1
|
Feng Y, Lv Y, Wei X, Yu H, Kang X, Zhu M. Relationship between Structural Defects and Free Electrons in Icosahedral Nanoclusters. J Phys Chem Lett 2024; 15:8910-8916. [PMID: 39172035 DOI: 10.1021/acs.jpclett.4c02179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
According to the classic superatom model, metal nanoclusters with a "magic number" of free valence electrons display high stability, manifesting as the closed-shell-dependent electronic robustness. The icosahedral nanobuilding blocks containing eight free electrons were the most common in constructing metal nanoclusters; however, the structure defect-dependent variations of the free electron count in icosahedral configurations are still far from thorough research. Here, we reported a hydride-containing [Pt2Ag15(SAdm)4(DPPOE)4H]2+ nanocluster with two largely defective Pt1Ag8 icosahedral cores. Together with previously reported complete or slightly defective icosahedra in metal nanoclusters, the largely defective Pt1Ag8 core provided important clues to reveal the evolutionary mode of structural defects and free electrons in icosahedral nanoclusters; the free electron count of icosahedron was reduced two-by-two (i.e., from 8e to 6e and then to 4e) accompanied by the structure defection. Overall, the work presented a novel Pt2Ag15 nanocluster with a largely defective core structure that enables an atomic-level understanding of the relationship between structural defects and free electrons in icosahedral nanoclusters.
Collapse
Affiliation(s)
- Yan Feng
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Ying Lv
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Xiao Wei
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Haizhu Yu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, People's Republic of China
| |
Collapse
|
2
|
Naskar P, Talukder S. Energetics and spectroscopic studies of CNO (-) (H 2 O) n $$ {\mathbf{CNO}}^{\left(\hbox{-} \right)}{\left({\mathbf{H}}_{\mathbf{2}}\mathbf{O}\right)}_{\mathbf{n}} $$ clusters and the temperature dependencies of the isomers: An approach based on a combined recipe of parallel tempering and quantum chemical methods. J Comput Chem 2024. [PMID: 39151062 DOI: 10.1002/jcc.27480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/22/2024] [Accepted: 07/30/2024] [Indexed: 08/18/2024]
Abstract
A system associated with several number of weak interactions supports numerous number of stable structures within a narrow range of energy. Often, a deterministic search method fails to locate the global minimum geometry as well as important local minimum isomers for such systems. Therefore, in this work, the stochastic search technique, namely parallel tempering, has been executed on the quantum chemical surface of theCNO (-) (H 2 O) n $$ {\mathrm{CNO}}^{\left(\hbox{-} \right)}{\left({\mathrm{H}}_2\mathrm{O}\right)}_n $$ system forn = 1 $$ n=1 $$ -8 to generate global minimum as well as several number of local minimum isomers. IR spectrum can act as the fingerprint property for such system to be identified. Thus, IR spectroscopic features have also been included in this work. Vertical detachment energy has also been calculated to obtain clear information about number of water molecules in several spheres around the central anion. In addition, in a real experimental scenario, not only the global but also the local minimum isomers play an important role in determining the average value of a particular physically observable property. Therefore, the relative conformational populations have been determined for all the evaluated structures for the temperature range between 20K and 400K. Further to understand the phase change behavior, the configurational heat capacities have also been calculated for different sizes.
Collapse
Affiliation(s)
- Pulak Naskar
- Department of Chemistry, Mrinalini Datta Mahavidyapith, Kolkata, India
| | | |
Collapse
|
3
|
Gu W, Zhou Y, Wang W, You Q, Fan W, Zhao Y, Bian G, Wang R, Fang L, Yan N, Xia N, Liao L, Wu Z. Concomitant Near-Infrared Photothermy and Photoluminescence of Rod-Shaped Au 52(PET) 32 and Au 66(PET) 38 Synthesized Concurrently. Angew Chem Int Ed Engl 2024; 63:e202407518. [PMID: 38752452 DOI: 10.1002/anie.202407518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Indexed: 07/04/2024]
Abstract
Gold nanoclusters exhibiting concomitant photothermy (PT) and photoluminescence (PL) under near-infrared (NIR) light irradiation are rarely reported, and some fundamental issues remain unresolved for such materials. Herein, we concurrently synthesized two novel rod-shaped Au nanoclusters, Au52(PET)32 and Au66(PET)38 (PET = 2-phenylethanethiolate), and precisely revealed that their kernels were 4 × 4 × 6 and 5 × 4 × 6 face-centered cubic (fcc) structures, respectively, based on the numbers of Au layers in the [100], [010], and [001] directions. Following the structural growth mode from Au52(PET)32 to Au66(PET)38, we predicted six more novel nanoclusters. The concurrent synthesis provides rational comparison of the two nanoclusters on the stability, absorption, emission and photothermy, and reveals the aspect ratio-related properties. An interesting finding is that the two nanoclusters exhibit concomitant PT and PL under 785 nm light irradiation, and the PT and PL are in balance, which was explained by the qualitative evaluation of the radiative and non-radiative rates. The ligand effects on PT and PL were also investigated.
Collapse
Affiliation(s)
- Wanmiao Gu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, P. R.China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R.China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, P. R.China
| | - Yue Zhou
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, P. R.China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R.China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, P. R.China
| | - Wenying Wang
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, P. R.China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R.China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, P. R.China
| | - Qing You
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, P. R.China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R.China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, P. R.China
| | - Wentao Fan
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, P. R.China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R.China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, P. R.China
| | - Yan Zhao
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, P. R.China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R.China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, P. R.China
| | - Guoqing Bian
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, P. R.China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R.China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, P. R.China
| | - Runguo Wang
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, P. R.China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R.China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, P. R.China
| | - Liang Fang
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, P. R.China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R.China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, P. R.China
| | - Nan Yan
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, P. R.China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R.China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, P. R.China
| | - Nan Xia
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, P. R.China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R.China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, P. R.China
| | - Lingwen Liao
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, P. R.China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R.China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, P. R.China
| | - Zhikun Wu
- Key Laboratory of Materials Physics, Anhui Key Laboratory of Nanomaterials and Nanotechnology, CAS Center for Excellence in Nanoscience, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, 230031, Hefei, P. R.China
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, 230026, Hefei, P. R.China
- Institute of Physical Science and Information Technology, Anhui University, 230601, Hefei, P. R.China
| |
Collapse
|
4
|
Pei W, Hou L, Wang Z, Tian J, Liu Y, Tu Y, Zhao J, Zhou S. Unraveling the Photocatalytic Mechanism of N 2 Fixation on Single Ruthenium Sites. J Phys Chem Lett 2024; 15:7708-7715. [PMID: 39041828 DOI: 10.1021/acs.jpclett.4c01289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Photocatalytic N2 fixation offers promise for ammonia synthesis, yet traditional photocatalysts encounter challenges such as low efficiency and short carrier lifetimes. Atomically precise ligand-metal nanoclusters emerge as a solution to address these issues, but the photophysical mechanism remains elusive. Inspired by the synthesis of Au4Ru2 NCs, we investigate the mechanism behind N2 activation on Au4Ru2, focusing on photoactivity and carrier dynamics. Our results reveal that vibration of the Ru-N bond in the low-frequency domain suppresses the deactivation process leading to a long lifetime of the excited N2. By the strategy of isoelectronic substitution, we identify the single Ru sites as the active sites for N2 activation. Furthermore, these ligand-protected M4Ru2 (M = Au, Ag, Cu) NCs show robust thermal stability in explicit solvation and decent photochemical activity for N2 activation and NH3 production. These findings have significant implications for the optimization of catalysts for sustainable ammonia synthesis.
Collapse
Affiliation(s)
- Wei Pei
- College of Physics Science and Technology, Yangzhou University, Jiangsu 225009, China
| | - Lei Hou
- College of Physics Science and Technology, Yangzhou University, Jiangsu 225009, China
| | - Zi Wang
- College of Physics Science and Technology, Yangzhou University, Jiangsu 225009, China
| | - Jiaqi Tian
- College of Physics Science and Technology, Yangzhou University, Jiangsu 225009, China
| | - Yongfeng Liu
- College of Physics Science and Technology, Yangzhou University, Jiangsu 225009, China
| | - Yusong Tu
- College of Physics Science and Technology, Yangzhou University, Jiangsu 225009, China
| | - Jijun Zhao
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou 510006, China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou 510006, China
| | - Si Zhou
- Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics, South China Normal University, Guangzhou 510006, China
- Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
5
|
Sheong FK, Zhang JX, Lin Z. Fragment Aligned Molecular Orbital Analysis: An Innovative Tool for Analyzing Atypical Chemical Bonding. J Chem Theory Comput 2024. [PMID: 39046803 DOI: 10.1021/acs.jctc.4c00456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
In chemical research, it is a common practice to carry out quantum chemical calculations and analyze the canonical molecular orbitals (CMOs) obtained to study electronic structures of chemical systems. However, extensive orbital mixing of CMOs especially in molecular clusters significantly complicates our understanding of the electronic structures. In this paper, we have developed an innovative tool called fragment aligned molecular orbital (FAMO) analysis, which reconstructs our modular chemical picture by making use of the Procrustes analysis in statistical theory to align the occupied molecular orbitals of a molecular species against the occupied (molecular) orbitals of the constituting fragments of the cluster, and results in a set of chemically intuitive semilocalized orbitals. This alignment technique minimizes the extensive orbital mixing, thus allowing precise observation of bonding interactions in complex chemical systems. A few representative clusters have been selected as showcase examples to demonstrate the advantage of FAMO analysis in deciphering the distinct bonding interactions in cluster compounds.
Collapse
Affiliation(s)
- Fu Kit Sheong
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Jing-Xuan Zhang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Zhenyang Lin
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
6
|
Li S, Li NN, Dong XY, Zang SQ, Mak TCW. Chemical Flexibility of Atomically Precise Metal Clusters. Chem Rev 2024; 124:7262-7378. [PMID: 38696258 DOI: 10.1021/acs.chemrev.3c00896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Ligand-protected metal clusters possess hybrid properties that seamlessly combine an inorganic core with an organic ligand shell, imparting them exceptional chemical flexibility and unlocking remarkable application potential in diverse fields. Leveraging chemical flexibility to expand the library of available materials and stimulate the development of new functionalities is becoming an increasingly pressing requirement. This Review focuses on the origin of chemical flexibility from the structural analysis, including intra-cluster bonding, inter-cluster interactions, cluster-environments interactions, metal-to-ligand ratios, and thermodynamic effects. In the introduction, we briefly outline the development of metal clusters and explain the differences and commonalities of M(I)/M(I/0) coinage metal clusters. Additionally, we distinguish the bonding characteristics of metal atoms in the inorganic core, which give rise to their distinct chemical flexibility. Section 2 delves into the structural analysis, bonding categories, and thermodynamic theories related to metal clusters. In the following sections 3 to 7, we primarily elucidate the mechanisms that trigger chemical flexibility, the dynamic processes in transformation, the resultant alterations in structure, and the ensuing modifications in physical-chemical properties. Section 8 presents the notable applications that have emerged from utilizing metal clusters and their assemblies. Finally, in section 9, we discuss future challenges and opportunities within this area.
Collapse
Affiliation(s)
- Si Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Na-Na Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Xi-Yan Dong
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Shuang-Quan Zang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Thomas C W Mak
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, SAR 999077, China
| |
Collapse
|
7
|
Tlahuice-Flores A. 5-step algorithm to accelerate the prediction of [Au 25(SR) 19] z clusters ( z = 1-, 0, 1+). RSC Adv 2024; 14:19483-19489. [PMID: 38895530 PMCID: PMC11184580 DOI: 10.1039/d4ra03458a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
Prediction of the structure of thiolated gold clusters is time demanding, and new strategies are needed to expedite this process. In this study, using one five-step algorithm and dispersion corrected density functional theory (DFT-D) calculations, new models are proposed for neutral and charged Au25(SR)19 clusters that contain one extra ligand with respect to the ubiquitous Au25(SR)18 cluster. The algorithm counts for constituting tetrahedra/octahedra units of related isomers, and it provides their energy order. In general, one structure comprising one Au11 inner core is found as energy minima of neutral and charged Au25(SR)19 clusters. Therefore, our new neutral structure is 0.20 eV (-CH3 and TPSS) more stable than the previously reported one. With respect to neutral and anionic structures containing inner cores with C 2v symmetry, ultraviolet-visible/circular dichroism profiles are similar.
Collapse
Affiliation(s)
- A Tlahuice-Flores
- Universidad Autónoma de Nuevo León, CICFIM,-Facultad de Ciencias Físico-Matemáticas San Nicolás de los Garza Nuevo León 66455 Mexico
| |
Collapse
|
8
|
Wang Y, Gianopoulos CG, Liu Z, Kirschbaum K, Alfonso D, Kauffman DR, Jin R. Au 36(SR) 22 Nanocluster and a Periodic Pattern from Six to Fourteen Free Electrons in Core Size Evolution. JACS AU 2024; 4:1928-1934. [PMID: 38818069 PMCID: PMC11134389 DOI: 10.1021/jacsau.4c00152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 06/01/2024]
Abstract
An Au36(S-tBu)22 nanocluster (NC) is synthesized using the bulky tert-butyl thiol as the ligand. Single-crystal X-ray crystallography reveals that it has an Au25 core which evolves from the Au22 core in the previously reported Au30(S-tBu)18, and the Au25 core is protected by longer staple-like surface motifs. The new Au36 NC extends the members of the face-centered cubic structural evolution by adding an Au3 triangle and an Au4 tetrahedron unit. Additionally, it is found that Au36 emits near-infrared photoluminescence at 863 nm with a quantum yield (QY) of 4.3%, which is five times larger than that of Au30(S-tBu)18-the closest neighbor in the structural evolution pattern. The higher QY of Au36 is attributed to a larger radiative relaxation (kr), resulting from the structural effect. Finally, we find that the longer staple motifs lead to enhanced stability of Au36(S-tBu)22 relative to Au30(S-tBu)18.
Collapse
Affiliation(s)
- Yitong Wang
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | | | - Zhongyu Liu
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Kristin Kirschbaum
- Department
of Chemistry and Biochemistry, University
of Toledo, Toledo, Ohio 43606, United States
| | - Dominic Alfonso
- National
Energy Technology Laboratory, United States
Department of Energy, Pittsburgh, Pennsylvania 15236, United States
| | - Douglas R. Kauffman
- National
Energy Technology Laboratory, United States
Department of Energy, Pittsburgh, Pennsylvania 15236, United States
| | - Rongchao Jin
- Department
of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
9
|
Fujiwara Y, Ito S, Koyasu K, Tsukuda T. Gas-Phase Structures of [Au 21(SR) 14] - and [Au 17(SR) 10] - with Eight Electrons: Can They Support an Icosahedral Au 13 Core? J Phys Chem A 2024; 128:3119-3125. [PMID: 38626761 DOI: 10.1021/acs.jpca.4c00548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
A prototypical thiolate (RS)-protected gold cluster [Au25(SR)18]- has high stability due to specific geometric and electronic structures: an icosahedral (Ih) Au13 core with a closed electronic shell containing eight electrons is completely protected by six units of Au2(SR)3. Nevertheless, collisional excitation of [Au25(SR)18]- in a vacuum induces the sequential release of Au4(SR)4 to form [Au21(SR)14]- and [Au17(SR)10]- both containing eight electrons. To answer a naive question of whether these fragments bear an Ih Au13(8e) core, the geometrical structures of [Au21(SC3H7)14]- and [Au17(SC3H7)10]- in the gas phase were examined by the combination of anion photoelectron spectroscopy and density functional theory (DFT) calculation of simplified models of [Au21(SCH3)14]- and [Au17(SCH3)10]-. We concluded that [Au21(SC3H7)14]- retains a slightly distorted Ih Au13(8e) core, while [Au17(SC3H7)10]- has an amorphous Au13 core composed of triangular Au3, tetrahedral Au4, and prolate Au7 units. DFT calculations on putative species [Au19(SCH3)12]- and [Au18(SCH3)11]- suggested that the Ih Au13(8e) core undergoes dramatic structural deformation due to mechanical stress from μ2 ligation of only one RS.
Collapse
Affiliation(s)
- Yuki Fujiwara
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shun Ito
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kiichirou Koyasu
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tatsuya Tsukuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
10
|
Li Y, Yan C, Wang E, Xu WW. Proposed Structural Model for Chiral Au 40(SC 2H 4Ph) 24 Nanoclusters. J Phys Chem Lett 2024; 15:2241-2246. [PMID: 38380809 DOI: 10.1021/acs.jpclett.4c00130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
The structural configuration of thiolate-protected gold nanoclusters plays a pivotal role in elucidating the correlation between their structure and properties, comprehending their stability, and guiding experimental synthesis. In this study, utilizing the grand unified model and the ring model, we employed an innovative strategy of fusing triangular Au3 and tetrahedral Au4 elementary blocks by sharing a gold atom to design the gold core, predicting the structure of the Au40(SR)24 nanoclusters. Density functional theory calculations indicate that with the protective ligands simplified to methyl groups the energy of the predicted Au40(SR)24 is 0.45 eV lower than that of the experimentally reported Au40(o-MBT)24 nanoclusters, implying its substantial stability. Furthermore, the calculated UV absorption spectrum and circular dichroism spectrum of predicted Au40(SR)24 are consistent with the experimental results of Au40(SC2H4Ph)24 nanoclusters, suggesting that the predicted structure is a likely candidate for the structure of Au40(SC2H4Ph)24 nanoclusters.
Collapse
Affiliation(s)
- Yanshuang Li
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Chaoqiang Yan
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Endong Wang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Wen Wu Xu
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
11
|
Antsiburov I, Schütz M, Bühler R, Muhr M, Stephan J, Gemel C, Klein W, Kahlal S, Saillard JY, Fischer RA. All-Hydrocarbon-Ligated Superatomic Gold/Aluminum Clusters. Inorg Chem 2024; 63:3749-3756. [PMID: 38335041 PMCID: PMC10900290 DOI: 10.1021/acs.inorgchem.3c03790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Key strategies in cluster synthesis include the use of modulating agents (e.g., coordinating additives). We studied the influence of various phosphines exhibiting different steric and electronic properties on the reduction of the Au(I) precursor to Au(0) clusters. We report a synthesis of the bimetallic clusters [Au6(AlCp*)6] = [Au6Al6](Cp*)6 (1) and [HAu7(AlCp*)6] = [HAu7Al6](Cp*)6 (2) (Cp* = pentamethylcyclopentadiene) using Au(I) precursors and AlCp*. The cluster [Au2(AlCp*)5] = [Au2Al5](Cp*)5 (3) was isolated and identified as an intermediate species in the reactions to 1 and 2. The processes of cluster growth and degradation were investigated by in situ 1H NMR and LIFDI-MS techniques. The structures of 1 and 2 were established by DFT geometry optimization. These octahedral clusters can both be described as closed-shell 18-electron superatoms.
Collapse
Affiliation(s)
- Ivan Antsiburov
- Department of Chemistry and Catalysis Research Center, Chair of Inorganic and Metal-Organic Chemistry, Technical University of Munich, Lichtenbergstr. 4, Munich, Garching 85748, Germany
| | - Max Schütz
- Department of Chemistry and Catalysis Research Center, Chair of Inorganic and Metal-Organic Chemistry, Technical University of Munich, Lichtenbergstr. 4, Munich, Garching 85748, Germany
| | - Raphael Bühler
- Department of Chemistry and Catalysis Research Center, Chair of Inorganic and Metal-Organic Chemistry, Technical University of Munich, Lichtenbergstr. 4, Munich, Garching 85748, Germany
| | - Maximilian Muhr
- Department of Chemistry and Catalysis Research Center, Chair of Inorganic and Metal-Organic Chemistry, Technical University of Munich, Lichtenbergstr. 4, Munich, Garching 85748, Germany
| | - Johannes Stephan
- Department of Chemistry and Catalysis Research Center, Chair of Inorganic and Metal-Organic Chemistry, Technical University of Munich, Lichtenbergstr. 4, Munich, Garching 85748, Germany
| | - Christian Gemel
- Department of Chemistry and Catalysis Research Center, Chair of Inorganic and Metal-Organic Chemistry, Technical University of Munich, Lichtenbergstr. 4, Munich, Garching 85748, Germany
| | - Wilhelm Klein
- Department of Chemistry and Catalysis Research Center, Chair of Inorganic and Metal-Organic Chemistry, Technical University of Munich, Lichtenbergstr. 4, Munich, Garching 85748, Germany
| | - Samia Kahlal
- Univ Rennes, CNRS, ISCR-UMR 6226, Beaulieu, Rennes F-35000, France
| | | | - Roland A Fischer
- Department of Chemistry and Catalysis Research Center, Chair of Inorganic and Metal-Organic Chemistry, Technical University of Munich, Lichtenbergstr. 4, Munich, Garching 85748, Germany
| |
Collapse
|
12
|
Bose P, Kumaranchira Ramankutty K, Chakraborty P, Khatun E, Pradeep T. A concise guide to chemical reactions of atomically precise noble metal nanoclusters. NANOSCALE 2024; 16:1446-1470. [PMID: 38032061 DOI: 10.1039/d3nr05128e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Nanoparticles (NPs) with atomic precision, known as nanoclusters (NCs), are an emerging field in materials science in view of their fascinating structure-property relationships. Ultrasmall noble metal NPs have molecule-like properties that make them fundamentally unique compared with their plasmonic counterparts and bulk materials. In this review, we present a comprehensive account of the chemistry of monolayer-protected atomically precise noble metal nanoclusters with a focus on the chemical reactions, their diversity, associated kinetics, and implications. To begin with, we briefly review the history of the evolution of such precision materials. Then the review explores the diverse chemistry of noble metal nanoclusters, including ligand exchange reactions, ligand-induced structural transformations, and reactions with metal ions, metal thiolates, and halocarbons. Just as molecules do, these precision materials also undergo intercluster reactions in solution. Supramolecular forces between these systems facilitate the creation of well-defined hierarchical assemblies, composites, and hybrid materials. We conclude the review with a future perspective and scope of such chemistry.
Collapse
Affiliation(s)
- Paulami Bose
- DST Unit of Nanoscience & Thematic Unit of Excellence, HSB 148, Indian Institute of Technology Madras, Chennai-600036, Tamil Nadu, India.
| | - Krishnadas Kumaranchira Ramankutty
- DST Unit of Nanoscience & Thematic Unit of Excellence, HSB 148, Indian Institute of Technology Madras, Chennai-600036, Tamil Nadu, India.
| | - Papri Chakraborty
- DST Unit of Nanoscience & Thematic Unit of Excellence, HSB 148, Indian Institute of Technology Madras, Chennai-600036, Tamil Nadu, India.
| | - Esma Khatun
- DST Unit of Nanoscience & Thematic Unit of Excellence, HSB 148, Indian Institute of Technology Madras, Chennai-600036, Tamil Nadu, India.
| | - Thalappil Pradeep
- DST Unit of Nanoscience & Thematic Unit of Excellence, HSB 148, Indian Institute of Technology Madras, Chennai-600036, Tamil Nadu, India.
| |
Collapse
|
13
|
Liu C, Li Y, He Z, Yang Y, Wu C, Fan W, Xu WW, Li MB. Reduction-Oxidation Cascade Strategy for Reforming a Au 13-Kerneled Gold Thiolate Nanocluster. J Phys Chem Lett 2023; 14:11558-11564. [PMID: 38096134 DOI: 10.1021/acs.jpclett.3c03021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Gold nanoclusters protected by thiolate ligands are ideal models for investigating the structure-property correlation of nanomaterals. Introducing relatively weak coordinating ligands into gold thiolate nanoclusters and thus reforming their structures is beneficial for further releasing their activities. However, controlling the selectivity of the process is a challenging task. In this work, we report a cascade strategy for deeply and purposefully reforming the structures of gold thiolate nanoclusters, exemplified by a Au13-kerneled Au23 nanocluster. Specifically, weakly coordinated triphenylphosphine was utilized to reduce (activate) the surface of Au23, enabling its further structural reformation by the following oxidation step. A structurally distinctive Au20 nanocluster was obtained based on this reduction-oxidation cascade strategy. Mechanism studies reveal that both the reduction and oxidation steps and their working sequence are critical for the transformation. Theoretical and experimental results all indicate that the deep structural reformation results in the evolution of the electronic and photoluminescent properties of the gold thiolate nanocluster.
Collapse
Affiliation(s)
- Chang Liu
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P.R. China
| | - Yanshuang Li
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, P.R. China
| | - Zongbing He
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P.R. China
| | - Ying Yang
- College of Materials and Chemical Engineering, West Anhui University, Lu'an, Anhui 237015, P.R. China
| | - Chao Wu
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P.R. China
| | - Weigang Fan
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P.R. China
| | - Wen Wu Xu
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, P.R. China
| | - Man-Bo Li
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P.R. China
| |
Collapse
|
14
|
Xu T, Wang E, Liu S, Wei Z, Yin P, Sun J, Xu WW, Song Y. Large-scale synthesis, mechanism, and application of a luminescent copper hydride nanocluster. Dalton Trans 2023. [PMID: 38010928 DOI: 10.1039/d3dt02595k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Elucidating the structure-property relationships of ultra-small metal nanocluster with basic nuclear is of great significance for understanding the evolution mechanism in both the structures and properties of polynuclear metal nanoclusters. In this study, an ultra-small copper hydride (CuH for short) nanocluster was simply synthesized with high yield, and the large-scale preparation was also achieved. Single crystal X-ray diffractometer (SC-XRD) analysis shows that this copper NC contains a tetrahedral Cu4 core co-capped by four PPh2Py ligands and two Cl in which the existence of the central H atom in tetrahedron was further identified experimentally and theoretically. This CuH nanocluster exhibits bright yellow emission, which is proved to be the mixture of phosphorescence and fluorescence by the sensitivity of both emission intensity and lifetime to O2. Furthermore, the temperature-dependent emission spectra and density functional theory (DFT) calculations suggest that the luminescence of CuH mainly originates from the metal-to-ligand charge transfer and cluster-centered triplet excited states. This work offers new insights into understanding the structure-property relationship of basic nuclear CuH nanocluster.
Collapse
Affiliation(s)
- Tingting Xu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| | - Endong Wang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China
| | - Shuai Liu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| | - Zhezhen Wei
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| | - Peiqun Yin
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, Anhui 230032, China
| | - Jianan Sun
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, Anhui 230032, China
| | - Wen Wu Xu
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China.
| | - Yongbo Song
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, Anhui 230032, China
| |
Collapse
|
15
|
Zhang C, Jia H, Zhang YF, Du S. Capping Layer Determined Self-assembly of Au-Ag Bimetallic Janus Nanoparticles at An Oil/Water Interface by Molecular Dynamics Simulations. J Phys Chem B 2023; 127:9543-9549. [PMID: 37879071 DOI: 10.1021/acs.jpcb.3c04600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Bimetallic Janus nanoparticles (BJNPs) have gained more attention due to their unique catalytic and optical properties. The self-assembly of BJNPs is expected as an effective way to fabricate metamaterials suitable for different potential applications. However, the self-assembly dynamic process of BJNPs, which is key to achieving a controllable synthesis, is limited in both experimental and theoretical investigations. Herein, all-atom molecular dynamics (MD) simulations were employed to investigate the self-assembly process of 1-dodecanethiol (DDT)-decorated Au-Ag BJNPs at an oil-water interface. We demonstrate that DDT's van der Waals (vdW) interaction dominates the self-assembly process. BJNPs form close-packed structures at both fast and slow evaporation rates. Au-Ag BJNPs exhibit relatively larger rotations at a low evaporation rate than those at a high evaporation rate, suggesting that the evaporation rate influences the orientation of the Au-Ag BJNPs. BJNPs tend to orient their electric dipole moments toward the external electric field, according to the ab initio MD simulation results. Based on the energy comparison and model analysis, it is found that the parallel array is more stable than the antiparallel one for the Au-Ag BJNP arrays. The dipole-dipole interaction difference between the parallel and antiparallel BJNP arrays obtained according to dipole moment obtained from ab initio calculation is qualitatively consistent with that obtained from MD simulations, indicating that the dipole plays a decisive role in determining the orientation of the BJNP array. This work uncovers the self-assembly dynamic process of BJNPs, paving the way for future applications.
Collapse
Affiliation(s)
- Chunlei Zhang
- Institute of Physics and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Haihong Jia
- Institute of Physics and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Yan-Fang Zhang
- Institute of Physics and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
| | - Shixuan Du
- Institute of Physics and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Material Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
16
|
Gao XF, Liu GH, Hu XK, Chen LL, Zhu BC, Zheng DS, Liao YH. DFT-Based Study of the Structure, Stability, and Spectral and Optical Properties of Gas-Phase NbMg n ( n = 2-12) Clusters. ACS OMEGA 2023; 8:41391-41401. [PMID: 37970033 PMCID: PMC10633863 DOI: 10.1021/acsomega.3c05113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 11/17/2023]
Abstract
Gas-phase NbMgn (n = 2-12) clusters were fully searched by CALYPSO software, and then the low-energy isomers were further optimized and calculated under DFT. It is shown that the three lowest energy isomers of NbMgn (n = 3-12) at each size are grown from two seed structures, i.e., tetrahedral and pentahedral structures, and the transition size occurs at the NbMg8 cluster. Interestingly, the relative stability calculations of the NbMg8 cluster ground-state isomer stand out under the examination of several parameters' calculations. The charge-transfer properties of the clusters of the ground-state isomers of various sizes had been comprehensively investigated. In order to be able to provide data guidance for future experimental probing of these ground-state clusters, this work also predicted infrared and Raman spectra at the same level of theoretical calculations. The results show that the multipeak nature of the IR and Raman spectra predicts that it is difficult to distinguish them directly. Finally, the optical properties of these clusters were investigated by calculating the static linear, second-order nonlinear, and third-order nonlinear coefficients. Importantly and interestingly, the NbMg8 cluster was shown to have superior nonlinear optical characteristics to all other clusters; thus, it is a powerful candidate for a potentially ultrasensitive nonlinear optical response device for some special purpose.
Collapse
Affiliation(s)
- Xiao-Feng Gao
- School
of Mathematics and Physics, Hubei Polytechnic
University, Huangshi 435003, People’s
Republic of China
- School
of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, People’s
Republic of China
| | - Guang-Hui Liu
- Daye
Special Steel Co., LTD, Huangshi 435003, People’s
Republic of China
| | - Xian-Kai Hu
- School
of Mathematics and Physics, Hubei Polytechnic
University, Huangshi 435003, People’s
Republic of China
| | - Lan-Li Chen
- School
of Mathematics and Physics, Hubei Polytechnic
University, Huangshi 435003, People’s
Republic of China
| | - Ben-Chao Zhu
- School
of Public Health, Hubei University of Medicine, Shiyan 442000, People’s Republic of China
| | - Ding-Shan Zheng
- School
of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, People’s
Republic of China
| | - Yan-Hua Liao
- School
of Mathematics and Physics, Hubei Polytechnic
University, Huangshi 435003, People’s
Republic of China
| |
Collapse
|
17
|
Wang M, Chen Y, Tang C. Recent Advances in Ligand Engineering for Gold Nanocluster Catalysis: Ligand Library, Ligand Effects and Strategies. Chem Asian J 2023; 18:e202300463. [PMID: 37552000 DOI: 10.1002/asia.202300463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/02/2023] [Indexed: 08/09/2023]
Abstract
Advances in new ligands in the last decade facilitated in-depth studies on the property-relationship of gold nanoclusters and promoted the rational synthesis and related applications of such materials. Currently, more and more new ligands are being explored; thus, the ligand library of AuNCs is being expanded fast, which also enables investigation of ligand effects of AuNCs via direct comparison of different ligating shell with the identical gold core. It is now widely accepted that ligands influence the properties of AuNCs enormously including stability, catalysis, photoluminescence among others. These studies inspired ligand engineering of AuNCs. One of the goals for ligand engineering is to develop ligated AuNC catalysts in which the ligands are able to exert big-enough influence on electronic and steric control over catalysis as in a transition-metal or an enzyme system. Although increasing attention is paid to the further expansion of ligand library, the investigation of design principles and strategies regarding ligands are still in their infant stage. This review summarizes the ligands for AuNC synthesis, the ligand effects on stability and catalysis, and recently developed strategies in promoting AuNC catalytic performance via ligand manipulation.
Collapse
Affiliation(s)
- Mengyue Wang
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Institution National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Yu Chen
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Institution National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
- Department of Medicinal Chemistry, Southwest Medical University, Luzhou, 646000, P. R. China
| | - Cen Tang
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, Institution National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| |
Collapse
|
18
|
Yan C, Li Y, Wang E, Xu WW. Decoding Chemical Formula to Spatial Conformation: A Structural Study Targeting the [Au 25(SR) 19] 0 Nanocluster. J Phys Chem Lett 2023; 14:7632-7637. [PMID: 37602763 DOI: 10.1021/acs.jpclett.3c01731] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Structural global searches employing highly efficient algorithms have been extensively applied for studying molecules and clusters. However, the code-aided spatial conformational determination of thiolated gold nanoclusters (AuNCs) has not been accomplished because of the complex structural architecture of AuNCs, especially when only the chemical formula of the cluster is known. Experiments have shown that the star [Au25(SR)18]-1 cluster can transform into the [Au25(SR)19]0 cluster. However, the crystal structure of the [Au25(SR)19]0 cluster has not been experimentally determined, and theoretical structural predictions for this cluster are challenging because no template cluster presents for [Au25(SR)19]0. Utilizing the grand unified model, this study succeeded in obtaining the structure of the [Au25(SR)19]0 cluster by using minimal computations, which was verified to be reasonable through stability analysis and experimental absorption spectrum confirmation. Although the predicted [Au25(SR)19]0 cluster has the same number of Au atoms as the [Au25(SR)18]-1 cluster, the structure is considerably altered, owing to the presence of a face-centered cubic kernel. This study provides insights for decoding the chemical formulas of AuNCs to determine their spatial conformations.
Collapse
Affiliation(s)
- Chaoqiang Yan
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Yanshuang Li
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Endong Wang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Wen Wu Xu
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| |
Collapse
|
19
|
Han W, Wang G, Liu P, Li W, Xu WW. Structural predictions of three medium-sized thiolate-protected gold nanoclusters Au 44(SR) 30, Au 56(SR) 32, and Au 60(SR) 34. NANOSCALE ADVANCES 2023; 5:4464-4469. [PMID: 37638170 PMCID: PMC10448351 DOI: 10.1039/d3na00372h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023]
Abstract
The knowledge of structural evolution among thiolate-protected gold nanoclusters is not only helpful for understanding their structure-property relationship but also provides scientific evidence to rule-guided structure predictions of gold nanoclusters. In this paper, three new atomic structures of medium-sized thiolate-protected gold nanoclusters, i.e. Au44(SR)30, Au56(SR)32, and Au60(SR)34, are predicted based on the grand unified model and ring model. Two structural evolution rules, i.e., Au44(SR)28 + [Au12(SR)4] → Au56(SR)32 + [Au12(SR)4] → Au68(SR)36 and Au44(SR)30 + [Au8(SR)2] → Au52(SR)32 + [Au8(SR)2] → Au60(SR)34 + [Au8(SR)2] → Au68(SR)36, are explored. The generic growth patterns underlying both sequences of nanoclusters can be viewed as sequential addition of four and three highly stable tetrahedral Au4 units on the cores, respectively. In addition, density functional theory calculations show that these three newly predicted gold nanoclusters have very close formation energies with their adjacent structures, large highest occupied molecular orbital-lowest unoccupied molecular orbital (HOMO-LUMO) gaps, and all-positive harmonic vibration frequencies, indicating their high stabilities.
Collapse
Affiliation(s)
- Wenhua Han
- College of Energy Engineering, Xinjiang Institute of Engineering Urumqi 830023 China
| | - Gang Wang
- College of Energy Engineering, Xinjiang Institute of Engineering Urumqi 830023 China
| | - Pengye Liu
- Department of Physics, School of Physical Science and Technology, Ningbo University Ningbo 315211 China
| | - Wenliang Li
- College of Energy Engineering, Xinjiang Institute of Engineering Urumqi 830023 China
| | - Wen Wu Xu
- Department of Physics, School of Physical Science and Technology, Ningbo University Ningbo 315211 China
| |
Collapse
|
20
|
Maman MP, Nida Nahan E, Suresh G, Das A, Nair AS, Pathak B, Mandal S. Control over product formation and thermodynamic stability of thiolate-protected gold nanoclusters through tuning of surface protecting ligands. NANOSCALE 2023; 15:13102-13109. [PMID: 37501634 DOI: 10.1039/d3nr02617e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Surface-protecting ligands can regulate the structure of a cluster's core either through electronic or steric effects. However, the influence of the steric effect along with the electronic effect over controlling the structure during ligand exchange reactions remains elusive. To understand this, we have carried out ligand exchange on [Au23(CHT)16]- (CHT: cyclohexane thiol) using aromatic thiolates where we have tuned the bulkiness at the para position of the thiolate group on the incoming ligands. The outcome of the experiments reveals that each of the ligands in the chosen series is precisely selective towards the parent cluster transformation through specific intermediates. The ligand with more steric crowding directed the reaction pathway to have Au28 nanocluster as the major product while Au36 was the final product obtained with the gradual decrease of bulkiness over the ligand. The combined experimental and theoretical results elucidated the mechanism of the reaction pathways, product formation, and their stability. Indeed, this study with the series of ligands will add up to the ligand library, where we can decide on the ligand to obtain our desired cluster for specific applications through the ligand exchange reaction.
Collapse
Affiliation(s)
- Manju P Maman
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695551, India.
| | - Eyyakkandy Nida Nahan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695551, India.
| | - Greeshma Suresh
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695551, India.
| | - Arunendu Das
- Department of Chemistry, Indian Institute of Technology, Indore, Madhya Pradesh 453552, India
| | - Akhil S Nair
- Department of Chemistry, Indian Institute of Technology, Indore, Madhya Pradesh 453552, India
| | - Biswarup Pathak
- Department of Chemistry, Indian Institute of Technology, Indore, Madhya Pradesh 453552, India
| | - Sukhendu Mandal
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695551, India.
| |
Collapse
|
21
|
Li Q, Tan Y, Huang B, Yang S, Chai J, Wang X, Pei Y, Zhu M. Mechanistic Study of the Hydride Migration-Induced Reversible Isomerization in Au 22(SR) 15H Isomers. J Am Chem Soc 2023. [PMID: 37438248 DOI: 10.1021/jacs.3c02768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Unraveling the evolution mechanism of metal nanoclusters is of great importance in understanding the formation and evolution of metallic condensed matters. In this work, the specific evolution process between a pair of gold nanocluster (Au NC) isomers is completely revealed by introducing hydride ligands to simplify the research system. A hydride-containing Au NC, Au22(SR)15H, was synthesized by kinetic control, and the positions of the hydrides were then confirmed by combining X-ray diffraction, neutron diffraction, and DFT calculations. Importantly, a reversible structural isomerization was found to occur on this Au22(SR)15H. By combining the crystal structures and theoretical calculations, the focus was placed on the hydride-binding site, and a [Au-H] migration mechanism of this isomerization process is clearly shown. Furthermore, this [Au-H] migration mechanism is confirmed by the subsequent capture and structural determination of theoretically predicted intermediates. This work provides insight into the dynamic behavior of hydride ligands in nanoclusters and a strategy to study the evolution mechanism of nanoclusters by taking the hydride ligand as the breakthrough point.
Collapse
Affiliation(s)
- Qinzhen Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Yesen Tan
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Baoyu Huang
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of MOE, Xiangtan University, Xiangtan, Hunan 411105, China
- Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan 411104, China
| | - Sha Yang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Jinsong Chai
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Xiaoping Wang
- Neutron Scattering Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Yong Pei
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of MOE, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
22
|
Dalai N, Jena B. Iron Nickel Sulfide Nanorods for Oxygen and Hydrogen Evolution Reaction. ChemistrySelect 2023. [DOI: 10.1002/slct.202204370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Affiliation(s)
- Namita Dalai
- Department of Chemistry Utkal University Bhubaneswar 751004 Odisha India
| | - Bijayalaxmi Jena
- Department of Chemistry Utkal University Bhubaneswar 751004 Odisha India
| |
Collapse
|
23
|
Ma M, Qi Y, Zhang Z. Swelling dynamics and chain structure of ultrathin PEG membranes in seawater. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
24
|
Tan Y, Lv Y, Xu L, Li Q, Chai J, Yang S, Yu H, Zhu M. Cd Atom Goes into the Interior of Cluster Induced by Directional Consecutive Assembly of Tetrahedral Units on an Icosahedron Kernel. J Am Chem Soc 2023; 145:4238-4245. [PMID: 36779635 DOI: 10.1021/jacs.2c13075] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
"Core sliding" in metal nanoclusters drives the reconstruction of external structural units and provides an ideal platform for mapping their precise transformation mechanism and evolution pathway. However, observing the movement behavior of metal atoms in experiments is still challenging because of the uncertain stability of intermediates. In this work, a series of Au-Cd alloy nanoclusters with continuously assembled kernels (one icosahedral building block assembled with 0 to 3 tetrahedral units) were constructed. As the assembly continued, it eventually led to the Cd atom doping into the inner positions of the clusters. Importantly, the Cd doped into the interior of the cluster exhibits a different behavior than the surface or external Cd atoms (dispersion doping vs localized occupy), which provides experimental evidence of the sliding behavior in the nanocluster kernel. Furthermore, density functional theory (DFT) calculations reveal that this sliding behavior in the inner sites of nanoclusters is an energetically favorable process. In addition, these Au-Cd nanoclusters exhibit tunable optical properties with different assembly patterns in their kernels.
Collapse
Affiliation(s)
- Yesen Tan
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Ying Lv
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Liyun Xu
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Qinzhen Li
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Jinsong Chai
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Sha Yang
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Haizhu Yu
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Manzhou Zhu
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Department of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
25
|
Zanetti-Polzi L, Charchar P, Yarovsky I, Corni S. Origins of the pH-Responsive Photoluminescence of Peptide-Functionalized Au Nanoclusters. ACS NANO 2022; 16:20129-20140. [PMID: 36300936 DOI: 10.1021/acsnano.2c04335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ultrasmall peptide-protected gold nanoclusters are a promising class of bioresponsive material exhibiting pH-sensitive photoluminescence. We present a theoretical insight into the effect peptide-ligand environment has on pH-responsive fluorescence, with the aim of enhancing the rational design of gold nanoclusters for bioapplications. Employing a hybrid quantum/classical computational methodology, we systematically calculate deprotonation free energies of N-terminal cysteine amine groups in proximity to the inherently fluorescent core of Au25(Peptide)18 nanoclusters. We find that subtle changes in hexapeptide sequence alter the electrostatic environment and significantly shift the conventional N-terminal amine pKa expected for amino acids free-in-solution. Our findings provide an insight into how the deprotonation equilibrium of N-terminal amine and side chain carboxyl groups cooperatively respond to solution pH changes, explaining the experimentally observed, yet elusive, pH-responsive fluorescence of peptide-functionalized Au25 clusters.
Collapse
Affiliation(s)
- Laura Zanetti-Polzi
- Istituto di Nanoscienze, Consiglio Nazionale delle Ricerche CNR-NANO, 41125Modena, Italy
| | | | - Irene Yarovsky
- School of Engineering, RMIT University, Victoria3001, Australia
| | - Stefano Corni
- Istituto di Nanoscienze, Consiglio Nazionale delle Ricerche CNR-NANO, 41125Modena, Italy
- Dipartimento di Scienze Chimiche, Università di Padova, 35131Padova, Italy
| |
Collapse
|
26
|
Sun Y, Yu X, Liu P, Han W, Xu WW, Su Y, Zhao J. Isomerism effects in relaxation dynamics of Au 24(SR) 16thiolate-protected gold nanoclusters. NANOTECHNOLOGY 2022; 34:105701. [PMID: 36537747 DOI: 10.1088/1361-6528/aca80d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Understanding the excited state behavior of isomeric structures of thiolate-protected gold nanoclusters is still a challenging task. In this paper, based on grand unified model and ring model for describing thiolate-protected gold nanoclusters, we have predicted four isomers of Au24(SR)16nanoclusters. Density functional theory calculations show that the total energy of one of the predicted isomers is 0.1 eV lower in energy than previously crystallized isomer. The nonradiative relaxation dynamics simulations of Au24(SH)16isomers are performed to reveal the effects of structural isomerism on relaxation process of the lowest energy states, in which that most of the low-excited states consist of core states. In addition, crystallized isomer possesses the shorter e-h recombination time, whereas the most stable isomer has the longer recombination time, which may be attributed to the synergistic effect of nonadiabatic coupling and decoherence time. Our results could provide practical guidance to predict new gold nanoclusters for future experimental synthesis, and stimulate the exploration of atomic structures of same sized gold nanoclusters for photovoltaic and optoelectronic devices.
Collapse
Affiliation(s)
- Yuanze Sun
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, People's Republic of China
| | - Xueke Yu
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, People's Republic of China
| | - Pengye Liu
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, People's Republic of China
| | - Wenhua Han
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, People's Republic of China
| | - Wen-Wu Xu
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, People's Republic of China
| | - Yan Su
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, People's Republic of China
| | - Jijun Zhao
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, People's Republic of China
| |
Collapse
|
27
|
He S, Lv Y, Wu X, Zhao Y, Yu H. Mechanistic Insights into Oxidation-Induced Size Conversion of [Au 6(dppp) 4] 2+ to [Au 8(dppp) 4Cl 2] 2. Inorg Chem 2022; 61:19773-19779. [PMID: 36423328 DOI: 10.1021/acs.inorgchem.2c02885] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Oxidation-induced conversion of gold nanoclusters is an important strategy for preparing novel atomically precise clusters and elucidating the kinetic correlations of different clusters. Herein, the oxidation-induced growth from [Au6(dppp)4]2+ to [Au8(dppp)4Cl2]2+ (reported by Konishi and co-workers) has been studied by density functional theory calculations. A successive oxidation → Cl- coordination → oxidation → Cl- coordination sequence occurs first to activate the Au6 structure, resulting in the high Au(core)-Au(corner) bond cleavage activity and the subsequent formation of [Au2(dppp)2Cl]+ and [Au4(dppp)2Cl]+ fragments. Then, the dimerization of two Au4 fragments and the rearrangement of the diphosphine coordination occur to generate the thermodynamically stable [Au8(dppp)4Cl2]2+ products. The proposed mechanism agrees with the experimental outcome for the fast reaction rate and the residual of the Au2 components. Specifically, a multivariate linear regression analysis indicates the strong correlation of the oxidation potential of Au6, Au8, Au23, and Au25 clusters with the HOMO energy, the number of Au atoms, and cluster charge state. The main conclusions [e.g., oxidation-induced Au(corner)-Au(core) bond activation, easy 1,2-P transfer steps, etc.] of this study might be widely applicable in improving our understanding of the mechanism of other cluster-conversion reactions.
Collapse
Affiliation(s)
- Shuping He
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, P. R. China
| | - Ying Lv
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, P. R. China
| | - Xiaohang Wu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, P. R. China
| | - Yan Zhao
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui 230031, P. R. China
- School of Material Engineering and Science, Anhui University of Science and Technology, Huainan, Anhui 232000, P. R. China
| | - Haizhu Yu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, P. R. China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui 230031, P. R. China
| |
Collapse
|
28
|
Li Q, Yang S, Chai J, Zhang H, Zhu M. Insights into mechanisms of diphosphine-mediated controlled surface construction on Au nanoclusters. NANOSCALE 2022; 14:15804-15811. [PMID: 36254852 DOI: 10.1039/d2nr05291a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Unraveling the rules governing the size regulation of nanoclusters is of great importance not only in fundamental research, but also in practical applications because of the high structure-property correlation in nanoclusters. Diphosphine-mediated size tailoring is recognized as a powerful method for modulating the size, configuration, and properties of nanoclusters, but the role of diphosphines in these size-controlled processes is still poorly understood due to a lack of systematic studies. Herein, using Au23(SR)16- as the template for modification, the factors influencing the size-modulation of nanoclusters by diphosphines were systematically investigated. It is revealed that by controlling the length of the diphosphines (from shorter to longer), Au21(SR)12L2+ (L = diphosphine) and Au22(SR)14L can be produced. Moreover, introducing a rigid group into the diphosphines can twist the structural framework or lead to the formation of a new surface motif configuration in the nanoclusters, forming twisted Au22(SR)14L and Au25(SR)16L2+. The size regulation of these nanoclusters enables fine-tuning of the optical properties, including the absorption wavelengths and photoluminescence emission intensity, affording an avenue for precise control of the physicochemical properties of nanoclusters for practical applications.
Collapse
Affiliation(s)
- Qinzhen Li
- School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, China.
| | - Sha Yang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.
| | - Jinsong Chai
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.
| | - Hui Zhang
- School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, China.
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China.
| |
Collapse
|
29
|
Xu C, Zhou Y, Shi L, Cheng L. Superatomic Three-Center Bond in a Tri-Icosahedral Au 36Ag 2(SR) 18 Cluster: Analogue of 3c-2e Bond in Molecules. J Phys Chem Lett 2022; 13:10147-10152. [PMID: 36270806 DOI: 10.1021/acs.jpclett.2c02552] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Probing the nature of electronic stability for ligand-protected gold clusters is important in gold chemistry. A thermally stable Au36Ag2(SR)18 nanocluster was synthesized recently. It has a D3h tri-icosahedral [Au30Ag2]12+ core with 20 valence electrons, which does not follow the magic number of gold superatoms. Herein, we propose a superatomic three-center bond to unveil its electronic stability. The [Au30Ag2]12+ core is viewed as a union of three face-fused superatoms, and chemical bonding analysis suggests a three-superatom-center two-electron (3sc-2e) bond for the octet rule of each superatom, which mimics the bonding framework of the D3h O32- molecule. Moreover, a liganded tri-icosahedral [Au27Pt3Ag2]11+ core with 18 valence electrons is predicted, and three 2sc-2e bonds are formed between each of two superatoms to satisfy the octet rule (analogue of D3h O3), indicating the flexibility of superatomic bonding. Such a superatomic three-center bond extends the community of superatomic bonding and gives a new perspective for superatom assembling.
Collapse
Affiliation(s)
- Chang Xu
- Department of Chemistry, Anhui University, 111 Jiulong Road, Hefei 230601, P. R. China
| | - Yichun Zhou
- Department of Chemistry, Anhui University, 111 Jiulong Road, Hefei 230601, P. R. China
| | - Lili Shi
- Department of Chemistry, Anhui University, 111 Jiulong Road, Hefei 230601, P. R. China
| | - Longjiu Cheng
- Department of Chemistry, Anhui University, 111 Jiulong Road, Hefei 230601, P. R. China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), 111 Jiulong Road, Hefei 230601, P. R. China
| |
Collapse
|
30
|
Shao P, Zhang H, Ding LP, He QL, Zhao YR, Kuang FG, Kang SY. Effect of Ligand Structures on Ligand-Protected Gold Clusters: [Au-( p-/ m-/ o-MBT)] 1-8 Clusters. J Phys Chem A 2022; 126:7193-7201. [PMID: 36194534 DOI: 10.1021/acs.jpca.2c05267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The controllable preparation of ligand-protected clusters is still an unresolved problem, which may be due to that their formation mechanism is unclear. We propose that the ligand is the key to solve the above problems. Here, by using p-, m-, and o-methylbenzenethiol ligand protected gold clusters as examples, we try to explore the effect of ligand structures on ligand-protected gold clusters. The geometrical structures, relative stabilities and surface properties of small-sized ligand-protected gold clusters [Au-SR]1-8 (SR = p-/m-/o-MBT) have been systematically studied based on the density functional theory. The results show that the ground state structures of [Au-SR]1-8 clusters tend to form closed rings except for [Au-SR]1,2. The different structures of ligand have significant effect on the structures and stabilities of ligand-protected clusters. By analyzing their surface properties and possible growth patterns, it is found that [Au-SR]1,2 clusters serve as the basic building blocks, and the larger clusters can be regarded as the combinations of them. This study provides some insights into the effect of ligands on ligand-protected clusters, which is useful for understanding the formation mechanism of ligand-protected clusters.
Collapse
Affiliation(s)
- Peng Shao
- Department of Physics, Shaanxi University of Science & Technology, Xi'an710021, China
| | - Hui Zhang
- Department of Physics, Shaanxi University of Science & Technology, Xi'an710021, China
| | - Li-Ping Ding
- Department of Optoelectronic Science & Technology, School of Electronic Information and Artificial Intelligence, Shaanxi University of Science & Technology, Xi'an710021, China
| | - Qi-Long He
- Department of Physics, Shaanxi University of Science & Technology, Xi'an710021, China
| | - Ya-Ru Zhao
- School of Electrical and Electronic Engineering, Baoji University of Arts and Sciences, Baoji721016, China
| | - Fang-Guang Kuang
- School of Physics and Electronic Information, Gannan Normal University, Ganzhou341000, China
| | - Shu-Ying Kang
- School of Physics and Electronic Information, Gannan Normal University, Ganzhou341000, China
| |
Collapse
|
31
|
Lv Y, Wu X, He S, Yu H. Mechanistic insights into Ag + induced size-growth from [Au 6(DPPP) 4] 2+ to [Au 7(DPPP) 4] 2+ clusters. NANOSCALE ADVANCES 2022; 4:3737-3744. [PMID: 36133347 PMCID: PMC9470060 DOI: 10.1039/d2na00301e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/02/2022] [Indexed: 06/16/2023]
Abstract
The size conversion of atomically precise metal nanoclusters lays the foundation to elucidate the inherent structure-activity correlations on the nanometer scale. Herein, the mechanism of the Ag+-induced size growth from [Au6(dppp)4]2+ to [Au7(dppp)4]3+ (dppp is short for 1,3-bis(diphenylphosphino)propane) is studied via density functional theory (DFT) calculations. In the absence of extra Au sources, the one "Au+" addition was found to be regulated by the Ag+ doping induced Au-activation, i.e., the formation of formal Au(i) blocks via the Ag+ alloying processes. The Au(i) blocks could be extruded from the core structure in the formed Au-Ag alloy clusters, triggering a facile Au+ migration to the Au6 precursor to form the Au7 product. This study sheds light on the structural and stability changes of gold nanoclusters upon the addition of Ag+ and will hopefully benefit the development of more metal ion-induced size-conversion of metal nanoclusters.
Collapse
Affiliation(s)
- Ying Lv
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University Hefei 230601 Anhui P. R. China
| | - Xiaohang Wu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University Hefei 230601 Anhui P. R. China
| | - Shuping He
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University Hefei 230601 Anhui P. R. China
| | - Haizhu Yu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University Hefei 230601 Anhui P. R. China
- Institute of Energy, Hefei Comprehensive National Science Center Hefei 230031 Anhui P. R. China
| |
Collapse
|
32
|
Geometric and electronic structure analyses on three Au42(SR)26 isomers. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
33
|
Wang E, Ding J, Han W, Luan S. Structural Prediction of Anion Thiolate Protected Gold Clusters of [Au 28+7n(SR) 17+3n] − (n = 0-4). J Chem Phys 2022; 157:124303. [DOI: 10.1063/5.0105226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Structural prediction of thiolate-protected gold nanocluster (AuNCs) with diverse charge states can enrich the understanding of this species. Till now, most expementally synthesized or theoretically predicted AuNCs structures own neutral total charge. In this work, a series of gold nanoclusters with negative total charge including [Au28(SR)17]−, [Au35(SR)20]−, [Au42(SR)23]−, [Au49(SR)26]−, and [Au56(SR)29]− are designed. Following crystallized [Au23(SR)16]- prototype structure, the inner core of the newly predicted clusters are obtained through packing crossed Au7. Next, proper protecting thiolate ligands are arranged to fullfil the duet rule to obtain Au3(2e) and Au4(2e). Extensive analysis indicates these cluster own high stabilities. Molecular orbital analysis shows that the orbitals for the populations of the valence electron locate at each Au3(2e) and Au4(2e), which demonstrates the reliability the GUM model. This work should be helpful for enriching the structural diversity of AuNCs.
Collapse
Affiliation(s)
- Endong Wang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, China
| | - Junxia Ding
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, China
| | | | - Shixia Luan
- State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics Chinese Academy of Sciences, China
| |
Collapse
|
34
|
Han W, Wang E, Xu WW. New structural insights into the stability of Au 22(SR) 16 nanocluster under ring model guidance. Phys Chem Chem Phys 2022; 24:15920-15924. [PMID: 35758327 DOI: 10.1039/d2cp00421f] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study presents thorough structural insights into the stability of crystallized Au22(SAdm)16 (HSAdm = 1-adamantanethiol) nanocluster. With the recently developed Ring Model for describing the interaction between inner gold cores and outer protecting ligands in thiolate-protected gold nanoclusters, the experimental spontaneous transformation from the crystallized Au22(SAdm)16 to Au21(SAdm)15 could be well understood as structurally unfavorable for the current Au22(SAdm)16 and could also be attributed to the weaker aurophilic interaction between the inner Au4 core and the surrounding rings in Au22(SAdm)16 over that in Au21(SAdm)15. Furthermore, with the Ring Model and the grand unified model, two new Au22(SCH3)16 isomers with evident lower energies, higher HOMO-LUMO gaps as well as distinct optical properties over the available crystallized isomer were obtained. This study deepens the current knowledge on the structure of the Au22(SR)16 cluster from a new structural point of view and also confirms the validity as well as practicability of the Ring Model in understanding and predicting the stable structures of thiolate-protected gold nanoclusters.
Collapse
Affiliation(s)
- Wenhua Han
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China.
| | - Endong Wang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China. .,State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Wen Wu Xu
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
35
|
Liu Y, Han W, Hong Z, Xu WW, Wang E. Toward Understanding the Correlation between the Charge States and the Core Structures in Thiolate-Protected Gold Nanoclusters. J Phys Chem Lett 2022; 13:5387-5393. [PMID: 35678557 DOI: 10.1021/acs.jpclett.2c01306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The charge states of thiolate-protected gold nanoclusters (AuNCs) are vital to their stabilities through affecting the number of the valence electrons. However, the origin of the charge states of AuNCs has not been fully understood yet. Herein, through fulfilling the duet-rule derived Au3(2e) and Au4(2e) elementary blocks in the grand unified model (GUM), analysis on the substantial crystal structures indicates the charge states of AuNCs can correlate with their core structural packing, especially the number of Au3(2e) elementary blocks. In addition, aided by the Au3(2e) block's role in tailoring the population of valence electron, three new AuNCs including Au18(SCH3)14, Au30(SCH3)20, and [Au30(SCH3)21]- are predicted through controllably specifying the exact number of Au3(2e) in the core. This work shows that GUM can bridge the gap among the charge states of the cluster, the inner core structure of the cluster, and the detachment of outer ligands via the electron counting rule.
Collapse
Affiliation(s)
- Yuxin Liu
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Wenhua Han
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Zeen Hong
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Wen Wu Xu
- Department of Physics, School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Endong Wang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China
| |
Collapse
|
36
|
Adnan RH, Madridejos JML, Alotabi AS, Metha GF, Andersson GG. A Review of State of the Art in Phosphine Ligated Gold Clusters and Application in Catalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105692. [PMID: 35332703 PMCID: PMC9130904 DOI: 10.1002/advs.202105692] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/23/2022] [Indexed: 05/28/2023]
Abstract
Atomically precise gold clusters are highly desirable due to their well-defined structure which allows the study of structure-property relationships. In addition, they have potential in technological applications such as nanoscale catalysis. The structural, chemical, electronic, and optical properties of ligated gold clusters are strongly defined by the metal-ligand interaction and type of ligands. This critical feature renders gold-phosphine clusters unique and distinct from other ligand-protected gold clusters. The use of multidentate phosphines enables preparation of varying core sizes and exotic structures beyond regular polyhedrons. Weak gold-phosphorous (Au-P) bonding is advantageous for ligand exchange and removal for specific applications, such as catalysis, without agglomeration. The aim of this review is to provide a unified view of gold-phosphine clusters and to present an in-depth discussion on recent advances and key developments for these clusters. This review features the unique chemistry, structural, electronic, and optical properties of gold-phosphine clusters. Advanced characterization techniques, including synchrotron-based spectroscopy, have unraveled substantial effects of Au-P interaction on the composition-, structure-, and size-dependent properties. State-of-the-art theoretical calculations that reveal insights into experimental findings are also discussed. Finally, a discussion of the application of gold-phosphine clusters in catalysis is presented.
Collapse
Affiliation(s)
- Rohul H. Adnan
- Department of Chemistry, Faculty of ScienceCenter for Hydrogen EnergyUniversiti Teknologi Malaysia (UTM)Johor Bahru81310Malaysia
| | | | - Abdulrahman S. Alotabi
- Flinders Institute for NanoScale Science and TechnologyFlinders UniversityAdelaideSouth Australia5042Australia
- Department of PhysicsFaculty of Science and Arts in BaljurashiAlbaha UniversityBaljurashi65655Saudi Arabia
| | - Gregory F. Metha
- Department of ChemistryUniversity of AdelaideAdelaideSouth Australia5005Australia
| | - Gunther G. Andersson
- Flinders Institute for NanoScale Science and TechnologyFlinders UniversityAdelaideSouth Australia5042Australia
| |
Collapse
|
37
|
Kang SY, Nan ZA, Wang QM. Superatomic Orbital Splitting in Coinage Metal Nanoclusters. J Phys Chem Lett 2022; 13:291-295. [PMID: 34978829 DOI: 10.1021/acs.jpclett.1c03563] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The superatomic orbital splitting (SOS) method is developed to understand the electronic structures of coinage metal nanoclusters, in which delocalized electron counts are not magic numbers. Because the symmetry of a metal core can significantly affect the electronic structure of a nanocluster, this method takes the shape of the core into account in determining the order of group orbital levels. By taking nanoclusters as superatoms, a highly positively charged core is established by removing the ligands and staples. The superatomic orbitals split into group orbitals at different energy levels because of the nonspherical shape of the cluster core. Therefore, the electron configuration of the nonmagic-number nanocluster can be qualitatively analyzed without quantum chemical calculations, which is very important for understanding the stability of the cluster.
Collapse
Affiliation(s)
- Shao-Yu Kang
- Collaborative Innovation Center of Chemistry for Energy Materials and Department of Chemistry, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zi-Ang Nan
- Department of Chemistry, Tsinghua University, Beijing 100084, China
- Collaborative Innovation Center of Chemistry for Energy Materials and Department of Chemistry, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Quan-Ming Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
- Collaborative Innovation Center of Chemistry for Energy Materials and Department of Chemistry, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
38
|
Yang L, He Q, Han W, Liu P, Xu WW. Application of grand unified model and ring model in understanding the isomeric structures of Au28(SR)20 nanoclusters. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.139133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
Huang L, Liu W, Hu J, Xing X. Exploring the Effects of a Doping Silver Atom on Anionic Gold Clusters' Reactivity with O 2. J Phys Chem A 2021; 125:9995-10005. [PMID: 34784715 DOI: 10.1021/acs.jpca.1c06507] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reactivities of AgAun-1- (n = 3-10) with O2 at a low temperature were studied using an instrument combining a magnetron sputter cluster source, a microflow reactor, and a time-of-flight mass spectrometer. Their reaction products as well as size-dependent kinetic rates were nearly identical to those of corresponding Aun- (n = 3-10). Previous experiments showed that the Ag atom in AgAun-1- (n = 3-10) was fully or partially enclosed by the gold atoms. We studied the adsorption of O2 on these reported structures using the B3LYP theory with relatively large basis sets. The theoretical results indicate that the adsorption sites as well as the adsorption energies of O2 on AgAun-1- (n = 3-10) are nearly identical to those on the corresponding Aun- (n = 3-10). The O2 adsorption on a series of proposed isomers of AgAun-1- (denoted as Aun-1Ag-), in which the silver atom was on the protruding site, was explored using the same theoretical methods. The O2 tends to bond with the protruding Ag atoms, and the binding energies are apparently higher than those on the corresponding Aun- and AgAun-1-. The adsorption and activation of O2 on Aun-, AgAun-1-, and Aun-1Ag- were correlated with their global electron detachment energies (VDEs) as well as the element types of the adsorption sites. Generally, low VDE values and silver sites facilitate the O2 adsorption, and these two factors separately dominate in various cluster species. The revealed effects of a doping silver atom in small gold clusters are helpful to understand the role of the residual silver components in many nano gold catalysts.
Collapse
Affiliation(s)
- Lulu Huang
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, P. R. China
| | - Wen Liu
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, P. R. China
| | - Jin Hu
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, P. R. China
| | - Xiaopeng Xing
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Tongji University, 1239 Siping Road, Shanghai 200092, P. R. China
| |
Collapse
|
40
|
Deng S, Li J, Wang P, Pei Y. Origin of the structural stability of cage-like Au 144 clusters. NANOSCALE 2021; 13:18134-18139. [PMID: 34724020 DOI: 10.1039/d1nr05227f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cage-like metal nanoclusters are rarely found due to the densely packed property of metals. Recently, single crystallography has unraveled for the first time that multi-shell golden cages are formed in large-size thiolate (SR) and alkynl (CCR) protected neutral Au144 nanoclusters, denoted as Au144(SR)60 and Au144(CCR)60. In this study, the origin of the structural stability of golden cage Au144 clusters is studied based on the density functional theory (DFT) energy calculation and energy decomposition analysis (EDA). The formation of hollow cages rather than centre-filled icosahedrons in the Au144 clusters is attributed to the significant Pauli repulsion between the central gold atom and the surrounding metal shell, which leads to the decrease of the averaged formation energy of the clusters. The present study also shows that the Au144 cluster is unique in size. The smaller size clusters Au133 and Au130 and the larger size cluster Au279 both preferred the centre-filled golden icosahedrons, decahedrons or octahedrons.
Collapse
Affiliation(s)
- Shiyao Deng
- Department of Chemistry, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Hunan Province 411105, China.
| | - Jing Li
- Department of Chemistry, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Hunan Province 411105, China.
| | - Pu Wang
- Department of Chemistry, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Hunan Province 411105, China.
- Foshan Green Intelligent Manufacturing Research Institute of Xiangtan University, Guangdong Province, 5283311, China
| | - Yong Pei
- Department of Chemistry, Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Hunan Province 411105, China.
| |
Collapse
|
41
|
Si WD, Li YZ, Zhang SS, Wang S, Feng L, Gao ZY, Tung CH, Sun D. Toward Controlled Syntheses of Diphosphine-Protected Homochiral Gold Nanoclusters through Precursor Engineering. ACS NANO 2021; 15:16019-16029. [PMID: 34592104 DOI: 10.1021/acsnano.1c04421] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Controllable syntheses of Au nanoclusters (NCs) with different nuclearities are of great significance due to the kernel-dependent physicochemical properties. Herein, two pairs of enantiomeric Au NCs [Au19(R/S-BINAP)4(PhC≡C)Cl4] (SD/Au19) and [Au11(R/S-BINAP)4(PhC≡C)2]·Cl (SD/Au11), both with atropos (rigid axial chirality) diphosphine BINAP (2,2'-bis(diphenylphosphino)-1,1'-binaphthalene) as the predominant organic ligands, were controllably synthesized through precursor engineering. The former was obtained by direct reduction of HAuCl4·4H2O, while the latter was obtained by reduction of [Au(SMe2)Cl] instead. Intriguingly, the kernel of SD/Au19 contains an Au7 pentagonal bipyramid capped by two boat-like Au6 rings, which represents another type of Au19 kernel, making SD/Au19 a good candidate for comparative study with other Au19 NCs to get more insight into the distinct structural evolution of phosphine-protected Au NCs. Despite the previous chiroptical studies on some other chiral undecagold NCs, the successful attainment of the X-ray crystal structures for SD/Au11 not only provides a step forward toward better correlating the chiroptical activities with their structural details but also reveals that even the auxiliary protecting ligands also play a nontrivial role in tuning the geometrical structures of the metal NCs. The chiroptical activities of both SD/Au19 and SD/Au11 were found to originate from the chiral ligands and core distortions; the extended π-electron systems in the BINAP ligands have proved to positively contribute to the electronic absorptions and thus disturb the corresponding circular dichroism (CD) responses.
Collapse
Affiliation(s)
- Wei-Dan Si
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, People's Republic of China
| | - Ying-Zhou Li
- Shandong Provincial Key Laboratory of Molecular Engineering, Qilu University of Technology (Shandong Academy of Science), Ji'nan 250353, People's Republic of China
| | - Shan-Shan Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, People's Republic of China
| | - Suna Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, People's Republic of China
| | - Lei Feng
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, People's Republic of China
| | - Zhi-Yong Gao
- School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, People's Republic of China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, People's Republic of China
| | - Di Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, People's Republic of China
| |
Collapse
|
42
|
Li Q, Huang B, Yang S, Zhang H, Chai J, Pei Y, Zhu M. Unraveling the Nucleation Process from a Au(I)-SR Complex to Transition-Size Nanoclusters. J Am Chem Soc 2021; 143:15224-15232. [PMID: 34498861 DOI: 10.1021/jacs.1c06354] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Atomically precise noble metal nanoclusters provide a critical benchmark for the fundamental research of the origin of condensed matter because they retain the original state of the metal bonds. Also, knowledge about the transition from organometallic complexes to a nanoclusters is important for understanding the structural evolution of the nanoclusters, particularly their nucleation mechanism. Herein, three transition-size gold nanoclusters are prepared via a controlled diphosphine-mediated top-down routine. Starting from small-size nanoclusters, three new nanoclusters including Au13(SAdm)8(L4)2(BPh4) (Au13), Au14(S-c-C6H11)10L4 (Au14), and Au16(S-c-C6H11)11LPh* (Au16) are obtained by controlled clipping on the surface and kernel of initial nanoclusters. Combining their atomically precise structures with DFT theoretical calculations, the overall atom-by-atom structural evolution process from Au12(SR)12 (0 e-) to Au18(SR)14 (4 e-) is mapped out. In addition, studies on their electronic structures show that the evolution from an organometallic complex to nanoclusters is accompanied by a dramatic decrease in the HOMO-LUMO gaps. Most importantly, the formation of the first Au-Au bond is captured in the "Au4S4 to Au5" nucleation process from Au12(SR)12 complex to the Au13 nanocluster. This work provides a deep insight into the origin of inner core in Au NCs and their structural transition relationship with metal complexes.
Collapse
Affiliation(s)
- Qinzhen Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China.,School of Physics and Materials Science, Anhui University, Hefei, Anhui 230601, China
| | - Baoyu Huang
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of MOE, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Sha Yang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Hui Zhang
- School of Physics and Materials Science, Anhui University, Hefei, Anhui 230601, China
| | - Jinsong Chai
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Yong Pei
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of MOE, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
43
|
Computational Approaches to the Electronic Properties of Noble Metal Nanoclusters Protected by Organic Ligands. NANOMATERIALS 2021; 11:nano11092409. [PMID: 34578725 PMCID: PMC8468547 DOI: 10.3390/nano11092409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 11/17/2022]
Abstract
Organometallic nanoparticles composed by metal cores with sizes under two nanometers covered with organic capping ligands exhibit intermediate properties between those of atoms and molecules on one side, and those of larger metal nanoparticles on the other. In fact, these particles do not show a peculiar metallic behavior, characterized by plasmon resonances, but instead they have nonvanishing band-gaps, more along molecular optical properties. As a consequence, they are suitable to be described and investigated by computational approaches such as those used in quantum chemistry, for instance those based on the time-dependent density functional theory (TD-DFT). Here, I present a short review of the research performed from 2014 onward at the University of Modena and Reggio Emilia (Italy) on the TD-DFT interpretation of the electronic spectra of different organic-protected gold and/or silver nanoclusters.
Collapse
|
44
|
Gold Clusters: From the Dispute on a Gold Chair to the Golden Future of Nanostructures. Molecules 2021; 26:molecules26165014. [PMID: 34443602 PMCID: PMC8399228 DOI: 10.3390/molecules26165014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 08/10/2021] [Accepted: 08/14/2021] [Indexed: 12/14/2022] Open
Abstract
The present work opens with an acknowledgement to the research activity performed by Luciana Naldini while affiliated at the Università degli Studi di Sassari (Italy), in particular towards gold complexes and clusters, as a tribute to her outstanding figure in a time and a society where being a woman in science was rather difficult, hoping her achievements could be of inspiration to young female chemists in pursuing their careers against the many hurdles they may encounter. Naldini’s findings will be a key to introduce the most recent results in this field, showing how the chemistry of gold compounds has changed throughout the years, to reach levels of complexity and elegance that were once unimagined. The study of gold complexes and clusters with various phosphine ligands was Naldini’s main field of research because of the potential application of these species in diverse research areas including electronics, catalysis, and medicine. As the conclusion of a vital period of study, here we report Naldini’s last results on a hexanuclear cationic gold cluster, [(PPh3)6Au6(OH)2]2+, having a chair conformation, and on the assumption, supported by experimental data, that it comprises two hydroxyl groups. This contribution, within the fascinating field of inorganic chemistry, provides the intuition of how a simple electron counting may lead to predictable species of yet unknown molecular architectures and formulation, nowadays suggesting interesting opportunities to tune the electronic structures of similar and higher nuclearity species thanks to new spectroscopic and analytical approaches and software facilities. After several decades since Naldini’s exceptional work, the chemistry of the gold cluster has reached a considerable degree of complexity, dealing with new, single-atom precise, materials possessing interesting physico-chemical properties, such as luminescence, chirality, or paramagnetic behavior. Here we will describe some of the most significant contributions.
Collapse
|
45
|
Tang L, Ma A, Zhang C, Liu X, Jin R, Wang S. Total Structure of Bimetallic Core–Shell [Au
42
Cd
40
(SR)
52
]
2−
Nanocluster and Its Implications. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Li Tang
- College of Materials Science and Engineering Qingdao University of Science and Technology Qingdao 266042 P. R. China
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials Anhui University Hefei Anhui 230601 P. R. China
| | - Along Ma
- College of Materials Science and Engineering Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Cheng Zhang
- College of Materials Science and Engineering Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Xuguang Liu
- College of Materials Science and Engineering Qingdao University of Science and Technology Qingdao 266042 P. R. China
| | - Rongchao Jin
- Department of Chemistry Carnegie Mellon University Pittsburgh PA 15213 USA
| | - Shuxin Wang
- College of Materials Science and Engineering Qingdao University of Science and Technology Qingdao 266042 P. R. China
| |
Collapse
|
46
|
Tang L, Ma A, Zhang C, Liu X, Jin R, Wang S. Total Structure of Bimetallic Core-Shell [Au 42 Cd 40 (SR) 52 ] 2- Nanocluster and Its Implications. Angew Chem Int Ed Engl 2021; 60:17969-17973. [PMID: 34125983 DOI: 10.1002/anie.202106804] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Indexed: 12/16/2022]
Abstract
Bimetallic core-shell nanostructures hold great promise in elucidating the bimetallic synergism. However, it remains a challenge to construct atomically precise core-shell with high-valence active metals on the gold surface. In this work, we report the total structure of a [Au42 Cd40 (SR)52 ]2- core-shell nanocluster and multiple implications. Single crystal X-ray diffraction (SCXRD) reveals that the structure possesses a two-shelled Au6 @Au36 core and a closed cadmium shell of Cd40 , and the core-shell structure is then protected by 52 thiolate (-SR) ligands. The composition of the nanocluster is further confirmed by electrospray ionization mass spectrometry (ESI-MS). A catalytic test for styrene oxidation and a comparison with relevant nanoclusters reveal the surface effect on the catalytic activity and selectivity.
Collapse
Affiliation(s)
- Li Tang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China.,Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Along Ma
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Cheng Zhang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Xuguang Liu
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Rongchao Jin
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Shuxin Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| |
Collapse
|
47
|
Wang E, Gao Y. Elucidating the stabilities and properties of the thiolate-protected Au nanoclusters with detaching the staple motifs. J Chem Phys 2021; 155:044302. [PMID: 34340381 DOI: 10.1063/5.0056933] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Thiolate-protected Au nanoclusters (AuNCs) have been widely studied in areas of catalysis, biosensors, and bioengineering. In real applications, e.g., catalytic reactions, the thiolate groups are normally partially detached. However, which of the thiolate groups are easily detached and how the detachment of the ligands affects the geometries and electronic structures of the Au nanoclusters have been rarely studied. In this work, we employed the density functional theory calculations as well as the molecular orbital analysis to explore the detachment effect of the ligands using nine thiolate-protected AuNCs as examples. Our results showed that there existed a nearly linear relationship between the averaged detachment energies and the numbers of Au atoms in the motifs. Detaching longer motifs normally required more energies owing to the stronger aurophilic effects. For detaching a full motif, based on the structure decomposition via the grand unified model, analysis on the inner Au core indicated that the change in Au-Au bond length was more sensitive for the inter-block compared to the intra-block. The detachment of the -SH fragment generally needs less energy and brings less structural deformations when compared to the removal of a full motif. Molecular orbital analysis showed that the relative energies of the HOMO orbitals were elevated, which led to the narrow down of the HOMO-LUMO gap. This work provides a primary description of the correlation of the ligands' detachment with the relative stabilities and structures of the AuNCs, which would be beneficial for establishing the structure-property relationship of AuNCs in real applications.
Collapse
Affiliation(s)
- Endong Wang
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China
| | - Yi Gao
- Interdisciplinary Research Center, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| |
Collapse
|
48
|
Xie W, Yu F, Wu X, Liu Z, Yan Q, Wang Z. Constructing the bonding interactions between endohedral metallofullerene superatoms by embedded atomic regulation. Phys Chem Chem Phys 2021; 23:15899-15903. [PMID: 34318835 DOI: 10.1039/d1cp02070f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We present a possible principle that controls intercluster bonding through embedding different kinds of actinide atoms into the centre of fullerenes, thereby exhibiting different bonding forms. Moreover, these superatoms maintain the robustness of electronic structures.
Collapse
Affiliation(s)
- Weiyu Xie
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China.
| | | | | | | | | | | |
Collapse
|
49
|
Muñoz‐Castro A. Au
70
S
20
(PPh
3
)
12
as Superatomic Analog to 18‐electron Transition‐Metal Complexes. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202100134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Alvaro Muñoz‐Castro
- Grupo de Química Inorgánica y Materiales Moleculares Facultad de Ingenieria Universidad Autonoma de Chile El Llano Subercaseaux 2801 Santiago Chile
| |
Collapse
|
50
|
Xiong L, Pei Y. Symmetric Growth of Dual-Packed Kernel: Exploration of the Evolution of Au 40(SR) 24 to Au 49(SR) 27 and Au 58(SR) 30 Clusters via the 2 e --Reduction Cluster Growth Mechanism. ACS OMEGA 2021; 6:18024-18032. [PMID: 34308037 PMCID: PMC8296561 DOI: 10.1021/acsomega.1c01791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/03/2021] [Indexed: 06/13/2023]
Abstract
The symmetric and periodic growth of metal core and ligand shell has been found in a number of ligand-protected metal clusters. So far, the principle of symmetric growth has been widely used to understand and predict the cluster structure evolution. In this work, based on the experimentally resolved crystal structure of Au40(o-MBT)24 and Au49(2,4-DMBT)27 clusters and a newly proposed two-electron (2e -) reduction cluster growth mechanism, the evolution pathway from the quasi-face-centered-cubic (fcc)-structured Au40(SR)24 cluster to the dual fcc- and nonfcc-packed Au49(SR)27 and Au58(SR)30 clusters was studied. The current research has clarified two important issues of cluster structure evolution. First, the formation of the dual-packed fcc and nonfcc kernel structure has been rationalized based on a 2e -reduction-based seed-mediated cluster growth pathway. Second, it is found that the symmetrical growth does not necessarily lead to the formation of stable cluster structures. It was found that the formation of dual-packed kernels in the Au49(SR)27 cluster is favorable because of the stability of the intermediate cluster structures and the relatively high thermodynamic stability of the cluster itself. However, although the structure of Au58(SR)30 cluster conforms to the principle of symmetric growth, the tension between the ligand shell and the gold atom of the metal nucleus increases significantly during the cluster size evolution, and the stability of the intermediate clusters is poor, so the formation of the Au58(SR)30 cluster is unfavorable. This study also shows that the 2e --reduction cluster growth mechanism can be used to explore the structural evolution and stability of thiolate-protected gold clusters.
Collapse
Affiliation(s)
- Lin Xiong
- Department of Chemistry,
Key Laboratory of Environmentally Friendly Chemistry and Applications
of Ministry of Education, Key Laboratory for Green Organic Synthesis
and Application of Hunan Province, Xiangtan
University, Xiangtan, Hunan Province 411105, China
| | - Yong Pei
- Department of Chemistry,
Key Laboratory of Environmentally Friendly Chemistry and Applications
of Ministry of Education, Key Laboratory for Green Organic Synthesis
and Application of Hunan Province, Xiangtan
University, Xiangtan, Hunan Province 411105, China
| |
Collapse
|