.
Collapse
Affiliation(s)
- Zahra Mohamadzade
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 111-14115, Iran
| | - Frouzande Mahjoubi
- Clinical Genetic Department, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Bahram M Soltani
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, 111-14115, Iran.
| |
Collapse
|
15
|
Sanches M, D'Angelo I, Jaramillo M, Baardsnes J, Zwaagstra J, Schrag J, Schoenhofen I, Acchione M, Lawn S, Wickman G, Weisser N, Poon DKY, Ng G, Dixit S. AlbuCORE: an albumin-based molecular scaffold for multivalent biologics design. MAbs 2020; 12:1802188. [PMID: 32816577 PMCID: PMC7531512 DOI: 10.1080/19420862.2020.1802188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
As biologics have become a mainstay in the development of novel therapies, protein engineering tools to expand on their structural advantages, namely specificity, affinity, and valency are of interest. Antibodies have dominated this field as the preferred scaffold for biologics development while there has been limited exploration into the use of albumin with its unique physiological characteristics as a platform for biologics design. There has been a great deal of interest to create bispecific and more complex multivalent molecules to build on the advantages offered by protein-based therapeutics relative to small molecules. Here, we explore the use of human serum albumin (HSA) as a scaffold for the design of multispecific biologics. In particular, we describe a structure-guided approach to the design of split HSA molecules we refer to as AlbuCORE, that effectively and spontaneously forms a native albumin-like molecule, but in a heterodimeric state upon co-expression. We show that the split AlbuCORE designs allow the creation of novel fusion entities with unique alternate geometries. We also show that, apart from these AlbuCORE fusion entities, there is an opportunity to explore their albumin-like small hydrophobic molecule carrying capacity as a drug conjugate in these designs.
Collapse
Affiliation(s)
| | - Igor D'Angelo
- One Amgen Center Dr, Amgen Inc ., Thousand Oaks, CA, USA
| | - Maria Jaramillo
- Human Health Therapeutics Portfolio, NRC-CNRC , Montreal, QC, Canada
| | - Jason Baardsnes
- Human Health Therapeutics Portfolio, NRC-CNRC , Montreal, QC, Canada
| | - John Zwaagstra
- Human Health Therapeutics Portfolio, NRC-CNRC , Montreal, QC, Canada
| | - Joe Schrag
- Human Health Therapeutics Portfolio, NRC-CNRC , Montreal, QC, Canada
| | - Ian Schoenhofen
- Human Health Therapeutics Portfolio, NRC-CNRC , Montreal, QC, Canada
| | - Mauro Acchione
- Human Health Therapeutics Portfolio, NRC-CNRC , Montreal, QC, Canada
| | - Sam Lawn
- R&D, Zymeworks Inc , Vancouver, BC, Canada
| | | | | | | | - Gordon Ng
- Search and Evaluation, Abbvie Inc , North Chicago, Illinois, USA
| | | |
Collapse
|
16
|
Salmonella-based platform for efficient delivery of functional binding proteins to the cytosol. Commun Biol 2020; 3:342. [PMID: 32620833 PMCID: PMC7335062 DOI: 10.1038/s42003-020-1072-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 06/11/2020] [Indexed: 12/23/2022] Open
Abstract
Protein-based affinity reagents (like antibodies or alternative binding scaffolds) offer wide-ranging applications for basic research and therapeutic approaches. However, whereas small chemical molecules efficiently reach intracellular targets, the delivery of macromolecules into the cytosol of cells remains a major challenge; thus cytosolic applications of protein-based reagents are rather limited. Some pathogenic bacteria have evolved a conserved type III secretion system (T3SS) which allows the delivery of effector proteins into eukaryotic cells. Here, we enhance the T3SS of an avirulent strain of Salmonella typhimurium to reproducibly deliver multiple classes of recombinant proteins into eukaryotic cells. The efficacy of the system is probed with both DARPins and monobodies to functionally inhibit the paradigmatic and largely undruggable RAS signaling pathway. Thus, we develop a bacterial secretion system for potent cytosolic delivery of therapeutic macromolecules. To develop a bacterial secretion system for cytosolic delivery of therapeutic macromolecules, Chabloz et al. improve an “effectorless” Salmonella strain and combine it with a plasmid modified to boost the secretion of proteins of interest. With this system, they demonstrate efficient translocation of functional DARPins and monobodies into the cytosol of different eukaryotic cells lines and successfully block the paradigmatic RAS pathway.
Collapse
|
17
|
Helbing DL, Schulz A, Morrison H. Pathomechanisms in schwannoma development and progression. Oncogene 2020; 39:5421-5429. [PMID: 32616891 PMCID: PMC7410823 DOI: 10.1038/s41388-020-1374-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/04/2020] [Accepted: 06/16/2020] [Indexed: 12/18/2022]
Abstract
Schwannomas are tumors of the peripheral nervous system, consisting of different cell types. These include tumorigenic Schwann cells, axons, macrophages, T cells, fibroblasts, blood vessels, and an extracellular matrix. All cell types involved constitute an intricate “tumor microenvironment” and play relevant roles in the development and progression of schwannomas. Although Nf2 tumor suppressor gene-deficient Schwann cells are the primary tumorigenic element and principle focus of current research efforts, evidence is accumulating regarding the contributory roles of other cell types in schwannoma pathology. In this review, we aim to provide an overview of intra- and intercellular mechanisms contributing to schwannoma formation. “Genes load the gun, environment pulls the trigger.” -George A. Bray
Collapse
Affiliation(s)
- Dario-Lucas Helbing
- Leibniz Institute on Aging, Fritz Lipmann Institute, 07745, Jena, Germany.,Institute of Molecular Cell Biology, Jena University Hospital, Friedrich Schiller University Jena, 07745, Jena, Germany
| | - Alexander Schulz
- Leibniz Institute on Aging, Fritz Lipmann Institute, 07745, Jena, Germany.,MVZ Human Genetics, 99084, Erfurt, Germany
| | - Helen Morrison
- Leibniz Institute on Aging, Fritz Lipmann Institute, 07745, Jena, Germany.
| |
Collapse
|
18
|
HER2-Specific Pseudomonas Exotoxin A PE25 Based Fusions: Influence of Targeting Domain on Target Binding, Toxicity, and In Vivo Biodistribution. Pharmaceutics 2020; 12:pharmaceutics12040391. [PMID: 32344762 PMCID: PMC7238247 DOI: 10.3390/pharmaceutics12040391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 11/23/2022] Open
Abstract
The human epidermal growth factor receptor 2 (HER2) is a clinically validated target for cancer therapy, and targeted therapies are often used in regimens for patients with a high HER2 expression level. Despite the success of current drugs, a number of patients succumb to their disease, which motivates development of novel drugs with other modes of action. We have previously shown that an albumin binding domain-derived affinity protein with specific affinity for HER2, ADAPT6, can be used to deliver the highly cytotoxic protein domain PE25, a derivative of Pseudomonas exotoxin A, to HER2 overexpressing malignant cells, leading to potent and specific cell killing. In this study we expanded the investigation for an optimal targeting domain and constructed two fusion toxins where a HER2-binding affibody molecule, ZHER2:2891, or the dual-HER2-binding hybrid ZHER2:2891-ADAPT6 were used for cancer cell targeting. We found that both targeting domains conferred strong binding to HER2; both to the purified extracellular domain and to the HER2 overexpressing cell line SKOV3. This resulted in fusion toxins with high cytotoxic potency toward cell lines with high expression levels of HER2, with EC50 values between 10 and 100 pM. For extension of the plasma half-life, an albumin binding domain was also included. Intravenous injection of the fusion toxins into mice showed a profound influence of the targeting domain on biodistribution. Compared to previous results, with ADAPT6 as targeting domain, ZHER2:2891 gave rise to further extension of the plasma half-life and also shifted the clearance route of the fusion toxin from the liver to the kidneys. Collectively, the results show that the targeting domain has a major impact on uptake of PE25-based fusion toxins in different organs. The results also show that PE25-based fusion toxins with high affinity to HER2 do not necessarily increase the cytotoxicity beyond a certain point in affinity. In conclusion, ZHER2:2891 has the most favorable characteristics as targeting domain for PE25.
Collapse
|
19
|
Lee JY, Joo HS, Choi HJ, Jin S, Kim HY, Jeong GY, An HW, Park MK, Lee SE, Kim WS, Son T, Min KW, Oh YH, Kong G. Role of MEL-18 Amplification in Anti-HER2 Therapy of Breast Cancer. J Natl Cancer Inst 2020; 111:609-619. [PMID: 30265336 DOI: 10.1093/jnci/djy151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 06/23/2018] [Accepted: 08/03/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Resistance to HER2-targeted therapy with trastuzumab still remains a major challenge in HER2-amplified tumors. Here we investigated the potential role of MEL-18, a polycomb group gene, as a novel prognostic marker for trastuzumab resistance in HER2-positive (HER2+) breast cancer. METHODS The genetic alteration of MEL-18 and its clinical relevance were examined in multiple breast cancer cohorts including METABRIC (n = 1,980), TCGA (n = 825), and our clinical specimens (n = 213, trastuzumab-treated HER2+ cases). MEL-18 amplification was validated by fluorescence in situ hybridization (FISH) analysis. The MEL-18 effect on trastuzumab response was confirmed by in vitro cell viability assays and an in vivo xenograft experiment (n = 7 per group). Gene expression microarray and receptor tyrosine kinase array were performed to identify the trastuzumab resistance mechanism by MEL-18 loss. All statistical tests were two-sided. RESULTS MEL-18 was exclusively amplified in approximately 30-50% of HER2+ breast tumors and was associated with a favorable clinical outcome (disease-free survival: P = .02 in HER2+ cases, METABRIC; P = .04 in patients receiving trastuzumab). In MEL-18-amplified HER2+ breast cancer, MEL-18 depletion induced trastuzumab resistance by increasing ADAM sheddase-mediated ErbB ligand production and receptor heterodimerization. MEL-18 epigenetically silenced ADAM10/17 expression in cooperation with polycomb-repressive complex (PRC) 1 and PRC2. Combination treatment with an ADAM10/17 inhibitor and trastuzumab could overcome MEL-18 loss-mediated trastuzumab resistance in vivo (BT474/shMEL-18 xenograft: trastuzumab, mean [SD] tumor volume = 406.1 [50.1] mm3, vs trastuzumab + GW280264 30 mg/kg, mean [SD] tumor volume = 68.4 [15.6] mm3, P < .001). Consistently, trastuzumab-treated patients harboring concomitant MEL-18 amplification and low ADAM17 expression showed prolonged relapse-free survival (P = .02 in our cohort, n = 213). CONCLUSION MEL-18 serves to prevent ligand-dependent ErbB heterodimerization and trastuzumab resistance, suggesting MEL-18 amplification as a novel biomarker for HER2+ breast cancer.
Collapse
Affiliation(s)
| | | | | | - Sora Jin
- Department of Pathology, College of Medicine
| | | | | | - Hee Woon An
- Department of Pathology, College of Medicine
| | - Mi Kyung Park
- Hanyang University, Seoul, Republic of Korea; National Cancer Center, Goyang, Republic of Korea
| | - Seung Eun Lee
- Department of Pathology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Wan-Seop Kim
- Department of Pathology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Taekwon Son
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | | | - Young-Ha Oh
- Department of Pathology, College of Medicine
| | - Gu Kong
- Department of Pathology, College of Medicine
| |
Collapse
|
20
|
Mittl PR, Ernst P, Plückthun A. Chaperone-assisted structure elucidation with DARPins. Curr Opin Struct Biol 2020; 60:93-100. [PMID: 31918361 DOI: 10.1016/j.sbi.2019.12.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/16/2019] [Accepted: 12/05/2019] [Indexed: 12/14/2022]
Abstract
Designed ankyrin repeat proteins (DARPins) are artificial binding proteins that have found many uses in therapy, diagnostics and biochemical research. They substantially extend the scope of antibody-derived binders. Their high affinity and specificity, rigidity, extended paratope, and facile bacterial production make them attractive for structural biology. Complexes with simple DARPins have been crystallized for a long time, but particularly the rigid helix fusion strategy has opened new opportunities. Rigid DARPin fusions expand crystallization space, enable recruitment of targets in a host lattice and reduce the size limit for cryo-EM. Besides applications in structural biology, rigid DARPin fusions also serve as molecular probes in cells to investigate spatial restraints in targets.
Collapse
Affiliation(s)
- Peer Re Mittl
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Patrick Ernst
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland.
| |
Collapse
|
21
|
Guo Y, Zhu J, Wang X, Li R, Jiang K, Chen S, Fan J, Xue L, Hao D. Orai1 Promotes Osteosarcoma Metastasis by Activating the Ras-Rac1-WAVE2 Signaling Pathway. Med Sci Monit 2019; 25:9227-9236. [PMID: 31796725 PMCID: PMC6909920 DOI: 10.12659/msm.919594] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background The purpose of this study was to investigate whether Orai1 plays a role in the metastasis of osteosarcoma. Material/Methods The expression of Orai1 was silenced by small interfering RNAs against Orai1 (Orai1 siRNA) in osteosarcoma MG-63 cells. Various experiments were carried out to detect the changes in migration, invasion, and adhesion ability of these osteosarcoma cells. Furthermore, the activity of Rac1, Wave2, and Ras was detected using Western blot analysis. Moreover, the Rac1 and Ras inhibitors were used to confirm whether the Ras-Rac1-WAVE2 signaling pathway was involved in osteosarcoma metastasis promoted by Orai1. Results We found that the migration, invasion, and adhesion ability of MG-63 cells were significantly reduced after silencing Orai1 expression (p<0.05). Moreover, the activity of the Rac1-WAVE2 signaling pathway was significantly inhibited after silencing of Orai1 expression (p<0.05). After the Rac1 inhibitor was added, Orai1 siRNA could not further inhibit migration, invasion, and adhesion of the osteosarcoma cells. Further experiments showed that Ras activity was significantly inhibited after silencing Orai1 expression (p<0.05). Moreover, Orai1 siRNA did not further inhibit the activity of the Rac1-WAVE2 signaling pathway nor did it further inhibit the migration, invasion, and adhesion ability of osteosarcoma cells following the addition of Ras inhibitors. Conclusions Orai1 activates the Ras-Rac1-WAVE2 signaling pathway to promote metastasis of osteosarcoma. Abnormal expression or function of Orai1 may be an important cause of osteosarcoma metastasis.
Collapse
Affiliation(s)
- Yunshan Guo
- Department of Spinal Surgery, Hong Hui Hospital, Xi'an Jiao Tong University, Xi'an, Shaanxi, China (mainland)
| | - Jinwen Zhu
- Department of Spinal Surgery, Hong Hui Hospital, Xi'an Jiao Tong University, Xi'an, Shaanxi, China (mainland)
| | - Xiaodong Wang
- Department of Spinal Surgery, Hong Hui Hospital, Xi'an Jiao Tong University, Xi'an, Shaanxi, China (mainland)
| | - Ruoyu Li
- Department of Spinal Surgery, Hong Hui Hospital, Xi'an Jiao Tong University, Xi'an, Shaanxi, China (mainland)
| | - Kuo Jiang
- Department of Spinal Surgery, Hong Hui Hospital, Xi'an Jiao Tong University, Xi'an, Shaanxi, China (mainland)
| | - Shi Chen
- Department of Emergency Medicine, Hong Hui Hospital, Xi'an Jiao Tong University, Xi'an, Shaanxi, China (mainland)
| | - Jinzhu Fan
- Department of Orthopedics, Hong Hui Hospital, Xi'an Jiao Tong University, Xi'an, Shaanxi, China (mainland)
| | - Liujie Xue
- Department of Spinal Surgery, Hong Hui Hospital, Xi'an Jiao Tong University, Xi'an, Shaanxi, China (mainland)
| | - Dingjun Hao
- Department of Spinal Surgery, Hong Hui Hospital, Xi'an Jiao Tong University, Xi'an, Shaanxi, China (mainland)
| |
Collapse
|
22
|
Ernst P, Honegger A, van der Valk F, Ewald C, Mittl PRE, Plückthun A. Rigid fusions of designed helical repeat binding proteins efficiently protect a binding surface from crystal contacts. Sci Rep 2019; 9:16162. [PMID: 31700118 PMCID: PMC6838082 DOI: 10.1038/s41598-019-52121-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/09/2019] [Indexed: 12/26/2022] Open
Abstract
Designed armadillo repeat proteins (dArmRPs) bind extended peptides in a modular way. The consensus version recognises alternating arginines and lysines, with one dipeptide per repeat. For generating new binding specificities, the rapid and robust analysis by crystallography is key. Yet, we have previously found that crystal contacts can strongly influence this analysis, by displacing the peptide and potentially distorting the overall geometry of the scaffold. Therefore, we now used protein design to minimise these effects and expand the previously described concept of shared helices to rigidly connect dArmRPs and designed ankyrin repeat proteins (DARPins), which serve as a crystallisation chaperone. To shield the peptide-binding surface from crystal contacts, we rigidly fused two DARPins to the N- and C-terminal repeat of the dArmRP and linked the two DARPins by a disulfide bond. In this ring-like structure, peptide binding, on the inside of the ring, is very regular and undistorted, highlighting the truly modular binding mode. Thus, protein design was utilised to construct a well crystallising scaffold that prevents interference from crystal contacts with peptide binding and maintains the equilibrium structure of the dArmRP. Rigid DARPin-dArmRPs fusions will also be useful when chimeric binding proteins with predefined geometries are required.
Collapse
Affiliation(s)
- Patrick Ernst
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Annemarie Honegger
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Floor van der Valk
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Christina Ewald
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland.,Cytometry Facility, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Peer R E Mittl
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland.
| |
Collapse
|
23
|
Computational Modeling of Designed Ankyrin Repeat Protein Complexes with Their Targets. J Mol Biol 2019; 431:2852-2868. [DOI: 10.1016/j.jmb.2019.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/03/2019] [Accepted: 05/03/2019] [Indexed: 01/24/2023]
|
24
|
Stüber JC, Kast F, Plückthun A. High-Throughput Quantification of Surface Protein Internalization and Degradation. ACS Chem Biol 2019; 14:1154-1163. [PMID: 31050891 DOI: 10.1021/acschembio.9b00016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cell surface proteins are key regulators of fundamental cellular processes and, therefore, often at the root of human diseases. Thus, a large number of targeted drugs which are approved or under development act upon cell surface proteins. Although down-regulation of surface proteins by many natural ligands is well-established, the ability of drug candidates to cause internalization or degradation of the target is only recently moving into focus. This property is important both for the pharmacokinetics and pharmacodynamics of the drug but may also constitute a potential resistance mechanism. The enormous numbers of drug candidates targeting cell surface molecules, comprising small molecules, antibodies, or alternative protein scaffolds, necessitate methods for the investigation of internalization and degradation in high throughput. Here, we present a generic high-throughput assay protocol, which allows the simultaneous and independent quantification of internalization and degradation of surface proteins on a single-cell level. Because we fuse a HaloTag to the cell surface protein of interest and exploit the differential cell permeability of two fluorescent HaloTag ligands, no labeling of the molecules to be screened is required. In contrast to previously described approaches, our homogeneous assay is performed with adherent live cells in a 96-well format. Through channel rescaling, we are furthermore able to obtain true relative abundances of surface and internal protein. We demonstrate the applicability of our procedure to three major drug targets, EGFR, HER2, and EpCAM, examining a selection of well-investigated but also novel small molecule ligands and protein affinity reagents.
Collapse
Affiliation(s)
- Jakob C. Stüber
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Florian Kast
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
25
|
Andres F, Iamele L, Meyer T, Stüber JC, Kast F, Gherardi E, Niemann HH, Plückthun A. Inhibition of the MET Kinase Activity and Cell Growth in MET-Addicted Cancer Cells by Bi-Paratopic Linking. J Mol Biol 2019; 431:2020-2039. [PMID: 30930049 DOI: 10.1016/j.jmb.2019.03.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 03/19/2019] [Accepted: 03/21/2019] [Indexed: 12/30/2022]
Abstract
MET, the product of the c-MET proto-oncogene, and its ligand hepatocyte growth factor/scatter factor (HGF/SF) control survival, proliferation and migration during development and tissue regeneration. HGF/SF-MET signaling is equally crucial for growth and metastasis of a variety of human tumors, but resistance to small-molecule inhibitors of MET kinase develops rapidly and therapeutic antibody targeting remains challenging. We made use of the designed ankyrin repeat protein (DARPin) technology to develop an alternative approach for inhibiting MET. We generated a collection of MET-binding DARPins covering epitopes in the extracellular MET domains and created comprehensive sets of bi-paratopic fusion proteins. This new class of molecules efficiently inhibited MET kinase activity and downstream signaling, caused receptor downregulation and strongly inhibited the proliferation of MET-dependent gastric carcinoma cells carrying MET locus amplifications. MET-specific bi-paratopic DARPins may represent a novel and potent strategy for therapeutic targeting of MET and other receptors, and this study has elucidated their mode of action.
Collapse
Affiliation(s)
- Fabio Andres
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Luisa Iamele
- Department of Molecular Medicine, University of Pavia, Italy
| | - Timo Meyer
- Department of Chemistry, Bielefeld University, Germany
| | - Jakob C Stüber
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Florian Kast
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | | | | | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
26
|
Hober S, Lindbo S, Nilvebrant J. Bispecific applications of non-immunoglobulin scaffold binders. Methods 2019; 154:143-152. [DOI: 10.1016/j.ymeth.2018.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/24/2018] [Accepted: 09/28/2018] [Indexed: 12/13/2022] Open
|
27
|
Schwill M, Tamaskovic R, Gajadhar AS, Kast F, White FM, Plückthun A. Systemic analysis of tyrosine kinase signaling reveals a common adaptive response program in a HER2-positive breast cancer. Sci Signal 2019; 12:12/565/eaau2875. [PMID: 30670633 DOI: 10.1126/scisignal.aau2875] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Drug-induced compensatory signaling and subsequent rewiring of the signaling pathways that support cell proliferation and survival promote the development of acquired drug resistance in tumors. Here, we sought to analyze the adaptive kinase response in cancer cells after distinct treatment with agents targeting human epidermal growth factor receptor 2 (HER2), specifically those that induce either only temporary cell cycle arrest or, alternatively, apoptosis in HER2-overexpressing cancers. We compared trastuzumab, ARRY380, the combination thereof, and a biparatopic, HER2-targeted designed ankyrin repeat protein (DARPin; specifically, 6L1G) and quantified the phosphoproteome by isobaric tagging using tandem mass tag liquid chromatography/tandem mass spectrometry (TMT LC-MS/MS). We found a specific signature of persistently phosphorylated tyrosine peptides after the nonapoptotic treatments, which we used to distinguish between different treatment-induced cancer cell fates. Next, we analyzed the activation of serine/threonine and tyrosine kinases after treatment using a bait peptide chip array and predicted the corresponding active kinases. Through a combined system-wide analysis, we identified a common adaptive kinase response program that involved the activation of focal adhesion kinase 1 (FAK1), protein kinase C-δ (PRKCD), and Ephrin (EPH) family receptors. These findings reveal potential targets to prevent adaptive resistance to HER2-targeted therapies.
Collapse
Affiliation(s)
- Martin Schwill
- Department of Biochemistry, University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland
| | - Rastislav Tamaskovic
- Department of Biochemistry, University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland
| | - Aaron S Gajadhar
- Department of Biological Engineering, Koch Institute for Integrative Cancer Research, Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Florian Kast
- Department of Biochemistry, University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland
| | - Forest M White
- Department of Biological Engineering, Koch Institute for Integrative Cancer Research, Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Winterthurerstr. 190, 8057 Zurich, Switzerland.
| |
Collapse
|
28
|
Nagano M, Kohsaka S, Ueno T, Kojima S, Saka K, Iwase H, Kawazu M, Mano H. High-Throughput Functional Evaluation of Variants of Unknown Significance in ERBB2. Clin Cancer Res 2018; 24:5112-5122. [PMID: 29967253 DOI: 10.1158/1078-0432.ccr-18-0991] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/04/2018] [Accepted: 06/25/2018] [Indexed: 11/16/2022]
Abstract
Purpose: The advent of next-generation sequencing technologies has enabled the identification of several activating mutations of Erb-B2 receptor tyrosine kinase 2 (ERBB2) among various cancers. However, the significance of infrequent mutations has not been fully investigated. Herein, we comprehensively assessed the functional significance of the ERBB2 mutations in a high-throughput manner.Experimental Design: We evaluated the transforming activities and drug sensitivities of 55 nonsynonymous ERBB2 mutations using the mixed-all-nominated-in-one (MANO) method.Results: G776V, G778_S779insG, and L841V were newly revealed to be activating mutations. Although afatinib, neratinib, and osimertinib were shown to be effective against most of the ERBB2 mutations, only osimertinib demonstrated good efficacy against L755P and L755S mutations, the most common mutations in breast cancer. In contrast, afatinib and neratinib were predicted to be more effective than other inhibitors for the A775_776insYVMA mutation, the most frequent ERBB2 mutation in lung cancer. We surveyed the prevalence of concurrent ERBB2 mutation with gene amplification and found that approximately 30% of ERBB2-amplified urothelial carcinomas simultaneously carried ERBB2 mutations, altering their sensitivity to trastuzumab, an mAb against ERBB2. Furthermore, the MANO method was applied to evaluate the functional significance of 17 compound mutations within ERBB2 reported in the COSMIC database, revealing that compound mutations involving L755S were sensitive to osimertinib but insensitive to afatinib and neratinib.Conclusions: Several ERBB2 mutations showed varying sensitivities to ERBB2-targeted inhibitors. Our comprehensive assessment of ERBB2 mutations offers a fundamental database to help customize therapy for ERBB2-driven cancers.We identified several ERBB2 mutations as activating mutations related to tumorigenesis. In addition, our comprehensive evaluation revealed that several ERBB2 mutations showed varying sensitivities to ERBB2-targeted inhibitors, and thus, the functional significance of each variant should be interpreted precisely to design the best treatment for each patient. Clin Cancer Res; 24(20); 5112-22. ©2018 AACR.
Collapse
Affiliation(s)
- Masaaki Nagano
- Department of Cellular Signaling, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Department of General Thoracic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shinji Kohsaka
- Department of Medical Genomics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Toshihide Ueno
- Department of Cellular Signaling, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shinya Kojima
- Department of Cellular Signaling, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kanju Saka
- Department of Forensic Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hirotaro Iwase
- Department of Forensic Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masahito Kawazu
- Department of Medical Genomics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Mano
- Department of Cellular Signaling, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan. .,National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
29
|
Abstract
Activating Ras mutations are associated with ∼30% of all human cancers and the four Ras isoforms are highly attractive targets for anticancer drug discovery. However, Ras proteins are challenging targets for conventional drug discovery because they function through intracellular protein-protein interactions and their surfaces lack major pockets for small molecules to bind. Over the past few years, researchers have explored a variety of approaches and modalities, with the aim of specifically targeting oncogenic Ras mutants for anticancer treatment. This perspective will provide an overview of the efforts on developing "macromolecular" inhibitors against Ras proteins, including peptides, macrocycles, antibodies, nonimmunoglobulin proteins, and nucleic acids.
Collapse
Affiliation(s)
- Dehua Pei
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210
| | - Kuangyu Chen
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210
| | - Hui Liao
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
30
|
Verdino P, Atwell S, Demarest SJ. Emerging trends in bispecific antibody and scaffold protein therapeutics. Curr Opin Chem Eng 2018. [DOI: 10.1016/j.coche.2018.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
31
|
Advances in the Application of Designed Ankyrin Repeat Proteins (DARPins) as Research Tools and Protein Therapeutics. Methods Mol Biol 2018; 1798:307-327. [PMID: 29868969 DOI: 10.1007/978-1-4939-7893-9_23] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Nonimmunoglobulin scaffolds have been developed to overcome the limitations of monoclonal antibodies with regard to stability and size. Of these scaffolds, the class of designed ankyrin repeat proteins (DARPins) has advanced the most in biochemical and biomedical applications. This review focuses on the recent progress in DARPin technology, highlighting the scaffold's potential and possibilities.
Collapse
|
32
|
Design and applications of a clamp for Green Fluorescent Protein with picomolar affinity. Sci Rep 2017; 7:16292. [PMID: 29176615 PMCID: PMC5701241 DOI: 10.1038/s41598-017-15711-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 10/31/2017] [Indexed: 01/15/2023] Open
Abstract
Green fluorescent protein (GFP) fusions are pervasively used to study structures and processes. Specific GFP-binders are thus of great utility for detection, immobilization or manipulation of GFP-fused molecules. We determined structures of two designed ankyrin repeat proteins (DARPins), complexed with GFP, which revealed different but overlapping epitopes. Here we show a structure-guided design strategy that, by truncation and computational reengineering, led to a stable construct where both can bind simultaneously: by linkage of the two binders, fusion constructs were obtained that “wrap around” GFP, have very high affinities of about 10–30 pM, and extremely slow off-rates. They can be natively produced in E. coli in very large amounts, and show excellent biophysical properties. Their very high stability and affinity, facile site-directed functionalization at introduced unique lysines or cysteines facilitate many applications. As examples, we present them as tight yet reversible immobilization reagents for surface plasmon resonance, as fluorescently labelled monomeric detection reagents in flow cytometry, as pull-down ligands to selectively enrich GFP fusion proteins from cell extracts, and as affinity column ligands for inexpensive large-scale protein purification. We have thus described a general design strategy to create a “clamp” from two different high-affinity repeat proteins, even if their epitopes overlap.
Collapse
|
33
|
Rigidly connected multispecific artificial binders with adjustable geometries. Sci Rep 2017; 7:11217. [PMID: 28894181 PMCID: PMC5593856 DOI: 10.1038/s41598-017-11472-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/24/2017] [Indexed: 11/09/2022] Open
Abstract
Multivalent binding proteins can gain biological activities beyond what is inherent in the individual binders, by bringing together different target molecules, restricting their conformational flexibility or changing their subcellular localization. In this study, we demonstrate a method to build up rigid multivalent and multispecific scaffolds by exploiting the modular nature of a repeat protein scaffold and avoiding flexible linkers. We use DARPins (Designed Ankyrin Repeat Proteins), synthetic binding proteins based on the Ankyrin-repeat protein scaffold, as binding units. Their ease of in vitro selection, high production yield and stability make them ideal specificity-conferring building blocks for the design of more complex constructs. C- and N-terminal DARPin capping repeats were re-designed to be joined by a shared helix in such a way that rigid connector modules are formed. This allows us to join two or more DARPins in predefined geometries without compromising their binding affinities and specificities. Nine connector modules with distinct geometries were designed; for eight of these we were able to confirm the structure by X-ray crystallography, while only one did not crystallize. The bispecific constructs were all able to bind both target proteins simultaneously.
Collapse
|
34
|
Kramer L, Renko M, Završnik J, Turk D, Seeger MA, Vasiljeva O, Grütter MG, Turk V, Turk B. Non-invasive in vivo imaging of tumour-associated cathepsin B by a highly selective inhibitory DARPin. Am J Cancer Res 2017; 7:2806-2821. [PMID: 28824717 PMCID: PMC5562217 DOI: 10.7150/thno.19081] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 04/15/2017] [Indexed: 01/17/2023] Open
Abstract
Cysteine cathepsins often contribute to cancer progression due to their overexpression in the tumour microenvironment and therefore present attractive targets for non-invasive diagnostic imaging. However, the development of highly selective and versatile small molecule probes for cathepsins has been challenging. Here, we targeted tumour-associated cathepsin B using designed ankyrin repeat proteins (DARPins). The selective DARPin 8h6 inhibited cathepsin B with picomolar affinity (Ki = 35 pM) by binding to a site with low structural conservation in cathepsins, as revealed by the X-ray structure of the complex. DARPin 8h6 blocked cathepsin B activity in tumours ex vivo and was successfully applied in in vivo optical imaging in two mouse breast cancer models, in which cathepsin B was bound to the cell membrane or secreted to the extracellular milieu by tumour and stromal cells. Our approach validates cathepsin B as a promising diagnostic and theranostic target in cancer and other inflammation-associated diseases.
Collapse
|
35
|
Jost C, Stüber JC, Honegger A, Wu Y, Batyuk A, Plückthun A. Rigidity of the extracellular part of HER2: Evidence from engineering subdomain interfaces and shared-helix DARPin-DARPin fusions. Protein Sci 2017. [PMID: 28639341 DOI: 10.1002/pro.3216] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The second member of the human ErbB family of receptor tyrosine kinases, HER2/hErbB2, is regarded as an exceptional case: The four extracellular subdomains could so far only be found in one fixed overall conformation, designated "open" and resembling the ligand-bound form of the other ErbB receptors. It thus appears to be different from the extracellular domains of the other family members that show inter-subdomain flexibility and exist in a "tethered" form in the absence of ligand. For HER2, there was so far no direct evidence for such a tethered conformation on the cell surface. Nonetheless, alternative conformations of HER2 in vivo could so far not be excluded. We now demonstrate the rigidity of HER2 on the surface of tumor cells by employing two orthogonal approaches of protein engineering: To directly test the potential of the extracellular domain of HER2 to adopt a pseudo-tethered conformation on the cell surface, we first designed HER2 variants with a destabilized interface between extracellular subdomains I and III that would favor deviation from the "open" conformation. Secondly, we used differently shaped versions of a Designed Ankyrin Repeat Protein (DARPin) fusion, recognizing subdomain I of HER2, devised to work as probes for a putative pseudo-tethered extracellular domain of HER2. Combining our approaches, we exclude, on live cells and in vitro, that significant proportions of HER2 deviate from the "open" conformation.
Collapse
Affiliation(s)
- Christian Jost
- Department of Biochemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Jakob C Stüber
- Department of Biochemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Annemarie Honegger
- Department of Biochemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Yufan Wu
- Department of Biochemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Alexander Batyuk
- Department of Biochemistry, University of Zurich, 8057, Zurich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, 8057, Zurich, Switzerland
| |
Collapse
|
36
|
Kintzing JR, Filsinger Interrante MV, Cochran JR. Emerging Strategies for Developing Next-Generation Protein Therapeutics for Cancer Treatment. Trends Pharmacol Sci 2016; 37:993-1008. [PMID: 27836202 PMCID: PMC6238641 DOI: 10.1016/j.tips.2016.10.005] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/11/2016] [Accepted: 10/11/2016] [Indexed: 12/12/2022]
Abstract
Protein-based therapeutics have been revolutionizing the oncology space since they first appeared in the clinic two decades ago. Unlike traditional small-molecule chemotherapeutics, protein biologics promote active targeting of cancer cells by binding to cell-surface receptors and other markers specifically associated with or overexpressed on tumors versus healthy tissue. While the first approved cancer biologics were monoclonal antibodies, the burgeoning field of protein engineering is spawning research on an expanded range of protein formats and modifications that allow tuning of properties such as target-binding affinity, serum half-life, stability, and immunogenicity. In this review we highlight some of these strategies and provide examples of modified and engineered proteins under development as preclinical and clinical-stage drug candidates for the treatment of cancer.
Collapse
Affiliation(s)
- James R Kintzing
- Department of Bioengineering, Stanford University, Stanford, CA, USA; Stanford Cancer Institute, Stanford, CA, USA
| | - Maria V Filsinger Interrante
- Department of Bioengineering, Stanford University, Stanford, CA, USA; Stanford Cancer Institute, Stanford, CA, USA
| | - Jennifer R Cochran
- Department of Bioengineering, Stanford University, Stanford, CA, USA; Stanford Cancer Institute, Stanford, CA, USA; Department of Chemical Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
37
|
Genetic and Epigenetic Alterations in Bladder Cancer. Int Neurourol J 2016; 20:S84-94. [PMID: 27915480 PMCID: PMC5169086 DOI: 10.5213/inj.1632752.376] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 10/27/2016] [Indexed: 12/11/2022] Open
Abstract
Bladder cancer is one of the most common cancers worldwide, with a high rate of recurrence and poor outcomes as a result of relapse. Bladder cancer patients require lifelong invasive monitoring and treatment, making bladder cancer one of the most expensive malignancies. Lines of evidence increasingly point to distinct genetic and epigenetic alteration patterns in bladder cancer, even between the different stages and grades of disease. In addition, genetic and epigenetic alterations have been demonstrated to play important roles during bladder tumorigenesis. This review will focus on bladder cancer-associated genomic and epigenomic alterations, which are common in bladder cancer and provide potential diagnostic markers and therapeutic targets for bladder cancer treatment.
Collapse
|
38
|
Abstract
The dual role of ErbB2 (or HER-2) in tumor growth and in physiological adaptive reactions of the heart positions ErbB2 at the intersection between cancer and chronic heart failure. Accordingly, ErbB2-targeted inhibitory therapy of cancer may lead to ventricular dysfunction, and activation of ErbB2 for heart failure therapy may induce malignancy. The molecular processes leading to the activation of ErbB2 in tumors and cardiac cells are, however, fundamentally different from each other. Thus, it must be feasible to design drugs that specifically target either physiological or malignant ErbB2 signaling, to activate ErbB2 signaling in heart failure with no increased risk for cancer, and to inhibit ErbB2 signaling in cancer with no increased risk for heart failure. In this review, we present a state-of-the-art on how ErbB2 is regulated in physiological conditions and in tumor cells and how this knowledge translates into smart drug design. This leads to a new generation of drugs interfering with ErbB2 in a unique way tailored for a specific clinical goal. These exciting developments at the crossing between cancer and heart failure are an elegant example of interdisciplinary collaborations between clinicians, physiologists, pharmacologists, and molecular biologists.
Collapse
|