1
|
Ye Z, Fu L, Li S, Chen Z, Ouyang J, Shang X, Liu Y, Gao L, Wang Y. Synergistic collaboration between AMPs and non-direct antimicrobial cationic peptides. Nat Commun 2024; 15:7319. [PMID: 39183339 PMCID: PMC11345435 DOI: 10.1038/s41467-024-51730-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024] Open
Abstract
Non-direct antimicrobial cationic peptides (NDACPs) are components of the animal innate immune system. But their functions and association with antimicrobial peptides (AMPs) are incompletely understood. Here, we reveal a synergistic interaction between the AMP AW1 and the NDACP AW2, which are co-expressed in the frog Amolops wuyiensis. AW2 enhances the antibacterial activity of AW1 both in vitro and in vivo, while mitigating the development of bacterial resistance and eradicating biofilms. AW1 and AW2 synergistically damage bacterial membranes, facilitating cellular uptake and interaction of AW2 with the intracellular target bacterial genomic DNA. Simultaneously, they trigger the generation of ROS in bacteria, contributing to cell death upon reaching a threshold level. Moreover, we demonstrate that this synergistic antibacterial effect between AMPs and NDACPs is prevalent across diverse animal species. These findings unveil a robust and previously unknown correlation between AMPs and NDACPs as a widespread antibacterial immune defense strategy in animals.
Collapse
Affiliation(s)
- Zifan Ye
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Lei Fu
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Shuangyu Li
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Ziying Chen
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China
| | - Jianhong Ouyang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Xinci Shang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Yanli Liu
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Lianghui Gao
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, China.
| | - Yipeng Wang
- Department of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, China.
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.
| |
Collapse
|
2
|
Li H, Zhu X, Zhang X, Dong C. Caspofungin enhances the potency of rifampin against Gram-negative bacteria. Front Microbiol 2024; 15:1447485. [PMID: 39211315 PMCID: PMC11358092 DOI: 10.3389/fmicb.2024.1447485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction Developing antibiotic adjuvants is an effective strategy to combat antimicrobial resistance (AMR). The envelope of Gram-negative bacteria (GNB) is a barrier to prevent the entry of antibiotics, making it an attractive target for novel antibiotic and adjuvant development. Methods and Results In this study, we identified Caspofungin acetate (CAS) as an antibiotic adjuvant against GNB in the repurposing screen of 3,158 FDA-approved drugs. Checkerboard assays suggested that CAS could enhance the antimicrobial activity of rifampin or colistin against various GNB strains in vitro, Moreover, Galleria mellonella larvae infection model also indicated that CAS significantly potentiated the efficacy of rifampin against multidrug-resistant Escherichia coli 72 strain in vivo. Most importantly, resistance development assay showed that CAS was less susceptible to accelerating the resistance development of drug-sensitive strain E. coli MG1655. Functional studies and RNA-seq analysis confirmed that the mechanisms by which CAS enhanced the antimicrobial activities of antibiotics were involved in permeabilizing the bacterial cell envelope, disrupting proton motive force and inhibiting bacterial biofilm formation. Additionally, it has been found that PgaC is the CAS target and enzymatic assay has confirmed the inhibition activity. Discussion Our results illustrate the feasibility of CAS as an antibiotic adjuvant against GNB, which is an alternative strategy of anti-infection.
Collapse
Affiliation(s)
- Haotian Li
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Xiaojing Zhu
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Xing Zhang
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Changjiang Dong
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Wen Z, Chen C, Shang Y, Fan K, Li P, Li C, Zheng J, Deng Q, Yu Z. Baohuoside I inhibits virulence of multidrug-resistant Staphylococcus aureus by targeting the transcription Staphylococcus accessory regulator factor SarZ. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 130:155590. [PMID: 38810547 DOI: 10.1016/j.phymed.2024.155590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 05/31/2024]
Abstract
BACKGROUND Staphylococcus aureus is a versatile pathogen that can cause a wide range of infections in humans. Biofilms play a crucial role in the pathogenicity of S. aureus and contribute to its ability to cause persistent and chronic infections. Baohuoside I has garnered increasing recognition as a natural flavonol glycoside with a wide spectrum of health-related activities. PURPOSE The antibacterial and anti-biofilm properties of Baohuoside I have not been extensively investigated. Our study aimed to assess its inhibitory effects and the underlying mechanisms on biofilm formation and hemolytic capacity in S. aureus. STUDY DESIGN/METHODS The impact of Baohuoside I on the biofilm and virulence of S. aureus was evaluated through in vitro experiments and Galleria mellonella as an in vivo infection model. The mechanisms were explored by Drug affinity responsive target stability (DARTS) and validated in genetic knockout strain and through molecular biological experiments using DARTS, molecular docking, electrophoretic mobility shift assay (EMSA), and bio-layer interferometry (BLI). RESULTS Baohuoside I significantly inhibits the formation of S. aureus biofilms and hemolytic activity at 6.25 µM. Proteomics analysis revealed that treatment with Baohuoside I led to a reduction in the expression of quorum-sensing system agr-regulated genes. DARTS analysis identified Staphylococcus accessory regulator factor (SarZ), a key regulator involved in the expression of virulence factors in S. aureus by acting as activator of the agr quorum-sensing system, was the direct target of Baohuoside I. Molecular docking, DARTS, BLI and EMSA assays collectively confirmed the direct binding of Baohuoside I to SarZ, inhibiting its binding to downstream promoters. Furthermore, it is found through site-directed protein mutagenesis that the Tyr27 and Phe117 residues are key for Baohuoside I binding to SarZ. Additionally, the knockout of SarZ significantly diminished the hemolytic ability of S. aureus, underscoring its crucial role as a pivotal regulator of virulence. Lastly, in vivo tests utilizing the G. mellonella infection model demonstrated the efficacy of Baohuoside I. CONCLUSION This study provides valuable insights into the mechanism by which Baohuoside I inhibits the virulence of S. aureus through its interaction with SarZ. These findings highlight the significance of SarZ as an effective target against the virulence of S. aureus.
Collapse
Affiliation(s)
- Zewen Wen
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Huazhong University of Science and Technology Union Shenzhen Hospital, No. 89 Taoyuan Road, Nanshan District, Shenzhen 518052, China
| | - Chengchun Chen
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Huazhong University of Science and Technology Union Shenzhen Hospital, No. 89 Taoyuan Road, Nanshan District, Shenzhen 518052, China
| | - Yongpeng Shang
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Huazhong University of Science and Technology Union Shenzhen Hospital, No. 89 Taoyuan Road, Nanshan District, Shenzhen 518052, China
| | - Kewei Fan
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Huazhong University of Science and Technology Union Shenzhen Hospital, No. 89 Taoyuan Road, Nanshan District, Shenzhen 518052, China
| | - Peiyu Li
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Huazhong University of Science and Technology Union Shenzhen Hospital, No. 89 Taoyuan Road, Nanshan District, Shenzhen 518052, China
| | - Congcong Li
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Huazhong University of Science and Technology Union Shenzhen Hospital, No. 89 Taoyuan Road, Nanshan District, Shenzhen 518052, China
| | - Jinxin Zheng
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Huazhong University of Science and Technology Union Shenzhen Hospital, No. 89 Taoyuan Road, Nanshan District, Shenzhen 518052, China
| | - Qiwen Deng
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Huazhong University of Science and Technology Union Shenzhen Hospital, No. 89 Taoyuan Road, Nanshan District, Shenzhen 518052, China.
| | - Zhijian Yu
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Huazhong University of Science and Technology Union Shenzhen Hospital, No. 89 Taoyuan Road, Nanshan District, Shenzhen 518052, China.
| |
Collapse
|
4
|
Yang K, Chen X, Li J, Xiu W, Yuwen L, Shan J, Dong H, Su S, Wang L. Ultrasound-responsive gallium protoporphyrin and oxygen loaded perfluoropentane nanodroplets for effective sonodynamic therapy of implant infections. NANOSCALE 2024; 16:11669-11678. [PMID: 38855849 DOI: 10.1039/d4nr01244e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Implant infections are severe complications in clinical treatment, which often accompany the formation of bacterial biofilms with high antibiotic resistance. Sonodynamic therapy (SDT) is an antibiotic-free method that can generate reactive oxygen species (ROS) to kill bacteria under ultrasound (US) treatment. However, the extracellular polymeric substances (EPS) barrier of bacterial biofilms and the hypoxic microenvironment significantly limit the antibiofilm activity of SDT. In this study, lipid-shelled perfluoropentane (PFP) nanodroplets loaded with gallium protoporphyrin IX (GaPPIX) and oxygen (O2) (LPGO NDs) were developed for the treatment of implant infections. Under US stimulation, LPGO NDs undergo the cavitation effect and disrupt the biofilm structure like bombs due to liquid-gas phase transition. Meanwhile, the LPGO NDs release O2 and GaPPIX upon US stimulation. The released O2 can alleviate the hypoxic microenvironment in the biofilm and enhance the ROS formation by GaPPIX for enhanced bacterial killing. In vivo experimental results demonstrate that the LPGO NDs can efficiently treat implant infections of methicillin-resistant Staphylococcus aureus (MRSA) in a mouse model by disrupting the biofilm structure, alleviating hypoxia, and enhancing bacterial killing by SDT. Therefore, this work provides a new multifunctional sonosensitizer to overcome the limitations of SDT for treating implant infections.
Collapse
Affiliation(s)
- Kaili Yang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
- Department of Clinical Laboratory Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, 210008, Nanjing, China
| | - Xiaolong Chen
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Jianguang Li
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Weijun Xiu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Lihui Yuwen
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Jingyang Shan
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Heng Dong
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Shao Su
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Lianhui Wang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| |
Collapse
|
5
|
Fang ZY, Zhang ZY, Zheng YD, Lei D, Zhuang J, Li N, He QY, Sun X. Repurposing cinacalcet suppresses multidrug-resistant Staphylococcus aureus by disruption of cell membrane and inhibits biofilm by targeting IcaR. J Antimicrob Chemother 2024; 79:903-917. [PMID: 38412335 DOI: 10.1093/jac/dkae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/12/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND MDR Staphylococcus aureus infections, along with the severity of biofilm-associated infections, continue to threaten human health to a great extent. It necessitates the urgent development of novel antimicrobial and antibiofilm agents. OBJECTIVES To reveal the mechanism and target of cinacalcet as an antibacterial and antimicrobial agent for S. aureus. METHODS Screening of non-antibiotic drugs for antibacterial and antibiofilm properties was conducted using a small-molecule drug library. In vivo efficacy was assessed through animal models, and the antibacterial mechanism was studied using quantitative proteomics, biochemical assays, LiP-SMap, BLI detection and gene knockout techniques. RESULTS Cinacalcet, an FDA-approved drug, demonstrated antibacterial and antibiofilm activity against S. aureus, with less observed development of bacterial resistance. Importantly, cinacalcet significantly improved survival in a pneumonia model and bacterial clearance in a biofilm infection model. Moreover, the antibacterial mechanism of cinacalcet mainly involves the destruction of membrane-targeted structures, alteration of energy metabolism, and production of reactive oxygen species (ROS). Cinacalcet was found to target IcaR, inhibiting biofilm formation through the negative regulation of IcaADBC. CONCLUSIONS The findings suggest that cinacalcet has potential for repurposing as a therapeutic agent for MDR S. aureus infections and associated biofilms, warranting further investigation.
Collapse
Affiliation(s)
- Zu-Ye Fang
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zi-Yuan Zhang
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yun-Dan Zheng
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Dan Lei
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Jianpeng Zhuang
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Nan Li
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Qing-Yu He
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xuesong Sun
- MOE Key Laboratory of Tumor Molecular Biology and State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
6
|
Zhao Y, Su Z, Zhang X, Wu D, Wu Y, Li G. Recent advances in nanopore-based analysis for carbohydrates and glycoconjugates. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1454-1467. [PMID: 38415741 DOI: 10.1039/d3ay02040a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Saccharides are not only the basic constituents and nutrients of living organisms, but also participate in various life activities, and play important roles in cell recognition, immune regulation, development, cancer, etc. The analysis of carbohydrates and glycoconjugates is a necessary means to study their transformations and physiological roles in living organisms. Existing detection techniques can hardly meet the requirements for the analysis of carbohydrates and glycoconjugates in complex matrices as they are expensive, involve complex derivatization, and are time-consuming. Nanopore sensing technology, which is amplification-free and label-free, and is a high-throughput process, provides a new solution for the identification and sequencing of carbohydrates and glycoconjugates. This review highlights recent advances in novel nanopore-based single-molecule sensing technologies for the detection of carbohydrates and glycoconjugates and discusses the advantages and challenges of nanopore sensing technologies. Finally, current issues and future perspectives are discussed with the aim of improving the performance of nanopores in complex media diagnostic applications, as well as providing a new direction for the quantification of glycan chains and the study of glycan chain properties and functions.
Collapse
Affiliation(s)
- Yan Zhao
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Zhuoqun Su
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Xue Zhang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Di Wu
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL, UK
| | - Yongning Wu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
- NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Guoliang Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
7
|
Yavari S, Olaifa K, Shafiee D, Rasuli R, Shafiee M. Molybdenum oxide nanotube caps decorated with ultrafine Ag nanoparticles: Synthesis and antimicrobial activity. Int J Pharm 2023; 647:123528. [PMID: 37863449 DOI: 10.1016/j.ijpharm.2023.123528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/28/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023]
Abstract
In the contemporary era, microorganisms, spanning bacteria and viruses, are increasingly acknowledged as emerging contaminants in the environment, presenting significant risks to public health. Nevertheless, conventional methods for disinfecting these microorganisms are often ineffective. Additionally, they come with disadvantages such as high energy usage, negative environmental consequences, increased expenses, and the generation of harmful byproducts. The development of next-generation antifungal and antibacterial agents is dependent on newly synthesized nanomaterials with inherent antimicrobial behavior. In this study, we report an arc-discharge method to synthesize MoOx nanosheets and microbelts, followed by decorating them with ultrafine Ag nanoparticles (NPs). Scanning and transmission electron microscopies show that Ag NPs formation on the Molybdenum oxide nanostructures rolls them into nanotube caps (NTCs), revealing inner and outer diameters of approximately 19.8 nm and 105.5 nm, respectively. Additionally, the Ag NPs are ultrafine, with sizes in the range of 5-8 nm. Results show that the prepared NTCs exhibit dose-dependent sensitivity to both planktonic and biofilm cells of Escherichia coli and Candida albicans. The anti-biofilm activity in terms of biofilm inhibition ranged from 19.7 to 77.2% and 11.3-82.3%, while removal of more than 70% and 90% of preformed biofilms was achieved for E. coli and C. albicans, respectively, showing good potential for antimicrobial coating. Initial MoOx exhibits positive potential, while Ag-decorated Molybdenum oxide NTCs show dual potential effects (positive for Molybdenum oxide NTCs and negative for Ag NPs. Molybdenum oxide NTCs, with their strong positive potential, efficiently attract microbes due to their negatively charged cell surfaces, facilitating the antimicrobial effect of Ag NPs, leading to cell damage and death. These findings suggest that the synthesized NPs could serve as a suitable coating for biomedical applications.
Collapse
Affiliation(s)
- Shabnam Yavari
- Department of Physics, Faculty of Science, University of Zanjan, Zanjan, Iran; Department of Electrical and Computer Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana 010000, Kazakhstan
| | - Kayode Olaifa
- Department of Biology, Nazarbayev Intellectual School of Biology and Chemistry, Aktau, Kazakhstan; Biofilm Laboratory, Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana 010000, Kazakhstan
| | - Darya Shafiee
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan
| | - Reza Rasuli
- Department of Physics, Faculty of Science, University of Zanjan, Zanjan, Iran.
| | - Mehdi Shafiee
- Energetic Cosmos Laboratory, Nazarbayev University, Astana 010000, Kazakhstan.
| |
Collapse
|
8
|
Gadar K, McCarthy RR. Using next generation antimicrobials to target the mechanisms of infection. NPJ ANTIMICROBIALS AND RESISTANCE 2023; 1:11. [PMID: 38686217 PMCID: PMC11057201 DOI: 10.1038/s44259-023-00011-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 07/28/2023] [Indexed: 05/02/2024]
Abstract
The remarkable impact of antibiotics on human health is being eroded at an alarming rate by the emergence of multidrug resistant pathogens. There is a recognised consensus that new strategies to tackle infection are urgently needed to limit the devasting impact of antibiotic resistance on our global healthcare infrastructure. Next generation antimicrobials (NGAs) are compounds that target bacterial virulence factors to disrupt pathogenic potential without impacting bacterial viability. By disabling the key virulence factors required to establish and maintain infection, NGAs make pathogens more vulnerable to clearance by the immune system and can potentially render them more susceptible to traditional antibiotics. In this review, we discuss the developing field of NGAs and how advancements in this area could offer a viable standalone alternative to traditional antibiotics or an effective means to prolong antibiotic efficacy when used in combination.
Collapse
Affiliation(s)
- Kavita Gadar
- Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UB8 3PH United Kingdom
| | - Ronan R. McCarthy
- Division of Biosciences, Department of Life Sciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UB8 3PH United Kingdom
| |
Collapse
|
9
|
Balducci E, Papi F, Capialbi DE, Del Bino L. Polysaccharides' Structures and Functions in Biofilm Architecture of Antimicrobial-Resistant (AMR) Pathogens. Int J Mol Sci 2023; 24:ijms24044030. [PMID: 36835442 PMCID: PMC9965654 DOI: 10.3390/ijms24044030] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Bacteria and fungi have developed resistance to the existing therapies such as antibiotics and antifungal drugs, and multiple mechanisms are mediating this resistance. Among these, the formation of an extracellular matrix embedding different bacterial cells, called biofilm, is an effective strategy through which bacterial and fungal cells are establishing a relationship in a unique environment. The biofilm provides them the possibility to transfer genes conferring resistance, to prevent them from desiccation and to impede the penetration of antibiotics or antifungal drugs. Biofilms are formed of several constituents including extracellular DNA, proteins and polysaccharides. Depending on the bacteria, different polysaccharides form the biofilm matrix in different microorganisms, some of them involved in the first stage of cells' attachment to surfaces and to each other, and some responsible for giving the biofilm structure resistance and stability. In this review, we describe the structure and the role of different polysaccharides in bacterial and fungal biofilms, we revise the analytical methods to characterize them quantitatively and qualitatively and finally we provide an overview of potential new antimicrobial therapies able to inhibit biofilm formation by targeting exopolysaccharides.
Collapse
Affiliation(s)
| | | | - Daniela Eloisa Capialbi
- GSK, 53100 Siena, Italy
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | | |
Collapse
|
10
|
Fortes BN, Scheunemann G, de Azevedo Melo AS, Ishida K. Caspofungin alone or combined with polymyxin B are effective against mixed biofilm of Aspergillus fumigatus and carbapenem-resistant Pseudomonas aeruginosa. Res Microbiol 2023; 174:103993. [PMID: 36184018 DOI: 10.1016/j.resmic.2022.103993] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 01/11/2023]
Abstract
Aspergillus fumigatus and Pseudomonas aeruginosa biofilms are associated to the recalcitrant and persistent infections due to resistance to antimicrobials. Here, we evaluated the effect of antimicrobials on single and mixed biofilms of A. fumigatus and P. aeruginosa (carbapenem-resistant and susceptible strains) determining total biomass by crystal violet, cell viability by colony forming unit count, and microscopy. Polymyxin B (PMB) had the best action on P. aeruginosa biofilms inhibiting the biomass (2-4 μg/mL) and it was efficient reducing the viable bacterial cells. Amphotericin B (AMB) and caspofungin (CAS) were the best antifungal at inhibiting A. fumigatus biofilms and reducing fungal viability at concentration ≥1 and ≥ 16 μg/mL, respectively. In addition, CAS was able to significantly reduce P. aeruginosa viability in mixed biofilms. CAS combined with PMB also significantly reduced the mixed biofilm biomass and fungal and bacterial viability mainly against carbapenem-resistant bacterium. The light and fluorescence microscopy showed alterations on hyphae morphology and confirmed the increase of fungal and bacterial death cells after combined therapy of mixed biofilms. Taken together, our work showed that CAS alone and its combination with PMB showed better potential in reducing mixed biofilm biomass and fungal and bacterial viability, even for the carbapenem-resistant P. aeruginosa strain.
Collapse
Affiliation(s)
- Bruna Nakanishi Fortes
- Institute of Biomedical Sciences, University of São Paulo, Prof. Lineu Prestes Avenue, 1374 - 05508-000, São Paulo/SP, Brazil.
| | - Gaby Scheunemann
- Institute of Biomedical Sciences, University of São Paulo, Prof. Lineu Prestes Avenue, 1374 - 05508-000, São Paulo/SP, Brazil.
| | - Analy Salles de Azevedo Melo
- Department of Medicine, Federal University of São Paulo, Botucatu Street, 720 - 04039-032, São Paulo/SP, Brazil.
| | - Kelly Ishida
- Institute of Biomedical Sciences, University of São Paulo, Prof. Lineu Prestes Avenue, 1374 - 05508-000, São Paulo/SP, Brazil.
| |
Collapse
|
11
|
Antibiofilm Combinatory Strategy: Moxifloxacin-Loaded Nanosystems and Encapsulated N-Acetyl-L-Cysteine. Pharmaceutics 2022; 14:pharmaceutics14112294. [PMID: 36365113 PMCID: PMC9699636 DOI: 10.3390/pharmaceutics14112294] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/20/2022] [Accepted: 10/22/2022] [Indexed: 11/29/2022] Open
Abstract
Bacterial biofilms of Staphylococcus aureus, formed on implants, have a massive impact on the increasing number of antimicrobial resistance cases. The current treatment for biofilm-associated infections is based on the administration of antibiotics, failing to target the biofilm matrix. This work is focused on the development of multiple lipid nanoparticles (MLNs) encapsulating the antibiotic moxifloxacin (MOX). The nanoparticles were functionalized with d-amino acids to target the biofilm matrix. The produced formulations exhibited a mean hydrodynamic diameter below 300 nm, a low polydispersity index, and high encapsulation efficiency. The nanoparticles exhibited low cytotoxicity towards fibroblasts and low hemolytic activity. To target bacterial cells and the biofilm matrix, MOX-loaded MLNs were combined with a nanosystem encapsulating a matrix-disruptive agent: N-acetyl-L-cysteine (NAC). The nanosystems alone showed a significant reduction of both S. aureus biofilm viability and biomass, using the microtiter plate biofilm model. Further, biofilms grown inside polyurethane catheters were used to assess the effect of combining MOX-loaded and NAC-loaded nanosystems on biofilm viability. An increased antibiofilm efficacy was observed when combining the functionalized MOX-loaded MLNs and NAC-loaded nanosystems. Thus, nanosystems as carriers of bactericidal and matrix-disruptive agents are a promising combinatory strategy towards the eradication of S. aureus biofilms.
Collapse
|
12
|
Abstract
Biofilms are recalcitrant to antimicrobials, partly due to the barrier effect of their matrix. The use of hydrolytic enzymes capable to degrade matrix constituents has been proposed as an alternative strategy against biofilm-related infections. This study aimed to determine whether hydrolytic enzymes could potentiate the activity of antimicrobials against hard-to-treat interkingdom biofilms comprising two bacteria and one fungus. We studied the activity of a series of enzymes alone or in combination, followed or not by antimicrobial treatment, against single-, dual- or three-species biofilms of Staphylococcus aureus, Escherichia coli, and Candida albicans, by measuring their residual biomass or culturable cells. Two hydrolytic enzymes, subtilisin A and lyticase, were identified as the most effective to reduce the biomass of C. albicans biofilm. When targeting interkingdom biofilms, subtilisin A alone was the most effective enzyme to reduce biomass of all biofilms, followed by lyticase combined with an enzymatic cocktail composed of cellulase, denarase, and dispersin B that proved previously active against bacterial biofilms. The subsequent incubation with antimicrobials further reduced the biomass. Enzymes alone did not reduce culturable cells in most cases and did not interfere with the cidal effects of antimicrobials. Therefore, this work highlights the potential interest of pre-exposing interkingdom biofilms to hydrolytic enzymes to reduce their biomass besides the number of culturable cells, which was not achieved when using antimicrobials alone. IMPORTANCE Biofilms are recalcitrant to antimicrobial treatments. This problem is even more critical when dealing with polymicrobial, interkingdom biofilms, including both bacteria and fungi, as these microorganisms cooperate to strengthen the biofilm and produce a complex matrix. Here, we demonstrate that the protease subtilisin A used alone, or a cocktail containing lyticase, cellulase, denarase, and dispersin B markedly reduce the biomass of interkingdom biofilms and cooperate with antimicrobials to act upon these recalcitrant forms of infection. This work may open perspectives for the development of novel adjuvant therapies against biofilm-related infections.
Collapse
|
13
|
Olaifa K, Ajunwa O, Marsili E. Electroanalytic evaluation of antagonistic effect of azole fungicides on Acinetobacter baumannii biofilms. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
14
|
Dawan J, Li Y, Lu F, He X, Ahn J. Role of Efflux Pump-Mediated Antibiotic Resistance in Quorum Sensing-Regulated Biofilm Formation by Salmonella Typhimurium. Pathogens 2022; 11:147. [PMID: 35215091 PMCID: PMC8877114 DOI: 10.3390/pathogens11020147] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 02/06/2023] Open
Abstract
This study was designed to assess the influence of efflux pump activity on the biofilm formation in Salmonella Typhimurium. Salmonella enterica subsp. enterica serovar Typhimurium ATCC 19585 (STWT) and clinically isolated S. Typhimurium CCARM 8009 (STCI) were treated with ceftriaxone (CEF), chloramphenicol (CHL), ciprofloxacin (CIP), erythromycin (ERY), norfloxacin (NOR), and tetracycline (TET) in autoinducer-containing media in the absence and presence of phenylalanine-arginine β-naphthylamide (PAβN) to compare efflux pump activity with biofilm-forming ability. The susceptibilities of STWT and STCI were increased in the presence of PAβN. ERY+PAβN showed the highest decrease in the minimum inhibitory concentration (MIC) of ERY from 256 to 2 μg/mL against STWT and STCI. The antimicrobial activity of NOR against planktonic cells was significantly increased in the presence of PAβN, showing the lowest numbers of STWT (3.2 log CFU/cm2), and the TET+PAβN effectively inhibited the growth of STCI (5.2 log CFU/cm2). The lowest biofilm-forming abilities were observed at NOR+PAβN against STWT (biofilm-forming index, BFI < 0.41) and CEF+PAβN against STCI (BFI = 0.32). The bacteria swimming motility and relative fitness varied depending on the antibiotic and PAβN treatments. The motility diameters of STWT were significantly decreased by NOR+PAβN (6 mm) and TET+PAβN (15 mm), while the lowest motility of STCI was observed at CIP+PAβN (8 mm). The significant decrease in the relative fitness levels of STWT and STCI was observed at CIP+PAβN and NOR+PAβN. The PAβN as an efflux pump inhibitor (EPI) can improve the antimicrobial and anti-biofilm efficacy of antibiotics against S. Typhimurium. This study provides useful information for understanding the role of efflux pump activity in quorum sensing-regulated biofilm formation and also emphasizes the necessity of the discovery of novel EPIs for controlling biofilm formation by antibiotic-resistant pathogens.
Collapse
Affiliation(s)
- Jirapat Dawan
- Department of Biomedical Science, Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Gangwon, Korea;
| | - Yinyue Li
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China; (Y.L.); (F.L.); (X.H.)
| | - Feng Lu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China; (Y.L.); (F.L.); (X.H.)
| | - Xinlong He
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China; (Y.L.); (F.L.); (X.H.)
| | - Juhee Ahn
- Department of Biomedical Science, Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Gangwon, Korea;
| |
Collapse
|
15
|
Enz A, Müller S, Mittelmeier W, Klinder A. Severe polymicrobial and fungal periprosthetic osteomyelitis persisting after hip disarticulations treated with caspofungin in risk patients: a case series. Ann Clin Microbiol Antimicrob 2021; 20:86. [PMID: 34972536 PMCID: PMC8720203 DOI: 10.1186/s12941-021-00490-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 12/15/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Periprosthetic fungal infections are considered rare and opportunistic infections. Treatment is difficult, and established standards do not yet exist. The choice of the appropriate antifungal drug might affect the patient outcome. CASES All the three cases presented showed polybacterial recurrent infection of the revision hip arthroplasty. All patients were of younger age, had multiple revisions of the endoprosthesis, each had a large partial femoral replacement greater than 40% of the femoral length, gentamycin-loaded cement, and a long anchoring distance of the used intramedullary stem. Due to the severe life-threatening infection with deep osteomyelitis, an amputation had to be performed. However, despite surgical intervention, the fungal dominated infection persisted. Finally, only the use of caspofungin allowed permanent infection control. CONCLUSION The polybacterial infection is driven by the symbiosis between fungi and bacteria. Therefore, eradication of the fungus is required to achieve elimination of the bacteria. Antimycotics of the echinocandin-class, such as caspofungin, may be considered as initial treatment.
Collapse
Affiliation(s)
- Andreas Enz
- Orthopedic Clinic and Policlinic, University Medical Center Rostock, Doberaner Str. 142, 18057, Rostock, Germany.
| | - Silke Müller
- Institute of Pharmacology and Toxicology, University medical center Rostock, Schillingallee 70, 18057, Rostock, Germany
| | - Wolfram Mittelmeier
- Orthopedic Clinic and Policlinic, University Medical Center Rostock, Doberaner Str. 142, 18057, Rostock, Germany
| | - Annett Klinder
- Orthopedic Clinic and Policlinic, University Medical Center Rostock, Doberaner Str. 142, 18057, Rostock, Germany
| |
Collapse
|
16
|
Pharmacodynamics of Moxifloxacin, Meropenem, Caspofungin and their Combinations Against In Vitro Polymicrobial Inter-kingdom Biofilms. Antimicrob Agents Chemother 2021; 66:e0214921. [PMID: 34930026 DOI: 10.1128/aac.02149-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biofilms colonize medical devices and are often recalcitrant to antibiotics. Inter-kingdom biofilms, when at least a bacterium and a fungus are co-isolated, increase the likelihood of therapeutic failures. In this work, a three-species in vitro biofilm model including S. aureus, E. coli and C. albicans was used to study the activity of the antibiotics moxifloxacin and meropenem, the antifungal caspofungin, and combinations of them against inter-kingdom biofilms. The culturable cells and total biomass were evaluated to determine the pharmacodynamic parameters of the drug response for the incubation with the drugs alone. The synergic or antagonistic effects (increased/decreased effects) of the combination of drugs were analysed with the highest single agent method. Biofilms were imaged in confocal microscopy after live/dead staining. The drugs had limited activity when used alone against single-, dual- or three-species biofilms. When used in combination, additive effects were observed against single- or dual-species biofilms, and increased effects (synergy) against biomass of three-species biofilms. In addition, the two antibiotics showed different patterns, moxifloxacin being more active when targeting S. aureus and meropenem when targeting E. coli. All these observations were confirmed by confocal microscopy images. Our findings highlight the interest in combining caspofungin with antibiotics against inter-kingdom biofilms.
Collapse
|
17
|
Nguyen TK, Peyrusson F, Siala W, Pham NH, Nguyen HA, Tulkens PM, Van Bambeke F. Activity of Moxifloxacin Against Biofilms Formed by Clinical Isolates of Staphylococcus aureus Differing by Their Resistant or Persister Character to Fluoroquinolones. Front Microbiol 2021; 12:785573. [PMID: 34975808 PMCID: PMC8715871 DOI: 10.3389/fmicb.2021.785573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/19/2021] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus biofilms are poorly responsive to antibiotics. Underlying reasons include a matrix effect preventing drug access to embedded bacteria, or the presence of dormant bacteria with reduced growth rate. Using 18 clinical isolates previously characterized for their moxifloxacin-resistant and moxifloxacin-persister character in stationary-phase culture, we studied their biofilm production and matrix composition and the anti-biofilm activity of moxifloxacin. Biofilms were grown in microtiter plates and their abundance quantified by crystal violet staining and colony counting; their content in polysaccharides, extracellular DNA and proteins was measured. Moxifloxacin activity was assessed after 24 h of incubation with a broad range of concentrations to establish full concentration-response curves. All clinical isolates produced more biofilm biomass than the reference strain ATCC 25923, the difference being more important for those with high relative persister fractions to moxifloxacin, most of which being also resistant. High biofilm producers expressed icaA to higher levels, enriching the matrix in polysaccharides. Moxifloxacin was less potent against biofilms from clinical isolates than from ATCC 25923, especially against moxifloxacin-resistant isolates with high persister fractions, which was ascribed to a lower concentration of moxifloxacin in these biofilms. Time-kill curves in biofilms revealed the presence of a moxifloxacin-tolerant subpopulation, with low multiplication capacity, whatever the persister character of the isolate. Thus, moxifloxacin activity depends on its local concentration in biofilm, which is reduced in most isolates with high-relative persister fractions due to matrix effects, and insufficient to kill resistant isolates due to their high MIC.
Collapse
Affiliation(s)
- Tiep K. Nguyen
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
- Department of Pharmaceutical Industry, Hanoi University of Pharmacy, Hanoi, Vietnam
| | - Frédéric Peyrusson
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Wafi Siala
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Nhung H. Pham
- Department of Microbiology, Bach Mai Hospital, Hanoi, Vietnam
| | - Hoang A. Nguyen
- The National Center for Drug Information and Adverse Drug Reactions Monitoring, Hanoi University of Pharmacy, Hanoi, Vietnam
| | - Paul M. Tulkens
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Françoise Van Bambeke
- Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
- *Correspondence: Françoise Van Bambeke,
| |
Collapse
|
18
|
Scheunemann G, Fortes BN, Lincopan N, Ishida K. Caspofungin Inhibits Mixed Biofilms of Candida albicans and Methicillin-Resistant Staphylococcus aureus and Displays Effectiveness in Coinfected Galleria mellonella Larvae. Microbiol Spectr 2021; 9:e0074421. [PMID: 34643410 PMCID: PMC8515925 DOI: 10.1128/spectrum.00744-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/01/2021] [Indexed: 01/05/2023] Open
Abstract
Candida albicans and Staphylococcus aureus are pathogens commonly isolated from bloodstream infections worldwide. While coinfection by both pathogens is associated with mixed biofilms and more severe clinical manifestations, due to the combined expression of virulence and resistance factors, effective treatments remain a challenge. In this study, we evaluated the activity of echinocandins, especially caspofungin, against mixed biofilms of C. albicans and methicillin-resistant (MRSA) or methicillin-susceptible S. aureus (MSSA) and their effectiveness in vivo using the Galleria mellonella coinfection model. Although caspofungin (CAS) and micafungin (MFG) inhibited the mixed biofilm formation, with CAS exhibiting inhibitory activity at lower concentrations, only CAS was active against preformed mixed biofilms. CAS significantly decreased the total biomass of mixed biofilms at concentrations of ≥2 μg/ml, whereas the microbial viability was reduced at high concentrations (32 to 128 μg/ml), leading to fungus and bacterium cell wall disruption and fungal cell enlargement. Notably, CAS (20 or 50 mg/kg of body weight) treatment led to an increased survival and improved outcomes of G. mellonella larvae coinfected with C. albicans and MRSA, since a significant reduction of fungal and bacterial burden in larval tissues was achieved with induction of granuloma formation. Our results reveal that CAS can be a therapeutic option for the treatment of mixed infections caused by C. albicans and S. aureus, supporting additional investigation. IMPORTANCE Infections by microorganisms resistant to antimicrobials is a major challenge that leads to high morbidity and mortality rates and increased time and cost with hospitalization. It was estimated that 27 to 56% of bloodstream infections by C. albicans are polymicrobial, with S. aureus being one of the microorganisms commonly coisolated worldwide. About 80% of infections are associated with biofilms by single or mixed species that can be formed on invasive medical devices, e.g., catheter, and are considered a dissemination source. The increased resistance to antimicrobials in bacterial and fungal cells when they are in biofilms is the most medically relevant behavior that frequently results in therapeutic failure. Although there are several studies evaluating treatments for polymicrobial infections associated or not with biofilms, there is still no consensus on an effective antimicrobial therapy to combat the coinfection by bacteria and fungi.
Collapse
Affiliation(s)
- Gaby Scheunemann
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Bruna N. Fortes
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Nilton Lincopan
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Kelly Ishida
- Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
19
|
Yakovlieva L, Fülleborn JA, Walvoort MTC. Opportunities and Challenges of Bacterial Glycosylation for the Development of Novel Antibacterial Strategies. Front Microbiol 2021; 12:745702. [PMID: 34630370 PMCID: PMC8498110 DOI: 10.3389/fmicb.2021.745702] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/27/2021] [Indexed: 12/29/2022] Open
Abstract
Glycosylation is a ubiquitous process that is universally conserved in nature. The various products of glycosylation, such as polysaccharides, glycoproteins, and glycolipids, perform a myriad of intra- and extracellular functions. The multitude of roles performed by these molecules is reflected in the significant diversity of glycan structures and linkages found in eukaryotes and prokaryotes. Importantly, glycosylation is highly relevant for the virulence of many bacterial pathogens. Various surface-associated glycoconjugates have been identified in bacteria that promote infectious behavior and survival in the host through motility, adhesion, molecular mimicry, and immune system manipulation. Interestingly, bacterial glycosylation systems that produce these virulence factors frequently feature rare monosaccharides and unusual glycosylation mechanisms. Owing to their marked difference from human glycosylation, bacterial glycosylation systems constitute promising antibacterial targets. With the rise of antibiotic resistance and depletion of the antibiotic pipeline, novel drug targets are urgently needed. Bacteria-specific glycosylation systems are especially promising for antivirulence therapies that do not eliminate a bacterial population, but rather alleviate its pathogenesis. In this review, we describe a selection of unique glycosylation systems in bacterial pathogens and their role in bacterial homeostasis and infection, with a focus on virulence factors. In addition, recent advances to inhibit the enzymes involved in these glycosylation systems and target the bacterial glycan structures directly will be highlighted. Together, this review provides an overview of the current status and promise for the future of using bacterial glycosylation to develop novel antibacterial strategies.
Collapse
Affiliation(s)
- Liubov Yakovlieva
- Faculty of Science and Engineering, Stratingh Institute for Chemistry, University of Groningen, Groningen, Netherlands
| | - Julius A Fülleborn
- Faculty of Science and Engineering, Stratingh Institute for Chemistry, University of Groningen, Groningen, Netherlands
| | - Marthe T C Walvoort
- Faculty of Science and Engineering, Stratingh Institute for Chemistry, University of Groningen, Groningen, Netherlands
| |
Collapse
|
20
|
Liu J, Zhang K, Song J, Wu H, Hao H, Bi J, Hou H, Zhang G. Bacteriostatic effects of benzyl isothiocyanate on Vibrio parahaemolyticus: Transcriptomic analysis and morphological verification. BMC Biotechnol 2021; 21:56. [PMID: 34587926 PMCID: PMC8479925 DOI: 10.1186/s12896-021-00716-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/22/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Foodborne illness caused by Vibrio parahaemolyticus (V. parahaemolyticus) is generally associated with the consumption of seafood. Fish and other seafood can be contaminated with V. parahaemolyticus, natural inhabitants of the marine, estuarine, and freshwater environment. In this study, the antibacterial activities of benzyl isothiocyanate (BITC) against V. parahaemolyticus were investigated by both transcriptomic analysis and morphological verification. RESULTS Treatment with 1/8 minimum inhibitory concentration (1/8 MIC) BITC resulted in 234 upregulated genes and 273 downregulated genes. The results validated by quantitative real-time polymerase chain reaction (qRT-PCR) revealed that the relative expression levels of the six genes VP0820, VP0548, VP2233, VPA2362, fliA and fliG were only 31.0%, 31.1%, 55.8%, 57.0%, 75.3%, and 79.9% of the control group, respectively. Among them, genes VP2233, fliA and fliG are related to flagella and VP2362 can regulate a protein relevant to biofilm formation. Morphologically, we verified that the swimming diffusion diameter of V. parahaemolyticus was significantly reduced by 14.9% by bacterial swimming ability, and biofilm formation was significantly inhibited by treatment with 1/8 MIC BITC by crystal violet quantification assay. CONCLUSIONS These results indicated that 1/8 MIC BITC had antibacterial effect on V. parahaemolyticus by inhibiting virulence gene expression related to flagella and biofilm.
Collapse
Affiliation(s)
- Jianan Liu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China
| | - Ke Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China
| | - Jie Song
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China
| | - Hongyan Wu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China
| | - Hongshun Hao
- Department of Inorganic Nonmetallic Materials Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Jingran Bi
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China.,Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian Polytechnic University, Dalian, 116034, China
| | - Hongman Hou
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China.,Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian Polytechnic University, Dalian, 116034, China
| | - Gongliang Zhang
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, 116034, China. .,Liaoning Key Lab for Aquatic Processing Quality and Safety, Dalian Polytechnic University, Dalian, 116034, China.
| |
Collapse
|
21
|
Pinto RM, Monteiro C, Costa Lima SA, Casal S, Van Dijck P, Martins MCL, Nunes C, Reis S. N-Acetyl-l-cysteine-Loaded Nanosystems as a Promising Therapeutic Approach Toward the Eradication of Pseudomonas aeruginosa Biofilms. ACS APPLIED MATERIALS & INTERFACES 2021; 13:42329-42343. [PMID: 34464076 DOI: 10.1021/acsami.1c05124] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Bacterial biofilms are a major health concern, mainly due to their contribution to increased bacterial resistance to well-known antibiotics. The conventional treatment of biofilms represents a challenge, and frequently, eradication is not achieved with long-lasting administration of antibiotics. In this context, the present work proposes an innovative therapeutic approach that is focused on the encapsulation of N-acetyl-l-cysteine (NAC) into lipid nanoparticles (LNPs) functionalized with d-amino acids to target and disrupt bacterial biofilms. The optimized formulations presented a mean hydrodynamic diameter around 200 nm, a low polydispersity index, and a high loading capacity. These formulations were stable under storage conditions up to 6 months. In vitro biocompatibility studies showed a low cytotoxicity effect in fibroblasts and a low hemolytic activity in human red blood cells. Nevertheless, unloaded LNPs showed a higher hemolytic potential than NAC-loaded LNPs, which suggests a safer profile of the latter. The in vitro antibiofilm efficacy of the developed formulations was tested against Staphylococcus epidermidis (Gram-positive) and Pseudomonas aeruginosa (Gram-negative) mature biofilms. The results showed that the NAC-loaded LNPs were ineffective against S. epidermidis biofilms, while a significant reduction of biofilm biomass and bacterial viability in P. aeruginosa biofilms were observed. In a more complex therapeutic approach, the LNPs were further combined with moxifloxacin, revealing a beneficial effect between the LNPs and the antibiotic against P. aeruginosa biofilms. Both alone and in combination with moxifloxacin, unloaded and NAC-loaded LNPs functionalized with d-amino acids showed a great potential to reduce bacterial viability, with no significant differences in the presence or absence of NAC. However, the presence of NAC in NAC-loaded functionalized LNPs shows a safer profile than the unloaded LNPs, which is beneficial for an in vivo application. Overall, the developed formulations present a potential therapeutic approach against P. aeruginosa biofilms, alone or in combination with antibiotics.
Collapse
Affiliation(s)
- Rita M Pinto
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto 4050-313, Portugal
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology KU Leuven, Leuven 3001, Belgium
- VIB KU Leuven Center for Microbiology, Leuven 3001, Belgium
| | - Claudia Monteiro
- i3S, Instituto de Investigação e Inovação em Saúde INEB, Instituto de Engenharia Biomédica, Universidade do Porto, Porto 4200-135, Portugal
| | - Sofia A Costa Lima
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto 4050-313, Portugal
| | - Susana Casal
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto 4050-313, Portugal
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology KU Leuven, Leuven 3001, Belgium
- VIB KU Leuven Center for Microbiology, Leuven 3001, Belgium
| | - M Cristina L Martins
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto 4050-313, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde INEB, Instituto de Engenharia Biomédica, Universidade do Porto, Porto 4200-135, Portugal
| | - Cláudia Nunes
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto 4050-313, Portugal
| | - Salette Reis
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto 4050-313, Portugal
| |
Collapse
|
22
|
Terreni M, Taccani M, Pregnolato M. New Antibiotics for Multidrug-Resistant Bacterial Strains: Latest Research Developments and Future Perspectives. Molecules 2021; 26:2671. [PMID: 34063264 PMCID: PMC8125338 DOI: 10.3390/molecules26092671] [Citation(s) in RCA: 186] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/18/2022] Open
Abstract
The present work aims to examine the worrying problem of antibiotic resistance and the emergence of multidrug-resistant bacterial strains, which have now become really common in hospitals and risk hindering the global control of infectious diseases. After a careful examination of these phenomena and multiple mechanisms that make certain bacteria resistant to specific antibiotics that were originally effective in the treatment of infections caused by the same pathogens, possible strategies to stem antibiotic resistance are analyzed. This paper, therefore, focuses on the most promising new chemical compounds in the current pipeline active against multidrug-resistant organisms that are innovative compared to traditional antibiotics: Firstly, the main antibacterial agents in clinical development (Phase III) from 2017 to 2020 are listed (with special attention on the treatment of infections caused by the pathogens Neisseria gonorrhoeae, including multidrug-resistant isolates, and Clostridium difficile), and then the paper moves on to the new agents of pharmacological interest that have been approved during the same period. They include tetracycline derivatives (eravacycline), fourth generation fluoroquinolones (delafloxacin), new combinations between one β-lactam and one β-lactamase inhibitor (meropenem and vaborbactam), siderophore cephalosporins (cefiderocol), new aminoglycosides (plazomicin), and agents in development for treating drug-resistant TB (pretomanid). It concludes with the advantages that can result from the use of these compounds, also mentioning other approaches, still poorly developed, for combating antibiotic resistance: Nanoparticles delivery systems for antibiotics.
Collapse
Affiliation(s)
| | | | - Massimo Pregnolato
- Department of Drug Science, University of Pavia, Viale Taramelli 12, 27100 Pavia, Italy; (M.T.); (M.T.)
| |
Collapse
|
23
|
Le H, Arnoult C, Dé E, Schapman D, Galas L, Le Cerf D, Karakasyan C. Antibody-Conjugated Nanocarriers for Targeted Antibiotic Delivery: Application in the Treatment of Bacterial Biofilms. Biomacromolecules 2021; 22:1639-1653. [PMID: 33709706 DOI: 10.1021/acs.biomac.1c00082] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Conventional antibiotic treatment is in most cases insufficient to eradicate biofilm-related infections, resulting in high risk of treatment failure and recurrent infections. Recent studies have shown that novel methods of antibiotic delivery can improve clinical outcomes and reduce the emergence of antibiotic resistance. The objectives of this work were to develop and evaluate a targeting nanocarrier system that enables effective delivery of antimicrobial drugs to Staphylococcus aureus, a commonly virulent human pathogen. For this purpose, we first prepared a formulation of polymeric nanoparticles (NPs) suitable for encapsulation and sustained release of antibiotics. A specific antibody against S. aureus was used as a targeting ligand and was covalently immobilized onto the surface of nanoparticulate materials. It was demonstrated that the targeting NPs preferentially bound S. aureus cells and presented an elevated accumulation in the S. aureus biofilm. Compared to free-form antibiotic, the antibiotic-loaded targeting NPs significantly enhanced in vitro bactericidal activity against S. aureus both in planktonic and biofilm forms. Using a mouse infection model, we observed improved therapeutic efficacy of these antibiotic-loaded NPs after a single intravenous administration. Taken together, our studies show that the targeting nanoparticulate system could be a promising strategy to enhance the biodistribution of antibiotics and thereby improve their efficacy.
Collapse
Affiliation(s)
- Hung Le
- Normandie Université, UNIROUEN, INSA Rouen, CNRS, PBS, 76000 Rouen, France
| | - Christophe Arnoult
- Normandie Université, UNIROUEN, INSA Rouen, CNRS, PBS, 76000 Rouen, France
| | - Emmanuelle Dé
- Normandie Université, UNIROUEN, INSA Rouen, CNRS, PBS, 76000 Rouen, France
| | - Damien Schapman
- Normandie Université, UNIROUEN, INSERM, PRIMACEN, 76000 Rouen, France
| | - Ludovic Galas
- Normandie Université, UNIROUEN, INSERM, PRIMACEN, 76000 Rouen, France
| | - Didier Le Cerf
- Normandie Université, UNIROUEN, INSA Rouen, CNRS, PBS, 76000 Rouen, France
| | - Carole Karakasyan
- Normandie Université, UNIROUEN, INSA Rouen, CNRS, PBS, 76000 Rouen, France
| |
Collapse
|
24
|
Vila T, Kong EF, Montelongo-Jauregui D, Van Dijck P, Shetty AC, McCracken C, Bruno VM, Jabra-Rizk MA. Therapeutic implications of C. albicans-S. aureus mixed biofilm in a murine subcutaneous catheter model of polymicrobial infection. Virulence 2021; 12:835-851. [PMID: 33682623 PMCID: PMC7946022 DOI: 10.1080/21505594.2021.1894834] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Biofilm-associated polymicrobial infections tend to be challenging to treat. Candida albicans and Staphylococcus aureus are leading pathogens due to their ability to form biofilms on medical devices. However, the therapeutic implications of their interactions in a host is largely unexplored. In this study, we used a mouse subcutaneous catheter model for in vivo-grown polymicrobial biofilms to validate our in vitro findings on C. albicans-mediated enhanced S. aureus tolerance to vancomycin in vivo. Comparative assessment of S. aureus recovery from catheters with single- or mixed-species infection demonstrated failure of vancomycin against S. aureus in mice with co-infected catheters. To provide some mechanistic insights, RNA-seq analysis was performed on catheter biofilms to delineate transcriptional modulations during polymicrobial infections. C. albicans induced the activation of the S. aureus biofilm formation network via down-regulation of the lrg operon, repressor of autolysis, and up-regulation of the ica operon and production of polysaccharide intercellular adhesin (PIA), indicating an increase in eDNA production, and extracellular polysaccharide matrix, respectively. Interestingly, virulence factors important for disseminated infections, and superantigen-like proteins were down-regulated during mixed-species infection, whereas capsular polysaccharide genes were up-regulated, signifying a strategy favoring survival, persistence and host immune evasion. In vitro follow-up experiments using DNA enzymatic digestion, lrg operon mutant strains, and confocal scanning microscopy confirmed the role of C. albicans-mediated enhanced eDNA production in mixed-biofilms on S. aureus tolerance to vancomycin. Combined, these findings provide mechanistic insights into the therapeutic implications of interspecies interactions, underscoring the need for novel strategies to overcome limitations of current therapies.
Collapse
Affiliation(s)
- Taissa Vila
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - Eric F Kong
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - Daniel Montelongo-Jauregui
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD, USA
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium.,VIB-KU Leuven Center for Microbiology, Flanders, Belgium
| | - Amol C Shetty
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Carrie McCracken
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Vincent M Bruno
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mary Ann Jabra-Rizk
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD, USA.,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
25
|
Fernandes L, Fortes BN, Lincopan N, Ishida K. Caspofungin and Polymyxin B Reduce the Cell Viability and Total Biomass of Mixed Biofilms of Carbapenem-Resistant Pseudomonas aeruginosa and Candida spp. Front Microbiol 2020; 11:573263. [PMID: 33391197 PMCID: PMC7772422 DOI: 10.3389/fmicb.2020.573263] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 11/20/2020] [Indexed: 12/18/2022] Open
Abstract
Pseudomonas aeruginosa and Candida spp. are biofilm-forming pathogens commonly found colonizing medical devices, being mainly associated with pneumonia and bloodstream infections. The coinfection by these pathogens presents higher mortality rates when compared to those caused by a single microbial species. This study aimed to evaluate the antibiofilm activity of echinocandins and polymyxin B (PMB) against polymicrobial biofilms of carbapenem-resistant (CR) Pseudomonas aeruginosa and Candida spp. (C. albicans, C. parapsilosis, C. tropicalis, and C. glabrata). In addition, we tested the antimicrobial effect on their planktonic and monomicrobial biofilm counterparties. Interestingly, beyond inhibition of planktonic [minimum inhibitory concentration (MIC) = 0.5 μg/ml] and biofilm [minimum biofilm inhibitory concentration (MBIC)50 ≤ 2–8 μg/ml] growth of P. aeruginosa, PMB was also effective against planktonic cells of C. tropicalis (MIC = 2 μg/ml), and polymicrobial biofilms of CR P. aeruginosa with C. tropicalis (MBIC50 ≤ 2 μg/ml), C. parapsilosis (MBIC50 = 4–16 μg/ml), C. glabrata (MBIC50 = 8–16 μg/ml), or C. albicans (MBIC50 = 8–64 μg/ml). On the other hand, while micafungin (MFG) showed highest inhibitory activity against planktonic (MIC ≤ 0.008–0.5 μg/ml) and biofilm (MBIC50 ≤ 2–16 μg/ml) growth of Candida spp.; caspofungin (CAS) displays inhibitory activity against planktonic cells (MIC = 0.03–0.25 μg/ml) and monomicrobial biofilms (MBIC50 ≤ 2–64 μg/ml) of Candida spp., and notably on planktonic and monomicrobial biofilms of CR P. aeruginosa (MIC or MBIC50 ≥ 64 μg/ml). Particularly, for mixed biofilms, while CAS reduced significantly viable cell counts of CR P. aeruginosa and Candida spp. at ≥32 and ≥ 2 μg/ml, respectively; PMB was effective in reducing viable cells of CR P. aeruginosa at ≥2 μg/ml and Candida spp. at ≥8 μg/ml. Similar reduction of viable cells was observed for CAS (32–64 μg/ml) combined with PMB (2 μg/ml). These findings highlight the potential of PMB and CAS for the treatment of polymicrobial infections caused by Candida spp. and critical priority CR P. aeruginosa.
Collapse
Affiliation(s)
- Luciana Fernandes
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Bruna Nakanishi Fortes
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Nilton Lincopan
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Kelly Ishida
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
26
|
Cui T, Wu S, Sun Y, Ren J, Qu X. Self-Propelled Active Photothermal Nanoswimmer for Deep-Layered Elimination of Biofilm In Vivo. NANO LETTERS 2020; 20:7350-7358. [PMID: 32856923 DOI: 10.1021/acs.nanolett.0c02767] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Increasing penetration of antibacterial agents into biofilm is a promising strategy for improvement of therapeutic effect and slowdown of the progression of antibiotic resistance. Herein, we design a near-infrared (NIR) light-driven nanoswimmer (HSMV). Under NIR light irradiation, HSMV performs efficient self-propulsion and penetrates into the biofilm within 5 min due to photothermal conversion of asymmetrically distributed AuNPs. The localized thermal (∼45 °C) and thermal-triggered release of vancomycin (Van) leads to an efficient combination of photothermal therapy and chemotherapy in one system. The active motion of HSMV increases the effective distance of photothermal therapy (PTT) and also improves the therapeutic index of the antibiotic, resulting in superior biofilm removal rate (>90%) in vitro. Notably, HSMV can eliminate S. aureus biofilms grown in vivo under 10 min of laser irradiation without damage to healthy tissues. This work may shed light on therapeutic strategies for in vivo treatment of biofilm-associated infections.
Collapse
Affiliation(s)
- Tingting Cui
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Si Wu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yuhuan Sun
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
27
|
Unexpected Cell Wall Alteration-Mediated Bactericidal Activity of the Antifungal Caspofungin against Vancomycin-Resistant Enterococcus faecium. Antimicrob Agents Chemother 2020; 64:AAC.01261-20. [PMID: 32778553 DOI: 10.1128/aac.01261-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/02/2020] [Indexed: 12/11/2022] Open
Abstract
Enterococcus faecium has become a major opportunistic pathogen with the emergence of vancomycin-resistant enterococci (VRE). As part of the gut microbiota, they have to cope with numerous stresses, including effects of antibiotics and other xenobiotics, especially in patients hospitalized in intensive care units (ICUs) who receive many medications. The aim of this study was to investigate the impact of the most frequently prescribed xenobiotics for ICU patients on fitness, pathogenicity, and antimicrobial resistance of the vanB-positive E. faecium Aus0004 reference strain. Several phenotypic analyses were carried out, and we observed that caspofungin, an antifungal agent belonging to the family of echinocandins, had an important effect on E. faecium growth in vitro We confirmed this effect by electron microscopy and peptidoglycan analysis and showed that, even at a subinhibitory concentration (1/4× MIC, 8 mg/liter), caspofungin had an impact on cell wall organization, especially with respect to the abundance of some muropeptide precursors. By transcriptome sequencing (RNA-seq), it was also shown that around 20% of the transcriptome was altered in the presence of caspofungin, with 321 and 259 significantly upregulated and downregulated genes, respectively. Since the fungal target of caspofungin (i.e., β-1,3-glucan synthase) was absent in bacteria, the mechanistic pathway of caspofungin activity was investigated. The repression of genes involved in the metabolism of pyruvate seemed to have a drastic impact on bacterial cell viability, while a decrease of glycerol metabolism could explain the conformational modifications of peptidoglycan. This is the first report of caspofungin antibacterial activity against E. faecium, highlighting the potential impact of nonantibiotic xenobiotics against bacterial pathogens.
Collapse
|
28
|
Pinto RM, Lopes-de-Campos D, Martins MCL, Van Dijck P, Nunes C, Reis S. Impact of nanosystems in Staphylococcus aureus biofilms treatment. FEMS Microbiol Rev 2020; 43:622-641. [PMID: 31420962 PMCID: PMC8038934 DOI: 10.1093/femsre/fuz021] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 08/15/2019] [Indexed: 12/17/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is considered by the World Health Organization as a high priority pathogen for which new therapies are needed. This is particularly important for biofilm implant-associated infections once the only available treatment option implies a surgical procedure combined with antibiotic therapy. Consequently, these infections represent an economic burden for Healthcare Systems. A new strategy has emerged to tackle this problem: for small bugs, small particles. Here, we describe how nanotechnology-based systems have been studied to treat S. aureus biofilms. Their features, drawbacks and potentialities to impact the treatment of these infections are highlighted. Furthermore, we also outline biofilm models and assays required for preclinical validation of those nanosystems to smooth the process of clinical translation.
Collapse
Affiliation(s)
- Rita M Pinto
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.,Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, B-3001 Leuven, Belgium.,VIB-KU Leuven, Center for Microbiology, B-3001 Leuven, Belgium.,i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto; INEB, Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Daniela Lopes-de-Campos
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - M Cristina L Martins
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto; INEB, Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal.,ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, B-3001 Leuven, Belgium.,VIB-KU Leuven, Center for Microbiology, B-3001 Leuven, Belgium
| | - Cláudia Nunes
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Salette Reis
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
29
|
Frassinetti S, Falleni A, Del Carratore R. Effect of itraconazole on Staphylococcus aureus biofilm and extracellular vesicles formation. Microb Pathog 2020; 147:104267. [PMID: 32464303 DOI: 10.1016/j.micpath.2020.104267] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/14/2020] [Indexed: 01/08/2023]
Abstract
Staphylococcus aureus is a leading cause of a wide range of clinical chronic infections mainly due to the establishment of a biofilm. Biofilm, a population of bacteria within a self-produced matrix of extracellular polymeric substance, decreases the susceptibility to antibiotics, immune defenses and contributes to antimicrobial resistance. To date antibiotic combination has been considered a strategy to combat S. aureus infection, but this approach does not solves the main pharmacokinetic problem caused by biofilms, consisting in insufficient drug penetration within the structure. Therefore, new antimicrobial agents that could overcome this resistance need to be discovered. Fighting staphylococcal resistance and biofilm formation is an important goal of the pharmaceutical research. Some fungicide has been observed to have antibacterial effect. anyway their use as antibiotics on S.aureus has been poorly studied. The aim of this work was to investigate the effect of the fungicide itraconazole (IT) on S. aureus biofilm formation and explore by SEM the morphological alteration after treatment. A strong biofilm disaggregation and morphologically different extracellular vesicles (EV) production were observed starting from sublethal IT doses. This suggests that IT resistance phenomena on the part of S. aureus are more difficult to establish respect other antibiotics. The adjuvant properties of IT could be used to combat bacterial biofilm and/or to improve antibiotic treatment. Moreover, because the production of EV represents a secretory pathway involved in intercellular communication shared to mammalian cells, fungi, and bacteria, our study is important to increase information that can be generalized to higher organisms.
Collapse
Affiliation(s)
- S Frassinetti
- Institute of Agricultural Biology and Biotechnology, CNR, Pisa, Italy
| | - A Falleni
- Department of Clinical and Experimental Medicine, Unit of Experimental Biology and Genetics, University of Pisa, Italy
| | | |
Collapse
|
30
|
Pinto RM, Soares FA, Reis S, Nunes C, Van Dijck P. Innovative Strategies Toward the Disassembly of the EPS Matrix in Bacterial Biofilms. Front Microbiol 2020; 11:952. [PMID: 32528433 PMCID: PMC7264105 DOI: 10.3389/fmicb.2020.00952] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 04/21/2020] [Indexed: 12/14/2022] Open
Abstract
Bacterial biofilms represent a major concern at a worldwide level due to the high demand for implantable medical devices and the rising numbers of bacterial resistance. The complex structure of the extracellular polymeric substances (EPS) matrix plays a major role in this phenomenon, since it protects bacteria from antibiotics, avoiding drug penetration at bactericidal concentrations. Besides, this structure promotes bacterial cells to adopt a dormant lifestyle, becoming less susceptible to antibacterial agents. Currently, the available treatment for biofilm-related infections consists in the administration of conventional antibiotics at high doses for a long-term period. However, this treatment lacks efficiency against mature biofilms and for implant-associated biofilms it may be necessary to remove the medical device. Thus, biofilm-related infections represent an economical burden for the healthcare systems. New strategies focusing on the matrix are being highlighted as alternative therapies to eradicate biofilms. Here, we outline reported matrix disruptive agents, nanocarriers, and technologies, such as application of magnetic fields, photodynamic therapy, and ultrasounds, that have been under investigation to disrupt the EPS matrix of clinically relevant bacterial biofilms. In an ideal therapy, a synergistic effect between antibiotics and the explored innovated strategies is aimed to completely eradicate biofilms and avoid antimicrobial resistance phenomena.
Collapse
Affiliation(s)
- Rita M Pinto
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade Do Porto, Porto, Portugal.,Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium.,Center for Microbiology, VIB-KU Leuven, Leuven, Belgium
| | - Filipa A Soares
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade Do Porto, Porto, Portugal
| | - Salette Reis
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade Do Porto, Porto, Portugal
| | - Cláudia Nunes
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade Do Porto, Porto, Portugal
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium.,Center for Microbiology, VIB-KU Leuven, Leuven, Belgium
| |
Collapse
|
31
|
Antifungal Caspofungin Sensitizes MRSA Isolates Towards Zabofloxacin, a Proteomic Study. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.1.58] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
32
|
Liu Y, Zhang Y, Zhao W, Liu X, Hu F, Dong B. Pharmacotherapy of Lower Respiratory Tract Infections in Elderly-Focused on Antibiotics. Front Pharmacol 2019; 10:1237. [PMID: 31736751 PMCID: PMC6836807 DOI: 10.3389/fphar.2019.01237] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/27/2019] [Indexed: 02/05/2023] Open
Abstract
Lower respiratory tract infections (LRTIs) refer to the inflammation of the trachea, bronchi, bronchioles, and lung tissue. Old people have an increased risk of developing LRTIs compared to young adults. The prevalence of LRTIs in the elderly population is not only related to underlying diseases and aging itself, but also to a variety of clinical issues, such as history of hospitalization, previous antibacterial therapy, mechanical ventilation, antibiotic resistance. These factors mentioned above have led to an increase in the prevalence and mortality of LRTIs in the elderly, and new medical strategies targeting LRTIs in this population are urgently needed. After a systematic review of the current randomized controlled trials and related studies, we recommend novel pharmacotherapies that demonstrate advantages for the management of LRTIs in people over the age of 65. We also briefly reviewed current medications for respiratory communicable diseases in the elderly. Various sources of information were used to ensure all relevant studies were included. We searched Pubmed, MEDLINE (OvidSP), EMBASE (OvidSP), and ClinicalTrials.gov. Strengths and limitations of these drugs were evaluated based on whether they have novelty of mechanism, favorable pharmacokinetic/pharmacodynamic profiles, avoidance of interactions and intolerance, simplicity of dosing, and their ability to cope with challenges which was mainly evaluated by the primary and secondary endpoints. The purpose of this review is to recommend the most promising antibiotics for treatment of LRTIs in the elderly (both in hospital and in the outpatient setting) based on the existing results of clinical studies with the novel antibiotics, and to briefly review current medications for respiratory communicable diseases in the elderly, aiming to a better management of LRTIs in clinical practice.
Collapse
Affiliation(s)
- Yang Liu
- The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Geriatric Health Care and Medical Research Center, Sichuan University, Chengdu, China
| | - Yan Zhang
- The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Geriatric Health Care and Medical Research Center, Sichuan University, Chengdu, China
| | - Wanyu Zhao
- The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Geriatric Health Care and Medical Research Center, Sichuan University, Chengdu, China
| | - Xiaolei Liu
- The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Geriatric Health Care and Medical Research Center, Sichuan University, Chengdu, China
| | - Fengjuan Hu
- The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Geriatric Health Care and Medical Research Center, Sichuan University, Chengdu, China
| | - Birong Dong
- The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Geriatric Health Care and Medical Research Center, Sichuan University, Chengdu, China
| |
Collapse
|
33
|
Abd El-Baky RM, Sandle T, John J, Abuo-Rahma GEDA, Hetta HF. A novel mechanism of action of ketoconazole: inhibition of the NorA efflux pump system and biofilm formation in multidrug-resistant Staphylococcus aureus. Infect Drug Resist 2019; 12:1703-1718. [PMID: 31354319 PMCID: PMC6585162 DOI: 10.2147/idr.s201124] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/11/2019] [Indexed: 11/23/2022] Open
Abstract
Background: The rapid emergence of antimicrobial resistance among Gram-positive organisms, especially staphylococci, has become a serious clinical challenge. Efflux machinery and biofilm formation are considered two of the main causes of antimicrobial resistance and therapy failure. Aim: Our study aims to evaluate the antibiofilm and efflux pump inhibitory activity of the antifungal ketoconazole against multidrug-resistant (MDR) Staphylococcus aureus. Methods: Ketoconazole was tested for its effect on the following: minimum inhibitory concentrations (MICs) of ciprofloxacin, norfloxacin, levofloxacin, and ethidium bromide (EtBr) by the broth microdilution method, the efflux of EtBr by NorA-positive MDR S. aureus, and the relative expression of NorA, NorB, and NorC efflux pump genes. Docking studies of ketoconazole were performed using 1PW4 (glycerol-3-phosphate transporter from Escherichia coli which was the representative structure from the major facilitator superfamily). Results: Ketoconazole significantly decreased the MICs of levofloxacin, ciprofloxacin, norfloxacin, and EtBr (a substrate for efflux pump) by 8 to 1024-fold (P<0.01) and decreased the efflux of EtBr. Furthermore, a time-kill assay revealed that combinations of levofloxacin with ketoconazole or carbonyl cyanide m-chlorophenylhydrazone showed no growth for the tested strains after 24 h in comparison to the effect of levofloxacin alone. Docking studies and the ability of ketoconazole to diminish the relative expression of NorA gene in comparison to control (untreated strains) confirmed its action as an efflux pump inhibitor. Conclusion: The findings showed that the antifungal ketoconazole has no antibacterial activity but can potentiate the activity of the fluroquinolones against MDR S. aureus via inhibiting efflux pump and biofilm formation in vitro.
Collapse
Affiliation(s)
- Rehab M Abd El-Baky
- Department of Microbiology and Immunology, Faculty of Pharmacy, Minia University, Minia 61519, Egypt.,Microbiology and Immunology Department, Faculty of Pharmacy, Deraya University, Minia 11566, Egypt
| | - Tim Sandle
- School of Health Sciences, Division of Pharmacy & Optometry, University of Manchester, Manchester, UK
| | - James John
- Sri Ramachandra Medical College and Research Institute, Sri Ramachandra University, Chennai, India
| | | | - Helal F Hetta
- Department of Medical Microbiology & Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt.,Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
34
|
Krüger W, Vielreicher S, Kapitan M, Jacobsen ID, Niemiec MJ. Fungal-Bacterial Interactions in Health and Disease. Pathogens 2019; 8:E70. [PMID: 31117285 PMCID: PMC6630686 DOI: 10.3390/pathogens8020070] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/02/2019] [Accepted: 05/16/2019] [Indexed: 12/28/2022] Open
Abstract
Fungi and bacteria encounter each other in various niches of the human body. There, they interact directly with one another or indirectly via the host response. In both cases, interactions can affect host health and disease. In the present review, we summarized current knowledge on fungal-bacterial interactions during their commensal and pathogenic lifestyle. We focus on distinct mucosal niches: the oral cavity, lung, gut, and vagina. In addition, we describe interactions during bloodstream and wound infections and the possible consequences for the human host.
Collapse
Affiliation(s)
- Wibke Krüger
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena 07745, Germany.
| | - Sarah Vielreicher
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena 07745, Germany.
| | - Mario Kapitan
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena 07745, Germany.
- Center for Sepsis Control and Care, Jena 07747, Germany.
| | - Ilse D Jacobsen
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena 07745, Germany.
- Center for Sepsis Control and Care, Jena 07747, Germany.
- Institute of Microbiology, Friedrich Schiller University, Jena 07743, Germany.
| | - Maria Joanna Niemiec
- Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena 07745, Germany.
- Center for Sepsis Control and Care, Jena 07747, Germany.
| |
Collapse
|
35
|
Abstract
Fluoroquinolones have been in clinical use for over 50 years with significant efficacy. However, increasing resistance and emergence of some marked adverse events have limited their usage. The most recently approved class member, delafloxacin, is the only available anionic (non-zwitterionic) fluoroquinolone. Its unique molecular structure provides improved in vitro activity against most Gram-positive pathogens, including quinolone-resistant strains, which is further enhanced at acid pH. Delafloxacin shows favorable pharmacological properties, with about 60% bioavailability after oral administration, only mild inhibition of cytochrome P450 3A, and no evidence of cardiac- or phototoxicity in healthy volunteers (tested against positive controls). Its twice daily dosing, suitability for intravenous, oral, or switch dosing, the lack of many clinically significant drug-drug interactions, and acceptable adverse event profile in registration clinical trials supports its use in the treatment of acute bacterial skin and skin structure infections, and potentially in other infections, where resistance to other agents, safety, and/or the need for early discharge is of concern.
Collapse
Affiliation(s)
- Paul M Tulkens
- Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Françoise Van Bambeke
- Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Stephen H Zinner
- Mount Auburn Hospital, Harvard Medical School, Cambridge, Massachusetts
| |
Collapse
|
36
|
Lakemeyer M, Zhao W, Mandl FA, Hammann P, Sieber SA. Thinking Outside the Box-Novel Antibacterials To Tackle the Resistance Crisis. Angew Chem Int Ed Engl 2018; 57:14440-14475. [PMID: 29939462 DOI: 10.1002/anie.201804971] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Indexed: 12/13/2022]
Abstract
The public view on antibiotics as reliable medicines changed when reports about "resistant superbugs" appeared in the news. While reasons for this resistance development are easily spotted, solutions for re-establishing effective antibiotics are still in their infancy. This Review encompasses several aspects of the antibiotic development pipeline from very early strategies to mature drugs. An interdisciplinary overview is given of methods suitable for mining novel antibiotics and strategies discussed to unravel their modes of action. Select examples of antibiotics recently identified by using these platforms not only illustrate the efficiency of these measures, but also highlight promising clinical candidates with therapeutic potential. Furthermore, the concept of molecules that disarm pathogens by addressing gatekeepers of virulence will be covered. The Review concludes with an evaluation of antibacterials currently in clinical development. Overall, this Review aims to connect select innovative antimicrobial approaches to stimulate interdisciplinary partnerships between chemists from academia and industry.
Collapse
Affiliation(s)
- Markus Lakemeyer
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Weining Zhao
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Franziska A Mandl
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| | - Peter Hammann
- R&D Therapeutic Area Infectious Diseases, Sanofi-Aventis (Deutschland) GmbH, Industriepark Höchst, 65926, Frankfurt am Main, Germany
| | - Stephan A Sieber
- Department of Chemistry, Chair of Organic Chemistry II, Center for Integrated Protein Science (CIPSM), Technische Universität München, Lichtenbergstrasse 4, 85747, Garching, Germany
| |
Collapse
|
37
|
Lakemeyer M, Zhao W, Mandl FA, Hammann P, Sieber SA. Über bisherige Denkweisen hinaus - neue Wirkstoffe zur Überwindung der Antibiotika-Krise. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201804971] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Markus Lakemeyer
- Fakultät für Chemie; Lehrstuhl für Organische Chemie II, Center for Integrated Protein Science (CIPSM); Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| | - Weining Zhao
- Fakultät für Chemie; Lehrstuhl für Organische Chemie II, Center for Integrated Protein Science (CIPSM); Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| | - Franziska A. Mandl
- Fakultät für Chemie; Lehrstuhl für Organische Chemie II, Center for Integrated Protein Science (CIPSM); Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| | - Peter Hammann
- R&D Therapeutic Area Infectious Diseases; Sanofi-Aventis (Deutschland) GmbH; Industriepark Höchst 65926 Frankfurt am Main Deutschland
| | - Stephan A. Sieber
- Fakultät für Chemie; Lehrstuhl für Organische Chemie II, Center for Integrated Protein Science (CIPSM); Technische Universität München; Lichtenbergstraße 4 85747 Garching Deutschland
| |
Collapse
|
38
|
Anidulafungin increases the antibacterial activity of tigecycline in polymicrobial Candida albicans/Staphylococcus aureus biofilms on intraperitoneally implanted foreign bodies. J Antimicrob Chemother 2018; 73:2806-2814. [DOI: 10.1093/jac/dky246] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/30/2018] [Indexed: 11/14/2022] Open
|
39
|
Comparison of the XTT and resazurin assays for quantification of the metabolic activity of Staphylococcus aureus biofilm. J Microbiol Methods 2017; 139:135-137. [PMID: 28587857 DOI: 10.1016/j.mimet.2017.06.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 06/02/2017] [Accepted: 06/02/2017] [Indexed: 11/22/2022]
Abstract
We assessed whether resazurin was as efficient as XTT in the measurement of the metabolic activity of 209 clinical Staphylococcus aureus biofilm using an vitro model comparing the percentage of formazan and resorufin. The overall categorical agreement was 61.2% (r=0.024), which means that resazurin can not substitute XTT.
Collapse
|