1
|
Smith WPJ, Armstrong-Bond E, Coyte KZ, Knight CG, Basler M, Brockhurst MA. Multiplicity of type 6 secretion system toxins limits the evolution of resistance. Proc Natl Acad Sci U S A 2025; 122:e2416700122. [PMID: 39786933 PMCID: PMC11745330 DOI: 10.1073/pnas.2416700122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/16/2024] [Indexed: 01/12/2025] Open
Abstract
The bacterial type 6 secretion system (T6SS) is a toxin-injecting nanoweapon that mediates competition in plant- and animal-associated microbial communities. Bacteria can evolve de novo resistance against T6SS attacks, but resistance is far from universal in natural communities, suggesting key features of T6SS weaponry may act to limit its evolution. Here, we combine ecoevolutionary modeling and experimental evolution to examine how toxin type and multiplicity in Acinetobacter baylyi attackers shape resistance evolution in susceptible Escherichia coli competitors. In both our models and experiments, we find that combinations of multiple distinct toxins limit resistance evolution by creating genetic bottlenecks, driving resistant lineages extinct before they can reach high frequency. We also show that, paradoxically, single-toxin attackers can drive the evolution of cross-resistance, protecting bacteria against unfamiliar toxin combinations, even though such evolutionary pathways were inaccessible against multitoxin attackers. Our findings indicate that, comparable to antimicrobial and anticancer combination therapies, multitoxin T6SS arsenals function to limit resistance evolution in competing microbes. This helps us to understand why T6SSs remain widespread and effective weapons in microbial communities, and why many T6SS-armed bacteria encode functionally diverse anticompetitor toxins.
Collapse
Affiliation(s)
- William P. J. Smith
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, ManchesterM13 9NT, United Kingdom
| | - Ewan Armstrong-Bond
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, ManchesterM13 9NT, United Kingdom
| | - Katharine Z. Coyte
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, ManchesterM13 9NT, United Kingdom
| | - Christopher G. Knight
- Department of Earth and Environmental Sciences, Faculty of Science and Engineering, University of Manchester, ManchesterM13 9NT, United Kingdom
| | - Marek Basler
- Biozentrum Center for Molecular Life Sciences, University of Basel, BaselCH-4056, Switzerland
| | - Michael A. Brockhurst
- Division of Evolution, Infection and Genomics, Faculty of Biology, Medicine and Health, University of Manchester, ManchesterM13 9NT, United Kingdom
| |
Collapse
|
2
|
Virgo M, Mostowy S, Ho BT. Emerging models to study competitive interactions within bacterial communities. Trends Microbiol 2025:S0966-842X(24)00325-1. [PMID: 39799088 DOI: 10.1016/j.tim.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 01/15/2025]
Abstract
Within both abiotic and host environments, bacteria typically exist as diverse, multispecies communities and have crucial roles in human health, agriculture, and industry. In these communities, bacteria compete for resources, and these competitive interactions can shape the overall population structure and community function. Studying bacterial community dynamics requires experimental model systems that capture the different interaction networks between bacteria and their surroundings. We examine the recent literature advancing such systems, including (i) in silico models establishing the theoretical basis for how cell-to-cell interactions can influence population level dynamics, (ii) in vitro models characterizing specific interbacterial interactions, (iii) organ-on-a-chip models revealing the physiologically relevant parameters, such as spatial structure and mechanical forces, that bacteria encounter within a host, and (iv) in vivo plant and animal models connecting the host responses to interbacterial interactions. Each of these systems has greatly contributed to our understanding of bacterial community dynamics and can be used synergistically to understand how bacterial competition influences population architecture.
Collapse
Affiliation(s)
- Mollie Virgo
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, London, UK; Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, UK
| | - Serge Mostowy
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, UK.
| | - Brian T Ho
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, London, UK; Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK.
| |
Collapse
|
3
|
Crisan CV, Goldberg JB. The dominant lineage of an emerging pathogen harbours contact-dependent inhibition systems. Microb Genom 2025; 11. [PMID: 39853206 DOI: 10.1099/mgen.0.001332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025] Open
Abstract
Bacteria from the Stenotrophomonas maltophilia complex (Smc) are important multidrug-resistant pathogens that cause a broad range of infections. Smc is genomically diverse and has been classified into 23 lineages. Lineage Sm6 is the most common among sequenced strains, but it is unclear why this lineage has evolved to be dominant. Antagonistic interactions can significantly affect the evolution of bacterial populations. These interactions may be mediated by secreted contact-dependent proteins, which allow inhibitor cells to intoxicate adjacent target bacteria. Contact-dependent inhibition (CDI) requires three proteins: CdiA, CdiB and CdiI. CdiA is a large, filamentous protein exported to the surface of inhibitor cells through the pore-like CdiB. The CdiA C-terminal domain (CdiA-CT) is toxic when delivered into target cells of the same species or genus. CdiI immunity proteins neutralize the toxicity of cognate CdiA-CT toxins. We found that all complete Smc genomes from the Sm6 lineage harbour at least one CDI locus. By contrast, less than a quarter of strains from other lineages have CDI genes. Smc CdiA-CT domains are diverse and have a broad range of predicted functions. Most Sm6 strains harbour non-cognate cdiI genes predicted to provide protection against foreign toxins from other strains. Finally, we demonstrated that an Smc CdiA-CT toxin has antibacterial properties and is neutralized by its cognate CdiI.
Collapse
Affiliation(s)
- Cristian V Crisan
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory+Childrens Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Joanna B Goldberg
- Department of Pediatrics, Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory+Childrens Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Keim K, Bhattacharya M, Crosby HA, Jenul C, Mills K, Schurr M, Horswill A. Polymicrobial interactions between Staphylococcus aureus and Pseudomonas aeruginosa promote biofilm formation and persistence in chronic wound infections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.04.621402. [PMID: 39574578 PMCID: PMC11580920 DOI: 10.1101/2024.11.04.621402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Chronic, non-healing wounds are a leading cause of prolonged patient morbidity and mortality due to biofilm- associated, polymicrobial infections. Staphylococcus aureus and Pseudomonas aeruginosa are the most frequently co-isolated pathogens from chronic wound infections. Competitive interactions between these pathogens contribute to enhanced virulence, persistence, and antimicrobial tolerance. P. aeruginosa utilizes the extracellular proteases LasB, LasA, and AprA to degrade S. aureus surface structures, disrupt cellular physiology, and induce cell lysis, gaining a competitive advantage during co-infection. S. aureus evades P. aeruginosa by employing aggregation mechanisms to form biofilms. The cell wall protein SasG is implicated in S. aureus biofilm formation by facilitating intercellular aggregation upon cleavage by an extracellular protease. We have previously shown that proteolysis by a host protease can induce aggregation. In this study, we report that P. aeruginosa proteases LasA, LasB, and AprA cleave SasG to induce S. aureus aggregation. We demonstrate that SasG contributes to S. aureus biofilm formation in response to interactions with P. aeruginosa proteases by quantifying aggregation, SasG degradation, and proteolytic kinetics. Additionally, we assess the role of SasG in influencing S. aureus biofilm architecture during co-infection in vivo, chronic wound co-infections. This work provides further knowledge of some of the principal interactions that contribute to S. aureus persistence within chronic wounds co-infected with P. aeruginosa, and their impact on healing and infection outcomes.
Collapse
Affiliation(s)
- Klara Keim
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Mohini Bhattacharya
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Heidi A Crosby
- New England Biolabs, Ipswich, MA, United States of America
| | - Christian Jenul
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States of America
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Krista Mills
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States of America
- Alphabet Health, New York, NY, United States of America
| | - Michael Schurr
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Alexander Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States of America
| |
Collapse
|
5
|
Brepoels P, De Wit G, Lories B, Belpaire TER, Steenackers HP. Selective pressures for public antibiotic resistance. Crit Rev Microbiol 2024:1-10. [PMID: 39158370 DOI: 10.1080/1040841x.2024.2367666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 05/25/2024] [Indexed: 08/20/2024]
Abstract
The rapid increase of antibiotic-resistant pathogens is severely limiting our current treatment possibilities. An important subset of the resistance mechanisms conferring antibiotic resistance have public effects, allowing otherwise susceptible bacteria to also survive antibiotic treatment. As susceptible bacteria can survive treatment without bearing the metabolic cost of producing the resistance mechanism, there is potential to increase their relative frequency in the population and, as such, select against resistant bacteria. Multiple studies showed that this altered selection for resistance is dependent on various environmental and treatment parameters. In this review, we provide a comprehensive overview of their most important findings and describe the main factors impacting the selection for resistance. In-depth understanding of the driving forces behind selection can aid in the design and implementation of alternative treatments which limit the risk of resistance development.
Collapse
Affiliation(s)
- Pauline Brepoels
- Centre for Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Gitta De Wit
- Centre for Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Bram Lories
- Centre for Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Tom E R Belpaire
- Centre for Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
- Division of Mechatronics, Biostatistics, and Sensors, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
6
|
Wang M, Vladimirsky A, Giometto A. Overcoming toxicity: why boom-and-bust cycles are good for non-antagonistic microbes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.09.607393. [PMID: 39211125 PMCID: PMC11361132 DOI: 10.1101/2024.08.09.607393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Antagonistic interactions are critical determinants of microbial community stability and composition, offering host benefits such as pathogen protection and providing avenues for antimicrobial control. While the ability to eliminate competitors confers an advantage to antagonistic microbes, it often incurs a fitness cost. Consequently, many microbes only produce toxins or engage in antagonistic behavior in response to specific cues like population density or environmental stress. In laboratory settings, antagonistic microbes typically dominate over sensitive ones, raising the question of why both antagonistic and non-antagonistic microbes are found in natural environments and host microbiomes. Here, using both theoretical models and experiments with killer strains of Saccharomyces cerevisiae , we show that boom-and-bust dynamics caused by temporal environmental fluctuations can favor non-antagonistic microbes that do not incur the growth rate cost of toxin production. Additionally, using control theory, we derive bounds on the competitive performance and identify optimal regulatory toxin-production strategies in various boom-and-bust environments where population dilutions occur either deterministically or stochastically over time. Our findings offer a new perspective on how both antagonistic and non-antagonistic microbes can thrive under varying environmental conditions.
Collapse
|
7
|
Virgo M, Mostowy S, Ho BT. Use of zebrafish to identify host responses specific to type VI secretion system mediated interbacterial antagonism. PLoS Pathog 2024; 20:e1012384. [PMID: 39024393 PMCID: PMC11288455 DOI: 10.1371/journal.ppat.1012384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/30/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024] Open
Abstract
Interbacterial competition is known to shape the microbial communities found in the host, however the interplay between this competition and host defense are less clear. Here, we use the zebrafish hindbrain ventricle (HBV) as an in vivo platform to investigate host responses to defined bacterial communities with distinct forms of interbacterial competition. We found that antibacterial activity of the type VI secretion system (T6SS) from both Vibrio cholerae and Acinetobacter baylyi can induce host inflammation and sensitize the host to infection independent of any individual effector. Chemical suppression of inflammation could resolve T6SS-dependent differences in host survival, but the mechanism by which this occurred differed between the two bacterial species. By contrast, colicin-mediated antagonism elicited by an avirulent strain of Shigella sonnei induced a negligible host response despite being a more potent bacterial killer, resulting in no impact on A. baylyi or V. cholerae virulence. Altogether, these results provide insight into how different modes of interbacterial competition in vivo affect the host in distinct ways.
Collapse
Affiliation(s)
- Mollie Virgo
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, London, United Kingdom
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
| | - Serge Mostowy
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
| | - Brian T. Ho
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck College, London, United Kingdom
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, United Kingdom
| |
Collapse
|
8
|
Otto SB, Servajean R, Lemopoulos A, Bitbol AF, Blokesch M. Interactions between pili affect the outcome of bacterial competition driven by the type VI secretion system. Curr Biol 2024; 34:2403-2417.e9. [PMID: 38749426 DOI: 10.1016/j.cub.2024.04.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/09/2024] [Accepted: 04/22/2024] [Indexed: 06/06/2024]
Abstract
The bacterial type VI secretion system (T6SS) is a widespread, kin-discriminatory weapon capable of shaping microbial communities. Due to the system's dependency on contact, cellular interactions can lead to either competition or kin protection. Cell-to-cell contact is often accomplished via surface-exposed type IV pili (T4Ps). In Vibrio cholerae, these T4Ps facilitate specific interactions when the bacteria colonize natural chitinous surfaces. However, it has remained unclear whether and, if so, how these interactions affect the bacterium's T6SS-mediated killing. In this study, we demonstrate that pilus-mediated interactions can be harnessed by T6SS-equipped V. cholerae to kill non-kin cells under liquid growth conditions. We also show that the naturally occurring diversity of pili determines the likelihood of cell-to-cell contact and, consequently, the extent of T6SS-mediated competition. To determine the factors that enable or hinder the T6SS's targeted reduction of competitors carrying pili, we developed a physics-grounded computational model for autoaggregation. Collectively, our research demonstrates that T4Ps involved in cell-to-cell contact can impose a selective burden when V. cholerae encounters non-kin cells that possess an active T6SS. Additionally, our study underscores the significance of T4P diversity in protecting closely related individuals from T6SS attacks through autoaggregation and spatial segregation.
Collapse
Affiliation(s)
- Simon B Otto
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Richard Servajean
- Laboratory of Computational Biology and Theoretical Biophysics, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Alexandre Lemopoulos
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Anne-Florence Bitbol
- Laboratory of Computational Biology and Theoretical Biophysics, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland; SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
| |
Collapse
|
9
|
Chen JZ, Kwong Z, Gerardo NM, Vega NM. Ecological drift during colonization drives within-host and between-host heterogeneity in an animal-associated symbiont. PLoS Biol 2024; 22:e3002304. [PMID: 38662791 PMCID: PMC11075893 DOI: 10.1371/journal.pbio.3002304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 05/07/2024] [Accepted: 03/26/2024] [Indexed: 05/08/2024] Open
Abstract
Specialized host-microbe symbioses canonically show greater diversity than expected from simple models, both at the population level and within individual hosts. To understand how this heterogeneity arises, we utilize the squash bug, Anasa tristis, and its bacterial symbionts in the genus Caballeronia. We modulate symbiont bottleneck size and inoculum composition during colonization to demonstrate the significance of ecological drift, the noisy fluctuations in community composition due to demographic stochasticity. Consistent with predictions from the neutral theory of biodiversity, we found that ecological drift alone can account for heterogeneity in symbiont community composition between hosts, even when 2 strains are nearly genetically identical. When acting on competing strains, ecological drift can maintain symbiont genetic diversity among different hosts by stochastically determining the dominant strain within each host. Finally, ecological drift mediates heterogeneity in isogenic symbiont populations even within a single host, along a consistent gradient running the anterior-posterior axis of the symbiotic organ. Our results demonstrate that symbiont population structure across scales does not necessarily require host-mediated selection, as it can emerge as a result of ecological drift acting on both isogenic and unrelated competitors. Our findings illuminate the processes that might affect symbiont transmission, coinfection, and population structure in nature, which can drive the evolution of host-microbe symbioses and microbe-microbe interactions within host-associated microbiomes.
Collapse
Affiliation(s)
- Jason Z. Chen
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| | - Zeeyong Kwong
- Laboratory of Bacteriology, National Institutes of Allergy and Infectious Diseases, Hamilton, Montana, United States of America
| | - Nicole M. Gerardo
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| | - Nic M. Vega
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
- Department of Physics, Emory University, Atlanta, Georgia, United States of America
| |
Collapse
|
10
|
Zhang C, Datta S, Ratcliff WC, Hammer BK. Constitutive expression of the Type VI Secretion System carries no measurable fitness cost in Vibrio cholerae. Ecol Evol 2024; 14:e11081. [PMID: 38435022 PMCID: PMC10905242 DOI: 10.1002/ece3.11081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 02/03/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024] Open
Abstract
The Type VI Secretion System (T6SS) is a widespread and highly effective mechanism of microbial warfare; it confers the ability to efficiently kill susceptible cells within close proximity. Due to its large physical size, complexity, and ballistic basis for intoxication, it has widely been assumed to incur significant growth costs in the absence of improved competitive outcomes. In this study, we precisely examine the fitness costs of constitutive T6SS firing in the bacterium Vibrio cholerae. We find that, contrary to expectations, constitutive expression of the T6SS has a negligible impact on growth, reducing growth fitness by 0.025 ± 0.5% (95% CI) relative to a T6SS- control. Mathematical modeling of microbial populations demonstrates that, due to clonal interference, constitutive expression of the T6SS will often be neutral, with little impact on evolutionary outcomes. Our findings underscore the importance of precisely measuring the fitness costs of microbial social behaviors and help explain the prevalence of the T6SS across Gram-negative bacteria.
Collapse
Affiliation(s)
- Christopher Zhang
- School of Biological SciencesGeorgia Institute of TechnologyAtlantaGeorgiaUSA
- Interdisciplinary Graduate Program in Quantitative BiosciencesGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Sayantan Datta
- School of Biological SciencesGeorgia Institute of TechnologyAtlantaGeorgiaUSA
- Interdisciplinary Graduate Program in Quantitative BiosciencesGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| | - William C. Ratcliff
- School of Biological SciencesGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Brian K. Hammer
- School of Biological SciencesGeorgia Institute of TechnologyAtlantaGeorgiaUSA
| |
Collapse
|
11
|
Song L, Xu L, Wu T, Shi Z, Kareem HA, Wang Z, Dai Q, Guo C, Pan J, Yang M, Wei X, Wang Y, Wei G, Shen X. Trojan horselike T6SS effector TepC mediates both interference competition and exploitative competition. THE ISME JOURNAL 2024; 18:wrad028. [PMID: 38365238 PMCID: PMC10833071 DOI: 10.1093/ismejo/wrad028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/30/2023] [Accepted: 12/09/2023] [Indexed: 02/18/2024]
Abstract
The type VI secretion system (T6SS) is a bacterial weapon capable of delivering antibacterial effectors to kill competing cells for interference competition, as well as secreting metal ion scavenging effectors to acquire essential micronutrients for exploitation competition. However, no T6SS effectors that can mediate both interference competition and exploitation competition have been reported. In this study, we identified a unique T6SS-1 effector in Yersinia pseudotuberculosis named TepC, which plays versatile roles in microbial communities. First, secreted TepC acts as a proteinaceous siderophore that binds to iron and mediates exploitative competition. Additionally, we discovered that TepC has DNase activity, which gives it both contact-dependent and contact-independent interference competition abilities. In conditions where iron is limited, the iron-loaded TepC is taken up by target cells expressing the outer membrane receptor TdsR. For kin cells encoding the cognate immunity protein TipC, TepC facilitates iron acquisition, and its toxic effects are neutralized. On the other hand, nonkin cells lacking TipC are enticed to uptake TepC and are killed by its DNase activity. Therefore, we have uncovered a T6SS effector, TepC, that functions like a "Trojan horse" by binding to iron ions to provide a valuable resource to kin cells, whereas punishing cheaters that do not produce public goods. This lure-to-kill mechanism, mediated by a bifunctional T6SS effector, may offer new insights into the molecular mechanisms that maintain stability in microbial communities.
Collapse
Affiliation(s)
- Li Song
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lei Xu
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tong Wu
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhenkun Shi
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hafiz Abdul Kareem
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhuo Wang
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qingyun Dai
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chenghao Guo
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Junfeng Pan
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Mingming Yang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaomeng Wei
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yao Wang
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Gehong Wei
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xihui Shen
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
12
|
Booth SC, Meacock OJ, Foster KR. Cell motility empowers bacterial contact weapons. THE ISME JOURNAL 2024; 18:wrae141. [PMID: 39073907 PMCID: PMC11482024 DOI: 10.1093/ismejo/wrae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 05/02/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
Many bacteria kill competitors using short-range weapons, such as the Type VI secretion system and contact dependent inhibition (CDI). Although these weapons can deliver powerful toxins, they rely on direct contact between attacker and target cells. We hypothesized that movement enables attackers to contact more targets and thus greatly empower their weapons. To explore this, we developed individual-based and continuum models of contact-dependent combat which show that motility greatly improves toxin delivery through two underlying processes. First, genotypic mixing increases the inter-strain contact probability of attacker and sensitive cells. Second, target switching ensures attackers constantly attack new cells, instead of repeatedly hitting the same cell. We test our predictions with the pathogen Pseudomonas aeruginosa, using genetically engineered strains to study the interaction between CDI and twitching motility. As predicted, we find that motility works synergistically with CDI, in some cases increasing weapon efficacy up to 10,000-fold compared with non-motile scenarios. Moreover, we demonstrate that both mixing processes occur using timelapse single-cell microscopy and quantify their relative importance by combining experimental data with our model. Our work shows how bacteria can combine cell movement with contact-based weapons to launch powerful attacks on their competitors.
Collapse
Affiliation(s)
- Sean C Booth
- Department of Biology, University of Oxford, Oxford, United Kingdom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- Department of Microbiology, University of Manitoba, Winnipeg, Canada
| | - Oliver J Meacock
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Kevin R Foster
- Department of Biology, University of Oxford, Oxford, United Kingdom
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX13RE, United Kingdom
| |
Collapse
|
13
|
Copeland R, Zhang C, Hammer BK, Yunker PJ. Spatial constraints and stochastic seeding subvert microbial arms race. PLoS Comput Biol 2024; 20:e1011807. [PMID: 38277405 PMCID: PMC10849242 DOI: 10.1371/journal.pcbi.1011807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 02/07/2024] [Accepted: 01/08/2024] [Indexed: 01/28/2024] Open
Abstract
Surface attached communities of microbes grow in a wide variety of environments. Often, the size of these microbial community is constrained by their physical surroundings. However, little is known about how size constraints of a colony impact the outcome of microbial competitions. Here, we use individual-based models to simulate contact killing between two bacterial strains with different killing rates in a wide range of community sizes. We found that community size has a substantial impact on outcomes; in fact, in some competitions the identity of the most fit strain differs in large and small environments. Specifically, when at a numerical disadvantage, the strain with the slow killing rate is more successful in smaller environments than in large environments. The improved performance in small spaces comes from finite size effects; stochastic fluctuations in the initial relative abundance of each strain in small environments lead to dramatically different outcomes. However, when the slow killing strain has a numerical advantage, it performs better in large spaces than in small spaces, where stochastic fluctuations now aid the fast killing strain in small communities. Finally, we experimentally validate these results by confining contact killing strains of Vibrio cholerae in transmission electron microscopy grids. The outcomes of these experiments are consistent with our simulations. When rare, the slow killing strain does better in small environments; when common, the slow killing strain does better in large environments. Together, this work demonstrates that finite size effects can substantially modify antagonistic competitions, suggesting that colony size may, at least in part, subvert the microbial arms race.
Collapse
Affiliation(s)
- Raymond Copeland
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- Interdisciplinary Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Christopher Zhang
- Interdisciplinary Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Brian K Hammer
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Peter J Yunker
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| |
Collapse
|
14
|
Almeida RAL. Critical Percolation in the Ordering Kinetics of Twisted Nematic Phases. PHYSICAL REVIEW LETTERS 2023; 131:268101. [PMID: 38215366 DOI: 10.1103/physrevlett.131.268101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/28/2023] [Indexed: 01/14/2024]
Abstract
I report on the experimental confirmation that critical percolation statistics underlie the ordering kinetics of twisted nematic phases in the Allen-Cahn universality class. Soon after the ordering starts from a homogeneous disordered phase and proceeds toward a broken Z_{2}-symmetry phase, the system seems to be attracted to the random percolation fixed point at a special timescale t_{p}. At this time, exact formulas for crossing probabilities in percolation theory agree with the corresponding probabilities in the experimental data. The ensuing evolution for the number density of hull-enclosed areas is described by an exact expression derived from a percolation model endowed with curvature-driven interface motion. Scaling relation for hull-enclosed areas versus perimeters reveals that the fractal percolation geometry is progressively morphed into a regular geometry up to the order of the classical coarsening length. In view of its universality and experimental possibilities, the study opens a path for exploring percolation keystones in the realm of nonequilibrium, phase-ordering systems.
Collapse
Affiliation(s)
- Renan A L Almeida
- Instituto de Física, Universidade Federal do Rio Grande do Sul, CP 15051, 91501-970, Porto Alegre RS, Brazil
| |
Collapse
|
15
|
MacGillivray KA, Ng SL, Wiesenfeld S, Guest RL, Jubery T, Silhavy TJ, Ratcliff WC, Hammer BK. Trade-offs constrain adaptive pathways to the type VI secretion system survival. iScience 2023; 26:108332. [PMID: 38025790 PMCID: PMC10679819 DOI: 10.1016/j.isci.2023.108332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 08/25/2023] [Accepted: 10/22/2023] [Indexed: 12/01/2023] Open
Abstract
The Type VI Secretion System (T6SS) is a nano-harpoon used by many bacteria to inject toxins into neighboring cells. While much is understood about mechanisms of T6SS-mediated toxicity, less is known about the ways that competitors can defend themselves against this attack, especially in the absence of their own T6SS. Here we subjected eight replicate populations of Escherichia coli to T6SS attack by Vibrio cholerae. Over ∼500 generations of competition, isolates of the E. coli populations evolved to survive T6SS attack an average of 27-fold better, through two convergently evolved pathways: apaH was mutated in six of the eight replicate populations, while the other two populations each had mutations in both yejM and yjeP. However, the mutations we identified are pleiotropic, reducing cellular growth rates, and increasing susceptibility to antibiotics and elevated pH. These trade-offs help us understand how the T6SS shapes the evolution of bacterial interactions.
Collapse
Affiliation(s)
- Kathryn A. MacGillivray
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| | - Siu Lung Ng
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| | - Sophia Wiesenfeld
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| | - Randi L. Guest
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Tahrima Jubery
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| | - Thomas J. Silhavy
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - William C. Ratcliff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| | - Brian K. Hammer
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
16
|
Belcher LJ, Dewar AE, Hao C, Katz Z, Ghoul M, West SA. SOCfinder: a genomic tool for identifying social genes in bacteria. Microb Genom 2023; 9:001171. [PMID: 38117204 PMCID: PMC10763506 DOI: 10.1099/mgen.0.001171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023] Open
Abstract
Bacteria cooperate by working collaboratively to defend their colonies, share nutrients, and resist antibiotics. Nevertheless, our understanding of these remarkable behaviours primarily comes from studying a few well-characterized species. Consequently, there is a significant gap in our understanding of microbial social traits, particularly in natural environments. To address this gap, we can use bioinformatic tools to identify genes that control cooperative or otherwise social traits. Existing tools address this challenge through two approaches. One approach is to identify genes that encode extracellular proteins, which can provide benefits to neighbouring cells. An alternative approach is to predict gene function using annotation tools. However, these tools have several limitations. Not all extracellular proteins are cooperative, and not all cooperative behaviours are controlled by extracellular proteins. Furthermore, existing functional annotation methods frequently miss known cooperative genes. We introduce SOCfinder as a new tool to find bacterial genes that control cooperative or otherwise social traits. SOCfinder combines information from several methods, considering if a gene is likely to [1] code for an extracellular protein [2], have a cooperative functional annotation, or [3] be part of the biosynthesis of a cooperative secondary metabolite. We use data on two extensively-studied species (P. aeruginosa and B. subtilis) to show that SOCfinder is better at finding known cooperative genes than existing tools. We also use theory from population genetics to identify a signature of kin selection in SOCfinder cooperative genes, which is lacking in genes identified by existing tools. SOCfinder opens up a number of exciting directions for future research, and is available to download from https://github.com/lauriebelch/SOCfinder.
Collapse
Affiliation(s)
| | - Anna E. Dewar
- Department of Biology, University of Oxford, Oxford, OX1 3SZ, UK
| | - Chunhui Hao
- Department of Biology, University of Oxford, Oxford, OX1 3SZ, UK
| | - Zohar Katz
- Department of Biology, University of Oxford, Oxford, OX1 3SZ, UK
| | - Melanie Ghoul
- Department of Biology, University of Oxford, Oxford, OX1 3SZ, UK
| | - Stuart A. West
- Department of Biology, University of Oxford, Oxford, OX1 3SZ, UK
| |
Collapse
|
17
|
Robitaille S, Simmons EL, Verster AJ, McClure EA, Royce DB, Trus E, Swartz K, Schultz D, Nadell CD, Ross BD. Community composition and the environment modulate the population dynamics of type VI secretion in human gut bacteria. Nat Ecol Evol 2023; 7:2092-2107. [PMID: 37884689 PMCID: PMC11099977 DOI: 10.1038/s41559-023-02230-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023]
Abstract
Understanding the relationship between the composition of the human gut microbiota and the ecological forces shaping it is of great importance; however, knowledge of the biogeographical and ecological relationships between physically interacting taxa is limited. Interbacterial antagonism may play an important role in gut community dynamics, yet the conditions under which antagonistic behaviour is favoured or disfavoured by selection in the gut are not well understood. Here, using genomics, we show that a species-specific type VI secretion system (T6SS) repeatedly acquires inactivating mutations in Bacteroides fragilis in the human gut. This result implies a fitness cost to the T6SS, but we could not identify laboratory conditions under which such a cost manifests. Strikingly, experiments in mice illustrate that the T6SS can be favoured or disfavoured in the gut depending on the strains and species in the surrounding community and their susceptibility to T6SS antagonism. We use ecological modelling to explore the conditions that could underlie these results and find that community spatial structure modulates interaction patterns among bacteria, thereby modulating the costs and benefits of T6SS activity. Our findings point towards new integrative models for interrogating the evolutionary dynamics of type VI secretion and other modes of antagonistic interaction in microbiomes.
Collapse
Affiliation(s)
- Sophie Robitaille
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
| | - Emilia L Simmons
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Adrian J Verster
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
| | - Emily Ann McClure
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
| | - Darlene B Royce
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
| | - Evan Trus
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
| | - Kerry Swartz
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
| | - Daniel Schultz
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
| | - Carey D Nadell
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Benjamin D Ross
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
18
|
Booth SC, Smith WPJ, Foster KR. The evolution of short- and long-range weapons for bacterial competition. Nat Ecol Evol 2023; 7:2080-2091. [PMID: 38036633 PMCID: PMC10697841 DOI: 10.1038/s41559-023-02234-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 09/22/2023] [Indexed: 12/02/2023]
Abstract
Bacteria possess a diverse range of mechanisms for inhibiting competitors, including bacteriocins, tailocins, type VI secretion systems and contact-dependent inhibition (CDI). Why bacteria have evolved such a wide array of weapon systems remains a mystery. Here we develop an agent-based model to compare short-range weapons that require cell-cell contact, with long-range weapons that rely on diffusion. Our model predicts that contact weapons are useful when an attacking strain is outnumbered, facilitating invasion and establishment. By contrast, ranged weapons tend to be effective only when attackers are abundant. We test our predictions with the opportunistic pathogen Pseudomonas aeruginosa, which naturally carries multiple weapons, including CDI and diffusing tailocins. As predicted, short-range CDI can function at low and high frequencies, while long-range tailocins require high frequency and cell density to function effectively. Head-to-head competition experiments with the two weapon types further support our predictions: a tailocin attacker defeats CDI only when it is numerically dominant, but then we find it can be devastating. Finally, we show that the two weapons work well together when one strain employs both. We conclude that short- and long-range weapons serve different functions and allow bacteria to fight both as individuals and as a group.
Collapse
Affiliation(s)
- Sean C Booth
- Department of Biology, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - William P J Smith
- Department of Biology, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
- Division of Evolution, Infection and Genomics, University of Manchester, Manchester, UK
| | - Kevin R Foster
- Department of Biology, University of Oxford, Oxford, UK.
- Department of Biochemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
19
|
Miller J, Murray PJ. Space and time on the membrane: modelling Type VI secretion system dynamics as a state-dependent random walk. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230284. [PMID: 37920566 PMCID: PMC10618060 DOI: 10.1098/rsos.230284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/19/2023] [Indexed: 11/04/2023]
Abstract
The type six secretion system (T6SS) is a transmembrane protein complex that mediates bacterial cell killing. The T6SS comprises three main components (transmembrane, baseplate and sheath/tube complexes) that are sequentially assembled in order to enable an attacking cell to transport payloads into neighbouring cells. A T6SS attack disrupts the function of essential cellular components of target cells, typically resulting in their death. While the assembled T6SS adopts a fixed position in the cell membrane of the attacking cell, the location of the firing site varies between firing events. In Serratia marcescens, a post-translational regulatory network regulates the assembly and firing kinetics of the T6SS in a manner that affects the attacking cell's ability to kill target cells. Moreover, when the ability of membrane complexes to reorient is reduced, an attacking cell's competitiveness is also reduced. In this study, we will develop a mathematical model that describes both the spatial motion and assembly/disassembly of a firing T6SS. The model represents the motion of a T6SS on the cell membrane as a state-dependent random walk. Using the model, we will explore how both spatial and temporal effects can combine to give rise to different firing phenotypes. Using parameters inferred from the available literature, we show that variation in estimated diffusion coefficients is sufficient to give rise to either spatially local or global firers.
Collapse
|
20
|
Belcher LJ, Dewar AE, Hao C, Ghoul M, West SA. Signatures of kin selection in a natural population of the bacteria Bacillus subtilis. Evol Lett 2023; 7:315-330. [PMID: 37829498 PMCID: PMC10565896 DOI: 10.1093/evlett/qrad029] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/14/2023] [Accepted: 07/07/2023] [Indexed: 10/14/2023] Open
Abstract
Laboratory experiments have suggested that bacteria perform a range of cooperative behaviors, which are favored because they are directed toward relatives (kin selection). However, there is a lack of evidence for cooperation and kin selection in natural bacterial populations. Molecular population genetics offers a promising method to study natural populations because the theory predicts that kin selection will lead to relaxed selection, which will result in increased polymorphism and divergence at cooperative genes. Examining a natural population of Bacillus subtilis, we found consistent evidence that putatively cooperative traits have higher polymorphism and greater divergence than putatively private traits expressed at the same rate. In addition, we were able to eliminate alternative explanations for these patterns and found more deleterious mutations in genes controlling putatively cooperative traits. Overall, our results suggest that cooperation is favored by kin selection, with an average relatedness of r = .79 between interacting individuals.
Collapse
Affiliation(s)
| | - Anna E Dewar
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Chunhui Hao
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Melanie Ghoul
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Stuart A West
- Department of Biology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
21
|
Lin YL, Smith SN, Kanso E, Septer AN, Rycroft CH. A subcellular biochemical model for T6SS dynamics reveals winning competitive strategies. PNAS NEXUS 2023; 2:pgad195. [PMID: 37441614 PMCID: PMC10335733 DOI: 10.1093/pnasnexus/pgad195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 07/15/2023]
Abstract
The type VI secretion system (T6SS) is a broadly distributed interbacterial weapon that can be used to eliminate competing bacterial populations. Although unarmed target populations are typically used to study T6SS function in vitro, bacteria most likely encounter other T6SS-armed competitors in nature. However, the connection between subcellular details of the T6SS and the outcomes of such mutually lethal battles is not well understood. Here, we incorporate biological data derived from natural competitors of Vibrio fischeri light organ symbionts to build a biochemical model for T6SS at the single-cell level, which we then integrate into an agent-based model (ABM). Using the ABM, we isolate and experiment with strain-specific physiological differences between competitors in ways not possible with biological samples to identify winning strategies for T6SS-armed populations. Through in vitro experiments, we discover that strain-specific differences exist in T6SS activation speed. ABM simulations corroborate that faster activation is dominant in determining survival during competition. Once competitors are fully activated, the energy required for T6SS creates a tipping point where increased weapon building and firing becomes too costly to be advantageous. Through ABM simulations, we identify the threshold where this transition occurs in the T6SS parameter space. We also find that competitive outcomes depend on the geometry of the battlefield: unarmed target cells survive at the edges of a range expansion where unlimited territory can be claimed. Alternatively, competitions within a confined space, much like the light organ crypts where natural V. fischeri compete, result in the rapid elimination of the unarmed population.
Collapse
Affiliation(s)
| | | | - Eva Kanso
- Department of Aerospace and Mechanical Engineering, University of Southern California, 3650 McClintock Ave, Los Angeles, CA 90089, USA
| | | | | |
Collapse
|
22
|
Coppens B, Belpaire TE, Pešek J, Steenackers HP, Ramon H, Smeets B. Anomalous diffusion of nanoparticles in the spatially heterogeneous biofilm environment. iScience 2023; 26:106861. [PMID: 37260744 PMCID: PMC10227381 DOI: 10.1016/j.isci.2023.106861] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/20/2023] [Accepted: 05/08/2023] [Indexed: 06/02/2023] Open
Abstract
Biofilms contain extracellular polymeric substances (EPS) that provide structural support and restrict penetration of antimicrobial treatment. To overcome limited penetration, functionalized nanoparticles (NPs) have been suggested as carriers for antimicrobial delivery. Using microscopy, we evaluate the diffusion of nanoparticles in function of the structure of Salmonella biofilms. We observe anomalous diffusion and heterogeneous mobility of NPs resulting in distinct NPs distribution that depended on biofilm structure. Through Brownian dynamics modeling with spatially varying viscosity around bacteria, we demonstrated that spatial gradients in diffusivity generate viscous sinks that trap NPs near bacteria. This model replicates the characteristic diffusion signature and vertical distribution of NPs in the biofilm. From a treatment perspective, our work indicates that both biofilm structure and the level of EPS can impact NP drug delivery, where low levels of EPS might benefit delivery by immobilizing NPs closer to bacteria and higher levels hamper delivery due to shielding effects.
Collapse
Affiliation(s)
- Bart Coppens
- Division of Mechatronics, Biostatistics, and Sensors, KU Leuven, 3001 Leuven, Belgium
| | - Tom E.R. Belpaire
- Division of Mechatronics, Biostatistics, and Sensors, KU Leuven, 3001 Leuven, Belgium
| | - Jiří Pešek
- Team SIMBIOTX, Inria Saclay, 91120 Palaiseau, France
| | | | - Herman Ramon
- Division of Mechatronics, Biostatistics, and Sensors, KU Leuven, 3001 Leuven, Belgium
| | - Bart Smeets
- Division of Mechatronics, Biostatistics, and Sensors, KU Leuven, 3001 Leuven, Belgium
| |
Collapse
|
23
|
Granato ET, Smith WPJ, Foster KR. Collective protection against the type VI secretion system in bacteria. THE ISME JOURNAL 2023:10.1038/s41396-023-01401-4. [PMID: 37095301 DOI: 10.1038/s41396-023-01401-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/11/2023] [Accepted: 03/20/2023] [Indexed: 04/26/2023]
Abstract
Bacteria commonly face attacks from other strains using the type VI secretion system (T6SS), which acts like a molecular speargun to stab and intoxicate competitors. Here we show how bacteria can work together to collectively defend themselves against these attacks. This project began with an outreach activity: while developing an online computer game of bacterial warfare, we noticed that one strategist ("Slimy") that made extracellular polymeric substances (EPS) was able to resist attacks from another strategist that employed the T6SS ("Stabby"). This observation motivated us to model this scenario more formally, using dedicated agent-based simulations. The model predicts that EPS production can serve as a collective defence mechanism, which protects both producing cells and neighbouring cells that do not make EPS. We then tested our model with a synthetic community that contains a T6SS-wielding attacker (Acinetobacter baylyi), and two T6SS-sensitive target strains (Escherichia coli) that either secrete EPS, or not. As predicted by our modelling, we find that the production of EPS leads to collective protection against T6SS attacks, where EPS producers protect each other and nearby non-producers. We identify two processes that explain this protection: EPS sharing between cells and a second general mechanism whereby groups of resistant cells shield susceptible cells, which we call "flank protection". Our work shows how EPS-producing bacteria can work together to defend themselves from the type VI secretion system.
Collapse
Affiliation(s)
- Elisa T Granato
- Department of Biology, University of Oxford, Oxford, UK.
- Department of Biochemistry, University of Oxford, Oxford, UK.
| | - William P J Smith
- Department of Biology, University of Oxford, Oxford, UK.
- Department of Biochemistry, University of Oxford, Oxford, UK.
- Division of Genomics, Infection and Evolution, University of Manchester, Manchester, UK.
| | - Kevin R Foster
- Department of Biology, University of Oxford, Oxford, UK.
- Department of Biochemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
24
|
Pauli B, Ajmera S, Kost C. Determinants of synergistic cell-cell interactions in bacteria. Biol Chem 2023; 404:521-534. [PMID: 36859766 DOI: 10.1515/hsz-2022-0303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/08/2023] [Indexed: 03/03/2023]
Abstract
Bacteria are ubiquitous and colonize virtually every conceivable habitat on earth. To achieve this, bacteria require different metabolites and biochemical capabilities. Rather than trying to produce all of the needed materials by themselves, bacteria have evolved a range of synergistic interactions, in which they exchange different commodities with other members of their local community. While it is widely acknowledged that synergistic interactions are key to the ecology of both individual bacteria and entire microbial communities, the factors determining their establishment remain poorly understood. Here we provide a comprehensive overview over our current knowledge on the determinants of positive cell-cell interactions among bacteria. Taking a holistic approach, we review the literature on the molecular mechanisms bacteria use to transfer commodities between bacterial cells and discuss to which extent these mechanisms favour or constrain the successful establishment of synergistic cell-cell interactions. In addition, we analyse how these different processes affect the specificity among interaction partners. By drawing together evidence from different disciplines that study the focal question on different levels of organisation, this work not only summarizes the state of the art in this exciting field of research, but also identifies new avenues for future research.
Collapse
Affiliation(s)
- Benedikt Pauli
- Department of Ecology, School of Biology/Chemistry, Osnabrück University, D-49076 Osnabrück, Germany
| | - Shiksha Ajmera
- Department of Ecology, School of Biology/Chemistry, Osnabrück University, D-49076 Osnabrück, Germany
| | - Christian Kost
- Department of Ecology, School of Biology/Chemistry, Osnabrück University, D-49076 Osnabrück, Germany.,Center of Cellular Nanoanalytics (CellNanOs), Osnabrück University, Barbarastrasse 11, D-49076 Osnabrück, Germany
| |
Collapse
|
25
|
Robitaille S, Simmons EL, Verster AJ, McClure EA, Royce DB, Trus E, Swartz K, Schultz D, Nadell CD, Ross BD. Community composition and the environment modulate the population dynamics of type VI secretion in human gut bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.20.529031. [PMID: 36865186 PMCID: PMC9980007 DOI: 10.1101/2023.02.20.529031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Understanding the relationship between the composition of the human gut microbiota and the ecological forces shaping it is of high importance as progress towards therapeutic modulation of the microbiota advances. However, given the inaccessibility of the gastrointestinal tract, our knowledge of the biogeographical and ecological relationships between physically interacting taxa has been limited to date. It has been suggested that interbacterial antagonism plays an important role in gut community dynamics, but in practice the conditions under which antagonistic behavior is favored or disfavored by selection in the gut environment are not well known. Here, using phylogenomics of bacterial isolate genomes and analysis of infant and adult fecal metagenomes, we show that the contact-dependent type VI secretion system (T6SS) is repeatedly lost from the genomes of Bacteroides fragilis in adults compare to infants. Although this result implies a significant fitness cost to the T6SS, but we could not identify in vitro conditions under which such a cost manifests. Strikingly, however, experiments in mice illustrated that the B. fragilis T6SS can be favored or disfavored in the gut environment, depending on the strains and species in the surrounding community and their susceptibility to T6SS antagonism. We use a variety of ecological modeling techniques to explore the possible local community structuring conditions that could underlie the results of our larger scale phylogenomic and mouse gut experimental approaches. The models illustrate robustly that the pattern of local community structuring in space can modulate the extent of interactions between T6SS-producing, sensitive, and resistant bacteria, which in turn control the balance of fitness costs and benefits of performing contact-dependent antagonistic behavior. Taken together, our genomic analyses, in vivo studies, and ecological theory point toward new integrative models for interrogating the evolutionary dynamics of type VI secretion and other predominant modes of antagonistic interaction in diverse microbiomes.
Collapse
Affiliation(s)
- Sophie Robitaille
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| | - Emilia L. Simmons
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Adrian J. Verster
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| | - Emily Ann McClure
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| | - Darlene B. Royce
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| | - Evan Trus
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| | - Kerry Swartz
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| | - Daniel Schultz
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| | - Carey D. Nadell
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Benjamin D. Ross
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
26
|
Type VI Secretion Systems: Environmental and Intra-host Competition of Vibrio cholerae. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1404:41-63. [PMID: 36792870 DOI: 10.1007/978-3-031-22997-8_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
The Vibrio Type VI Secretion System (T6SS) is a harpoon-like nanomachine that serves as a defense system and is encoded by approximately 25% of all gram-negative bacteria. In this chapter, we describe the structure of the T6SS in different Vibrio species and outline how the use of different T6SS effector and immunity proteins control kin selection. We summarize the genetic loci that encode the structural elements that make up the Vibrio T6SSs and how these gene clusters are regulated. Finally, we provide insights into T6SS-based competitive dynamics, the role of T6SS genetic exchange in those competitive dynamics, and roles for the Vibrio T6SS in virulence.
Collapse
|
27
|
Phase-separation physics underlies new theory for the resilience of patchy ecosystems. Proc Natl Acad Sci U S A 2023; 120:e2202683120. [PMID: 36595670 PMCID: PMC9926271 DOI: 10.1073/pnas.2202683120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Spatial self-organization of ecosystems into large-scale (from micron to meters) patterns is an important phenomenon in ecology, enabling organisms to cope with harsh environmental conditions and buffering ecosystem degradation. Scale-dependent feedbacks provide the predominant conceptual framework for self-organized spatial patterns, explaining regular patterns observed in, e.g., arid ecosystems or mussel beds. Here, we highlight an alternative mechanism for self-organized patterns, based on the aggregation of a biotic or abiotic species, such as herbivores, sediment, or nutrients. Using a generalized mathematical model, we demonstrate that ecosystems with aggregation-driven patterns have fundamentally different dynamics and resilience properties than ecosystems with patterns that formed through scale-dependent feedbacks. Building on the physics theory for phase-separation dynamics, we show that patchy ecosystems with aggregation patterns are more vulnerable than systems with patterns formed through scale-dependent feedbacks, especially at small spatial scales. This is because local disturbances can trigger large-scale redistribution of resources, amplifying local degradation. Finally, we show that insights from physics, by providing mechanistic understanding of the initiation of aggregation patterns and their tendency to coarsen, provide a new indicator framework to signal proximity to ecological tipping points and subsequent ecosystem degradation for this class of patchy ecosystems.
Collapse
|
28
|
Calibrating spatiotemporal models of microbial communities to microscopy data: A review. PLoS Comput Biol 2022; 18:e1010533. [PMID: 36227846 PMCID: PMC9560168 DOI: 10.1371/journal.pcbi.1010533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Spatiotemporal models that account for heterogeneity within microbial communities rely on single-cell data for calibration and validation. Such data, commonly collected via microscopy and flow cytometry, have been made more accessible by recent advances in microfluidics platforms and data processing pipelines. However, validating models against such data poses significant challenges. Validation practices vary widely between modelling studies; systematic and rigorous methods have not been widely adopted. Similar challenges are faced by the (macrobial) ecology community, in which systematic calibration approaches are often employed to improve quantitative predictions from computational models. Here, we review single-cell observation techniques that are being applied to study microbial communities and the calibration strategies that are being employed for accompanying spatiotemporal models. To facilitate future calibration efforts, we have compiled a list of summary statistics relevant for quantifying spatiotemporal patterns in microbial communities. Finally, we highlight some recently developed techniques that hold promise for improved model calibration, including algorithmic guidance of summary statistic selection and machine learning approaches for efficient model simulation.
Collapse
|
29
|
Carobbi A, Di Nepi S, Fridman CM, Dar Y, Ben‐Yaakov R, Barash I, Salomon D, Sessa G. An antibacterial T6SS in Pantoea agglomerans pv. betae delivers a lysozyme-like effector to antagonize competitors. Environ Microbiol 2022; 24:4787-4802. [PMID: 35706135 PMCID: PMC9796082 DOI: 10.1111/1462-2920.16100] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 06/10/2022] [Indexed: 12/30/2022]
Abstract
The type VI secretion system (T6SS) is deployed by numerous Gram-negative bacteria to deliver toxic effectors into neighbouring cells. The genome of Pantoea agglomerans pv. betae (Pab) phytopathogenic bacteria contains a gene cluster (T6SS1) predicted to encode a complete T6SS. Using secretion and competition assays, we found that T6SS1 in Pab is a functional antibacterial system that allows this pathogen to outcompete rival plant-associated bacteria found in its natural environment. Computational analysis of the T6SS1 gene cluster revealed that antibacterial effector and immunity proteins are encoded within three genomic islands that also harbour arrays of orphan immunity genes or toxin and immunity cassettes. Functional analyses indicated that VgrG, a specialized antibacterial effector, contains a C-terminal catalytically active glucosaminidase domain that is used to degrade prey peptidoglycan. Moreover, we confirmed that a bicistronic unit at the end of the T6SS1 cluster encodes a novel antibacterial T6SS effector and immunity pair. Together, these results demonstrate that Pab T6SS1 is an antibacterial system delivering a lysozyme-like effector to eliminate competitors, and indicate that this bacterium contains additional novel T6SS effectors.
Collapse
Affiliation(s)
- Andrea Carobbi
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life SciencesTel‐Aviv UniversityTel‐Aviv
| | - Simone Di Nepi
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life SciencesTel‐Aviv UniversityTel‐Aviv
| | - Chaya M. Fridman
- Department of Clinical Microbiology and Immunology, Sackler Faculty of MedicineTel Aviv UniversityTel Aviv
| | - Yasmin Dar
- Department of Clinical Microbiology and Immunology, Sackler Faculty of MedicineTel Aviv UniversityTel Aviv
| | - Rotem Ben‐Yaakov
- Department of Clinical Microbiology and Immunology, Sackler Faculty of MedicineTel Aviv UniversityTel Aviv
| | - Isaac Barash
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life SciencesTel‐Aviv UniversityTel‐Aviv
| | - Dor Salomon
- Department of Clinical Microbiology and Immunology, Sackler Faculty of MedicineTel Aviv UniversityTel Aviv
| | - Guido Sessa
- School of Plant Sciences and Food Security, The George S. Wise Faculty of Life SciencesTel‐Aviv UniversityTel‐Aviv
| |
Collapse
|
30
|
Benzi R, Nelson DR, Shankar S, Toschi F, Zhu X. Spatial population genetics with fluid flow. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:096601. [PMID: 35853344 DOI: 10.1088/1361-6633/ac8231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
The growth and evolution of microbial populations is often subjected to advection by fluid flows in spatially extended environments, with immediate consequences for questions of spatial population genetics in marine ecology, planktonic diversity and origin of life scenarios. Here, we review recent progress made in understanding this rich problem in the simplified setting of two competing genetic microbial strains subjected to fluid flows. As a pedagogical example we focus on antagonsim, i.e., two killer microorganism strains, each secreting toxins that impede the growth of their competitors (competitive exclusion), in the presence of stationary fluid flows. By solving two coupled reaction-diffusion equations that include advection by simple steady cellular flows composed of characteristic flow motifs in two dimensions (2D), we show how local flow shear and compressibility effects can interact with selective advantage to have a dramatic influence on genetic competition and fixation in spatially distributed populations. We analyze several 1D and 2D flow geometries including sources, sinks, vortices and saddles, and show how simple analytical models of the dynamics of the genetic interface can be used to shed light on the nucleation, coexistence and flow-driven instabilities of genetic drops. By exploiting an analogy with phase separation with nonconserved order parameters, we uncover how thesegeneticdrops harness fluid flows for novel evolutionary strategies, even in the presence of number fluctuations, as confirmed by agent-based simulations as well.
Collapse
Affiliation(s)
- Roberto Benzi
- Department of Physics and INFN, University of Rome Tor Vergata, I-00133 Rome, Italy
| | - David R Nelson
- Department of Physics, Harvard University, Cambridge, MA 02138, United States of America
| | - Suraj Shankar
- Department of Physics, Harvard University, Cambridge, MA 02138, United States of America
| | - Federico Toschi
- Department of Applied Physics, Department of Mathematics and Computer Science, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
- CNR-IAC, I-00185 Rome, Italy
| | - Xiaojue Zhu
- Solar and Stellar Interiors, Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, Göttingen 37077, Germany
- Center of Mathematical Sciences and Applications, and School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, United States of America
| |
Collapse
|
31
|
VxrB Influences Antagonism within Biofilms by Controlling Competition through Extracellular Matrix Production and Type 6 Secretion. mBio 2022; 13:e0188522. [PMID: 35880882 PMCID: PMC9426512 DOI: 10.1128/mbio.01885-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human pathogen Vibrio cholerae grows as biofilms, communities of cells encased in an extracellular matrix. When growing in biofilms, cells compete for resources and space. One common competitive mechanism among Gram-negative bacteria is the type six secretion system (T6SS), which can deliver toxic effector proteins into a diverse group of target cells, including other bacteria, phagocytic amoebas, and human macrophages. The response regulator VxrB positively regulates both biofilm matrix and T6SS gene expression. Here, we directly observe T6SS activity within biofilms, which results in improved competition with strains lacking the T6SS. VxrB significantly contributes to both attack and defense via T6SS, while also influencing competition via regulation of biofilm matrix production. We further determined that both Vibrio polysaccharide (VPS) and the biofilm matrix protein RbmA can protect cells from T6SS attack within mature biofilms. By varying the spatial mixing of predator and prey cells in biofilms, we show that a high degree of mixing favors T6SS predator strains and that the presence of extracellular DNA in V. cholerae biofilms is a signature of T6SS killing. VxrB therefore regulates both T6SS attack and matrix-based T6SS defense, to control antagonistic interactions and competition outcomes during mixed-strain biofilm formation.
Collapse
|
32
|
Tang MX, Pei TT, Xiang Q, Wang ZH, Luo H, Wang XY, Fu Y, Dong T. Abiotic factors modulate interspecies competition mediated by the type VI secretion system effectors in Vibrio cholerae. THE ISME JOURNAL 2022; 16:1765-1775. [PMID: 35354946 PMCID: PMC9213406 DOI: 10.1038/s41396-022-01228-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 03/08/2022] [Accepted: 03/17/2022] [Indexed: 05/06/2023]
Abstract
Vibrio cholerae, the etiological pathogen of cholera, employs its type VI secretion system (T6SS) as an effective weapon to survive in highly competitive communities. Antibacterial and anti-eukaryotic functions of the T6SS depend on its secreted effectors that target multiple cellular processes. However, the mechanisms that account for effector diversity and different effectiveness during interspecies competition remain elusive. Here we report that environmental cations and temperature play a key role in dictating cellular response and effector effectiveness during interspecies competition mediated by the T6SS of V. cholerae. We found that V. cholerae could employ its cell-wall-targeting effector TseH to outcompete the otherwise resistant Escherichia coli and the V. cholerae immunity deletion mutant ∆tsiH when Mg2+ or Ca2+ was supplemented. Transcriptome and genetic analyses demonstrate that the metal-sensing PhoPQ two-component system is important for Mg2+-dependent sensitivity. Competition analysis in infant mice shows that TseH was active under in vivo conditions. Using a panel of V. cholerae single-effector active mutants, we further show that E. coli also exhibited variable susceptibilities to other T6SS effectors depending on cations and temperatures, respectively. Lastly, V. cholerae effector VasX could sensitize Pseudomonas aeruginosa to its intrinsically resistant antibiotic irgasan in a temperature-dependent manner. Collectively, these findings suggest that abiotic factors, that V. cholerae frequently encounters in natural and host environments, could modulate cellular responses and dictate the competitive fitness conferred by the T6SS effectors in complex multispecies communities.
Collapse
Affiliation(s)
- Ming-Xuan Tang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Tong-Tong Pei
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qi Xiang
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Zeng-Hang Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Han Luo
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xing-Yu Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Fu
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Tao Dong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
33
|
Spatial patterns in ecological systems: from microbial colonies to landscapes. Emerg Top Life Sci 2022; 6:245-258. [PMID: 35678374 DOI: 10.1042/etls20210282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 11/17/2022]
Abstract
Self-organized spatial patterns are ubiquitous in ecological systems and allow populations to adopt non-trivial spatial distributions starting from disordered configurations. These patterns form due to diverse nonlinear interactions among organisms and between organisms and their environment, and lead to the emergence of new (eco)system-level properties unique to self-organized systems. Such pattern consequences include higher resilience and resistance to environmental changes, abrupt ecosystem collapse, hysteresis loops, and reversal of competitive exclusion. Here, we review ecological systems exhibiting self-organized patterns. We establish two broad pattern categories depending on whether the self-organizing process is primarily driven by nonlinear density-dependent demographic rates or by nonlinear density-dependent movement. Using this organization, we examine a wide range of observational scales, from microbial colonies to whole ecosystems, and discuss the mechanisms hypothesized to underlie observed patterns and their system-level consequences. For each example, we review both the empirical evidence and the existing theoretical frameworks developed to identify the causes and consequences of patterning. Finally, we trace qualitative similarities across systems and propose possible ways of developing a more quantitative understanding of how self-organization operates across systems and observational scales in ecology.
Collapse
|
34
|
Lissens M, Joos M, Lories B, Steenackers HP. Evolution-proof inhibitors of public good cooperation: a screening strategy inspired by social evolution theory. FEMS Microbiol Rev 2022; 46:6604382. [PMID: 35675280 PMCID: PMC9616471 DOI: 10.1093/femsre/fuac019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/22/2022] [Indexed: 01/07/2023] Open
Abstract
Interference with public good cooperation provides a promising novel antimicrobial strategy since social evolution theory predicts that resistant mutants will be counter-selected if they share the public benefits of their resistance with sensitive cells in the population. Although this hypothesis is supported by a limited number of pioneering studies, an extensive body of more fundamental work on social evolution describes a multitude of mechanisms and conditions that can stabilize public behaviour, thus potentially allowing resistant mutants to thrive. In this paper we theorize on how these different mechanisms can influence the evolution of resistance against public good inhibitors. Based hereon, we propose an innovative 5-step screening strategy to identify novel evolution-proof public good inhibitors, which involves a systematic evaluation of the exploitability of public goods under the most relevant experimental conditions, as well as a careful assessment of the most optimal way to interfere with their action. Overall, this opinion paper is aimed to contribute to long-term solutions to fight bacterial infections.
Collapse
Affiliation(s)
- Maries Lissens
- Centre of Microbial and Plant Genetics (CMPG), Department of Microbial and Molecular Systems, KU Leuven, Leuven, B-3001, Belgium
| | - Mathieu Joos
- Centre of Microbial and Plant Genetics (CMPG), Department of Microbial and Molecular Systems, KU Leuven, Leuven, B-3001, Belgium
| | - Bram Lories
- Centre of Microbial and Plant Genetics (CMPG), Department of Microbial and Molecular Systems, KU Leuven, Leuven, B-3001, Belgium
| | - Hans P Steenackers
- Corresponding author: Centre of Microbial and Plant Genetics (CMPG), Kasteelpark Arenberg 20 – Box 2460, B-3001 Leuven, Belgium. E-mail:
| |
Collapse
|
35
|
Teschler JK, Nadell CD, Drescher K, Yildiz FH. Mechanisms Underlying Vibrio cholerae Biofilm Formation and Dispersion. Annu Rev Microbiol 2022; 76:503-532. [PMID: 35671532 DOI: 10.1146/annurev-micro-111021-053553] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Biofilms are a widely observed growth mode in which microbial communities are spatially structured and embedded in a polymeric extracellular matrix. Here, we focus on the model bacterium Vibrio cholerae and summarize the current understanding of biofilm formation, including initial attachment, matrix components, community dynamics, social interactions, molecular regulation, and dispersal. The regulatory network that orchestrates the decision to form and disperse from biofilms coordinates various environmental inputs. These cues are integrated by several transcription factors, regulatory RNAs, and second-messenger molecules, including bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP). Through complex mechanisms, V. cholerae weighs the energetic cost of forming biofilms against the benefits of protection and social interaction that biofilms provide. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Jennifer K Teschler
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California, USA;
| | - Carey D Nadell
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | | | - Fitnat H Yildiz
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, California, USA;
| |
Collapse
|
36
|
Barbier I, Kusumawardhani H, Schaerli Y. Engineering synthetic spatial patterns in microbial populations and communities. Curr Opin Microbiol 2022; 67:102149. [DOI: 10.1016/j.mib.2022.102149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/08/2022] [Accepted: 03/16/2022] [Indexed: 02/03/2023]
|
37
|
Day TC, Márquez-Zacarías P, Bravo P, Pokhrel AR, MacGillivray KA, Ratcliff WC, Yunker PJ. Varied solutions to multicellularity: The biophysical and evolutionary consequences of diverse intercellular bonds. BIOPHYSICS REVIEWS 2022; 3:021305. [PMID: 35673523 PMCID: PMC9164275 DOI: 10.1063/5.0080845] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/29/2022] [Indexed: 11/16/2022]
Abstract
The diversity of multicellular organisms is, in large part, due to the fact that multicellularity has independently evolved many times. Nonetheless, multicellular organisms all share a universal biophysical trait: cells are attached to each other. All mechanisms of cellular attachment belong to one of two broad classes; intercellular bonds are either reformable or they are not. Both classes of multicellular assembly are common in nature, having independently evolved dozens of times. In this review, we detail these varied mechanisms as they exist in multicellular organisms. We also discuss the evolutionary implications of different intercellular attachment mechanisms on nascent multicellular organisms. The type of intercellular bond present during early steps in the transition to multicellularity constrains future evolutionary and biophysical dynamics for the lineage, affecting the origin of multicellular life cycles, cell-cell communication, cellular differentiation, and multicellular morphogenesis. The types of intercellular bonds used by multicellular organisms may thus result in some of the most impactful historical constraints on the evolution of multicellularity.
Collapse
Affiliation(s)
- Thomas C. Day
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | | | | - Aawaz R. Pokhrel
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | | - William C. Ratcliff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Peter J. Yunker
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
38
|
De Wit G, Svet L, Lories B, Steenackers HP. Microbial Interspecies Interactions and Their Impact on the Emergence and Spread of Antimicrobial Resistance. Annu Rev Microbiol 2022; 76:179-192. [PMID: 35609949 DOI: 10.1146/annurev-micro-041320-031627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacteria are social organisms that commonly live in dense communities surrounded by a multitude of other species. The competitive and cooperative interactions between these species not only shape the bacterial communities but also influence their susceptibility to antimicrobials. While several studies have shown that mixed-species communities are more tolerant toward antimicrobials than their monospecies counterparts, only limited empirical data are currently available on how interspecies interactions influence resistance development. We here propose a theoretic framework outlining the potential impact of interspecies social behavior on different aspects of resistance development. We identify factors by which interspecies interactions might influence resistance evolution and distinguish between their effect on (a) the emergence of a resistant mutant and (b) the spread of this resistance throughout the population. Our analysis indicates that considering the social life of bacteria is imperative to the rational design of more effective antibiotic treatment strategies with a minimal hazard for resistance development. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Gitta De Wit
- Centre of Microbial and Plant Genetics (CMPG), Department of Microbial and Molecular Systems, KU Leuven, 3001 Leuven, Belgium; , , ,
| | - Luka Svet
- Centre of Microbial and Plant Genetics (CMPG), Department of Microbial and Molecular Systems, KU Leuven, 3001 Leuven, Belgium; , , ,
| | - Bram Lories
- Centre of Microbial and Plant Genetics (CMPG), Department of Microbial and Molecular Systems, KU Leuven, 3001 Leuven, Belgium; , , ,
| | - Hans P Steenackers
- Centre of Microbial and Plant Genetics (CMPG), Department of Microbial and Molecular Systems, KU Leuven, 3001 Leuven, Belgium; , , ,
| |
Collapse
|
39
|
Unni R, Pintor KL, Diepold A, Unterweger D. Presence and absence of type VI secretion systems in bacteria. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35467500 DOI: 10.1099/mic.0.001151] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The type VI secretion system (T6SS) is a molecular puncturing device that enables Gram-negative bacteria to kill competitors, manipulate host cells and take up nutrients. Who would want to miss such superpowers? Indeed, many studies show how widespread the secretion apparatus is among microbes. However, it is becoming evident that, on multiple taxonomic levels, from phyla to species and strains, some bacteria lack a T6SS. Here, we review who does and does not have a type VI secretion apparatus and speculate on the dynamic process of gaining and losing the secretion system to better understand its spread and distribution across the microbial world.
Collapse
Affiliation(s)
- Rahul Unni
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Straße 2, 24306 Plön, Germany.,Institute for Experimental Medicine, Kiel University, Michaelisstraße 5, 24105 Kiel, Germany
| | - Katherine L Pintor
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | - Andreas Diepold
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | - Daniel Unterweger
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Straße 2, 24306 Plön, Germany.,Institute for Experimental Medicine, Kiel University, Michaelisstraße 5, 24105 Kiel, Germany
| |
Collapse
|
40
|
Inter-species interactions alter antibiotic efficacy in bacterial communities. THE ISME JOURNAL 2022; 16:812-821. [PMID: 34628478 PMCID: PMC8857223 DOI: 10.1038/s41396-021-01130-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/16/2021] [Accepted: 09/23/2021] [Indexed: 11/14/2022]
Abstract
The efficacy of antibiotic treatments targeting polymicrobial communities is not well predicted by conventional in vitro susceptibility testing based on determining minimum inhibitory concentration (MIC) in monocultures. One reason for this is that inter-species interactions can alter the community members' susceptibility to antibiotics. Here we quantify, and identify mechanisms for, community-modulated changes of efficacy for clinically relevant antibiotics against the pathogen Pseudomonas aeruginosa in model cystic fibrosis (CF) lung communities derived from clinical samples. We demonstrate that multi-drug resistant Stenotrophomonas maltophilia can provide high levels of antibiotic protection to otherwise sensitive P. aeruginosa. Exposure protection to imipenem was provided by chromosomally encoded metallo-β-lactamase that detoxified the environment; protection was dependent upon S. maltophilia cell density and was provided by S. maltophilia strains isolated from CF sputum, increasing the MIC of P. aeruginosa by up to 16-fold. In contrast, the presence of S. maltophilia provided no protection against meropenem, another routinely used carbapenem. Mathematical ordinary differential equation modelling shows that the level of exposure protection provided against different carbapenems can be explained by differences in antibiotic efficacy and inactivation rate. Together, these findings reveal that exploitation of pre-occurring antimicrobial resistance, and inter-specific competition, can have large impacts on pathogen antibiotic susceptibility, highlighting the importance of microbial ecology for designing successful antibiotic treatments for multispecies communities.
Collapse
|
41
|
Type IV Pilus Shapes a 'Bubble-Burst' Pattern Opposing Spatial Intermixing of Two Interacting Bacterial Populations. Microbiol Spectr 2022; 10:e0194421. [PMID: 35171019 PMCID: PMC8849093 DOI: 10.1128/spectrum.01944-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microbes are social organisms that commonly live in sessile biofilms. Spatial patterns of populations within biofilms can be important determinants of community-level properties. Spatial intermixing emerging from microbial interaction is one of the best-studied characteristics of spatial patterns. The specific levels of spatial intermixing critically contribute to how the dynamics and functioning of such communities are governed. However, the precise factors that determine spatial patterns and intermixing remain unclear. Here, we investigated the spatial patterning and intermixing of an engineered synthetic consortium composed of two mutualistic Pseudomonas stutzeri strains that degrade salicylate via metabolic cross-feeding. We found that the consortium self-organizes across space to form a previously unreported spatial pattern (here referred to as a ‘bubble-burst’ pattern) that exhibits a low level of intermixing. Interestingly, when the genes encoding type IV pili were deleted from both strains, a highly intermixed spatial pattern developed and increased the productivity of the entire community. The intermixed pattern was maintained in a robust manner across a wide range of initial ratios between the two strains. Our findings show that the type IV pilus plays a role in mitigating spatial intermixing of different populations in surface-attached microbial communities, with consequences for governing community-level properties. These insights provide tangible clues for the engineering of synthetic microbial systems that perform highly in spatially structured environments. IMPORTANCE When growing on surfaces, multispecies microbial communities form biofilms that exhibit intriguing spatial patterns. These patterns can significantly affect the overall properties of the community, enabling otherwise impermissible metabolic functions to occur as well as driving the evolutionary and ecological processes acting on communities. The development of these patterns is affected by several drivers, including cell-cell interactions, nutrient levels, density of founding cells, and surface properties. The type IV pilus is commonly found to mediate surface-associated behaviors of microorganisms, but its role on pattern formation within microbial communities is unclear. Here, we report that in a cross-feeding consortium, the type IV pilus affects the spatial intermixing of interacting populations involved in pattern formation and ultimately influences overall community productivity and robustness. This novel insight assists our understanding of the ecological processes of surface-attached microbial communities and suggests a potential strategy for engineering high-performance synthetic microbial communities.
Collapse
|
42
|
Almeida RAL, Takeuchi KA. Phase-ordering kinetics in the Allen-Cahn (Model A) class: Universal aspects elucidated by electrically induced transition in liquid crystals. Phys Rev E 2021; 104:054103. [PMID: 34942720 DOI: 10.1103/physreve.104.054103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/27/2021] [Indexed: 11/07/2022]
Abstract
The two-dimensional (2D) Ising model is the statistical physics textbook example for phase transitions and their kinetics. Quenched through the Curie point with Glauber rates, the late-time description of the ferromagnetic domain coarsening finds its place at the scalar sector of the Allen-Cahn (or Model A) class, which encompasses phase-ordering kinetics endowed with a nonconserved order parameter. Resisting exact results sought for theoreticians since Lifshitz's first account in 1962, the central quantities of 2D Model A-most scaling exponents and correlation functions-remain known up to approximate theories whose disparate outcomes urge experimental assessment. Here we perform such assessment based on a comprehensive study of the coarsening of 2D twisted nematic liquid crystals whose kinetics is induced by a superfast electrical switching from a spatiotemporally chaotic (disordered) state to a two-phase concurrent, equilibrium one. Tracking the dynamics via optical microscopy, we first show the sharp evidence of well-established Model A aspects, such as the dynamic exponent z=2 and the dynamic scaling hypothesis, to then move forward. We confirm the Bray-Humayun theory for Porod's regime describing intradomain length scales of the two-point spatial correlators and show that their nontrivial decay beyond the Porod's scale can be captured in a free-from-parameter fashion by Gaussian theories, namely the Ohta-Jasnow-Kawasaki (OJK) and Mazenko theories. Regarding time-related statistics, we corroborate the aging hypothesis in Model A systems, which includes the collapse of two-time correlators into a master curve whose format is, actually, best accounted for by a solution of the local scaling invariance theory: the same solution that fits the 2D nonconserved Ising model correlator along with the Fisher-Huse conjecture. We also suggest the true value for the local persistence exponent in Model A class, in disfavor of the exact outcome for the diffusion and OJK equations. Finally, we observe a fractal morphology for persistence clusters and extract their universal dimension. Given its accuracy and possibilities, this experimental setup may work as a prototype to address further universality issues in the realm of nonequilibrium systems.
Collapse
Affiliation(s)
- Renan A L Almeida
- Department of Physics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan.,Departmento de Física, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil.,Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kazumasa A Takeuchi
- Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
43
|
Giometto A, Nelson DR, Murray AW. Antagonism between killer yeast strains as an experimental model for biological nucleation dynamics. eLife 2021; 10:e62932. [PMID: 34866571 PMCID: PMC8730724 DOI: 10.7554/elife.62932] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/11/2021] [Indexed: 11/13/2022] Open
Abstract
Antagonistic interactions are widespread in the microbial world and affect microbial evolutionary dynamics. Natural microbial communities often display spatial structure, which affects biological interactions, but much of what we know about microbial antagonism comes from laboratory studies of well-mixed communities. To overcome this limitation, we manipulated two killer strains of the budding yeast Saccharomyces cerevisiae, expressing different toxins, to independently control the rate at which they released their toxins. We developed mathematical models that predict the experimental dynamics of competition between toxin-producing strains in both well-mixed and spatially structured populations. In both situations, we experimentally verified theory's prediction that a stronger antagonist can invade a weaker one only if the initial invading population exceeds a critical frequency or size. Finally, we found that toxin-resistant cells and weaker killers arose in spatially structured competitions between toxin-producing strains, suggesting that adaptive evolution can affect the outcome of microbial antagonism in spatial settings.
Collapse
Affiliation(s)
- Andrea Giometto
- School of Civil and Environmental Engineering, Cornell UniversityIthacaUnited States
- Department of Physics, Harvard UniversityCambridgeUnited States
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| | - David R Nelson
- Department of Physics, Harvard UniversityCambridgeUnited States
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
- John A Paulson School of Engineering and Applied Sciences, Harvard UniversityCambridgeUnited States
| | - Andrew W Murray
- Department of Molecular and Cellular Biology, Harvard UniversityCambridgeUnited States
| |
Collapse
|
44
|
La Fortezza M, Velicer GJ. Social selection within aggregative multicellular development drives morphological evolution. Proc Biol Sci 2021; 288:20211522. [PMID: 34814750 PMCID: PMC8611335 DOI: 10.1098/rspb.2021.1522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/02/2021] [Indexed: 12/17/2022] Open
Abstract
Aggregative multicellular development is a social process involving complex forms of cooperation among unicellular organisms. In some aggregative systems, development culminates in the construction of spore-packed fruiting bodies and often unfolds within genetically and behaviourally diverse conspecific cellular environments. Here, we use the bacterium Myxococcus xanthus to test whether the character of the cellular environment during aggregative development shapes its morphological evolution. We manipulated the cellular composition of Myxococcus development in an experiment in which evolving populations initiated from a single ancestor repeatedly co-developed with one of several non-evolving partners-a cooperator, three cheaters and three antagonists. Fruiting body morphology was found to diversify not only as a function of partner genotype but more broadly as a function of partner social character, with antagonistic partners selecting for greater fruiting body formation than cheaters or the cooperator. Yet even small degrees of genetic divergence between distinct cheater partners sufficed to drive treatment-level morphological divergence. Co-developmental partners also determined the magnitude and dynamics of stochastic morphological diversification and subsequent convergence. In summary, we find that even just a few genetic differences affecting developmental and social features can greatly impact morphological evolution of multicellular bodies and experimentally demonstrate that microbial warfare can promote cooperation.
Collapse
Affiliation(s)
- Marco La Fortezza
- Institute for Integrative Biology, ETH Zürich, Zürich 8092, Switzerland
| | | |
Collapse
|
45
|
Wu CF, Weisberg AJ, Davis EW, Chou L, Khan S, Lai EM, Kuo CH, Chang JH. Diversification of the Type VI Secretion System in Agrobacteria. mBio 2021; 12:e0192721. [PMID: 34517758 PMCID: PMC8546570 DOI: 10.1128/mbio.01927-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/16/2021] [Indexed: 12/13/2022] Open
Abstract
The type VI secretion system (T6SS) is used by many Gram-negative bacteria to deploy toxic effectors for interbacterial competition. This system provides a competitive advantage in planta to agrobacteria, a diverse group with phytopathogenic members capable of genetically transforming plants. To inform on the ecology and evolution of agrobacteria, we revealed processes that diversify their effector gene collections. From genome sequences of diverse strains, we identified T6SS loci, functionally validated associated effector genes for toxicity, and predicted genes homologous to those that encode proteins known to interact with effectors. The gene loci were analyzed in a phylogenetic framework, and results show that strains of some species-level groups have different patterns of T6SS expression and are enriched in specific sets of T6SS loci. Findings also demonstrate that the modularity of T6SS loci and their associated genes engenders dynamicity, promoting reshuffling of entire loci, fragments therein, and domains to swap toxic effector genes across species. However, diversification is constrained by the need to maintain specific combinations of gene subtypes, congruent with observations that certain genes function together to regulate T6SS loading and activation. Data are consistent with a scenario where species can acquire unique T6SS loci that are then reshuffled across the genus in a restricted manner to generate new combinations of effector genes. IMPORTANCE The T6SS is used by several taxa of Gram-negative bacteria to secrete toxic effector proteins to attack others. Diversification of effector collections shapes bacterial interactions and impacts the health of hosts and ecosystems in which bacteria reside. We uncovered the diversity of T6SS loci across a genus of plant-associated bacteria and show that diversification is driven by the acquisition of new loci and reshuffling among species. However, linkages between specific subtypes of genes need to be maintained to ensure that proteins whose interactions are necessary to activate the T6SS remain together. Results reveal how organization of gene loci and domain structure of genes provides flexibility to diversify under the constraints imposed by the system. Findings inform on the evolution of a mechanism that influences bacterial communities.
Collapse
Affiliation(s)
- Chih-Feng Wu
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Alexandra J. Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Edward W. Davis
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, Oregon, USA
| | - Lin Chou
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Surtaz Khan
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Erh-Min Lai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Chih-Horng Kuo
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Jeff H. Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
46
|
Li A, Matsuoka N, Niu F, Chen J, Ge Z, Hu W, Li D, Hallet B, van de Koppel J, Goldenfeld N, Liu QX. Ice needles weave patterns of stones in freezing landscapes. Proc Natl Acad Sci U S A 2021; 118:e2110670118. [PMID: 34593647 PMCID: PMC8501760 DOI: 10.1073/pnas.2110670118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2021] [Indexed: 12/03/2022] Open
Abstract
Patterned ground, defined by the segregation of stones in soil according to size, is one of the most strikingly self-organized characteristics of polar and high-alpine landscapes. The presence of such patterns on Mars has been proposed as evidence for the past presence of surface liquid water. Despite their ubiquity, the dearth of quantitative field data on the patterns and their slow dynamics have hindered fundamental understanding of the pattern formation mechanisms. Here, we use laboratory experiments to show that stone transport is strongly dependent on local stone concentration and the height of ice needles, leading effectively to pattern formation driven by needle ice activity. Through numerical simulations, theory, and experiments, we show that the nonlinear amplification of long wavelength instabilities leads to self-similar dynamics that resemble phase separation patterns in binary alloys, characterized by scaling laws and spatial structure formation. Our results illustrate insights to be gained into patterns in landscapes by viewing the pattern formation through the lens of phase separation. Moreover, they may help interpret spatial structures that arise on diverse planetary landscapes, including ground patterns recently examined using the rover Curiosity on Mars.
Collapse
Affiliation(s)
- Anyuan Li
- Key Laboratory of Rock Mechanics and Geohazards of Zhejiang Province, College of Civil Engineering, Shaoxing University, 312000 Shaoxing, China
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-0006, Japan
| | - Norikazu Matsuoka
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-0006, Japan
| | - Fujun Niu
- State Key Laboratory of Frozen Soil Engineering, Northwest Institute of Eco-Environmental and Resources, Chinese Academy of Sciences, 730000 Lanzhou, China
- South China Institution of Geotechnical Engineering, School of Civil Engineering and Transportation, South China University of Technology, 510641 Guangzhou, China
| | - Jing Chen
- Key Laboratory of Rock Mechanics and Geohazards of Zhejiang Province, College of Civil Engineering, Shaoxing University, 312000 Shaoxing, China
| | - Zhenpeng Ge
- School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China
| | - Wensi Hu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 200241 Shanghai, China
| | - Desheng Li
- State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Bernard Hallet
- Department of Earth and Space Sciences and Quaternary Research Center, University of Washington, Seattle, WA 98195
| | - Johan van de Koppel
- Royal Netherlands Institute for Sea Research and Utrecht University, 4400 AC, Yerseke, The Netherlands
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9700 CC Groningen, The Netherlands
| | - Nigel Goldenfeld
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Quan-Xing Liu
- School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China;
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 200241 Shanghai, China
| |
Collapse
|
47
|
Listeriolysin S: A bacteriocin from Listeria monocytogenes that induces membrane permeabilization in a contact-dependent manner. Proc Natl Acad Sci U S A 2021; 118:2108155118. [PMID: 34599102 PMCID: PMC8501752 DOI: 10.1073/pnas.2108155118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2021] [Indexed: 11/18/2022] Open
Abstract
Listeria monocytogenes (Lm) is a bacterial pathogen that causes listeriosis, a foodborne disease characterized by gastroenteritis, meningitis, bacteremia, and abortions in pregnant women. The most severe human listeriosis outbreaks are associated with a subset of Lm hypervirulent clones that encode the bacteriocin Listeriolysin S (LLS), which modifies the gut microbiota and allows efficient Lm gut colonization and invasion of deeper organs. Our present work identifies the killing mechanism displayed by LLS to outcompete gut commensal bacteria, demonstrating that it induces membrane permeabilization and membrane depolarization of target bacteria. Moreover, we show that LLS is a thiazole/oxazole–modified microcin that displays a contact-dependent inhibition mechanism. Listeriolysin S (LLS) is a thiazole/oxazole–modified microcin (TOMM) produced by hypervirulent clones of Listeria monocytogenes. LLS targets specific gram-positive bacteria and modulates the host intestinal microbiota composition. To characterize the mechanism of LLS transfer to target bacteria and its bactericidal function, we first investigated its subcellular distribution in LLS-producer bacteria. Using subcellular fractionation assays, transmission electron microscopy, and single-molecule superresolution microscopy, we identified that LLS remains associated with the bacterial cell membrane and cytoplasm and is not secreted to the bacterial extracellular space. Only living LLS-producer bacteria (and not purified LLS-positive bacterial membranes) display bactericidal activity. Applying transwell coculture systems and microfluidic-coupled microscopy, we determined that LLS requires direct contact between LLS-producer and -target bacteria in order to display bactericidal activity, and thus behaves as a contact-dependent bacteriocin. Contact-dependent exposure to LLS leads to permeabilization/depolarization of the target bacterial cell membrane and adenosine triphosphate (ATP) release. Additionally, we show that lipoteichoic acids (LTAs) can interact with LLS and that LTA decorations influence bacterial susceptibility to LLS. Overall, our results suggest that LLS is a TOMM that displays a contact-dependent inhibition mechanism.
Collapse
|
48
|
Defending against the Type Six Secretion System: beyond Immunity Genes. Cell Rep 2021; 33:108259. [PMID: 33053336 DOI: 10.1016/j.celrep.2020.108259] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/10/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023] Open
Abstract
The bacterial type six secretion system (T6SS) delivers toxic effector proteins into neighboring cells, but bacteria must protect themselves against their own T6SS. Immunity genes are the best-characterized defenses, protecting against specific cognate effectors. However, the prevalence of the T6SS and the coexistence of species with heterologous T6SSs suggest evolutionary pressure selecting for additional defenses against it. Here we review defenses against the T6SS beyond self-associated immunity genes, such as diverse stress responses that can recognize T6SS-inflicted damage and coordinate induction of molecular armor, repair pathways, and overall survival. Some of these stress responses are required for full survival even in the presence of immunity genes. Finally, we propose that immunity gene-independent protection is, mechanistically, bacterial innate immunity and that such defenses and the T6SS have co-evolved and continue to shape one another in polymicrobial communities.
Collapse
|
49
|
Schlomann BH, Parthasarathy R. Gut bacterial aggregates as living gels. eLife 2021; 10:71105. [PMID: 34490846 PMCID: PMC8514234 DOI: 10.7554/elife.71105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 09/06/2021] [Indexed: 11/28/2022] Open
Abstract
The spatial organization of gut microbiota influences both microbial abundances and host-microbe interactions, but the underlying rules relating bacterial dynamics to large-scale structure remain unclear. To this end, we studied experimentally and theoretically the formation of three-dimensional bacterial clusters, a key parameter controlling susceptibility to intestinal transport and access to the epithelium. Inspired by models of structure formation in soft materials, we sought to understand how the distribution of gut bacterial cluster sizes emerges from bacterial-scale kinetics. Analyzing imaging-derived data on cluster sizes for eight different bacterial strains in the larval zebrafish gut, we find a common family of size distributions that decay approximately as power laws with exponents close to −2, becoming shallower for large clusters in a strain-dependent manner. We show that this type of distribution arises naturally from a Yule-Simons-type process in which bacteria grow within clusters and can escape from them, coupled to an aggregation process that tends to condense the system toward a single massive cluster, reminiscent of gel formation. Together, these results point to the existence of general, biophysical principles governing the spatial organization of the gut microbiome that may be useful for inferring fast-timescale dynamics that are experimentally inaccessible. The human gut is home to vast numbers of bacteria that grow, compete and cooperate in a dynamic, densely packed space. The spatial arrangement of organisms – for example, if they are clumped together or broadly dispersed – plays a major role in all ecosystems; but how bacteria are organized in the human gut remains mysterious and difficult to investigate. Zebrafish larvae provide a powerful tool for studying microbes in the gut, as they are optically transparent and anatomically similar to other vertebrates, including humans. Furthermore, zebrafish can be easily manipulated so that one species of bacteria can be studied at a time. To investigate whether individual bacterial species are arranged in similar ways, Scholmann and Parthasarathy exposed zebrafish with no gut bacteria to one of eight different strains. Each species was then monitored using three-dimensional microscopy to see how the population shaped itself into clusters (or colonies). Schlomann and Parthasarathy used this data to build a mathematical model that can predict the size of the clusters formed by different gut bacteria. This revealed that the spatial arrangement of each species depended on the same biological processes: bacterial growth, aggregation and fragmentation of clusters, and expulsion from the gut. These new details about how bacteria are organized in zebrafish may help scientists learn more about gut health in humans. Although it is not possible to peer into the human gut and watch how bacteria behave, scientists could use the same analysis method to study the size of bacterial colonies in fecal samples. This may provide further clues about how microbes are spatially arranged in the human gut and the biological processes underlying this formation.
Collapse
Affiliation(s)
- Brandon H Schlomann
- Department of Physics, Institute of Molecular Biology, and Materials Science Institute, University of Oregon, Eugene, United States.,Department of Physics and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Raghuveer Parthasarathy
- Department of Physics, Institute of Molecular Biology, and Materials Science Institute, University of Oregon, Eugene, United States
| |
Collapse
|
50
|
Niehus R, Oliveira NM, Li A, Fletcher AG, Foster KR. The evolution of strategy in bacterial warfare via the regulation of bacteriocins and antibiotics. eLife 2021; 10:69756. [PMID: 34488940 PMCID: PMC8423443 DOI: 10.7554/elife.69756] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/01/2021] [Indexed: 12/21/2022] Open
Abstract
Bacteria inhibit and kill one another with a diverse array of compounds, including bacteriocins and antibiotics. These attacks are highly regulated, but we lack a clear understanding of the evolutionary logic underlying this regulation. Here, we combine a detailed dynamic model of bacterial competition with evolutionary game theory to study the rules of bacterial warfare. We model a large range of possible combat strategies based upon the molecular biology of bacterial regulatory networks. Our model predicts that regulated strategies, which use quorum sensing or stress responses to regulate toxin production, will readily evolve as they outcompete constitutive toxin production. Amongst regulated strategies, we show that a particularly successful strategy is to upregulate toxin production in response to an incoming competitor’s toxin, which can be achieved via stress responses that detect cell damage (competition sensing). Mirroring classical game theory, our work suggests a fundamental advantage to reciprocation. However, in contrast to classical results, we argue that reciprocation in bacteria serves not to promote peaceful outcomes but to enable efficient and effective attacks.
Collapse
Affiliation(s)
- Rene Niehus
- Center for Communicable Disease Dynamics, Harvard TH Chan School of Public Health, Harvard University, Boston, United States
| | - Nuno M Oliveira
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom.,Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Aming Li
- Center for Systems and Control, College of Engineering, Peking University, Beijing, China.,Institue for Artificial Intelligence, Peking University, Beijing, China
| | - Alexander G Fletcher
- School of Mathematics and Statistics, University of Sheffield, Sheffield, United Kingdom.,The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Kevin R Foster
- Department of Zoology, University of Oxford, Oxford, United Kingdom.,Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|