1
|
Cederbaum LS, Kuleff AI. Stimulated Emission of Virtual Photons: Energy Transfer by Light. J Phys Chem Lett 2024; 15:7357-7362. [PMID: 38990327 DOI: 10.1021/acs.jpclett.4c01191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Energy-transfer processes can be viewed as being due to the emission of a virtual photon. It is demonstrated that the emission of virtual photons and thus of energy transfer is stimulated by the sheer presence of photons. We concentrate here on interatomic/intermolecular Coulombic decay (ICD) where an excited system relaxes by transferring its excess energy to a neighbor ionizing it. ICD is inactive if this excess energy is insufficiently large. However, in the presence of photons, the long-range interaction between the system and its neighbor can utilize the photon field making ICD active. The properties of this stimulated-ICD mechanism are discussed. The concept can be transferred to other scenarios. We discuss collective-ICD where two excited molecules concertedly transfer their excess energy. Also here, the presence of photons can make the process active if the sum of excess energies were insufficient to do so. Examples with typical molecules and atoms are presented to demonstrate that these stimulated processes can play a role.
Collapse
Affiliation(s)
- Lorenz S Cederbaum
- Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 229, Heidelberg D-69120, Germany
| | - Alexander I Kuleff
- Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 229, Heidelberg D-69120, Germany
| |
Collapse
|
2
|
Zhou J, Jia S, Xue X, Hao X, Zeng Q, Wang X, Ren X. Structural and dynamical studies of CH- πbonded CH 4-C 6H 6dimer by ultrafast intermolecular Coulombic decay. NANOTECHNOLOGY 2023; 34:165102. [PMID: 36645904 DOI: 10.1088/1361-6528/acb358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/16/2023] [Indexed: 06/17/2023]
Abstract
The inner-valence ionization and fragmentation dynamics of CH4-C6H6dimer induced by 200 eV electron impact is studied utilizing a multi-particle coincidence momentum spectroscopy. The three-dimensional momentum vectors and kinetic energy release (KER) of the CH4++C6H6+ion pairs are obtained by coincident momentum measurement. Our analysis on the absolute cross sections indicates that the intermediate dication CH4+-C6H6+is preferentially produced by the removal of an inner-valence electron from CH4or C6H6and subsequent relaxation of ultrafast intermolecular Coulombic decay followed by two-body Coulomb explosion. Combining withab initiomolecular dynamics (AIMD) simulations, the real-time fragmentation dynamics including translational, vibrational and rotational motions are presented as a function of propagation time. The revealed fragmentation dynamics are expected to have a potential implication for crystal structure imaging with various radiation sources.
Collapse
Affiliation(s)
- Jiaqi Zhou
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Shaokui Jia
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Xiaorui Xue
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Xintai Hao
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Qingrui Zeng
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Xing Wang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Xueguang Ren
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| |
Collapse
|
3
|
Schäfer JL, Langkabel F, Bande A. Three-Electron Dynamics of the Interparticle Coulombic Decay in Doubly Excited Clusters with One-Dimensional Continuum Confinement. Molecules 2022; 27:8713. [PMID: 36557847 PMCID: PMC9784222 DOI: 10.3390/molecules27248713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
A detailed analysis of the electronic structure and decay dynamics in a symmetric system with three electrons in three linearly aligned binding sites representing quantum dots (QDs) is given. The two outer A QDs are two-level potentials and can act as (virtual) photon emitters, whereas the central B QD can be ionized from its one level into a continuum confined on the QD axis upon absorbing virtual photons in the inter-Coulombic decay (ICD) process. Two scenarios in such an ABA array are explored. One ICD process is from a singly excited resonance state, whose decay releasing one virtual photon we find superimposed with resonance energy transfer among both A QDs. Moreover, the decay-process manifold for a doubly excited (DE) resonance is explored, in which collective ICD among all three sites and excited ICD among the outer QDs engage. Rates for all processes are found to be extremely low, although ICD rates with two neighbors are predicted to double compared to ICD among two sites only. The slowing is caused by Coulomb barriers imposed from ground or excited state electrons in the A sites. Outliers occur on the one hand at short distances, where the charge transfer among QDs mixes the possible decay pathways. On the other hand, we discovered a shape resonance-enhanced DE-ICD pathway, in which an excited and localized B* shape resonance state forms, which is able to decay quickly into the final ICD continuum.
Collapse
Affiliation(s)
- Joana-Lysiane Schäfer
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Fabian Langkabel
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Annika Bande
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| |
Collapse
|
4
|
Zhou J, Belina M, Jia S, Xue X, Hao X, Ren X, Slavíček P. Ultrafast Charge and Proton Transfer in Doubly Ionized Ammonia Dimers. J Phys Chem Lett 2022; 13:10603-10611. [PMID: 36350084 DOI: 10.1021/acs.jpclett.2c02560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We investigate the ultrafast energy and charge transfer processes between ammonia molecules following ionization reactions initiated by electron impact. Exploring ionization-induced processes in molecular clusters provides us with a detailed insight into the dynamics using experiments in the energy domain. We ionize the ammonia dimer with 200 eV electrons and apply the fragment ions coincident momentum spectroscopy and nonadiabatic molecular dynamics simulations. We identify two mechanisms leading to the doubly charged ammonia dimer. In the first one, a single molecule is ionized. This initiates an ultrafast proton transfer process, leading to the formation of the NH2+ + NH4+ pair. Alternatively, a dimer with a delocalized charge is formed dominantly via the intermolecular Coulombic decay, forming the NH3+·NH3+ dication. This dication further dissociates into two NH3+ cations. The ab initio calculations have reproduced the measured kinetic energy release of the ion pairs and revealed the dynamical processes following the double ionization.
Collapse
Affiliation(s)
- Jiaqi Zhou
- School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Michal Belina
- Department of Physical Chemistry, University of Chemistry and Technology,Technická 5, 16628Prague 6, Czech Republic
| | - Shaokui Jia
- School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Xiaorui Xue
- School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Xintai Hao
- School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Xueguang Ren
- School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Petr Slavíček
- Department of Physical Chemistry, University of Chemistry and Technology,Technická 5, 16628Prague 6, Czech Republic
| |
Collapse
|
5
|
Barik S, Dutta S, Behera NR, Kushawaha RK, Sajeev Y, Aravind G. Ambient-light-induced intermolecular Coulombic decay in unbound pyridine monomers. Nat Chem 2022; 14:1098-1102. [PMID: 35909167 DOI: 10.1038/s41557-022-01002-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/16/2022] [Indexed: 11/09/2022]
Abstract
Intermolecular Coulombic decay (ICD) is a process whereby photoexcited molecules relax by ionizing their neighbouring molecules. ICD is efficient when intermolecular interactions are active and consequently it is observed only in weakly bound systems, such as clusters and hydrogen-bonded systems. Here we report an efficient ICD between unbound molecules excited at ambient-light intensities. On the photoexcitation of gas-phase pyridine monomers, well below the ionization threshold and at low laser intensities, we detected the parent and heavier-than-parent cations. The isotropic emission of slow electrons revealed ICD as the underlying process. π-π* excitation in unbounded pyridine monomers triggered an associative interaction between them, which leads to an efficient three-centre ICD. The cation resulting from the molecular association of the three pyridine centres relaxed through fragmentation. This below-threshold ionization under ambient light has implications for the understanding of radiation damage and astrochemistry.
Collapse
Affiliation(s)
- Saroj Barik
- Department of Physics, Indian Institute of Technology Madras, Chennai, India
| | - Saurav Dutta
- Department of Physics, Indian Institute of Technology Madras, Chennai, India
| | - Nihar Ranjan Behera
- Department of Physics, Indian Institute of Technology Madras, Chennai, India
| | | | - Y Sajeev
- Theoretical Chemistry Section, Bhabha Atomic Research Centre, Mumbai, India.
| | - G Aravind
- Department of Physics, Indian Institute of Technology Madras, Chennai, India.
| |
Collapse
|
6
|
Zhou J, Jia S, Skitnevskaya AD, Wang E, Hähnel T, Grigoricheva EK, Xue X, Li JX, Kuleff AI, Dorn A, Ren X. Concerted Double Hydrogen-Bond Breaking by Intermolecular Coulombic Decay in the Formic Acid Dimer. J Phys Chem Lett 2022; 13:4272-4279. [PMID: 35522820 DOI: 10.1021/acs.jpclett.2c00957] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hydrogen bonds are ubiquitous in nature and of fundamental importance to the chemical and physical properties of molecular systems in the condensed phase. Nevertheless, our understanding of the structural and dynamical properties of hydrogen-bonded complexes in particular in electronic excited states remains very incomplete. Here, by using formic acid (FA) dimer as a prototype of DNA base pair, we investigate the ultrafast decay process initiated by removal of an electron from the inner-valence shell of the molecule upon electron-beam irradiation. Through fragment-ion and electron coincident momentum measurements and ab initio calculations, we find that de-excitation of an outer-valence electron at the same site can initiate ultrafast energy transfer to the neighboring molecule, which is in turn ionized through the emission of low-energy electrons. Our study reveals a concerted breaking of double hydrogen-bond in the dimer initiated by the ultrafast molecular rotations of two FA+ cations following this nonlocal decay mechanism.
Collapse
Affiliation(s)
- Jiaqi Zhou
- School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, Heidelberg 69117, Germany
| | - Shaokui Jia
- School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Anna D Skitnevskaya
- Laboratory of Quantum Chemistry, Irkutsk State University, Irkutsk 664003, Russia
- Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, Heidelberg 69120, Germany
| | - Enliang Wang
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, Heidelberg 69117, Germany
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Theresa Hähnel
- Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, Heidelberg 69120, Germany
| | - Emma K Grigoricheva
- Laboratory of Quantum Chemistry, Irkutsk State University, Irkutsk 664003, Russia
- Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, Heidelberg 69120, Germany
| | - Xiaorui Xue
- School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jian-Xing Li
- School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Alexander I Kuleff
- Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, Heidelberg 69120, Germany
| | - Alexander Dorn
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, Heidelberg 69117, Germany
| | - Xueguang Ren
- School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
- Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, Heidelberg 69117, Germany
| |
Collapse
|
7
|
Ultrafast energy transfer between π-stacked aromatic rings upon inner-valence ionization. Nat Chem 2022; 14:232-238. [PMID: 34931045 DOI: 10.1038/s41557-021-00838-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 10/18/2021] [Indexed: 11/08/2022]
Abstract
Non-covalently bound aromatic systems are ubiquitous and govern the physicochemical properties of various organic materials. They are important to many phenomena of biological and technological relevance, such as protein folding, base-pair stacking in nucleic acids, molecular recognition and self-assembly, DNA-drug interactions, crystal engineering and organic electronics. Nevertheless, their molecular dynamics and chemical reactivity, particularly in electronic excited states, are not fully understood. Here, we observe intermolecular Coulombic decay in benzene dimers, (C6H6)2-the simplest prototypes of noncovalent π-π interactions between aromatic systems. Intermolecular Coulombic decay is initiated by a carbon 2s vacancy state produced by electron-impact ionization and proceeds through ultrafast energy transfer between the benzene molecules. As a result, the dimer relaxes with the emission of a further low-energy electron (<10 eV) and a pair of C6H6+ cations undergoing Coulomb explosion. Coincident fragment-ion and electron momentum spectroscopy, accompanied by ab initio calculations, enables us to elucidate the dynamical details of this ultrafast relaxation process.
Collapse
|
8
|
Cederbaum LS, Kuleff AI. Impact of cavity on interatomic Coulombic decay. Nat Commun 2021; 12:4083. [PMID: 34215732 PMCID: PMC8253799 DOI: 10.1038/s41467-021-24221-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 06/04/2021] [Indexed: 11/25/2022] Open
Abstract
The interatomic Coulombic decay (ICD) is an efficient electronic decay process of systems embedded in environment. In ICD, the excess energy of an excited atom A is efficiently utilized to ionize a neighboring atom B. In quantum light, an ensemble of atoms A form polaritonic states which can undergo ICD with B. Here we investigate the impact of quantum light on ICD and show that this process is strongly altered compared to classical ICD. The ICD rate depends sensitively on the atomic distribution and orientation of the ensemble. It is stressed that in contrast to superposition states formed by a laser, forming polaritons by a cavity enables to control the emergence and suppression, as well as the efficiency of ICD.
Collapse
Affiliation(s)
- Lorenz S Cederbaum
- Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, Heidelberg, Germany.
| | - Alexander I Kuleff
- Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, Heidelberg, Germany.
| |
Collapse
|
9
|
Ben-Asher A, Landau A, Moiseyev N. Uniform vs Partial Scaling within Resonances via Padé Based on the Similarities to Other Non-Hermitian Methods: Illustration for the Beryllium 1 s22 p3 s State. J Chem Theory Comput 2021; 17:3435-3444. [PMID: 33945263 DOI: 10.1021/acs.jctc.1c00223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Resonance via Padé (RVP) is an efficient method for calculating autoionization resonance states. It is based on the stabilization technique in which the basis set is scaled. The scaling can be uniform (i.e., all basis functions are scaled) or partial. Herein, we compare the two RVP scaling schemes for calculating an autoionization eigenvalue; moreover, the effect of freezing the core electrons is intertwined within this comparison. In order to study the different behavior of the RVP schemes, we associate each RVP scaling scheme with a complex contour of integration. Similarities between RVP and other non-Hermitian methods emerge from the generated contours, which suggest that RVP introduces similar outgoing boundary conditions as the complex scaling (CS), complex basis function (CBF), and reflection-free complex absorbing potential (RF-CAP) methods. A uniform-RVP contour, unlike a partial one, immediately penetrates the complex plane and influences the interaction region. Hence, uniform scaling within RVP destroys the description of the core electrons, as well as the description of the reference state, and yields less reliable results than partial scaling. The 1s22p3s 1P autoionization state of Be, at the equation-of-motion coupled-cluster level, is used as our case study model.
Collapse
Affiliation(s)
- Anael Ben-Asher
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Arie Landau
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Nimrod Moiseyev
- Schulich Faculty of Chemistry, Department of Physics and Russell-Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
10
|
Langkabel F, Bande A. Three-electron dynamics of the interparticle Coulombic decay with two-dimensional continuum confinement. J Chem Phys 2021; 154:054111. [PMID: 33557571 DOI: 10.1063/5.0037806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In a pair of self-assembled or gated laterally arranged quantum dots, an electronically excited state can undergo interparticle Coulombic decay. Then, an electron from a neighbor quantum dot is emitted into the electronic continuum along the two available dimensions. This study proves that the process is not only operative among two but also among three quantum dots, where a second electron-emitting dot causes a rate increase by a factor of two according to the predictions from the analytical Wigner-Weisskopf rate equation. The predictions hold over the complete range of conformation angles among the quantum dots and over a large range of distances. Electron dynamics was calculated by multiconfiguration time-dependent Hartree and is, irrespective of the large number of discrete variable representation grid points, feasible after having developed an OpenACC graphic card compilation of the program.
Collapse
Affiliation(s)
- Fabian Langkabel
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Annika Bande
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| |
Collapse
|
11
|
Jahnke T, Hergenhahn U, Winter B, Dörner R, Frühling U, Demekhin PV, Gokhberg K, Cederbaum LS, Ehresmann A, Knie A, Dreuw A. Interatomic and Intermolecular Coulombic Decay. Chem Rev 2020; 120:11295-11369. [PMID: 33035051 PMCID: PMC7596762 DOI: 10.1021/acs.chemrev.0c00106] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Indexed: 12/11/2022]
Abstract
Interatomic or intermolecular Coulombic decay (ICD) is a nonlocal electronic decay mechanism occurring in weakly bound matter. In an ICD process, energy released by electronic relaxation of an excited atom or molecule leads to ionization of a neighboring one via Coulombic electron interactions. ICD has been predicted theoretically in the mid nineties of the last century, and its existence has been confirmed experimentally approximately ten years later. Since then, a number of fundamental and applied aspects have been studied in this quickly growing field of research. This review provides an introduction to ICD and draws the connection to related energy transfer and ionization processes. The theoretical approaches for the description of ICD as well as the experimental techniques developed and employed for its investigation are described. The existing body of literature on experimental and theoretical studies of ICD processes in different atomic and molecular systems is reviewed.
Collapse
Affiliation(s)
- Till Jahnke
- Institut
für Kernphysik, Goethe Universität, Max-von-Laue-Str. 1, 60438 Frankfurt, Germany
| | - Uwe Hergenhahn
- Fritz-Haber-Institut
der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
- Max
Planck Institute for Plasma Physics, Wendelsteinstr. 1, 17491 Greifswald, Germany
- Leibniz
Institute of Surface Engineering (IOM), 04318 Leipzig, Germany
| | - Bernd Winter
- Fritz-Haber-Institut
der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Reinhard Dörner
- Institut
für Kernphysik, Goethe Universität, Max-von-Laue-Str. 1, 60438 Frankfurt, Germany
| | - Ulrike Frühling
- Institut
für Experimentalphysik and Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Philipp V. Demekhin
- Institut
für Physik und CINSaT, Universität
Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - Kirill Gokhberg
- Physical-Chemistry
Institute, Ruprecht-Karls University, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
| | - Lorenz S. Cederbaum
- Physical-Chemistry
Institute, Ruprecht-Karls University, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
| | - Arno Ehresmann
- Institut
für Physik und CINSaT, Universität
Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - André Knie
- Institut
für Physik und CINSaT, Universität
Kassel, Heinrich-Plett-Str. 40, 34132 Kassel, Germany
| | - Andreas Dreuw
- Interdisciplinary
Center for Scientific Computing, Ruprecht-Karls
University, Im Neuenheimer
Feld 205, 69120 Heidelberg, Germany
| |
Collapse
|
12
|
Howell RW. Advancements in the use of Auger electrons in science and medicine during the period 2015-2019. Int J Radiat Biol 2020; 99:2-27. [PMID: 33021416 PMCID: PMC8062591 DOI: 10.1080/09553002.2020.1831706] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/01/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
Auger electrons can be highly radiotoxic when they are used to irradiate specific molecular sites. This has spurred basic science investigations of their radiobiological effects and clinical investigations of their potential for therapy. Focused symposia on the biophysical aspects of Auger processes have been held quadrennially. This 9th International Symposium on Physical, Molecular, Cellular, and Medical Aspects of Auger Processes at Oxford University brought together scientists from many different fields to review past findings, discuss the latest studies, and plot the future work to be done. This review article examines the research in this field that was published during the years 2015-2019 which corresponds to the period since the last meeting in Japan. In addition, this article points to future work yet to be done. There have been a plethora of advancements in our understanding of Auger processes. These advancements range from basic atomic and molecular physics to new ways to implement Auger electron emitters in radiopharmaceutical therapy. The highly localized doses of radiation that are deposited within a 10 nm of the decay site make them precision tools for discovery across the physical, chemical, biological, and medical sciences.
Collapse
Affiliation(s)
- Roger W Howell
- Division of Radiation Research, Department of Radiology, New Jersey Medical School, Rutgers University, Newark, NJ, USA
| |
Collapse
|
13
|
Ben-Asher A, Landau A, Cederbaum LS, Moiseyev N. Quantum Effects Dominating the Interatomic Coulombic Decay of an Extreme System. J Phys Chem Lett 2020; 11:6600-6605. [PMID: 32706968 DOI: 10.1021/acs.jpclett.0c01974] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
LiHe is an extreme open-shell system. It is among the weakest bound systems known, and its mean interatomic distance extends dramatically into the classical forbidden region. Upon 1s → 2p excitation of He, interatomic Coulombic decay (ICD) takes place in which the electronically excited helium atom relaxes and transfers its excess energy to ionize the neighboring lithium atom. A substantial part of the decay is found to be to the dissociation continuum producing Li+ and He atoms. The distribution of the kinetic energy released by the ICD products is found to be highly oscillatory. Its analysis reveals that quantum phase shifts between the decaying states and the dissociating final states are controlling this ICD reaction. The semiclassical reflection principle, which commonly explains ICD reactions, fails. The process is expected to be amenable to experiment.
Collapse
Affiliation(s)
- Anael Ben-Asher
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | - Arie Landau
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel
- Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 229, Heidelberg D-69120, Germany
| | - Lorenz S Cederbaum
- Theoretische Chemie, Physikalisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 229, Heidelberg D-69120, Germany
| | - Nimrod Moiseyev
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
14
|
Niozu A, Yokono N, Nishiyama T, Fukuzawa H, Sakurazawa T, Matsuda K, Takanashi T, You D, Li Y, Ono T, Gaumnitz T, Schöffler M, Grundmann S, Wada SI, Carpeggiani P, Xu WQ, Liu XJ, Owada S, Tono K, Togashi T, Yabashi M, Kryzhevoi NV, Gokhberg K, Kuleff AI, Cederbaum LS, Ueda K, Nagaya K. Electron spectroscopic study of nanoplasma formation triggered by intense soft x-ray pulses. J Chem Phys 2019; 151:184305. [PMID: 31731862 DOI: 10.1063/1.5115053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Using electron spectroscopy, we investigated the nanoplasma formation process generated in xenon clusters by intense soft x-ray free electron laser (FEL) pulses. We found clear FEL intensity dependence of electron spectra. Multistep ionization and subsequent ionization frustration features are evident for the low FEL-intensity region, and the thermal electron emission emerges at the high FEL intensity. The present FEL intensity dependence of the electron spectra is well addressed by the frustration parameter introduced by Arbeiter and Fennel [New J. Phys. 13, 053022 (2011)].
Collapse
Affiliation(s)
- Akinobu Niozu
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan
| | - Naomichi Yokono
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | | | | - Tsukasa Takanashi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Daehyun You
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Yiwen Li
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Taishi Ono
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, Sendai 980-8577, Japan
| | - Thomas Gaumnitz
- Laboratorium für Physikalische Chemie, ETH Zürich, 8093 Zürich, Switzerland
| | - Markus Schöffler
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt, Germany
| | - Sven Grundmann
- Institut für Kernphysik, Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt, Germany
| | - Shin-Ichi Wada
- Department of Physical Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Paolo Carpeggiani
- Technische Universität Wien, Institut für Photonik, Gußhausstraße 27-29, A-1040 Wien, Austria
| | - Wei Qing Xu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Xiao Jing Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | | | - Kensuke Tono
- RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan
| | | | | | - Nikolai V Kryzhevoi
- Theoretical Chemistry, Institute of Physical Chemistry, Heidelberg University, 69120 Heidelberg, Germany
| | - Kirill Gokhberg
- Theoretical Chemistry, Institute of Physical Chemistry, Heidelberg University, 69120 Heidelberg, Germany
| | - Alexander I Kuleff
- Theoretical Chemistry, Institute of Physical Chemistry, Heidelberg University, 69120 Heidelberg, Germany
| | - Lorenz S Cederbaum
- Theoretical Chemistry, Institute of Physical Chemistry, Heidelberg University, 69120 Heidelberg, Germany
| | - Kiyoshi Ueda
- RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan
| | - Kiyonobu Nagaya
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
15
|
Schütte B, Peltz C, Austin DR, Strüber C, Ye P, Rouzée A, Vrakking MJJ, Golubev N, Kuleff AI, Fennel T, Marangos JP. Low-Energy Electron Emission in the Strong-Field Ionization of Rare Gas Clusters. PHYSICAL REVIEW LETTERS 2018; 121:063202. [PMID: 30141654 DOI: 10.1103/physrevlett.121.063202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Indexed: 06/08/2023]
Abstract
Clusters and nanoparticles have been widely investigated to determine how plasmonic near fields influence the strong-field induced energetic electron emission from finite systems. We focus on the contrary, i.e., the slow electrons, and discuss a hitherto unidentified low-energy structure (LES) in the photoemission spectra of rare gas clusters in intense near-infrared laser pulses. For Ar and Kr clusters we find, besides field-driven fast electrons, a robust and nearly isotropic emission of electrons with <4 eV kinetic energies that dominates the total yield. Molecular dynamics simulations reveal a correlated few-body decay process involving quasifree electrons and multiply excited ions in the nonequilibrium nanoplasma that results in a dominant LES feature. Our results indicate that the LES emission occurs after significant nanoplasma expansion, and that it is a generic phenomenon in intense laser nanoparticle interactions, which is likely to influence the formation of highly charged ions.
Collapse
Affiliation(s)
- Bernd Schütte
- Department of Physics, Imperial College London, South Kensington Campus, SW7 2AZ London, United Kingdom
| | - Christian Peltz
- Institute of Physics, University of Rostock, Albert-Einstein-Strasse 23, 18059 Rostock, Germany
| | - Dane R Austin
- Department of Physics, Imperial College London, South Kensington Campus, SW7 2AZ London, United Kingdom
| | - Christian Strüber
- Department of Physics, Imperial College London, South Kensington Campus, SW7 2AZ London, United Kingdom
| | - Peng Ye
- Department of Physics, Imperial College London, South Kensington Campus, SW7 2AZ London, United Kingdom
| | - Arnaud Rouzée
- Max-Born-Institut, Max-Born-Strasse 2A, 12489 Berlin, Germany
| | | | - Nikolay Golubev
- Theoretische Chemie, PCI, Universität Heidelberg, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
| | - Alexander I Kuleff
- Theoretische Chemie, PCI, Universität Heidelberg, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
- ELI-ALPS, Budapesti út 5, H-6728 Szeged, Hungary
| | - Thomas Fennel
- Institute of Physics, University of Rostock, Albert-Einstein-Strasse 23, 18059 Rostock, Germany
- Max-Born-Institut, Max-Born-Strasse 2A, 12489 Berlin, Germany
| | - Jon P Marangos
- Department of Physics, Imperial College London, South Kensington Campus, SW7 2AZ London, United Kingdom
| |
Collapse
|
16
|
Seddon EA, Clarke JA, Dunning DJ, Masciovecchio C, Milne CJ, Parmigiani F, Rugg D, Spence JCH, Thompson NR, Ueda K, Vinko SM, Wark JS, Wurth W. Short-wavelength free-electron laser sources and science: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2017; 80:115901. [PMID: 29059048 DOI: 10.1088/1361-6633/aa7cca] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
This review is focused on free-electron lasers (FELs) in the hard to soft x-ray regime. The aim is to provide newcomers to the area with insights into: the basic physics of FELs, the qualities of the radiation they produce, the challenges of transmitting that radiation to end users and the diversity of current scientific applications. Initial consideration is given to FEL theory in order to provide the foundation for discussion of FEL output properties and the technical challenges of short-wavelength FELs. This is followed by an overview of existing x-ray FEL facilities, future facilities and FEL frontiers. To provide a context for information in the above sections, a detailed comparison of the photon pulse characteristics of FEL sources with those of other sources of high brightness x-rays is made. A brief summary of FEL beamline design and photon diagnostics then precedes an overview of FEL scientific applications. Recent highlights are covered in sections on structural biology, atomic and molecular physics, photochemistry, non-linear spectroscopy, shock physics, solid density plasmas. A short industrial perspective is also included to emphasise potential in this area.
Collapse
Affiliation(s)
- E A Seddon
- ASTeC, STFC Daresbury Laboratory, Sci-Tech Daresbury, Keckwick Lane, Daresbury, Cheshire, WA4 4AD, United Kingdom. The School of Physics and Astronomy and Photon Science Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom. The Cockcroft Institute, Sci-Tech Daresbury, Keckwick Lane, Daresbury, Cheshire, WA4 4AD, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Iablonskyi D, Nagaya K, Fukuzawa H, Motomura K, Kumagai Y, Mondal S, Tachibana T, Takanashi T, Nishiyama T, Matsunami K, Johnsson P, Piseri P, Sansone G, Dubrouil A, Reduzzi M, Carpeggiani P, Vozzi C, Devetta M, Negro M, Calegari F, Trabattoni A, Castrovilli MC, Faccialà D, Ovcharenko Y, Möller T, Mudrich M, Stienkemeier F, Coreno M, Alagia M, Schütte B, Berrah N, Kuleff AI, Jabbari G, Callegari C, Plekan O, Finetti P, Spezzani C, Ferrari E, Allaria E, Penco G, Serpico C, De Ninno G, Nikolov I, Diviacco B, Di Mitri S, Giannessi L, Prince KC, Ueda K. Slow Interatomic Coulombic Decay of Multiply Excited Neon Clusters. PHYSICAL REVIEW LETTERS 2016; 117:276806. [PMID: 28084773 DOI: 10.1103/physrevlett.117.276806] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Indexed: 06/06/2023]
Abstract
Ne clusters (∼5000 atoms) were resonantly excited (2p→3s) by intense free electron laser (FEL) radiation at FERMI. Such multiply excited clusters can decay nonradiatively via energy exchange between at least two neighboring excited atoms. Benefiting from the precise tunability and narrow bandwidth of seeded FEL radiation, specific sites of the Ne clusters were probed. We found that the relaxation of cluster surface atoms proceeds via a sequence of interatomic or intermolecular Coulombic decay (ICD) processes while ICD of bulk atoms is additionally affected by the surrounding excited medium via inelastic electron scattering. For both cases, cluster excitations relax to atomic states prior to ICD, showing that this kind of ICD is rather slow (picosecond range). Controlling the average number of excitations per cluster via the FEL intensity allows a coarse tuning of the ICD rate.
Collapse
Affiliation(s)
- D Iablonskyi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 980-8577 Sendai, Japan
| | - K Nagaya
- Department of Physics, Graduate School of Science, Kyoto University, 606-8502 Kyoto, Japan
| | - H Fukuzawa
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 980-8577 Sendai, Japan
| | - K Motomura
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 980-8577 Sendai, Japan
| | - Y Kumagai
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 980-8577 Sendai, Japan
| | - S Mondal
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 980-8577 Sendai, Japan
| | - T Tachibana
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 980-8577 Sendai, Japan
| | - T Takanashi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 980-8577 Sendai, Japan
| | - T Nishiyama
- Department of Physics, Graduate School of Science, Kyoto University, 606-8502 Kyoto, Japan
| | - K Matsunami
- Department of Physics, Graduate School of Science, Kyoto University, 606-8502 Kyoto, Japan
| | - P Johnsson
- Department of Physics, Lund University, 22100 Lund, Sweden
| | - P Piseri
- Dipartimento di Fisica, Università degli Studi di Milano, 20133 Milano, Italy
| | - G Sansone
- CNR-IFN, 20133 Milan, Italy
- Physikalisches Institut, Universität Freiburg, 79104 Freiburg, Germany
| | | | | | | | | | | | | | - F Calegari
- CNR-IFN, 20133 Milan, Italy
- Center for Free-Electron Laser Science, DESY, 22607 Hamburg, Germany
| | - A Trabattoni
- CNR-IFN, 20133 Milan, Italy
- Center for Free-Electron Laser Science, DESY, 22607 Hamburg, Germany
| | | | - D Faccialà
- Dipartimento di Fisica, Politecnico di Milano, 20133 Milan, Italy
| | - Y Ovcharenko
- Institut für Optik und Atomare Physik, TU Berlin, 10623 Berlin, Germany
| | - T Möller
- Institut für Optik und Atomare Physik, TU Berlin, 10623 Berlin, Germany
| | - M Mudrich
- Physikalisches Institut, Universität Freiburg, 79104 Freiburg, Germany
| | - F Stienkemeier
- Physikalisches Institut, Universität Freiburg, 79104 Freiburg, Germany
| | - M Coreno
- CNR-ISM, Area Science Park, 34149 Trieste, Italy
| | - M Alagia
- CNR-IOM, Area Science Park, 34149 Trieste, Italy
| | - B Schütte
- Max-Born-Institut, 12489 Berlin, Germany
| | - N Berrah
- Department of Physics, University of Connecticut, Storrs, Connecticut 06269, USA
| | - A I Kuleff
- Theoretische Chemie, Universität Heidelberg, 69120 Heidelberg, Germany
| | - G Jabbari
- Theoretische Chemie, Universität Heidelberg, 69120 Heidelberg, Germany
| | - C Callegari
- Elettra-Sincrotrone Trieste, Area Science Park, 34149 Trieste, Italy
| | - O Plekan
- Elettra-Sincrotrone Trieste, Area Science Park, 34149 Trieste, Italy
| | - P Finetti
- Elettra-Sincrotrone Trieste, Area Science Park, 34149 Trieste, Italy
| | - C Spezzani
- Elettra-Sincrotrone Trieste, Area Science Park, 34149 Trieste, Italy
| | - E Ferrari
- Elettra-Sincrotrone Trieste, Area Science Park, 34149 Trieste, Italy
| | - E Allaria
- Elettra-Sincrotrone Trieste, Area Science Park, 34149 Trieste, Italy
| | - G Penco
- Elettra-Sincrotrone Trieste, Area Science Park, 34149 Trieste, Italy
| | - C Serpico
- Elettra-Sincrotrone Trieste, Area Science Park, 34149 Trieste, Italy
| | - G De Ninno
- Elettra-Sincrotrone Trieste, Area Science Park, 34149 Trieste, Italy
- Laboratory of Quantum Optics, University of Nova Gorica, 5001 Nova Gorica, Slovenia
| | - I Nikolov
- Elettra-Sincrotrone Trieste, Area Science Park, 34149 Trieste, Italy
| | - B Diviacco
- Elettra-Sincrotrone Trieste, Area Science Park, 34149 Trieste, Italy
| | - S Di Mitri
- Elettra-Sincrotrone Trieste, Area Science Park, 34149 Trieste, Italy
| | - L Giannessi
- Elettra-Sincrotrone Trieste, Area Science Park, 34149 Trieste, Italy
| | - K C Prince
- CNR-IOM, Area Science Park, 34149 Trieste, Italy
- Elettra-Sincrotrone Trieste, Area Science Park, 34149 Trieste, Italy
| | - K Ueda
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 980-8577 Sendai, Japan
| |
Collapse
|