1
|
Brand JA, Aich U, Yee WKW, Wong BBM, Dowling DK. Sexual Selection Increases Male Behavioral Consistency in Drosophila melanogaster. Am Nat 2024; 203:713-725. [PMID: 38781526 DOI: 10.1086/729600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
AbstractSexual selection has been suggested to influence the expression of male behavioral consistency. However, despite predictions, direct experimental support for this hypothesis has been lacking. Here, we investigated whether sexual selection altered male behavioral consistency in Drosophila melanogaster-a species with both pre- and postcopulatory sexual selection. We took 1,144 measures of locomotor activity (a fitness-related trait in D. melanogaster) from 286 flies derived from replicated populations that have experimentally evolved under either high or low levels of sexual selection for >320 generations. We found that high sexual selection males were more consistent (decreased within-individual variance) in their locomotor activity than male conspecifics from low sexual selection populations. There were no differences in behavioral consistency between females from the high and low sexual selection populations. Furthermore, while females were more behaviorally consistent than males in the low sexual selection populations, there were no sex differences in behavioral consistency in high sexual selection populations. Our results demonstrate that behavioral plasticity is reduced in males from populations exposed to high levels of sexual selection. Disentangling whether these effects represent an evolved response to changes in the intensity of selection or are manifested through nongenetic parental effects represents a challenge for future research.
Collapse
|
2
|
Smithson CH, Duncan EJ, Sait SM, Bretman A. Sensory perception of rivals has trait-dependent effects on plasticity in Drosophila melanogaster. Behav Ecol 2024; 35:arae031. [PMID: 38680228 PMCID: PMC11053361 DOI: 10.1093/beheco/arae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/05/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024] Open
Abstract
The social environment has myriad effects on individuals, altering reproduction, immune function, cognition, and aging. Phenotypic plasticity enables animals to respond to heterogeneous environments such as the social environment but requires that they assess those environments accurately. It has been suggested that combinations of sensory cues allow animals to respond rapidly and accurately to changeable environments, but it is unclear whether the same sensory inputs are required in all traits that respond to a particular environmental cue. Drosophila melanogaster males, in the presence of rival males, exhibit a consistent behavioral response by extending mating duration. However, exposure to a rival also results in a reduction in their lifespan, a phenomenon interpreted as a trade-off associated with sperm competition strategies. D. melanogaster perceive their rivals by using multiple sensory cues; interfering with at least two olfactory, auditory, or tactile cues eliminates the extension of mating duration. Here, we assessed whether these same cues were implicated in the lifespan reduction. Removal of combinations of auditory and olfactory cues removed the extended mating duration response to a rival, as previously found. However, we found that these manipulations did not alter the reduction in lifespan of males exposed to rivals or induce any changes in activity patterns, grooming, or male-male aggression. Therefore, our analysis suggests that lifespan reduction is not a cost associated with the behavioral responses to sperm competition. Moreover, this highlights the trait-specific nature of the mechanisms underlying plasticity in response to the same environmental conditions.
Collapse
Affiliation(s)
- Claire H Smithson
- School of Biology, Faculty of Biological Sciences, University of Leeds, Clarendon Road, Leeds, West Yorkshire, LS2 9JT, United Kingdom
| | - Elizabeth J Duncan
- School of Biology, Faculty of Biological Sciences, University of Leeds, Clarendon Road, Leeds, West Yorkshire, LS2 9JT, United Kingdom
| | - Steven M Sait
- School of Biology, Faculty of Biological Sciences, University of Leeds, Clarendon Road, Leeds, West Yorkshire, LS2 9JT, United Kingdom
| | - Amanda Bretman
- School of Biology, Faculty of Biological Sciences, University of Leeds, Clarendon Road, Leeds, West Yorkshire, LS2 9JT, United Kingdom
| |
Collapse
|
3
|
Sommer-Trembo C, Santos ME, Clark B, Werner M, Fages A, Matschiner M, Hornung S, Ronco F, Oliver C, Garcia C, Tschopp P, Malinsky M, Salzburger W. The genetics of niche-specific behavioral tendencies in an adaptive radiation of cichlid fishes. Science 2024; 384:470-475. [PMID: 38662824 DOI: 10.1126/science.adj9228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 03/12/2024] [Indexed: 05/03/2024]
Abstract
Behavior is critical for animal survival and reproduction, and possibly for diversification and evolutionary radiation. However, the genetics behind adaptive variation in behavior are poorly understood. In this work, we examined a fundamental and widespread behavioral trait, exploratory behavior, in one of the largest adaptive radiations on Earth, the cichlid fishes of Lake Tanganyika. By integrating quantitative behavioral data from 57 cichlid species (702 wild-caught individuals) with high-resolution ecomorphological and genomic information, we show that exploratory behavior is linked to macrohabitat niche adaptations in Tanganyikan cichlids. Furthermore, we uncovered a correlation between the genotypes at a single-nucleotide polymorphism upstream of the AMPA glutamate-receptor regulatory gene cacng5b and variation in exploratory tendency. We validated this association using behavioral predictions with a neural network approach and CRISPR-Cas9 genome editing.
Collapse
Affiliation(s)
- Carolin Sommer-Trembo
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - M Emília Santos
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Bethan Clark
- Department of Zoology, University of Cambridge, Cambridge, UK
| | - Marco Werner
- Leibniz-Institute for Polymer Research Dresden, Dresden, Germany
| | - Antoine Fages
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | | | - Simon Hornung
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Fabrizia Ronco
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Chantal Oliver
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Cody Garcia
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Patrick Tschopp
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Milan Malinsky
- Department of Biology, Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
| | - Walter Salzburger
- Zoological Institute, Department of Environmental Sciences, University of Basel, Basel, Switzerland
| |
Collapse
|
4
|
Luo J, Bainbridge C, Miller RM, Barrios A, Portman DS. C. elegans males optimize mate-preference decisions via sex-specific responses to multimodal sensory cues. Curr Biol 2024; 34:1309-1323.e4. [PMID: 38471505 PMCID: PMC10965367 DOI: 10.1016/j.cub.2024.02.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 12/07/2023] [Accepted: 02/15/2024] [Indexed: 03/14/2024]
Abstract
For sexually reproducing animals, selecting optimal mates is important for maximizing reproductive fitness. In the nematode C. elegans, populations reproduce largely by hermaphrodite self-fertilization, but the cross-fertilization of hermaphrodites by males also occurs. Males' ability to recognize hermaphrodites involves several sensory cues, but an integrated view of the ways males use these cues in their native context to assess characteristics of potential mates has been elusive. Here, we examine the mate-preference behavior of C. elegans males evoked by natively produced cues. We find that males use a combination of volatile sex pheromones (VSPs), ascaroside sex pheromones, surface-associated cues, and other signals to assess multiple features of potential mates. Specific aspects of mate preference are communicated by distinct signals: developmental stage and sex are signaled by ascaroside pheromones and surface cues, whereas the presence of a self-sperm-depleted hermaphrodite is likely signaled by VSPs. Furthermore, males prefer to interact with virgin over mated, and well-fed over food-deprived, hermaphrodites; these preferences are likely adaptive and are also mediated by ascarosides and other cues. Sex-typical mate-preference behavior depends on the sexual state of the nervous system, such that pan-neuronal genetic masculinization in hermaphrodites generates male-typical social behavior. We also identify an unexpected role for the sex-shared ASH sensory neurons in male attraction to ascaroside sex pheromones. Our findings lead to an integrated view in which the distinct physical properties of various mate-preference cues guide a flexible, stepwise behavioral program by which males assess multiple features of potential mates to optimize mate preference.
Collapse
Affiliation(s)
- Jintao Luo
- School of Life Sciences, Xiamen University, Xiamen 361102, Fujian, China; Department of Biomedical Genetics and Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY 14642, USA
| | - Chance Bainbridge
- Department of Biomedical Genetics and Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY 14642, USA
| | - Renee M Miller
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14620, USA
| | - Arantza Barrios
- Department of Cell and Developmental Biology, University College London, London WC1E 6DE, UK
| | - Douglas S Portman
- Department of Biomedical Genetics and Del Monte Institute for Neuroscience, University of Rochester, Rochester, NY 14642, USA.
| |
Collapse
|
5
|
Value-directed information search in partner choice. JUDGMENT AND DECISION MAKING 2022. [DOI: 10.1017/s1930297500009426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Abstract
It is a widely held view that people rely on incomplete information to
find a relationship partner, resulting in non-compensatory choice
heuristics. However, recent experimental work typically finds that partner
choice follows compensatory choice strategies. To bridge this gap between
theory and experimental evidence, we characterize the mate choice problem by
distinguishing the information search process from the evaluation process.
In an eye-tracking experiment and a MouseLab experiment, we show that people
display strong value-directed search heuristics in response to all types of
cues and that the magnitude of value-directed searches increases with cue
primacy. Cue primacy also explains the interaction effect of cue type and
participant sex on the extent of valued-directed search. We further argue
that value-directed searching does not necessarily lead to non-compensatory
choice rules but may serve compensatory decision-making. Our results
demonstrate that people may adopt remarkably smart search heuristics to find
an ideal partner efficiently.
Collapse
|
6
|
Corbel Q, Londoño‐Nieto C, Carazo P. Does perception of female cues modulate male short-term fitness components in Drosophila melanogaster? Ecol Evol 2022; 12:e9287. [PMID: 36177144 PMCID: PMC9471061 DOI: 10.1002/ece3.9287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/08/2022] [Accepted: 08/18/2022] [Indexed: 11/28/2022] Open
Abstract
Phenotypic plasticity in reproductive behavior can be a strong driver of individual fitness. In species with high intra-sexual competition, changes in socio-sexual context can trigger quick adaptive plastic responses in males. In particular, a recent study in the vinegar fly (Drosophila melanogaster) shows that males derive net fitness benefits from being shortly exposed to female cues ahead of access to mating (termed sexual perception), but the underlying mechanisms of this phenomenon remain unknown. Here, we investigated the short-term effects of female perception on male pre- and post-copulatory components of reproductive performance: (a) mating success, (b) mating latency and duration, (c) sperm competitiveness, and (d) ejaculate effects on female receptivity and reproductive rate. We found that brief sexual perception increased mating duration, but had no effect on the other main pre- and post-copulatory fitness proxies recorded. This suggests that perception of female cues may not yield net fitness benefits for males in the short-term, but we discuss alternative explanations and future avenues of research.
Collapse
Affiliation(s)
- Quentin Corbel
- Ethology Lab, Ethology, Ecology and Evolution Group, Cavanilles Institute of Biodiversity and Evolutionary BiologyUniversity of ValenciaValenciaSpain
| | - Claudia Londoño‐Nieto
- Ethology Lab, Ethology, Ecology and Evolution Group, Cavanilles Institute of Biodiversity and Evolutionary BiologyUniversity of ValenciaValenciaSpain
| | - Pau Carazo
- Ethology Lab, Ethology, Ecology and Evolution Group, Cavanilles Institute of Biodiversity and Evolutionary BiologyUniversity of ValenciaValenciaSpain
| |
Collapse
|
7
|
Jin B, Barbash DA, Castillo DM. Divergent selection on behavioural and chemical traits between reproductively isolated populations of Drosophila melanogaster. J Evol Biol 2022; 35:693-707. [PMID: 35411988 PMCID: PMC9320809 DOI: 10.1111/jeb.14007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 11/29/2022]
Abstract
Speciation is driven by traits that can act to prevent mating between nascent lineages, including male courtship and female preference for male traits. Mating barriers involving these traits evolve quickly because there is strong selection on males and females to maximize reproductive success, and the tight co-evolution of mating interactions can lead to rapid diversification of sexual behaviour. Populations of Drosophila melanogaster show strong asymmetrical reproductive isolation that is correlated with geographic origin. Using strains that capture natural variation in mating traits, we ask two key questions: which specific male traits are females selecting, and are these traits under divergent sexual selection? These questions have proven extremely challenging to answer, because even in closely related lineages males often differ in multiple traits related to mating behaviour. We address these questions by estimating selection gradients for male courtship and cuticular hydrocarbons for two different female genotypes. We identify specific behaviours and particular cuticular hydrocarbons that are under divergent sexual selection and could potentially contribute to premating reproductive isolation. Additionally, we report that a subset of these traits are plastic; males adjust these traits based on the identity of the female genotype they interact with. These results suggest that even when male courtship is not fixed between lineages, ongoing selection can act on traits that are important for reproductive isolation.
Collapse
Affiliation(s)
- Bozhou Jin
- Department of Molecular Biology and GeneticsCornell UniversityIthacaNew YorkUSA
| | - Daniel A. Barbash
- Department of Molecular Biology and GeneticsCornell UniversityIthacaNew YorkUSA
| | - Dean M. Castillo
- Department of BiologyUniversity of Nebraska at OmahaOmahaNebraskaUSA
| |
Collapse
|
8
|
Sinclair CS, Lisa SF, Pischedda A. Does sexual experience affect the strength of male mate choice for high-quality females in Drosophila melanogaster? Ecol Evol 2021; 11:16981-16992. [PMID: 34938486 PMCID: PMC8668775 DOI: 10.1002/ece3.8334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 11/07/2022] Open
Abstract
Although females are traditionally thought of as the choosy sex, there is increasing evidence in many species that males will preferentially court or mate with certain females over others when given a choice. In the fruit fly, Drosophila melanogaster, males discriminate between potential mating partners based on a number of female traits, including species, mating history, age, and condition. Interestingly, many of these male preferences are affected by the male's previous sexual experiences, such that males increase courtship toward types of females that they have previously mated with and decrease courtship toward types of females that have previously rejected them. D. melanogaster males also show courtship and mating preferences for larger females over smaller females, likely because larger females have higher fecundity. It is unknown, however, whether this preference shows behavioral plasticity based on the male's sexual history as we see for other male preferences. Here, we manipulate the sexual experience of D. melanogaster males and test whether this manipulation has any effect on the strength of male mate choice for large females. We find that sexually inexperienced males have a robust courtship preference for large females that is unaffected by previous experience mating with, or being rejected by, females of differing sizes. Given that female body size is one of the most common targets of male mate choice across insect species, our experiments with D. melanogaster may provide insight into how these preferences develop and evolve.
Collapse
Affiliation(s)
| | - Suriya F. Lisa
- Department of BiologyBarnard CollegeColumbia UniversityNew YorkUSA
| | - Alison Pischedda
- Department of BiologyBarnard CollegeColumbia UniversityNew YorkUSA
| |
Collapse
|
9
|
Abstract
One hundred fifty years ago Darwin published The Descent of Man, and Selection in Relation to Sex, in which he presented his theory of sexual selection with its emphasis on sexual beauty. However, it was not until 50 y ago that there was a renewed interest in Darwin’s theory in general, and specifically the potency of mate choice. Darwin suggested that in many cases female preferences for elaborately ornamented males derived from a female’s taste for the beautiful, the notion that females were attracted to sexual beauty for its own sake. Initially, female mate choice attracted the interest of behavioral ecologists focusing on the fitness advantages accrued through mate choice. Subsequent studies focused on sensory ecology and signal design, often showing how sensory end organs influenced the types of traits females found attractive. Eventually, investigations of neural circuits, neurogenetics, and neurochemistry uncovered a more complete scaffolding underlying sexual attraction. More recently, research inspired by human studies in psychophysics, behavioral economics, and neuroaesthetics have provided some notion of its higher-order mechanisms. In this paper, I review progress in our understanding of Darwin’s conjecture of “a taste for the beautiful” by considering research from these diverse fields that have conspired to provide unparalleled insight into the chooser’s mate choices.
Collapse
|
10
|
Peralta-Rincón JR, Aoulad FZ, Prado A, Edelaar P. Phenotype-dependent habitat choice is too weak to cause assortative mating between Drosophila melanogaster strains differing in light sensitivity. PLoS One 2020; 15:e0234223. [PMID: 33057335 PMCID: PMC7561098 DOI: 10.1371/journal.pone.0234223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/02/2020] [Indexed: 11/23/2022] Open
Abstract
Matching habitat choice is gaining attention as a mechanism for maintaining biodiversity and driving speciation. It revolves around the idea that individuals select the habitat in which they perceive to obtain greater fitness based on a prior evaluation of their local performance across heterogeneous environments. This results in individuals with similar ecologically relevant traits converging to the same patches, and hence it could indirectly cause assortative mating when mating occurs in those patches. White-eyed mutants of Drosophila fruit flies have a series of disadvantages compared to wild type flies, including a poorer performance under bright light. It has been previously reported that, when given a choice, wild type Drosophila simulans preferred a brightly lit habitat while white-eyed mutants occupied a dimly lit one. This spatial segregation allowed the eye color polymorphism to be maintained for several generations, whereas normally it is quickly replaced by the wild type. Here we compare the habitat choice decisions of white-eyed and wild type flies in another species, D. melanogaster. We released groups of flies in a light gradient and recorded their departure and settlement behavior. Departure depended on sex and phenotype, but not on the light conditions of the release point. Settlement depended on sex, and on the interaction between phenotype and light conditions of the point of settlement. Nonetheless, simulations showed that this differential habitat use by the phenotypes would only cause a minimal degree of assortative mating in this species.
Collapse
Affiliation(s)
- Juan Ramón Peralta-Rincón
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain
| | - Fatima Zohra Aoulad
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain
| | - Antonio Prado
- Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, Seville, Spain
| | - Pim Edelaar
- Department of Molecular Biology and Biochemical Engineering, Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
11
|
Hatz LE, Park S, McCarty KN, McCarthy DM, Davis-Stober CP. Young Adults Make Rational Sexual Decisions. Psychol Sci 2020; 31:944-956. [PMID: 32783528 DOI: 10.1177/0956797620925036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We examined risky sexual choice under the lens of rational decision-making. Participants (N = 257) completed a novel sexual-choice task in which they selected from among hypothetical sexual partners varying in physical attractiveness and in the probability that one would contract a sexually transmitted infection (STI) from a one-time sexual encounter with them. We found that nearly all participants evaluated the sexual-choice alternatives in a coherent fashion consistent with utility-based theories of rational choice. In subsequent analyses, we classified participants' responses according to whether their sexual preferences were based on maximizing attractiveness or minimizing the risk of STIs. Finally, we established an association between sexual choice in our task and reported real-world sexual risk-taking.
Collapse
Affiliation(s)
- Laura E Hatz
- Department of Psychological Sciences, University of Missouri
| | - Sanghyuk Park
- Department of Psychological Sciences, University of Missouri
| | | | | | | |
Collapse
|
12
|
Plastic female choice to optimally balance (k)in- and out-breeding in a predatory mite. Sci Rep 2020; 10:7861. [PMID: 32398794 PMCID: PMC7217829 DOI: 10.1038/s41598-020-64793-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 04/22/2020] [Indexed: 11/08/2022] Open
Abstract
Both close inbreeding and extreme outbreeding may negatively affect direct fitness. Optimal outbreeding theory suggests that females should preferentially mate with distantly related males. (K)in breeding theory suggests that, at similar direct fitness costs of close inbreeding and extreme outbreeding, females should prefer close kin to non-kin. Empirical evidence of plastic female choice for an optimal balance between close inbreeding and extreme outbreeding remains elusive. We tested the combined predictions of optimal outbreeding and (k)in breeding theories in predatory mites Phytoseiulus persimilis from two origins, Sicily and Greece, which suffer from both close inbreeding and extreme outbreeding depression. In three separate experiments, virgin females were presented binary choices between familiar and unfamiliar brothers, and between familiar/unfamiliar brothers and distant kin or non-kin. Females of Greece but not Sicily preferred unfamiliar to familiar brothers. Females of both origins preferred distant kin to unfamiliar and familiar brothers but preferred unfamiliar brothers to non-kin. Females of Sicily but not Greece preferred familiar brothers to non-kin. The suggested kin recognition mechanisms are phenotype matching and direct familiarity, with finer-tuned recognition abilities of Greece females. Overall, our experiments suggest that flexible mate choice by P. persimilis females allows optimally balancing inclusive fitness trade-offs.
Collapse
|
13
|
The complex genetic architecture of male mate choice evolution between Drosophila species. Heredity (Edinb) 2020; 124:737-750. [PMID: 32203250 DOI: 10.1038/s41437-020-0309-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/06/2020] [Accepted: 03/06/2020] [Indexed: 12/14/2022] Open
Abstract
Mate choice behaviors are among the most important reproductive isolating barriers in many animals. Little is known about the genetic basis of reproductively isolating behaviors, but examples to date provide evidence that they can have a simple genetic basis. However, it is unclear if these results indicate that individual genes with large effects are common, or are instead due to ascertainment biases. Here, we present the results of a QTL mapping study for the most important behavioral isolating barrier between Drosophila simulans and D. sechellia: male mate choice. Our QTL results initially suggested that differences in male mate choice may be due to a couple loci with large effects. However, as we divided the largest-effect QTL using stable introgression strains, we found evidence of multiple interacting loci. We further find that separate regions of the genome control different aspects of male choice. Taken together, our results suggest that the genetic architecture of mate choice behavior, in this case, is more complex than QTL mapping suggested, highlighting potential challenges to future mapping studies. We discuss the implications of these results as they relate to signal-receiver coevolution, mate choice, and reproductive isolation.
Collapse
|
14
|
The Genetics of Male Pheromone Preference Difference Between Drosophila melanogaster and Drosophila simulans. G3-GENES GENOMES GENETICS 2020; 10:401-415. [PMID: 31748379 PMCID: PMC6945012 DOI: 10.1534/g3.119.400780] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Species of flies in the genus Drosophila differ dramatically in their preferences for mates, but little is known about the genetic or neurological underpinnings of this evolution. Recent advances have been made to our understanding of one case: pheromone preference evolution between the species D. melanogaster and D. simulans. Males of both species are very sensitive to the pheromone 7,11-HD that is present only on the cuticle of female D. melanogaster. In one species this cue activates courtship, and in the other it represses it. This change in valence was recently shown to result from the modification of central processing neurons, rather than changes in peripherally expressed receptors, but nothing is known about the genetic changes that are responsible. In the current study, we show that a 1.35 Mb locus on the X chromosome has a major effect on male 7,11-HD preference. Unfortunately, when this locus is divided, the effect is largely lost. We instead attempt to filter the 159 genes within this region using our newfound understanding of the neuronal underpinnings of this phenotype to identify and test candidate genes. We present the results of these tests, and discuss the difficulty of identifying the genetic architecture of behavioral traits and the potential of connecting these genetic changes to the neuronal modifications that elicit different behaviors.
Collapse
|
15
|
Shamshir RA, Wee SL. Zingerone improves mating performance of Zeugodacus tau (Diptera: Tephritidae) through enhancement of male courtship activity and sexual signaling. JOURNAL OF INSECT PHYSIOLOGY 2019; 119:103949. [PMID: 31563620 DOI: 10.1016/j.jinsphys.2019.103949] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 09/25/2019] [Accepted: 09/25/2019] [Indexed: 06/10/2023]
Abstract
Certain male fruit flies from the genera Bactrocera and Zeugodacus (Diptera: Tephritidae) actively forage for floral semiochemicals produced by some endemic Bulbophyllum orchids found in tropical and subtropical forests. These floral semiochemicals are largely classified as either phenylbutanoids (e.g., raspberry ketone (RK)) or phenylpropanoids (e.g., methyl eugenol (ME)). Zingerone (ZN) is a phenylbutanoid recently found that structurally resembles ME and RK, both of which are phytochemicals commonly used as male attractants in fruit fly control programmes. It was previously shown that feeding on ME and RK increased the mating success of certain tephritid fruit flies, specifically in B. dorsalis and B. tryoni males, respectively, through enhancement of sexual signaling. However, ZN, which acts as a metabolic enhancer to increase male courtship activity in B. tryoni, did not show the same effect. As fruit fly-phytochemical lure interactions are unique and species-specific phenomena, this study seeks to elucidate the ecological significance of ZN feeding to Zeugodacus tau in terms of sexual signaling. We demonstrate here that ZN feeding by Z. tau males enhanced female attraction and subsequent mating success by increasing male courtship, and the attractiveness of the sexual signals in both wind tunnel and semi-field cage bioassays. In addition, we also demonstrated temporal effects on male behaviour in relation to the amount of lure intake. However, feeding on ZN did not appear to affect the total time spent in copula for Z. tau. This is the first report showing an important role of ZN in increasing courtship activity as well as enhancement of sexual signaling in Z. tau males.
Collapse
Affiliation(s)
- Rabiatul Addawiyah Shamshir
- Centre for Insect Systematics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Suk-Ling Wee
- Centre for Insect Systematics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.
| |
Collapse
|
16
|
|
17
|
Baião GC, Schneider DI, Miller WJ, Klasson L. The effect of Wolbachia on gene expression in Drosophila paulistorum and its implications for symbiont-induced host speciation. BMC Genomics 2019; 20:465. [PMID: 31174466 PMCID: PMC6555960 DOI: 10.1186/s12864-019-5816-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 05/21/2019] [Indexed: 11/17/2022] Open
Abstract
Background The Neotropical fruit fly Drosophila paulistorum (Diptera: Drosophilidae) is a species complex in statu nascendi comprising six reproductively isolated semispecies, each harboring mutualistic Wolbachia strains. Although wild type flies of each semispecies are isolated from the others by both pre- and postmating incompatibilities, mating between semispecies and successful offspring development can be achieved once flies are treated with antibiotics to reduce Wolbachia titer. Here we use RNA-seq to study the impact of Wolbachia on D. paulistorum and investigate the hypothesis that the symbiont may play a role in host speciation. For that goal, we analyze samples of heads and abdomens of both sexes of the Amazonian, Centro American and Orinocan semispecies of D. paulistorum. Results We identify between 175 and 1192 differentially expressed genes associated with a variety of biological processes that respond either globally or according to tissue, sex or condition in the three semispecies. Some of the functions associated with differentially expressed genes are known to be affected by Wolbachia in other species, such as metabolism and immunity, whereas others represent putative novel phenotypes involving muscular functions, pheromone signaling, and visual perception. Conclusions Our results show that Wolbachia affect a large number of biological functions in D. paulistorum, particularly when present in high titer. We suggest that the significant metabolic impact of the infection on the host may cause several of the other putative and observed phenotypes. We also speculate that the observed differential expression of genes associated with chemical communication and reproduction may be associated with the emergence of pre- and postmating barriers between semispecies, which supports a role for Wolbachia in the speciation of D. paulistorum. Electronic supplementary material The online version of this article (10.1186/s12864-019-5816-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guilherme C Baião
- Molecular evolution, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, 751 24, Uppsala, Sweden
| | - Daniela I Schneider
- Lab Genome Dynamics, Deparment Cell & Developmental Biology, Center of Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstraße 17, 1090, Vienna, Austria.,Present address: Department of Epidemiology of Microbial Diseases, Yale University, 60 College Street, New Haven, CT, 06510, USA
| | - Wolfgang J Miller
- Lab Genome Dynamics, Deparment Cell & Developmental Biology, Center of Anatomy and Cell Biology, Medical University of Vienna, Schwarzspanierstraße 17, 1090, Vienna, Austria
| | - Lisa Klasson
- Molecular evolution, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, 751 24, Uppsala, Sweden.
| |
Collapse
|
18
|
Berson JD, Simmons LW. Female cuticular hydrocarbons can signal indirect fecundity benefits in an insect. Evolution 2019; 73:982-989. [DOI: 10.1111/evo.13720] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/09/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Jacob D. Berson
- Centre for Evolutionary Biology, School of Biological SciencesThe University of Western Australia Crawley Western Australia 6009 Australia
| | - Leigh W. Simmons
- Centre for Evolutionary Biology, School of Biological SciencesThe University of Western Australia Crawley Western Australia 6009 Australia
| |
Collapse
|
19
|
Nguyen TTX, Moehring AJ. Males from populations with higher competitive mating success produce sons with lower fitness. J Evol Biol 2019; 32:528-534. [PMID: 30811733 DOI: 10.1111/jeb.13433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 02/05/2019] [Accepted: 02/13/2019] [Indexed: 11/29/2022]
Abstract
Female mate choice can result in direct benefits to the female or indirect benefits through her offspring. Females can increase their fitness by mating with males whose genes encode increased survivorship and reproductive output. Alternatively, male investment in enhanced mating success may come at the cost of reduced investment in offspring fitness. Here, we measure male mating success in a mating arena that allows for male-male, male-female and female-female interactions in Drosophila melanogaster. We then use isofemale line population measurements to correlate male mating success with sperm competitive ability, the number of offspring produced and the indirect benefits of the number of offspring produced by daughters and sons. We find that males from populations that gain more copulations do not increase female fitness through increased offspring production, nor do these males fare better in sperm competition. Instead, we find that these populations have a reduced reproductive output of sons, indicating a potential reproductive trade-off between male mating success and offspring quality.
Collapse
Affiliation(s)
- Trinh T X Nguyen
- Department of Biology, Western University, London, Ontario, Canada
| | | |
Collapse
|
20
|
Tudor E, Promislow DEL, Arbuthnott D. Past and present resource availability affect mating rate but not mate choice in Drosophila melanogaster. Behav Ecol 2018; 29:1409-1414. [PMID: 30568395 PMCID: PMC6293226 DOI: 10.1093/beheco/ary114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 05/28/2018] [Accepted: 07/24/2018] [Indexed: 11/13/2022] Open
Abstract
The choices of when, where, and with whom to mate represent some of the most important decisions an individual can make to increase their fitness. Several studies have shown that the resources available to an individual during development can dramatically alter their mating rate later in life, and even the choice of mate. However, an individual's surroundings and available resources can change rapidly, and it is not clear how quickly the redistribution of resources towards reproduction can change. To address this important question, we measured mating rate and mate choice among Drosophila melanogaster males that were manipulated in terms of both past resources (control vs. starvation) and the resources available during mate choice (food vs. no food). We found that males given access to ample resources prior to mate choice showed higher mating rates than those that were starved, in agreement with previous studies. However, we also found that this effect can be reversed quickly, as starved males given the opportunity to mate in a high-quality environment mated at frequencies equivalent to their fed counterparts. Although past and present resources affected mating rate, they did not affect mate choice, as males mated with high-quality females at high frequencies regardless of their condition and environment. Our results show that both current condition as well as the promise of future resources can dramatically influence individuals' investment into reproduction and that such mating decisions are extremely plastic and reliant on environmental cues.
Collapse
Affiliation(s)
- Erin Tudor
- Department of Pathology, University of Washington, Seattle WA, USA
| | - Daniel E L Promislow
- Department of Pathology, University of Washington, Seattle WA, USA
- Department of Biology, University of Washington, Seattle WA, USA
| | - Devin Arbuthnott
- Department of Zoology, University of British Columbia, Vancouver, B.C., Canada
| |
Collapse
|
21
|
Obligate, but not facultative, satellite males prefer the same male sexual signal characteristics as females. Anim Behav 2018. [DOI: 10.1016/j.anbehav.2018.07.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
22
|
Arbuthnott D. Female Life-History Trade-Offs and the Maintenance of Genetic Variation in Drosophila melanogaster. Am Nat 2018; 192:448-460. [PMID: 30205025 DOI: 10.1086/698727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Why do we observe substantial variation in fitness-related traits under strong natural or sexual selection? While there is support for several selective and neutral mechanisms acting in select systems, we lack a comprehensive analysis of the relative importance of various mechanisms within a single system. Furthermore, while sexually selected male traits have been a central focus of this paradox, female sexual traits have rarely been considered. In this study, I evaluate the contribution of various selective mechanisms to the maintenance of substantial variation in female attractiveness and offspring production observed among Drosophila melanogaster genotypes. I tested for contributions from antagonistic pleiotropy, frequency-dependent selection, changing environments, and sexual conflict. I found negative genetic correlations between some traits (male attractiveness vs. female resistance to male harm, early-life offspring production vs. reproductive senescence) and genotype-specific changes in fitness between environments. However, no measurement found strong trade-offs among the fitness components of these genotypes. Overall, I find little evidence that any one mechanism is strong enough to maintain genetic variation on its own. Instead, I suggest that many mechanisms may weaken the selection among genotypes, which would collectively allow neutral processes such as mutation-selection balance to maintain genetic variation within populations.
Collapse
|
23
|
Arbuthnott D, Whitlock MC. Environmental stress does not increase the mean strength of selection. J Evol Biol 2018; 31:1599-1606. [PMID: 29978525 DOI: 10.1111/jeb.13351] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/06/2018] [Accepted: 06/23/2018] [Indexed: 11/28/2022]
Abstract
A common intuition among evolutionary biologists and ecologists is that environmental stress will increase the strength of selection against deleterious alleles and among alternate genotypes. However, the strength of selection is determined by the relative fitness differences among genotypes, and there is no theoretical reason why these differences should be exaggerated as mean fitness decreases. We update a recent review of the empirical results pertaining to environmental stress and the strength of selection and find that there is no overall trend towards increased selection under stress, in agreement with other recent analyses of existing data. The majority of past studies measure the strength of selection by quantifying the decrease in fitness imposed by single or multiple mutations in different environments. However, selection rarely acts on one locus independently, and the strength of selection will be determined by variation across the whole genome. We used 20 inbred lines of Drosophila melanogaster to make repeated fitness measurements of the same genotypes in four different environments. This framework allowed us to determine the variation in fitness attributable to genotype across stressful environments and to calculate the opportunity for selection among these genotypes in each stress. Although we found significant decreases in mean fitness in our stressful environments, we did not find any significant differences in the strength of selection among any of the four measured environments. Therefore, in agreement with our updated review, we find no evidence for the oft-cited verbal model that stress increases the strength of selection.
Collapse
Affiliation(s)
- Devin Arbuthnott
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Michael C Whitlock
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
24
|
Smeulders B, Davis-Stober C, Regenwetter M, Spieksma FC. Testing Probabilistic Models of Choice using Column Generation. COMPUTERS & OPERATIONS RESEARCH 2018; 95:32-43. [PMID: 30416247 PMCID: PMC6224134 DOI: 10.1016/j.cor.2018.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In so-called random preference models of probabilistic choice, a decision maker chooses according to an unspecified probability distribution over preference states. The most prominent case arises when preference states are linear orders or weak orders of the choice alternatives. The literature has documented that actually evaluating whether decision makers' observed choices are consistent with such a probabilistic model of choice poses computational difficulties. This severely limits the possible scale of empirical work in behavioral economics and related disciplines. We propose a family of column generation based algorithms for performing such tests. We evaluate our algorithms on various sets of instances. We observe substantial improvements in computation time and conclude that we can efficiently test substantially larger data sets than previously possible.
Collapse
Affiliation(s)
- Bart Smeulders
- HEC Management School, University of Liège, 4000
Liège, Belgium
| | - Clintin Davis-Stober
- Department of Psychological Sciences, University of Missouri, 219
McAlester Hall, Columbia, MO 65211, USA
| | - Michel Regenwetter
- Department of Psychology, University of Illinois at
Urbana-Champaign, 603 E. Daniel St., Champaign, IL 61820, USA
| | - Frits C.R. Spieksma
- Department of Mathematics and Computer Science, TU Eindhoven, 5600
MB Eindhoven, the Netherlands
| |
Collapse
|
25
|
Reding L, Cummings ME. Rational mate choice decisions vary with female age and multidimensional male signals in swordtails. Ethology 2018. [DOI: 10.1111/eth.12769] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Luke Reding
- Department of Integrative Biology University of Texas at Austin Austin Texas
| | - Molly E. Cummings
- Department of Integrative Biology University of Texas at Austin Austin Texas
| |
Collapse
|
26
|
Billeter JC, Wolfner MF. Chemical Cues that Guide Female Reproduction in Drosophila melanogaster. J Chem Ecol 2018; 44:750-769. [PMID: 29557077 DOI: 10.1007/s10886-018-0947-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 02/21/2018] [Accepted: 03/13/2018] [Indexed: 01/05/2023]
Abstract
Chemicals released into the environment by food, predators and conspecifics play critical roles in Drosophila reproduction. Females and males live in an environment full of smells, whose molecules communicate to them the availability of food, potential mates, competitors or predators. Volatile chemicals derived from fruit, yeast growing on the fruit, and flies already present on the fruit attract Drosophila, concentrating flies at food sites, where they will also mate. Species-specific cuticular hydrocarbons displayed on female Drosophila as they mature are sensed by males and act as pheromones to stimulate mating by conspecific males and inhibit heterospecific mating. The pheromonal profile of a female is also responsive to her nutritional environment, providing an honest signal of her fertility potential. After mating, cuticular and semen hydrocarbons transferred by the male change the female's chemical profile. These molecules make the female less attractive to other males, thus protecting her mate's sperm investment. Females have evolved the capacity to counteract this inhibition by ejecting the semen hydrocarbon (along with the rest of the remaining ejaculate) a few hours after mating. Although this ejection can temporarily restore the female's attractiveness, shortly thereafter another male pheromone, a seminal peptide, decreases the female's propensity to re-mate, thus continuing to protect the male's investment. Females use olfaction and taste sensing to select optimal egg-laying sites, integrating cues for the availability of food for her offspring, and the presence of other flies and of harmful species. We argue that taking into account evolutionary considerations such as sexual conflict, and the ecological conditions in which flies live, is helpful in understanding the role of highly species-specific pheromones and blends thereof, as well as an individual's response to the chemical cues in its environment.
Collapse
Affiliation(s)
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA.
| |
Collapse
|
27
|
Lin W, Yeh S, Fan S, Chen L, Yen J, Fu T, Wu M, Wang P. Insulin signaling in female
Drosophila
links diet and sexual attractiveness. FASEB J 2018. [DOI: 10.1096/fsb2fj201800067r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Wei‐Sheng Lin
- Graduate Institute of Brain and Mind SciencesCollege of MedicineNeurobiology and Cognitive Science CenterCenter for Systems BiologyNational Taiwan UniversityTaipeiTaiwan
- Department of PediatricsNational Taiwan University Hospital YunlinYunlinTaiwan
| | - Sheng‐Rong Yeh
- Graduate Institute of Brain and Mind SciencesCollege of MedicineNeurobiology and Cognitive Science CenterCenter for Systems BiologyNational Taiwan UniversityTaipeiTaiwan
| | - Shou‐Zen Fan
- Department of AnesthesiologyDepartment of Internal MedicineNational Taiwan University HospitalNational Taiwan UniversityTaipeiTaiwan
| | - Liang‐Yu Chen
- Department of BiotechnologyMingchuan UniversityTaoyuanTaiwan
| | - Jui‐Hung Yen
- Department of Microbiology and ImmunologyIndiana University School of MedicineFort WayneIndianaUSA
| | - Tsai‐Feng Fu
- Department of Applied ChemistryNational Chinan UniversityNantouTaiwan
| | - Ming‐Shiang Wu
- Department of Internal MedicineNational Taiwan University HospitalNational Taiwan UniversityTaipeiTaiwan
| | - Pei‐Yu Wang
- Graduate Institute of Brain and Mind SciencesCollege of MedicineNeurobiology and Cognitive Science CenterCenter for Systems BiologyNational Taiwan UniversityTaipeiTaiwan
- Neurobiology and Cognitive Science CenterCenter for Systems BiologyNational Taiwan UniversityTaipeiTaiwan
- Center for Systems BiologyNational Taiwan UniversityTaipeiTaiwan
| |
Collapse
|
28
|
Lin WS, Yeh SR, Fan SZ, Chen LY, Yen JH, Fu TF, Wu MS, Wang PY. Insulin signaling in female Drosophila links diet and sexual attractiveness. FASEB J 2018; 32:3870-3877. [PMID: 29475396 DOI: 10.1096/fj.201800067r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Appropriate sexual selection or individual sexual attractiveness is closely associated with the reproductive success of a species. Here, we report that young male flies exhibit innate courtship preference for female flies that are raised on higher-yeast diets and that have greater body weight and fecundity, but reduced locomotor activity and shortened lifespan. Male flies discriminate among females that have been fed diets that contain 3 different yeast concentrations-1, 5, and 20% yeast- via gustatory, but not visual or olfactory, perception. Female flies that are raised on higher-yeast diets exhibit elevated expression levels of Drosophila insulin-like peptides (di lps), and we demonstrate that hypomorphic mutations of di lp2, 3, 5 or foxo, as well as oenocyte-specific gene disruption of the insulin receptor, all abolish this male courtship preference for high yeast-fed females. Moreover, our data demonstrate that disrupted di lp signaling can alter the expression profile of some cuticular hydrocarbons (CHCs) in female flies, and that genetic inhibition of an enzyme involved in the biosynthesis of CHCs in oenocytes, elongase F, also eliminates the male courtship preference. Together, our findings provide mechanistic insights that link female reproductive potential to sexual attractiveness, thereby encouraging adaptive mating and optimal reproductive success.-Lin, W.-S., Yeh, S.-R., Fan, S.-Z., Chen, L.-Y., Yen, J.-H., Fu, T.-F., Wu, M.-S., Wang, P.-Y. Insulin signaling in female Drosophila links diet and sexual attractiveness.
Collapse
Affiliation(s)
- Wei-Sheng Lin
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Pediatrics, National Taiwan University Hospital Yunlin, Yunlin, Taiwan
| | - Sheng-Rong Yeh
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shou-Zen Fan
- Department of Anesthesiology, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| | - Liang-Yu Chen
- Department of Biotechnology, Mingchuan University, Taoyuan, Taiwan
| | - Jui-Hung Yen
- Department of Microbiology and Immunology, Indiana University School of Medicine, Fort Wayne, Indiana, USA
| | - Tsai-Feng Fu
- Department of Applied Chemistry, National Chinan University, Nantou, Taiwan
| | - Ming-Shiang Wu
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University, Taipei, Taiwan
| | - Pei-Yu Wang
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan.,Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan.,Center for Systems Biology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
29
|
Corral-López A, Kotrschal A, Kolm N. Selection for relative brain size affects context-dependent male preferences, but not discrimination, of female body size in guppies. J Exp Biol 2018; 221:jeb.175240. [DOI: 10.1242/jeb.175240] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 05/01/2018] [Indexed: 12/26/2022]
Abstract
Understanding what drives animal decisions is fundamental in evolutionary biology, and mate choice decisions are arguably some of the most important decisions in any individual's life. As cognitive ability can impact decision-making, elucidating the link between mate choice and cognitive ability is necessary to fully understand mate choice. To experimentally study this link, we used guppies (Poecilia reticulata) artificially selected for divergence in relative brain size and with previously demonstrated differences in cognitive ability. A previous test in our female guppy selection lines demonstrated the impact of brain size and cognitive ability on information processing during female mate choice decisions. Here we evaluated the effect of brain size and cognitive ability on male mate choice decisions. Specifically, we investigated the preferences of large-brained, small-brained, and non-selected guppy males for female body size, a key indicator of female fecundity in this species. For this, male preferences were quantified in dichotomous choice tests when presented to dyads of females with small, medium and large body size differences. All types of males showed preference for larger females but no effect of brain size was found in the ability to discriminate between differently sized females. However, we found that non-selected and large-brained males, but not small-brained males, showed context-dependent preferences for larger females depending on the difference in female size. Our results have two important implications. First, they provide further evidence that male mate choice occurs also in a species in which secondary sexual ornamentation occurs only in males. Second, they show that brain size and cognitive ability have important effects on individual variation in mating preferences and sexually selected traits.
Collapse
Affiliation(s)
- Alberto Corral-López
- Department of Zoology/Ethology, Stockholm University, Svante Arrhenius väg 18B. SE-10691, Stockholm, Sweden
| | - Alexander Kotrschal
- Department of Zoology/Ethology, Stockholm University, Svante Arrhenius väg 18B. SE-10691, Stockholm, Sweden
| | - Niclas Kolm
- Department of Zoology/Ethology, Stockholm University, Svante Arrhenius väg 18B. SE-10691, Stockholm, Sweden
| |
Collapse
|
30
|
Wolff GH, Thoen HH, Marshall J, Sayre ME, Strausfeld NJ. An insect-like mushroom body in a crustacean brain. eLife 2017; 6:29889. [PMID: 28949916 PMCID: PMC5614564 DOI: 10.7554/elife.29889] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 08/25/2017] [Indexed: 01/02/2023] Open
Abstract
Mushroom bodies are the iconic learning and memory centers of insects. No previously described crustacean possesses a mushroom body as defined by strict morphological criteria although crustacean centers called hemiellipsoid bodies, which serve functions in sensory integration, have been viewed as evolutionarily convergent with mushroom bodies. Here, using key identifiers to characterize neural arrangements, we demonstrate insect-like mushroom bodies in stomatopod crustaceans (mantis shrimps). More than any other crustacean taxon, mantis shrimps display sophisticated behaviors relating to predation, spatial memory, and visual recognition comparable to those of insects. However, neuroanatomy-based cladistics suggesting close phylogenetic proximity of insects and stomatopod crustaceans conflicts with genomic evidence showing hexapods closely related to simple crustaceans called remipedes. We discuss whether corresponding anatomical phenotypes described here reflect the cerebral morphology of a common ancestor of Pancrustacea or an extraordinary example of convergent evolution. With more than four million species, arthropods are the largest and most diverse group of animals on the planet and include, for example, crustaceans, insects and spiders. They are defined by their segmented bodies, hard outer skeletons and jointed limbs. All arthropods share a common ancestor that lived more than 550 million years ago. Exactly how this ancestral arthropod gave rise to the myriad species that exist today is unclear but we know that at some point the arthropod family tree split into branches, one of which went on to become the crustaceans. The crustacean branch then split again, giving rise to a line of descendants that would become the insects. But although insects evolved from crustaceans, the brains of insects possess structures that those of crustaceans do not. Known as mushroom bodies, these structures help to form and store memories. Their absence in crustaceans has therefore been an enduring mystery. Wolff et al. now add a piece to the puzzle by showing that one group of modern-day crustaceans, the mantis shrimps, does in fact possess mushroom bodies. By visualizing cells and pathways within the brains of mantis shrimps, and also a number of closely related species, Wolff et al. show that only these shrimps possess true mushroom bodies. However, some of the mantis shrimp’s close relatives possess a few attributes of these structures. This suggests that mushroom bodies are evolutionarily ancient structures that arose in a common ancestor of insects and crustaceans, before being lost or radically modified in most of the crustaceans. So why did this happen? Mantis shrimps are top predators with excellent vision that hunt over considerable distances, requiring them to evaluate and memorize complex features of their environment. These cognitive demands, which might not be shared by other crustaceans, may have led to the mantis shrimps retaining their mushroom bodies. Further research into the brains and behavior of the mantis shrimp may provide insights into how mushroom bodies construct memories of a complex sensory world.
Collapse
Affiliation(s)
| | | | - Justin Marshall
- Sensory Neurobiology Group, University of Queensland, Brisbane, Australia
| | - Marcel E Sayre
- Department of Neuroscience, School of Mind, Brain and Behavior, University of Arizona, Tucson, United States
| | - Nicholas James Strausfeld
- Department of Neuroscience, School of Mind, Brain and Behavior, University of Arizona, Tucson, United States
| |
Collapse
|
31
|
Tissue-specific insulin signaling mediates female sexual attractiveness. PLoS Genet 2017; 13:e1006935. [PMID: 28817572 PMCID: PMC5560536 DOI: 10.1371/journal.pgen.1006935] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 07/19/2017] [Indexed: 11/19/2022] Open
Abstract
Individuals choose their mates so as to maximize reproductive success, and one important component of this choice is assessment of traits reflecting mate quality. Little is known about why specific traits are used for mate quality assessment nor about how they reflect it. We have previously shown that global manipulation of insulin signaling, a nutrient-sensing pathway governing investment in survival versus reproduction, affects female sexual attractiveness in the fruit fly, Drosophila melanogaster. Here we demonstrate that these effects on attractiveness derive from insulin signaling in the fat body and ovarian follicle cells, whose signals are integrated by pheromone-producing cells called oenocytes. Functional ovaries were required for global insulin signaling effects on attractiveness, and manipulations of insulin signaling specifically in late follicle cells recapitulated effects of global manipulations. Interestingly, modulation of insulin signaling in the fat body produced opposite effects on attractiveness, suggesting a competitive relationship with the ovary. Furthermore, all investigated tissue-specific insulin signaling manipulations that changed attractiveness also changed fecundity in the corresponding direction, pointing to insulin pathway activity as a reliable link between fecundity and attractiveness cues. The cues themselves, cuticular hydrocarbons, responded distinctly to fat body and follicle cell manipulations, indicating independent readouts of the pathway activity from these two tissues. Thus, here we describe a system in which female attractiveness results from an apparent connection between attractiveness cues and an organismal state of high fecundity, both of which are created by lowered insulin signaling in the fat body and increased insulin signaling in late follicle cells.
Collapse
|
32
|
Filice DCS, Long TAF. Phenotypic plasticity in female mate choice behavior is mediated by an interaction of direct and indirect genetic effects in Drosophila melanogaster. Ecol Evol 2017; 7:3542-3551. [PMID: 28515889 PMCID: PMC5433979 DOI: 10.1002/ece3.2954] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/27/2017] [Accepted: 03/05/2017] [Indexed: 01/28/2023] Open
Abstract
Female mate choice is a complex decision‐making process that involves many context‐dependent factors. In Drosophila melanogaster, a model species for the study of sexual selection, indirect genetic effects (IGEs) of general social interactions can influence female mate choice behaviors, but the potential impacts of IGEs associated with mating experiences are poorly understood. Here, we examined whether the IGEs associated with a previous mating experience had an effect on subsequent female mate choice behaviors and quantified the degree of additive genetic variation associated with this effect. Females from 21 different genetic backgrounds were housed with males from one of two distinct genetic backgrounds for either a short (3 hr) or long (48 hr) exposure period and their subsequent mate choice behaviors were scored. We found that the genetic identity of a previous mate significantly influenced a female's subsequent interest in males and preference of males. Additionally, a hemiclonal analysis revealed significant additive genetic variation associated with experience‐dependent mate choice behaviors, indicating a genotype‐by‐environment interaction for both of these parameters. We discuss the significance of these results with regard to the evolution of plasticity in female mate choice behaviors and the maintenance of variation in harmful male traits.
Collapse
Affiliation(s)
- David C S Filice
- Department of Biology Wilfrid Laurier University Waterloo ON Canada
| | - Tristan A F Long
- Department of Biology Wilfrid Laurier University Waterloo ON Canada
| |
Collapse
|