1
|
Put H, Gerstmans H, Vande Capelle H, Fauvart M, Michiels J, Masschelein J. Bacillus subtilis as a host for natural product discovery and engineering of biosynthetic gene clusters. Nat Prod Rep 2024; 41:1113-1151. [PMID: 38465694 DOI: 10.1039/d3np00065f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Covering: up to October 2023Many bioactive natural products are synthesized by microorganisms that are either difficult or impossible to cultivate under laboratory conditions, or that produce only small amounts of the desired compound. By transferring biosynthetic gene clusters (BGCs) into alternative host organisms that are more easily cultured and engineered, larger quantities can be obtained and new analogues with potentially improved biological activity or other desirable properties can be generated. Moreover, expression of cryptic BGCs in a suitable host can facilitate the identification and characterization of novel natural products. Heterologous expression therefore represents a valuable tool for natural product discovery and engineering as it allows the study and manipulation of their biosynthetic pathways in a controlled setting, enabling innovative applications. Bacillus is a genus of Gram-positive bacteria that is widely used in industrial biotechnology as a host for the production of proteins from diverse origins, including enzymes and vaccines. However, despite numerous successful examples, Bacillus species remain underexploited as heterologous hosts for the expression of natural product BGCs. Here, we review important advantages that Bacillus species offer as expression hosts, such as high secretion capacity, natural competence for DNA uptake, and the increasing availability of a wide range of genetic tools for gene expression and strain engineering. We evaluate different strain optimization strategies and other critical factors that have improved the success and efficiency of heterologous natural product biosynthesis in B. subtilis. Finally, future perspectives for using B. subtilis as a heterologous host are discussed, identifying research gaps and promising areas that require further exploration.
Collapse
Affiliation(s)
- Hanne Put
- Centre of Microbial and Plant Genetics, KU Leuven, 3001 Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Flanders Institute for Biotechnology, 3001 Leuven, Belgium.
| | - Hans Gerstmans
- VIB-KU Leuven Center for Microbiology, Flanders Institute for Biotechnology, 3001 Leuven, Belgium.
- Laboratory for Biomolecular Discovery & Engineering, KU Leuven, 3001 Leuven, Belgium
- Biosensors Group, KU Leuven, 3001 Leuven, Belgium
| | - Hanne Vande Capelle
- VIB-KU Leuven Center for Microbiology, Flanders Institute for Biotechnology, 3001 Leuven, Belgium.
- Laboratory for Biomolecular Discovery & Engineering, KU Leuven, 3001 Leuven, Belgium
| | - Maarten Fauvart
- Centre of Microbial and Plant Genetics, KU Leuven, 3001 Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Flanders Institute for Biotechnology, 3001 Leuven, Belgium.
- imec, 3001 Leuven, Belgium
| | - Jan Michiels
- Centre of Microbial and Plant Genetics, KU Leuven, 3001 Leuven, Belgium
- VIB-KU Leuven Center for Microbiology, Flanders Institute for Biotechnology, 3001 Leuven, Belgium.
| | - Joleen Masschelein
- VIB-KU Leuven Center for Microbiology, Flanders Institute for Biotechnology, 3001 Leuven, Belgium.
- Laboratory for Biomolecular Discovery & Engineering, KU Leuven, 3001 Leuven, Belgium
| |
Collapse
|
2
|
Bramkamp M, Scheffers DJ. Bacterial membrane dynamics: Compartmentalization and repair. Mol Microbiol 2023; 120:490-501. [PMID: 37243899 DOI: 10.1111/mmi.15077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/29/2023]
Abstract
In every bacterial cell, the plasma membrane plays a key role in viability as it forms a selective barrier between the inside of the cell and its environment. This barrier function depends on the physical state of the lipid bilayer and the proteins embedded or associated with the bilayer. Over the past decade or so, it has become apparent that many membrane-organizing proteins and principles, which were described in eukaryote systems, are ubiquitous and play important roles in bacterial cells. In this minireview, we focus on the enigmatic roles of bacterial flotillins in membrane compartmentalization and bacterial dynamins and ESCRT-like systems in membrane repair and remodeling.
Collapse
Affiliation(s)
- Marc Bramkamp
- Institute for General Microbiology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Dirk-Jan Scheffers
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
3
|
Zhang L, Willemse J, Yagüe P, de Waal E, Claessen D, van Wezel GP. The SepF-like proteins SflA and SflB prevent ectopic localization of FtsZ and DivIVA during sporulation of Streptomyces coelicolor. Biochem Biophys Res Commun 2023; 645:79-87. [PMID: 36680940 DOI: 10.1016/j.bbrc.2023.01.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
Bacterial cytokinesis starts with the polymerization of the tubulin-like FtsZ, which forms the cell division scaffold. SepF aligns FtsZ polymers and also acts as a membrane anchor for the Z-ring. While in most bacteria cell division takes place at midcell, during sporulation of Streptomyces many septa are laid down almost simultaneously in multinucleoid aerial hyphae. The genomes of streptomycetes encode two additional SepF paralogs, SflA and SflB, which can interact with SepF. Here we show that the sporogenic aerial hyphae of sflA and sflB mutants of Streptomyces coelicolor frequently branch, a phenomenon never seen in the wild-type strain. The branching coincided with ectopic localization of DivIVA along the lateral wall of sporulating aerial hyphae. Constitutive expression of SflA and SflB largely inhibited hyphal growth, further correlating SflAB activity to that of DivIVA. SflAB localized in foci prior to and after the time of sporulation-specific cell division, while SepF co-localized with active septum synthesis. Foci of FtsZ and DivIVA frequently persisted between adjacent spores in spore chains of sflA and sflB mutants, at sites occupied by SflAB in wild-type cells. Taken together, our data show that SflA and SflB play an important role in the control of growth and cell division during Streptomyces development.
Collapse
Affiliation(s)
- Le Zhang
- Department of Molecular Biotechnology, Institute of Biology Leiden, Leiden University, PO Box 9505, Leiden, 2300, AB, the Netherlands
| | - Joost Willemse
- Department of Molecular Biotechnology, Institute of Biology Leiden, Leiden University, PO Box 9505, Leiden, 2300, AB, the Netherlands
| | - Paula Yagüe
- Departamento de Biología Funcional e IUOPA, Área de Microbiología, Facultad de Medicina, Universidad de Oviedo, Oviedo, 33006, Spain
| | - Ellen de Waal
- Department of Molecular Biotechnology, Institute of Biology Leiden, Leiden University, PO Box 9505, Leiden, 2300, AB, the Netherlands
| | - Dennis Claessen
- Department of Molecular Biotechnology, Institute of Biology Leiden, Leiden University, PO Box 9505, Leiden, 2300, AB, the Netherlands
| | - Gilles P van Wezel
- Department of Molecular Biotechnology, Institute of Biology Leiden, Leiden University, PO Box 9505, Leiden, 2300, AB, the Netherlands.
| |
Collapse
|
4
|
Yagüe P, Willemse J, Xiao X, Zhang L, Manteca A, van Wezel GP. FtsZ phosphorylation pleiotropically affects Z-ladder formation, antibiotic production, and morphogenesis in Streptomyces coelicolor. Antonie Van Leeuwenhoek 2023; 116:1-19. [PMID: 36383329 PMCID: PMC9823044 DOI: 10.1007/s10482-022-01778-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 08/27/2022] [Indexed: 11/17/2022]
Abstract
The GTPase FtsZ forms the cell division scaffold in bacteria, which mediates the recruitment of the other components of the divisome. Streptomycetes undergo two different forms of cell division. Septa without detectable peptidoglycan divide the highly compartmentalised young hyphae during early vegetative growth, and cross-walls are formed that dissect the hyphae into long multinucleoid compartments in the substrate mycelium, while ladders of septa are formed in the aerial hyphae that lead to chains of uninucleoid spores. In a previous study, we analysed the phosphoproteome of Streptomyces coelicolor and showed that FtsZ is phosphorylated at Ser 317 and Ser389. Substituting Ser-Ser for either Glu-Glu (mimicking phosphorylation) or Ala-Ala (mimicking non-phosphorylation) hinted at changes in antibiotic production. Here we analyse development, colony morphology, spore resistance, and antibiotic production in FtsZ knockout mutants expressing FtsZ alleles mimicking Ser319 and Ser387 phosphorylation and non-phosphorylation: AA (no phosphorylation), AE, EA (mixed), and EE (double phosphorylation). The FtsZ-eGFP AE, EA and EE alleles were not able to form observable FtsZ-eGFP ladders when they were expressed in the S. coelicolor wild-type strain, whereas the AA allele could form apparently normal eGFP Z-ladders. The FtsZ mutant expressing the FtsZ EE or EA or AE alleles is able to sporulate indicating that the mutant alleles are able to form functional Z-rings leading to sporulation when the wild-type FtsZ gene is absent. The four mutants were pleiotropically affected in colony morphogenesis, antibiotic production, substrate mycelium differentiation and sporulation (sporulation timing and spore resistance) which may be an indirect result of the effect in sporulation Z-ladder formation. Each mutant showed a distinctive phenotype in antibiotic production, single colony morphology, and sporulation (sporulation timing and spore resistance) indicating that the different FtsZ phosphomimetic alleles led to different phenotypes. Taken together, our data provide evidence for a pleiotropic effect of FtsZ phosphorylation in colony morphology, antibiotic production, and sporulation.
Collapse
Affiliation(s)
- Paula Yagüe
- grid.5132.50000 0001 2312 1970Department of Molecular Biotechnology, Institute of Biology Leiden, Leiden University, PO Box 9505, 2300 AB Leiden, The Netherlands
| | - Joost Willemse
- grid.5132.50000 0001 2312 1970Department of Molecular Biotechnology, Institute of Biology Leiden, Leiden University, PO Box 9505, 2300 AB Leiden, The Netherlands
| | - Xiansha Xiao
- grid.5132.50000 0001 2312 1970Department of Molecular Biotechnology, Institute of Biology Leiden, Leiden University, PO Box 9505, 2300 AB Leiden, The Netherlands
| | - Le Zhang
- grid.5132.50000 0001 2312 1970Department of Molecular Biotechnology, Institute of Biology Leiden, Leiden University, PO Box 9505, 2300 AB Leiden, The Netherlands
| | - Angel Manteca
- grid.10863.3c0000 0001 2164 6351Departamento de Biología Funcional e IUOPA, Área de Microbiología, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Gilles P. van Wezel
- grid.5132.50000 0001 2312 1970Department of Molecular Biotechnology, Institute of Biology Leiden, Leiden University, PO Box 9505, 2300 AB Leiden, The Netherlands
| |
Collapse
|
5
|
The SCO2102 Protein Harbouring a DnaA II Protein-Interaction Domain Is Essential for the SCO2103 Methylenetetrahydrofolate Reductase Positioning at Streptomyces Sporulating Hyphae, Enhancing DNA Replication during Sporulation. Int J Mol Sci 2022; 23:ijms23094984. [PMID: 35563376 PMCID: PMC9099993 DOI: 10.3390/ijms23094984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 02/06/2023] Open
Abstract
Streptomyces DNA replication starts with the DnaA binding to the origin of replication. Differently to most bacteria, cytokinesis only occurs during sporulation. Cytokinesis is modulated by the divisome, an orderly succession of proteins initiated by FtsZ. Here, we characterised SCO2102, a protein harbouring a DnaA II protein–protein interaction domain highly conserved in Streptomyces. The ΔSCO2102 knockout shows highly delayed sporulation. SCO2102-mCherry frequently co-localises with FtsZ-eGFP during sporulation and greatly reduces FtsZ-eGFP Z-ladder formation, suggesting a role of SCO2102 in sporulation. SCO2102 localises up-stream of SCO2103, a methylenetetrahydrofolate reductase involved in methionine and dTMP synthesis. SCO2102/SCO2103 expression is highly regulated, involving two promoters and a conditional transcription terminator. The ΔSCO2103 knockout shows reduced DNA synthesis and a non-sporulating phenotype. SCO2102-mCherry co-localises with SCO2103-eGFP during sporulation, and SCO2102 is essential for the SCO2103 positioning at sporulating hyphae, since SCO2103-eGFP fluorescent spots are absent in the ΔSCO2102 knockout. We propose a model in which SCO2102 positions SCO2103 in sporulating hyphae, facilitating nucleotide biosynthesis for chromosomal replication. To the best of our knowledge, SCO2102 is the first protein harbouring a DnaA II domain specifically found during sporulation, whereas SCO2103 is the first methylenetetrahydrofolate reductase found to be essential for Streptomyces sporulation.
Collapse
|
6
|
Cinar B, Demir Z, Tunca S. Heterologous expression of 8-demethyl-tetracenomycin (8-dmtc) affected Streptomyces coelicolor life cycle. Braz J Microbiol 2021; 52:1107-1118. [PMID: 33876406 DOI: 10.1007/s42770-021-00499-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/08/2021] [Indexed: 10/21/2022] Open
Abstract
Heterologous hosts are highly important to detect the expression of biosynthetic gene clusters that are cryptic or poorly expressed in their natural hosts. To investigate whether actinorhodin-overproducer Streptomyces coelicolor ∆ppk mutant strain could be a possible prototype as a heterologous expression host, a cosmid containing most of the elm gene cluster of Streptomyces olivaceus Tü2353 was integrated into chromosomes of both S. coelicolor A3(2) and ∆ppk strains. Interestingly, it was found that the production of tetracyclic polyketide 8-demethyl-tetracenomycin (8-DMTC) by recombinant strains caused significant changes in the morphology of cells. All the pellets and clumps were disentangled and mycelia were fragmented in the recombinant strains. Moreover, they produce neither pigmented antibiotics nor agarase and did not sporulate. By eliminating the elm biosynthesis genes from the cosmid, we showed that the morphological properties of recombinants were caused by the production of 8-DMTC. Extracellular application of 8-DMTC on S. coelicolor wild-type cells caused a similar phenotype with the 8-DMTC-producing recombinant strains. The results of this study may contribute to the understanding of the effect of 8-DMTC in Streptomyces since the morphological changes that we have observed have not been reported before. It is also valuable in that it provides useful information about the use of Streptomyces as hosts for the heterologous expression of 8-DMTC.
Collapse
Affiliation(s)
- Buse Cinar
- Molecular Biology and Genetics Department, Faculty of Science, Gebze Technical University, 41400 Gebze, Kocaeli, Turkey.,Institute of Microbiology, Leibniz University Hannover, D-30419, Hannover, Germany
| | - Zeynep Demir
- Molecular Biology and Genetics Department, Faculty of Science, Gebze Technical University, 41400 Gebze, Kocaeli, Turkey
| | - Sedef Tunca
- Molecular Biology and Genetics Department, Faculty of Science, Gebze Technical University, 41400 Gebze, Kocaeli, Turkey.
| |
Collapse
|
7
|
Xiao X, Willemse J, Voskamp P, Li X, Prota AE, Lamers M, Pannu N, Abrahams JP, van Wezel GP. Ectopic positioning of the cell division plane is associated with single amino acid substitutions in the FtsZ-recruiting SsgB in Streptomyces. Open Biol 2021; 11:200409. [PMID: 33622102 PMCID: PMC8061694 DOI: 10.1098/rsob.200409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In most bacteria, cell division begins with the polymerization of the GTPase FtsZ at mid-cell, which recruits the division machinery to initiate cell constriction. In the filamentous bacterium Streptomyces, cell division is positively controlled by SsgB, which recruits FtsZ to the future septum sites and promotes Z-ring formation. Here, we show that various amino acid (aa) substitutions in the highly conserved SsgB protein result in ectopically placed septa that sever spores diagonally or along the long axis, perpendicular to the division plane. Fluorescence microscopy revealed that between 3.3% and 9.8% of the spores of strains expressing SsgB E120 variants were severed ectopically. Biochemical analysis of SsgB variant E120G revealed that its interaction with FtsZ had been maintained. The crystal structure of Streptomyces coelicolor SsgB was resolved and the key residues were mapped on the structure. Notably, residue substitutions (V115G, G118V, E120G) that are associated with septum misplacement localize in the α2-α3 loop region that links the final helix and the rest of the protein. Structural analyses and molecular simulation revealed that these residues are essential for maintaining the proper angle of helix α3. Our data suggest that besides altering FtsZ, aa substitutions in the FtsZ-recruiting protein SsgB also lead to diagonally or longitudinally divided cells in Streptomyces.
Collapse
Affiliation(s)
- Xiansha Xiao
- Molecular Biotechnology, Leiden University, PO Box 9505, 2300RA Leiden, The Netherlands
| | - Joost Willemse
- Molecular Biotechnology, Leiden University, PO Box 9505, 2300RA Leiden, The Netherlands
| | - Patrick Voskamp
- Biophysical Structural Chemistry, Leiden University, PO Box 9502, 2300RA Leiden, The Netherlands
| | - Xinmeng Li
- LIC/Energy and Sustainability, Leiden University, PO Box 9502, 2300RA Leiden, The Netherlands
| | | | - Meindert Lamers
- Leiden University Medical Center, PO Box 9600, 2300RC Leiden, The Netherlands
| | - Navraj Pannu
- Biophysical Structural Chemistry, Leiden University, PO Box 9502, 2300RA Leiden, The Netherlands
| | - Jan Pieter Abrahams
- Molecular Biotechnology, Leiden University, PO Box 9505, 2300RA Leiden, The Netherlands.,Paul Scherrer Institute, CH-5232 Villigen, Switzerland.,Biozentrum, University of Basel, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Gilles P van Wezel
- Molecular Biotechnology, Leiden University, PO Box 9505, 2300RA Leiden, The Netherlands
| |
Collapse
|
8
|
Morphological Differentiation of Streptomyces clavuligerus Exposed to Diverse Environmental Conditions and Its Relationship with Clavulanic Acid Biosynthesis. Processes (Basel) 2020. [DOI: 10.3390/pr8091038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Clavulanic acid (CA) is a potent inhibitor of class A β-lactamase enzymes produced by Streptomyces clavuligerus (S. clavuligerus) as a defense mechanism. Due to its industrial interest, the process optimization is under continuous investigation. This work aimed at identifying the potential relationship that might exist between S. clavuligerus ATCC 27064 morphology and CA biosynthesis. For this, modified culture conditions such as source, size, and age of inoculum, culture media, and geometry of fermentation flasks were tested. We observed that high density spore suspensions (1 × 107 spores/mL) represent the best inoculum source for S. clavuligerus cell suspension culture. Further, we studied the life cycle of S. clavuligerus in liquid medium, using optic, confocal, and electron microscopy; results allowed us to observe a potential relationship that might exist between the accumulation of CA and the morphology of disperse hyphae. Reactor geometries that increase shear stress promote smaller pellets and a quick disintegration of these in dispersed secondary mycelia, which begins the pseudosporulation process, thus easing CA accumulation. These outcomes greatly contribute to improving the understanding of antibiotic biosynthesis in the Streptomyces genus.
Collapse
|
9
|
Fröjd MJ, Flärdh K. Extrusion of extracellular membrane vesicles from hyphal tips of Streptomyces venezuelae coupled to cell-wall stress. Microbiology (Reading) 2019; 165:1295-1305. [DOI: 10.1099/mic.0.000836] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Markus J. Fröjd
- Department of Biology, Lund University, Sölvegatan 35, 22362 Lund, Sweden
| | | |
Collapse
|
10
|
Yagüe P, Gonzalez-Quiñonez N, Manteca A. Nonpathogenic Bacteria as Targets in Antimicrobial High-Throughput Screening. Trends Microbiol 2019; 28:1-2. [PMID: 31703845 DOI: 10.1016/j.tim.2019.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 10/25/2022]
Abstract
Antimicrobial screening usually analyses the effects of natural or synthetic molecules against pathogens. McAuley et al. changed this paradigm, testing the effect of synthetic compounds against the sporulation of the nonpathogenic bacterium Streptomyces venezuelae. They discovered a novel DNA-targeting antibiotic effective against pathogens.
Collapse
Affiliation(s)
- Paula Yagüe
- Área de Microbiología, Departamento de Biología Funcional, IUOPA, ISPA, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Nathaly Gonzalez-Quiñonez
- Área de Microbiología, Departamento de Biología Funcional, IUOPA, ISPA, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Angel Manteca
- Área de Microbiología, Departamento de Biología Funcional, IUOPA, ISPA, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain.
| |
Collapse
|
11
|
Abstract
Actinobacteria is a group of diverse bacteria. Most species in this class of bacteria are filamentous aerobes found in soil, including the genus Streptomyces perhaps best known for their fascinating capabilities of producing antibiotics. These bacteria typically have a Gram-positive cell envelope, comprised of a plasma membrane and a thick peptidoglycan layer. However, there is a notable exception of the Corynebacteriales order, which has evolved a unique type of outer membrane likely as a consequence of convergent evolution. In this chapter, we will focus on the unique cell envelope of this order. This cell envelope features the peptidoglycan layer that is covalently modified by an additional layer of arabinogalactan . Furthermore, the arabinogalactan layer provides the platform for the covalent attachment of mycolic acids , some of the longest natural fatty acids that can contain ~100 carbon atoms per molecule. Mycolic acids are thought to be the main component of the outer membrane, which is composed of many additional lipids including trehalose dimycolate, also known as the cord factor. Importantly, a subset of bacteria in the Corynebacteriales order are pathogens of human and domestic animals, including Mycobacterium tuberculosis. The surface coat of these pathogens are the first point of contact with the host immune system, and we now know a number of host receptors specific to molecular patterns exposed on the pathogen's surface, highlighting the importance of understanding how the cell envelope of Actinobacteria is structured and constructed. This chapter describes the main structural and biosynthetic features of major components found in the actinobacterial cell envelopes and highlights the key differences between them.
Collapse
Affiliation(s)
- Kathryn C Rahlwes
- Department of Microbiology, University of Massachusetts, 639 North Pleasant Street, Amherst, MA, 01003, USA
| | - Ian L Sparks
- Department of Microbiology, University of Massachusetts, 639 North Pleasant Street, Amherst, MA, 01003, USA
| | - Yasu S Morita
- Department of Microbiology, University of Massachusetts, 639 North Pleasant Street, Amherst, MA, 01003, USA.
| |
Collapse
|
12
|
Zacchetti B, Wösten HA, Claessen D. Multiscale heterogeneity in filamentous microbes. Biotechnol Adv 2018; 36:2138-2149. [DOI: 10.1016/j.biotechadv.2018.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 09/15/2018] [Accepted: 10/01/2018] [Indexed: 12/20/2022]
|
13
|
Rioseras B, Shliaha PV, Gorshkov V, Yagüe P, López-García MT, Gonzalez-Quiñonez N, Kovalchuk S, Rogowska-Wrzesinska A, Jensen ON, Manteca A. Quantitative Proteome and Phosphoproteome Analyses of Streptomyces coelicolor Reveal Proteins and Phosphoproteins Modulating Differentiation and Secondary Metabolism. Mol Cell Proteomics 2018; 17:1591-1611. [PMID: 29784711 PMCID: PMC6072539 DOI: 10.1074/mcp.ra117.000515] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 05/15/2018] [Indexed: 02/03/2023] Open
Abstract
Streptomycetes are multicellular bacteria with complex developmental cycles. They are of biotechnological importance as they produce most bioactive compounds used in biomedicine, e.g. antibiotic, antitumoral and immunosupressor compounds. Streptomyces genomes encode many Ser/Thr/Tyr kinases, making this genus an outstanding model for the study of bacterial protein phosphorylation events. We used mass spectrometry based quantitative proteomics and phosphoproteomics to characterize bacterial differentiation and activation of secondary metabolism of Streptomyces coelicolor We identified and quantified 3461 proteins corresponding to 44.3% of the S. coelicolor proteome across three developmental stages: vegetative hypha (first mycelium); secondary metabolite producing hyphae (second mycelium); and sporulating hyphae. A total of 1350 proteins exhibited more than 2-fold expression changes during the bacterial differentiation process. These proteins include 136 regulators (transcriptional regulators, transducers, Ser/Thr/Tyr kinases, signaling proteins), as well as 542 putative proteins with no clear homology to known proteins which are likely to play a role in differentiation and secondary metabolism. Phosphoproteomics revealed 85 unique protein phosphorylation sites, 58 of them differentially phosphorylated during differentiation. Computational analysis suggested that these regulated protein phosphorylation events are implicated in important cellular processes, including cell division, differentiation, regulation of secondary metabolism, transcription, protein synthesis, protein folding and stress responses. We discovered a novel regulated phosphorylation site in the key bacterial cell division protein FtsZ (pSer319) that modulates sporulation and regulates actinorhodin antibiotic production. We conclude that manipulation of distinct protein phosphorylation events may improve secondary metabolite production in industrial streptomycetes, including the activation of cryptic pathways during the screening for new secondary metabolites from streptomycetes.
Collapse
Affiliation(s)
- Beatriz Rioseras
- From the ‡Área de Microbiología, Departamento de Biología Funcional e IUOPA, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Pavel V Shliaha
- §Department of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark
| | - Vladimir Gorshkov
- §Department of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark
| | - Paula Yagüe
- From the ‡Área de Microbiología, Departamento de Biología Funcional e IUOPA, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain
| | - María T López-García
- From the ‡Área de Microbiología, Departamento de Biología Funcional e IUOPA, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Nathaly Gonzalez-Quiñonez
- From the ‡Área de Microbiología, Departamento de Biología Funcional e IUOPA, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain
| | - Sergey Kovalchuk
- §Department of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark
| | - Adelina Rogowska-Wrzesinska
- §Department of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark
| | - Ole N Jensen
- §Department of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark
| | - Angel Manteca
- From the ‡Área de Microbiología, Departamento de Biología Funcional e IUOPA, Facultad de Medicina, Universidad de Oviedo, 33006 Oviedo, Spain;
| |
Collapse
|
14
|
Streptomyces Differentiation in Liquid Cultures as a Trigger of Secondary Metabolism. Antibiotics (Basel) 2018; 7:antibiotics7020041. [PMID: 29757948 PMCID: PMC6022995 DOI: 10.3390/antibiotics7020041] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/09/2018] [Accepted: 05/09/2018] [Indexed: 02/08/2023] Open
Abstract
Streptomyces is a diverse group of gram-positive microorganisms characterised by a complex developmental cycle. Streptomycetes produce a number of antibiotics and other bioactive compounds used in the clinic. Most screening campaigns looking for new bioactive molecules from actinomycetes have been performed empirically, e.g., without considering whether the bacteria are growing under the best developmental conditions for secondary metabolite production. These screening campaigns were extremely productive and discovered a number of new bioactive compounds during the so-called “golden age of antibiotics” (until the 1980s). However, at present, there is a worrying bottleneck in drug discovery, and new experimental approaches are needed to improve the screening of natural actinomycetes. Streptomycetes are still the most important natural source of antibiotics and other bioactive compounds. They harbour many cryptic secondary metabolite pathways not expressed under classical laboratory cultures. Here, we review the new strategies that are being explored to overcome current challenges in drug discovery. In particular, we focus on those aimed at improving the differentiation of the antibiotic-producing mycelium stage in the laboratory.
Collapse
|
15
|
Sporulation-specific cell division defects in ylmE mutants of Streptomyces coelicolor are rescued by additional deletion of ylmD. Sci Rep 2018; 8:7328. [PMID: 29743540 PMCID: PMC5943314 DOI: 10.1038/s41598-018-25782-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/25/2018] [Indexed: 01/15/2023] Open
Abstract
Cell division during the reproductive phase of the Streptomyces life-cycle requires tight coordination between synchronous formation of multiple septa and DNA segregation. One remarkable difference with most other bacterial systems is that cell division in Streptomyces is positively controlled by the recruitment of FtsZ by SsgB. Here we show that deletion of ylmD (SCO2081) or ylmE (SCO2080), which lie in operon with ftsZ in the dcw cluster of actinomycetes, has major consequences for sporulation-specific cell division in Streptomyces coelicolor. Electron and fluorescence microscopy demonstrated that ylmE mutants have a highly aberrant phenotype with defective septum synthesis, and produce very few spores with low viability and high heat sensitivity. FtsZ-ring formation was also highly disturbed in ylmE mutants. Deletion of ylmD had a far less severe effect on sporulation. Interestingly, the additional deletion of ylmD restored sporulation to the ylmE null mutant. YlmD and YlmE are not part of the divisome, but instead localize diffusely in aerial hyphae, with differential intensity throughout the sporogenic part of the hyphae. Taken together, our work reveals a function for YlmD and YlmE in the control of sporulation-specific cell division in S. coelicolor, whereby the presence of YlmD alone results in major developmental defects.
Collapse
|
16
|
Abstract
Peptidoglycan is an essential component of the cell wall that protects bacteria from environmental stress. A carefully coordinated biosynthesis of peptidoglycan during cell elongation and division is required for cell viability. This biosynthesis involves sophisticated enzyme machineries that dynamically synthesize, remodel, and degrade peptidoglycan. However, when and where bacteria build peptidoglycan, and how this is coordinated with cell growth, have been long-standing questions in the field. The improvement of microscopy techniques has provided powerful approaches to study peptidoglycan biosynthesis with high spatiotemporal resolution. Recent development of molecular probes further accelerated the growth of the field, which has advanced our knowledge of peptidoglycan biosynthesis dynamics and mechanisms. Here, we review the technologies for imaging the bacterial cell wall and its biosynthesis activity. We focus on the applications of fluorescent d-amino acids, a newly developed type of probe, to visualize and study peptidoglycan synthesis and dynamics, and we provide direction for prospective research.
Collapse
Affiliation(s)
- Atanas D Radkov
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.,Current affiliation: Biophysics and Biochemistry Department, University of California, San Francisco, California 94158, USA;
| | - Yen-Pang Hsu
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, USA; , ,
| | - Garrett Booher
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, USA; , ,
| | - Michael S VanNieuwenhze
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.,Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana 47405, USA; , ,
| |
Collapse
|
17
|
Zheng B, Chen L, Pan CC, Wang JZ, Lu GR, Yang SX, Xue ZX, Wang FY, Xu CL. Targeted delivery of miRNA-204-5p by PEGylated polymer nanoparticles for colon cancer therapy. Nanomedicine (Lond) 2018; 13:769-785. [PMID: 29460671 DOI: 10.2217/nnm-2017-0345] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
AIM miRNAs have been recognized for their potential in cancer therapeutics, and multiple miRNAs were suggested to affect target genes expression. To overcome limitations of free synthetic miRNAs, such as easily degraded in biofluids and limited in cellular uptake, novel miRNAs delivery systems need to be developed. MATERIALS & METHODS Using surface-functionalizing technique, poly(D,L-lactide-co-glycolide)/poly(L-lactide)-block-poly(ethylene glycol)-folate polymer nanoparticle (PLGA/PLA-PEG-FA) loaded with miR-204-5p (FA-NPs-miR-204) was developed. The therapeutic efficacy of FA-NPs-miR-204 was evaluated in the Luc-HT-29 xenograft tumor model in vivo. RESULTS FA-NPs-miR-204 could be taken up by HT-29 and HCT-116 cells efficiently, resulting in significant inhibitory effect on cell proliferation and promotive effect on cell apoptosis. In vivo study showed that FA-NPs-miR-204 could exert tumor suppressive function in Luc-HT-29 xenograft model. CONCLUSION Our study demonstrates a convenient miRNA delivery system that targets tumor tissue and exerts tumor suppressive function, thus demonstrating a potential new therapeutic option for colon cancer.
Collapse
Affiliation(s)
- Bo Zheng
- Department of Gastroenterology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China
| | - Lu Chen
- Department of Gastroenterology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China
| | - Chun-Chun Pan
- Department of Gastroenterology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China
| | - Jian-Zhang Wang
- Department of Gastroenterology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China
| | - Guang-Rong Lu
- Department of Gastroenterology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China
| | - Shou-Xing Yang
- Department of Gastroenterology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China
| | - Zhan-Xiong Xue
- Department of Gastroenterology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China
| | - Fang-Yan Wang
- Department of Pathophysiology, School of Basic Medicine Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China
| | - Chang-Long Xu
- Department of Gastroenterology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, PR China.,Center for Diagnostics & Therapeutics, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30302, USA
| |
Collapse
|
18
|
Santos-Beneit F, Roberts DM, Cantlay S, McCormick JR, Errington J. A mechanism for FtsZ-independent proliferation in Streptomyces. Nat Commun 2017; 8:1378. [PMID: 29123127 PMCID: PMC5680176 DOI: 10.1038/s41467-017-01596-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 10/02/2017] [Indexed: 11/17/2022] Open
Abstract
The central player in bacterial cell division, FtsZ, is essential in almost all organisms in which it has been tested, with the most notable exception being Streptomyces. Streptomycetes differ from many bacteria in growing from the cell tip and undergoing branching, similar to filamentous fungi. Here we show that limited cell damage, either mechanical or enzymatic, leads to near complete destruction of mycelial microcolonies of a Streptomyces venezuelae ftsZ mutant. This result is consistent with a lack of ftsZ-dependent cross-walls and may be inconsistent with a recently proposed role for membrane structures in the proliferation of ftsZ mutants in other Streptomyces species. Rare surviving fragments of mycelium, usually around branches, appear to be the preferred sites of resealing. Restoration of growth in hyphal fragments of both wild-type and ftsZ mutant hyphae can occur at multiple sites, via branch-like outgrowths containing DivIVA protein at their tips. Thus, our results highlight branching as a means of FtsZ-independent cell proliferation. Protein FtsZ plays key roles in cell division and is essential in most bacterial species; exceptions include streptomycetes, which grow from the cell tip and form branched hyphae. Here, Santos-Beneit et al. show that branching allows FtsZ-independent proliferation in Streptomyces venezuelae.
Collapse
Affiliation(s)
- Fernando Santos-Beneit
- Centre for Bacterial Cell Biology, Medical School, Newcastle University, Newcastle Upon Tyne, NE2 4AX, UK
| | - David M Roberts
- Centre for Bacterial Cell Biology, Medical School, Newcastle University, Newcastle Upon Tyne, NE2 4AX, UK
| | - Stuart Cantlay
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, 15282, USA
| | - Joseph R McCormick
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, 15282, USA
| | - Jeff Errington
- Centre for Bacterial Cell Biology, Medical School, Newcastle University, Newcastle Upon Tyne, NE2 4AX, UK.
| |
Collapse
|
19
|
Abstract
The last three decades have witnessed an explosion of discoveries about the mechanistic details of binary fission in model bacteria such as Escherichia coli, Bacillus subtilis, and Caulobacter crescentus. This was made possible not only by advances in microscopy that helped answer questions about cell biology but also by clever genetic manipulations that directly and easily tested specific hypotheses. More recently, research using understudied organisms, or nonmodel systems, has revealed several alternate mechanistic strategies that bacteria use to divide and propagate. In this review, we highlight new findings and compare these strategies to cell division mechanisms elucidated in model organisms.
Collapse
Affiliation(s)
- Prahathees J Eswara
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, Florida 33620;
| | - Kumaran S Ramamurthi
- Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-5132;
| |
Collapse
|
20
|
Zhang Z, Claessen D, Rozen DE. Understanding Microbial Divisions of Labor. Front Microbiol 2016; 7:2070. [PMID: 28066387 PMCID: PMC5174093 DOI: 10.3389/fmicb.2016.02070] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/07/2016] [Indexed: 12/27/2022] Open
Abstract
Divisions of labor are ubiquitous in nature and can be found at nearly every level of biological organization, from the individuals of a shared society to the cells of a single multicellular organism. Many different types of microbes have also evolved a division of labor among its colony members. Here we review several examples of microbial divisions of labor, including cases from both multicellular and unicellular microbes. We first discuss evolutionary arguments, derived from kin selection, that allow divisions of labor to be maintained in the face of non-cooperative cheater cells. Next we examine the widespread natural variation within species in their expression of divisions of labor and compare this to the idea of optimal caste ratios in social insects. We highlight gaps in our understanding of microbial caste ratios and argue for a shift in emphasis from understanding the maintenance of divisions of labor, generally, to instead focusing on its specific ecological benefits for microbial genotypes and colonies. Thus, in addition to the canonical divisions of labor between, e.g., reproductive and vegetative tasks, we may also anticipate divisions of labor to evolve to reduce the costly production of secondary metabolites or secreted enzymes, ideas we consider in the context of streptomycetes. The study of microbial divisions of labor offers opportunities for new experimental and molecular insights across both well-studied and novel model systems.
Collapse
Affiliation(s)
- Zheren Zhang
- Institute of Biology, Leiden University Leiden, Netherlands
| | | | - Daniel E Rozen
- Institute of Biology, Leiden University Leiden, Netherlands
| |
Collapse
|
21
|
Abstract
About 2,500 papers dated 2014–2016 were recovered by searching the PubMed database for
Streptomyces, which are the richest known source of antibiotics. This review integrates around 100 of these papers in sections dealing with evolution, ecology, pathogenicity, growth and development, stress responses and secondary metabolism, gene expression, and technical advances. Genomic approaches have greatly accelerated progress. For example, it has been definitively shown that interspecies recombination of conserved genes has occurred during evolution, in addition to exchanges of some of the tens of thousands of non-conserved accessory genes. The closeness of the association of
Streptomyces with plants, fungi, and insects has become clear and is reflected in the importance of regulators of cellulose and chitin utilisation in overall
Streptomyces biology. Interestingly, endogenous cellulose-like glycans are also proving important in hyphal growth and in the clumping that affects industrial fermentations. Nucleotide secondary messengers, including cyclic di-GMP, have been shown to provide key input into developmental processes such as germination and reproductive growth, while late morphological changes during sporulation involve control by phosphorylation. The discovery that nitric oxide is produced endogenously puts a new face on speculative models in which regulatory Wbl proteins (peculiar to actinobacteria) respond to nitric oxide produced in stressful physiological transitions. Some dramatic insights have come from a new model system for
Streptomyces developmental biology,
Streptomyces venezuelae, including molecular evidence of very close interplay in each of two pairs of regulatory proteins. An extra dimension has been added to the many complexities of the regulation of secondary metabolism by findings of regulatory crosstalk within and between pathways, and even between species, mediated by end products. Among many outcomes from the application of chromosome immunoprecipitation sequencing (ChIP-seq) analysis and other methods based on “next-generation sequencing” has been the finding that 21% of
Streptomyces mRNA species lack leader sequences and conventional ribosome binding sites. Further technical advances now emerging should lead to continued acceleration of knowledge, and more effective exploitation, of these astonishing and critically important organisms.
Collapse
Affiliation(s)
- Keith F Chater
- Department of Molecular Microbiology, John Innes Centre, Norwich, UK
| |
Collapse
|
22
|
Abstract
When deprived of FtsZ, Escherichia coli cells (VIP205) grown in liquid form long nonseptated filaments due to their inability to assemble an FtsZ ring and their failure to recruit subsequent divisome components. These filaments fail to produce colonies on solid medium, in which synthesis of FtsZ is induced, upon being diluted by a factor greater than 4. However, once the initial FtsZ levels are recovered in liquid culture, they resume division, and their plating efficiency returns to normal. The potential septation sites generated in the FtsZ-deprived filaments are not annihilated, and once sufficient FtsZ is accumulated, they all become active and divide to produce cells of normal length. FtsZ-deprived cells accumulate defects in their physiology, including an abnormally high number of unsegregated nucleoids that may result from the misplacement of FtsK. Their membrane integrity becomes compromised and the amount of membrane proteins, such as FtsK and ZipA, increases. FtsZ-deprived cells also show an altered expression pattern, namely, transcription of several genes responding to DNA damage increases, whereas transcription of some ribosomal or global transcriptional regulators decreases. We propose that the changes caused by the depletion of FtsZ, besides stopping division, weaken the cell, diminishing its resiliency to minor challenges, such as dilution stress. Our results suggest a role for FtsZ, in addition to its already known effect in the constriction of E. coli, in protecting the nondividing cells against minor stress. This protection can even be exerted when an inactive FtsZ is produced, but it is lost when the protein is altogether absent. These results have implications in fields like synthetic biology or antimicrobial discovery. The construction of synthetic divisomes in the test tube may need to preserve unsuspected roles, such as this newly found FtsZ property, to guarantee the stability of artificial containers. Whereas the effects on viability caused by inhibiting the activity of FtsZ may be partly overcome by filamentation, the absence of FtsZ is not tolerated by E. coli, an observation that may help in the design of effective antimicrobial compounds.
Collapse
|