1
|
Del Mouro L, Lerosey-Aubril R, Botting J, Coleman R, Gaines RR, Skabelund J, Weaver JC, Ortega-Hernández J. A new sponge from the Marjum Formation of Utah documents the Cambrian origin of the hexactinellid body plan. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231845. [PMID: 39295920 PMCID: PMC11407857 DOI: 10.1098/rsos.231845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/22/2024] [Accepted: 08/05/2024] [Indexed: 09/21/2024]
Abstract
Modern poriferans are classified into four classes-Calcarea, Demospongiae, Hexactinellida and Homoscleromorpha-the recognition of which in fossil specimens almost exclusively relies on spicule morphology and arrangement. Early fossil representatives of the phylum Porifera are morphologically diverse, and many of them problematically display characteristics that are incompatible with the classification scheme developed for modern taxa. Critically, hexactine spicules-a diagnostic feature of hexactinellids among modern taxa-are found in various Cambrian and Ordovician taxa that cannot be accommodated within the hexactinellid body plan. Here we describe a new poriferan from the Drumian Marjum Formation of Utah, Polygoniella turrelli gen. et sp. nov., which exhibits a unique combination of complex anatomical features for a Cambrian form, including a syconoid-like organization, a thick body wall, and a multi-layered hexactin-based skeleton. The hexactinellid-like body wall architecture of this new species supports a Cambrian origin of the hexactinellid body plan and provides valuable insights into character evolution in early glass sponges.
Collapse
Affiliation(s)
- Lucas Del Mouro
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
- Institute of Geosciences, University of São Paulo, São Paulo 05508-080, Brazil
| | - Rudy Lerosey-Aubril
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Joseph Botting
- Amgueddfa Cymru, National Museum Wales, Cardiff CF10 3NP, UK
- Nanjing Institute of Geology and Palaeontology, Nanjing 210008, People's Republic of China
| | | | - Robert R Gaines
- Geology Department, Pomona College, Claremont, CA 91711, USA
| | | | - James C Weaver
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02218, USA
| | - Javier Ortega-Hernández
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
2
|
Wang K, Jia C, Zhang B, Chen J, Zhao J. Outer membrane vesicles from commensal microbes contribute to the sponge Tedania sp. development by regulating the expression level of apoptosis-inducing factor (AIF). Commun Biol 2024; 7:952. [PMID: 39107427 PMCID: PMC11303789 DOI: 10.1038/s42003-024-06622-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
The transition from the swimming larval stage to the settlement stage represents a significant node in the marine sponge developmental process. Previous research has shown that the outer membrane vesicles (OMVs) from the bacterial species Tenacibaculum mesophilum associated with the sponge Tedania sp. influence larval settlement: low concentrations of OMVs increase the attachment rate, whereas high concentrations decrease the attachment rate. Here, by comparing the transcriptomes of sponge larvae in filtered seawater (FSW group) and in FSW supplemented with OMVs (FSW-OMV group), the results indicated that bacterial OMVs affected larval settlement by modulating the expression levels of apoptosis-inducing factor (AIF) in the host. Subsequently, quantitative real-time PCR revealed a decrease in aif expression near the time of settlement (SE) compared to that in the control group. RNA interference (RNAi) was used to target the aif gene, and the rate of larval settlement was significantly reduced, confirming the inhibitory effect of high concentrations of OMVs. Moreover, small RNA (sRNA) sequencing of OMVs revealed the existence of abundant AIF-sRNAs of 30 nt, further suggesting that one pathway for the involvement of sponge-associated bacteria in host development is the transport of OMVs and the direct function of cargo loading.
Collapse
Affiliation(s)
- Kai Wang
- College of Ocean and Earth Science of Xiamen University, Xiamen, 361005, China.
| | - Chenzheng Jia
- College of Ocean and Earth Science of Xiamen University, Xiamen, 361005, China.
| | - Beibei Zhang
- College of Ocean and Earth Science of Xiamen University, Xiamen, 361005, China.
| | - Jun Chen
- College of Ocean and Earth Science of Xiamen University, Xiamen, 361005, China.
| | - Jing Zhao
- College of Ocean and Earth Science of Xiamen University, Xiamen, 361005, China.
- Xiamen City Key Laboratory of Urban Sea Ecological Conservation and Restoration (USER), Xiamen University, Xiamen, 361005, China.
- State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
3
|
Shoham S, Keren R, Lavy A, Polishchuk I, Pokroy B, Ilan M. Out of the blue: Hyperaccumulation of molybdenum in the Indo-Pacific sponge Theonella conica. SCIENCE ADVANCES 2024; 10:eadn3923. [PMID: 39018411 PMCID: PMC466961 DOI: 10.1126/sciadv.adn3923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 06/10/2024] [Indexed: 07/19/2024]
Abstract
Molybdenum is an essential micronutrient, but because of its toxicity at high concentrations, its accumulation in living organisms has not been widely demonstrated. In this study, we report that the marine sponge Theonella conica accumulates exceptionally high levels of molybdenum (46,793 micrograms per gram of dry weight) in a wide geographic distribution from the northern Red Sea to the reefs of Zanzibar, Indian Ocean. The element is found in various sponge body fractions and correlates to selenium. We further investigated the microbial composition of the sponge and compared it to its more studied congener, Theonella swinhoei. Our analysis illuminates the symbiotic bacterium Entotheonella sp. and its role in molybdenum accumulation. Through microscopic and analytical methods, we provide evidence of intracellular spheres within Entotheonella sp. that exhibit high molybdenum content, further unraveling the intricate mechanisms behind molybdenum accumulation in this sponge species and its significance in the broader context of molybdenum biogeochemical cycling.
Collapse
Affiliation(s)
- Shani Shoham
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ray Keren
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Adi Lavy
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Iryna Polishchuk
- Faculty of Materials Engineering and the Russell Berrie Nanotechnology Institute, Technion, Israel Institute of Technology, Haifa 32000, Israel
| | - Boaz Pokroy
- Faculty of Materials Engineering and the Russell Berrie Nanotechnology Institute, Technion, Israel Institute of Technology, Haifa 32000, Israel
| | - Micha Ilan
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
4
|
De Pao Mendonca K, Rocher C, Dufour A, Schenkelaars Q, Heimbürger-Boavida LE, le Bivic A, Borchiellini C, Issartel J, Renard E. Methylmercury exposure of the sponge O. lobularis induces strong tissue and cell defects. CHEMOSPHERE 2024; 358:141839. [PMID: 38636911 DOI: 10.1016/j.chemosphere.2024.141839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/05/2024] [Accepted: 03/27/2024] [Indexed: 04/20/2024]
Abstract
Mediterranean marine biota suffers from various anthropogenic threats. Among them, pollutants such as mercury (Hg) represent important environmental issues that are exacerbated by bioaccumulation and bioamplification along food webs via its organic form, monomethylmercury (MMHg). To date, very little is known regarding the impact of mercury on Porifera and the few available studies have been exclusively focused on Demospongiae. This work studies the effect of MMHgCl at different biological levels of Oscarella lobularis (Porifera, Homoscleromorpha). Bioaccumulation assays show that MMHgCl significantly accumulated in sponge tissues after a 96-h exposure to 0.1 μg L-1. Toxicity assays (LC5096h) show a sensibility that depends on life-stage (adult vs bud). Additionally, we show that the exposure to 1 μg L-1 MMHgCl negatively impacts the epithelial integrity and the regeneration process in buds, as shown by the loss of cell-cell contacts and the alteration of osculum morphogenesis. For the first time in a sponge, a whole set of genes classically involved in metal detoxification and in antioxidant response were identified. Significant changes in catalase, superoxide dismutase and nuclear factor (erythroid-derived 2)-like 2 expressions in exposed juveniles were measured. Such an integrative approach from the physiological to the molecular scales on a non-model organism expands our knowledge concerning sensitivity and toxicity mechanisms induced by MMHg in Porifera, raising new questions regarding the possible defences used by marine sponges.
Collapse
Affiliation(s)
- Kassandra De Pao Mendonca
- Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE, Marseille, France; Aix Marseille Univ, CNRS, IBDM, UMR7288, Marseille, France
| | - Caroline Rocher
- Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE, Marseille, France
| | - Aurélie Dufour
- Aix Marseille Univ, CNRS/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO), Marseille, France
| | | | - Lars-Eric Heimbürger-Boavida
- Aix Marseille Univ, CNRS/INSU, Université de Toulon, IRD, Mediterranean Institute of Oceanography (MIO), Marseille, France
| | - André le Bivic
- Aix Marseille Univ, CNRS, IBDM, UMR7288, Marseille, France
| | | | - Julien Issartel
- Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE, Marseille, France; Aix Marseille Univ, CNRS, FR 3098 ECCOREV, F-13545, Aix-en-Provence, France.
| | - Emmanuelle Renard
- Aix Marseille Univ, Avignon Université, CNRS, IRD, IMBE, Marseille, France; Aix Marseille Univ, CNRS, IBDM, UMR7288, Marseille, France; Aix Marseille Univ, CNRS, FR 3098 ECCOREV, F-13545, Aix-en-Provence, France.
| |
Collapse
|
5
|
Yin CM, Niu RG, Wang H, Li XY, Zeng QF, Lan JF. Symbiotic hemolymph bacteria reduce hexavalent chromium to protect the host from chromium toxicity in Procambarus clarkii. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132257. [PMID: 37572611 DOI: 10.1016/j.jhazmat.2023.132257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 08/02/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
Hexavalent chromium (Cr(VI)) is a cytotoxic heavy metal pollutant that adversely affects all life forms. Interestingly, the crustacean Procambarus clarkii exhibits a relatively high tolerance to heavy metals. The underlying mechanisms remain unclear. In this study, we investigated the role of symbiotic bacteria in P. clarkii in alleviating Cr(VI)-induced damage and explored their potential mechanisms of action. Through transcriptomic analysis, we observed that Cr(VI) activated P. clarkii's antimicrobial immune responses and altered the bacterial composition in the hemolymph. After antibiotic treatment to reduce bacterial populations, Cr(VI)-induced intestinal and liver damage worsened, and crayfish exhibited lower levels of GSH/CAT/SOD activity. The Exiguobacterium, the symbiotic bacteria in the hemolymph of P. clarkii, were proved to be primary contributor to Cr(VI) tolerance. Further investigation suggested that it resists Cr(VI) through the activation of the ABC transporter system and the reduction of Cr(VI) via the reductase gene nfsA. To validate the role of Exiguobacterium in Cr(VI) tolerance, crayfish treated with antibiotics then supplemented with Exiguobacterium H6 and recombinant E. coli (with the nfsA gene), reduced Cr(VI)-induced ovarian damage. Overall, this study revealed that the symbiotic bacteria Exiguobacterium can absorb and reduce hexavalent chromium, mitigating Cr(VI)-induced damage in P. clarkii. These findings provide new insights into hexavalent chromium tolerance mechanisms in crustaceans.
Collapse
Affiliation(s)
- Cheng-Ming Yin
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China
| | - Rui-Geng Niu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China
| | - Hui Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China
| | - Xian-Yao Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China
| | - Qi-Fan Zeng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China.
| | - Jiang-Feng Lan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|
6
|
Xu Z, Chen Y, Wu Z, Li D, Li X, Feng X, Deng H, Chen H, Zhang B, Lin Z. Bacterial mineralization of chromium-copper spinel with highly performance in electroplating effluent. WATER RESEARCH 2023; 242:120229. [PMID: 37331227 DOI: 10.1016/j.watres.2023.120229] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 06/20/2023]
Abstract
Cr (VI) contamination has posed severe challenges to water quality, food safety, and land resources. Microbial reduction of Cr(VI) to Cr(III) has drawn considerable attention due to its low cost and environmental friendliness. However, recent reports have shown that Cr(VI) generates highly migratable organo-Cr(III) rather than stable inorganic chromium minerals during the biological reduction process. In this work, it was reported for the first time that spinel structure CuCr2O4 was formed by Bacillus cereus in Cr biomineralization process. Different from known biomineralization models (biologically controlled mineralization and biologically induced mineralization), the chromium-copper minerals here appeared as specialized minerals with extracellular distribution. In view of this, a possible mechanism of biologically secretory mineralization was proposed. In addition, Bacillus cereus demonstrated a high conversion ability in the treatment of electroplating wastewater. The Cr(VI) removal percentage reached 99.7%, which satisfied the Chinese emission standard of pollutants for electroplating (GB 21,900-2008), indicating its application potential. Altogether, our work elucidated a bacterial chromium spinel mineralization pathway and evaluated the potential of this system for application in actual wastewater, opening a new avenue in the field of chromium pollution treatment and control.
Collapse
Affiliation(s)
- Zhongxuan Xu
- School of Environment and Energy, The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Resource Recycling, South China University of Technology, Guangzhou 510006, China
| | - Yuxi Chen
- School of Environment and Energy, The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Resource Recycling, South China University of Technology, Guangzhou 510006, China
| | - Zhen Wu
- School of Environment and Energy, The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Resource Recycling, South China University of Technology, Guangzhou 510006, China
| | - Diandi Li
- School of Environment and Energy, The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Resource Recycling, South China University of Technology, Guangzhou 510006, China
| | - Xiaoqin Li
- School of Environment and Energy, The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Resource Recycling, South China University of Technology, Guangzhou 510006, China
| | - Xuezhen Feng
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hong Deng
- School of Environment and Energy, The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Resource Recycling, South China University of Technology, Guangzhou 510006, China.
| | - Hong Chen
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bintian Zhang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhang Lin
- School of Environment and Energy, The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters (Ministry of Education), Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Resource Recycling, South China University of Technology, Guangzhou 510006, China; School of Metallurgy and Environment, Central South University, Changsha 410083, China.
| |
Collapse
|
7
|
Roveta C, Calcinai B, Girolametti F, Fernandes Couceiro J, Puce S, Annibaldi A, Costa R. The prokaryotic community of Chondrosia reniformis Nardo, 1847: from diversity to mercury detection. ZOOLOGY 2023; 158:126091. [PMID: 37003141 DOI: 10.1016/j.zool.2023.126091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 02/21/2023] [Accepted: 03/16/2023] [Indexed: 03/31/2023]
Abstract
Microbial communities inhabiting sponges are known to take part in many metabolic pathways, including nutrient cycles, and possibly also in the bioaccumulation of trace elements (TEs). Here, we used high-throughput, Illumina sequencing of 16S rRNA genes to characterize the prokaryotic communities present in the cortex and choanosome, respectively the external and internal body region of Chondrosia reniformis, and in the surrounding seawater. Furthermore, we estimated the total mercury content (THg) in these body regions of the sponge and in the corresponding microbial cell pellets. Fifteen prokaryotic phyla were detected in association with C. reniformis, 13 belonging to the domain Bacteria and two to the Archaea. No significant differences between the prokaryotic community composition of the two regions were found. Three lineages of ammonium-oxidizing organisms (Cenarchaeum symbiosum, Nitrosopumilus maritimus, and Nitrosococcus sp.) co-dominated the prokaryotic community, suggesting ammonium oxidation/nitrification as a key metabolic pathway within the microbiome of C. reniformis. In the sponge fractions, higher THg levels were found in the choanosome compared to the cortex. In contrast, comparable THg levels found in the microbial pellets obtained from both regions were significantly lower than those observed in the corresponding sponge fractions. Our work provides new insights into the prokaryotic communities and TEs distribution in different body parts of a model organism relevant for marine conservation and biotechnology. In this sense, this study paves the way for scientists to deepen the possible application of sponges not only as bioindicators, but also as bioremediation tools of metal polluted environments.
Collapse
Affiliation(s)
- Camilla Roveta
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy.
| | - Barbara Calcinai
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Federico Girolametti
- Department of Industrial Engineering and Mathematical Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Joana Fernandes Couceiro
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Stefania Puce
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Anna Annibaldi
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Rodrigo Costa
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Centre of Marine Sciences (CCMAR), University of Algarve, Portugal
| |
Collapse
|
8
|
Peters EE, Cahn JKB, Lotti A, Gavriilidou A, Steffens UAE, Loureiro C, Schorn MA, Cárdenas P, Vickneswaran N, Crews P, Sipkema D, Piel J. Distribution and diversity of 'Tectomicrobia', a deep-branching uncultivated bacterial lineage harboring rich producers of bioactive metabolites. ISME COMMUNICATIONS 2023; 3:50. [PMID: 37248312 PMCID: PMC10227082 DOI: 10.1038/s43705-023-00259-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/09/2023] [Accepted: 05/18/2023] [Indexed: 05/31/2023]
Abstract
Genomic and functional analyses of bacterial sponge symbionts belonging to the uncultivated candidate genus 'Entotheonella' has revealed them as the prolific producers of bioactive compounds previously identified from their invertebrate hosts. These studies also suggested 'Entotheonella' as the first members of a new candidate phylum, 'Tectomicrobia'. Here we analyzed the phylogenetic structure and environmental distribution of this as-yet sparsely populated phylum-like lineage. The data show that 'Entotheonella' and other 'Tectomicrobia' are not restricted to marine habitats but widely distributed among terrestrial locations. The inferred phylogenetic trees suggest several intra-phylum lineages with diverse lifestyles. Of these, the previously described 'Entotheonella' lineage can be more accurately divided into at least three different candidate genera with the terrestrial 'Candidatus Prasianella', the largely terrestrial 'Candidatus Allonella', the 'Candidatus Thalassonella' comprising sponge-associated members, and the more widely distributed 'Candidatus Entotheonella'. Genomic characterization of 'Thalassonella' members from a range of sponge hosts did not suggest a role as providers of natural products, despite high genomic similarity to 'Entotheonella' regarding primary metabolism and implied lifestyle. In contrast, the analysis revealed a correlation between the revised 'Entotheonella' 16S rRNA gene phylogeny and a specific association with sponges and their natural products. This feature might serve as a discovery method to accelerate the identification of new chemically rich 'Entotheonella' variants, and led to the identification of the first 'Entotheonella' symbiont in a non-tetractinellid sponge, Psammocinia sp., indicating a wide host distribution of 'Entotheonella'-based chemical symbiosis.
Collapse
Affiliation(s)
- Eike E Peters
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Jackson K B Cahn
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Alessandro Lotti
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland
| | - Asimenia Gavriilidou
- Laboratory of Microbiology, Wageningen University and Research, 6708 WE, Wageningen, The Netherlands
| | - Ursula A E Steffens
- Kekule Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121, Bonn, Germany
| | - Catarina Loureiro
- Laboratory of Microbiology, Wageningen University and Research, 6708 WE, Wageningen, The Netherlands
| | - Michelle A Schorn
- Laboratory of Microbiology, Wageningen University and Research, 6708 WE, Wageningen, The Netherlands
| | - Paco Cárdenas
- Pharmacognosy, Department of Pharmaceutical Biosciences, BioMedical Center, Uppsala University, Husargatan 3, 75124, Uppsala, Sweden
| | - Nilani Vickneswaran
- Kekule Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Strasse 1, 53121, Bonn, Germany
| | - Phillip Crews
- Department of Chemistry and Biochemistry, University of California at Santa Cruz, Santa Cruz, CA, 95064, USA
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University and Research, 6708 WE, Wageningen, The Netherlands
| | - Jörn Piel
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, 8093, Zürich, Switzerland.
| |
Collapse
|
9
|
Zheng L, Lin H, Dong Y, Li B, Lu Y. A promising approach for simultaneous removal of ammonia and multiple heavy metals from landfill leachate by carbonate precipitating bacterium. JOURNAL OF HAZARDOUS MATERIALS 2023; 456:131662. [PMID: 37247490 DOI: 10.1016/j.jhazmat.2023.131662] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/06/2023] [Accepted: 05/16/2023] [Indexed: 05/31/2023]
Abstract
The effective and cheap remediation of ammonia (NH+4) and multiple heavy metals from landfill leachate is currently a grand challenge. In this study, Paracoccus denitrificans AC-3, a bacterial strain capable of heterotrophic nitrification aerobic denitrification (HNAD) and carbonate precipitation, exhibited good tolerance to a variety of heavy metals and could remove 99.70% of NH+4, 99.89% of zinc (Zn2+), 97.42% of cadmium (Cd2+) and 46.19% of nickel (Ni2+) simultaneously after 24 h of incubation. The conversion pathway of NH+4 by strain AC-3 was dominated by assimilation (84.68%), followed by HNAD (14.93%), and the increase in environmental pH was mainly dependent on assimilation rather than HNAD. Calcium (Ca2+) primarily played four roles in heavy metal mineralization: (ⅰ) improving bacterial tolerance to heavy metals; (ⅱ) ensuring the HNAD capacity of strain AC-3; (ⅲ) co-precipitating with heavy metals; and (ⅳ) precipitating into calcite to adsorb heavy metals. The heavy metals removal mechanisms were mainly calcite adsorption and formation of carbonate and hydroxide precipitation for Zn2+, co-precipitation for Cd2+, and adsorption for Ni2+. The Zn2+, Cd2+, and Ni2+ precipitates displayed unique morphologies. This research provided a promising biological resource for the simultaneous remediation of NH+4 and heavy metals from landfill leachate.
Collapse
Affiliation(s)
- Lili Zheng
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China.
| | - Yingbo Dong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China.
| | - Bing Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Yanrong Lu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| |
Collapse
|
10
|
Deng N, Zuo X, Stack AG, Lee SS, Zhou Z, Weber J, Hu Y. Selenite and Selenate Sequestration during Coprecipitation with Barite: Insights from Mineralization Processes of Adsorption, Nucleation, and Growth. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15518-15527. [PMID: 36322394 DOI: 10.1021/acs.est.2c03292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Coprecipitation of selenium oxyanions with barite is a facile way to sequester Se in the environments. However, the chemical composition of Se-barite coprecipitates usually deviates from that predicted from thermodynamic calculations. This discrepancy was resolved by considering variations in nucleation and growth rates controlled by ion-mineral interactions, solubility, and interfacial energy. For homogeneous precipitation, ∼10% of sulfate, higher than thermodynamic predictions (<0.3%), was substituted by Se(IV) or Se(VI) oxyanion, which was attributed to adsorption-induced entrapment during crystal growth. For heterogeneous precipitation, thiol- and carboxylic-based organic films, utilized as model interfaces to mimic the natural organic-abundant environments, further enhanced the sequestration of Se(VI) oxyanions (up to 41-92%) with barite. Such enhancement was kinetically driven by increased nucleation rates of selenate-rich barite having a lower interfacial energy than pure barite. In contrast, only small amounts of Se(IV) oxyanions (∼1%) were detected in heterogeneous coprecipitates mainly due to a lower saturation index of BaSeO3 and deprotonation degree of Se(IV) oxyanion at pH 5.6. These roles of nanoscale mineralization mechanisms observed during composition selection of Se-barite could mark important steps toward the remediation of contaminants through coprecipitation.
Collapse
Affiliation(s)
- Ning Deng
- Department of Civil and Environmental Engineering, University of Houston, Houston, Texas77004, United States
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai200444, China
| | - Xiaobing Zuo
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois60439, United States
| | - Andrew G Stack
- Chemical Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
| | - Sang Soo Lee
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois60439, United States
| | - Zehao Zhou
- The Key Laboratory of Water and Sediment Sciences, College of Environmental Sciences and Engineering, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing100871, China
| | - Juliane Weber
- Chemical Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
| | - Yandi Hu
- Department of Civil and Environmental Engineering, University of Houston, Houston, Texas77004, United States
- The Key Laboratory of Water and Sediment Sciences, College of Environmental Sciences and Engineering, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Peking University, Beijing100871, China
| |
Collapse
|
11
|
Indraningrat AAG, Steinert G, Becking LE, Mueller B, de Goeij JM, Smidt H, Sipkema D. Sponge holobionts shift their prokaryotic communities and antimicrobial activity from shallow to lower mesophotic depths. Antonie Van Leeuwenhoek 2022; 115:1265-1283. [PMID: 35998007 PMCID: PMC9534810 DOI: 10.1007/s10482-022-01770-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 08/07/2022] [Indexed: 11/05/2022]
Abstract
In this study, we used 16S rRNA gene amplicon sequencing to investigate prokaryotic community composition of the Caribbean sponges Xestospongia muta and Agelas sventres from three depth ranges: < 30 m (shallow), 30–60 m (upper mesophotic), and 60–90 m (lower mesophotic). The prokaryotic community in shallow samples of X. muta was enriched in Cyanobacteria, Chloroflexota, and Crenarchaeota compared to samples from mesophotic depths, while mesophotic samples of X. muta were enriched in Acidobacteriota. For A. sventres, relative abundance of Acidobacteriota, Chloroflexota, and Gammaproteobacteria was higher in shallow samples, while Proteobacteria and Crenarchaeota were enriched in mesophotic A. sventres samples. Antimicrobial activity was evaluated by screening crude extracts of sponges against a set of Gram-positive and Gram-negative bacteria, a yeast, and an oomycete. Antibacterial activities from crude extracts of shallow sponge individuals were generally higher than observed from mesophotic individuals, that showed limited or no antibacterial activities. Conversely, the highest anti-oomycete activity was found from crude extracts of X. muta individuals from lower mesophotic depth, but without a clear pattern across the depth gradient. These results indicate that sponge-associated prokaryotic communities and the antimicrobial activity of sponges change within species across a depth gradient from shallow to mesophotic depth.
Collapse
Affiliation(s)
- Anak Agung Gede Indraningrat
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.,Faculty of Medicine and Health Sciences, Warmadewa University, Jln Terompong 24, 80235, Denpasar, Bali, Indonesia
| | - Georg Steinert
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Leontine E Becking
- Marine Animal Ecology Group, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.,Wageningen Marine Research, Wageningen University and Research, Ankerpark 27, 1781 AG, Den Helder, The Netherlands
| | - Benjamin Mueller
- Department of Freshwater and Marine Ecology, University of Amsterdam, P.O. Box 94240, 1090 GE, Amsterdam, The Netherlands.,CARMABI Foundation, Piscaderabaai z/n, P.O. Box 2090, Willemstad, Curaçao
| | - Jasper M de Goeij
- Department of Freshwater and Marine Ecology, University of Amsterdam, P.O. Box 94240, 1090 GE, Amsterdam, The Netherlands.,CARMABI Foundation, Piscaderabaai z/n, P.O. Box 2090, Willemstad, Curaçao
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE, Wageningen, The Netherlands.
| |
Collapse
|
12
|
Li Q, Zhou F, Su Z, Li Y, Li J. Corynebacterium matruchotii: A Confirmed Calcifying Bacterium With a Potentially Important Role in the Supragingival Plaque. Front Microbiol 2022; 13:940643. [PMID: 35875585 PMCID: PMC9298747 DOI: 10.3389/fmicb.2022.940643] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 05/30/2022] [Indexed: 02/05/2023] Open
Abstract
Corynebacterium matruchotii is a reported calcifying bacterium that can usually be isolated from dental calculus and induce mineralization in vitro. In recent years, based on in situ hybridization probe and sequencing technology, researchers have discovered the central "pillar" role of C. matruchotii in supragingival plaque, and many studies focused on bacterial interactions in the biofilm structure dominated by C. matruchotii have been conducted. Besides, C. matruchotii seems to be an indicator of "caries-free" oral status according to imaging and sequencing studies. Therefore, in this review, we summarize C. matruchotii 's role in supragingival plaque based on the structure, interactions, and potential connections with oral diseases.
Collapse
Affiliation(s)
- Qinyang Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fangjie Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhifei Su
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiyao Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Nuppunen-Puputti M, Kietäväinen R, Raulio M, Soro A, Purkamo L, Kukkonen I, Bomberg M. Epilithic Microbial Community Functionality in Deep Oligotrophic Continental Bedrock. Front Microbiol 2022; 13:826048. [PMID: 35300483 PMCID: PMC8921683 DOI: 10.3389/fmicb.2022.826048] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/12/2022] [Indexed: 01/03/2023] Open
Abstract
The deep terrestrial biosphere hosts vast sessile rock surface communities and biofilms, but thus far, mostly planktic communities have been studied. We enriched deep subsurface microbial communities on mica schist in microcosms containing bedrock groundwater from the depth of 500 m from Outokumpu, Finland. The biofilms were visualized using scanning electron microscopy, revealing numerous different microbial cell morphologies and attachment strategies on the mica schist surface, e.g., bacteria with outer membrane vesicle-like structures, hair-like extracellular extensions, and long tubular cell structures expanding over hundreds of micrometers over mica schist surfaces. Bacterial communities were analyzed with amplicon sequencing showing that Pseudomonas, Desulfosporosinus, Hydrogenophaga, and Brevundimonas genera dominated communities after 8–40 months of incubation. A total of 21 metagenome assembled genomes from sessile rock surface metagenomes identified genes involved in biofilm formation, as well as a wide variety of metabolic traits indicating a high degree of environmental adaptivity to oligotrophic environment and potential for shifting between multiple energy or carbon sources. In addition, we detected ubiquitous organic carbon oxidation and capacity for arsenate and selenate reduction within our rocky MAGs. Our results agree with the previously suggested interaction between the deep subsurface microbial communities and the rock surfaces, and that this interaction could be crucial for sustaining life in the harsh anoxic and oligotrophic deep subsurface of crystalline bedrock environment.
Collapse
Affiliation(s)
| | | | - Mari Raulio
- European Chemicals Agency (ECHA), Helsinki, Finland
| | - Aino Soro
- VTT Technical Research Centre of Finland Ltd., Espoo, Finland
| | | | - Ilmo Kukkonen
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Malin Bomberg
- VTT Technical Research Centre of Finland Ltd., Espoo, Finland
| |
Collapse
|
14
|
Kogawa M, Miyaoka R, Hemmerling F, Ando M, Yura K, Ide K, Nishikawa Y, Hosokawa M, Ise Y, Cahn JKB, Takada K, Matsunaga S, Mori T, Piel J, Takeyama H. Single-cell metabolite detection and genomics reveals uncultivated talented producer. PNAS NEXUS 2022; 1:pgab007. [PMID: 36712793 PMCID: PMC9802089 DOI: 10.1093/pnasnexus/pgab007] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 10/24/2021] [Accepted: 01/03/2022] [Indexed: 02/01/2023]
Abstract
The production of bioactive metabolites is increasingly recognized as an important function of host-associated bacteria. An example is defensive symbiosis that might account for much of the chemical richness of marine invertebrates including sponges (Porifera), 1 of the oldest metazoans. However, most bacterial members of sponge microbiomes have not been cultivated or sequenced, and therefore, remain unrecognized. Unequivocally linking metabolic functions to a cellular source in sponge microbiomes is, therefore, a challenge. Here, we report an analysis pipeline of microfluidic encapsulation, Raman microscopy, and integrated digital genomics (MERMAID) for an efficient identification of uncultivated producers. We applied this method to the chemically rich bacteriosponge (sponge that hosts a rich bacterial community) Theonella swinhoei, previously shown to contain 'Entotheonella' symbionts that produce most of the bioactive substances isolated from the sponge. As an exception, the antifungal aurantosides had remained unassigned to a source. Raman-guided single-bacterial analysis and sequencing revealed a cryptic, distinct multiproducer, 'Candidatus Poriflexus aureus' from a new Chloroflexi lineage as the aurantoside producer. Its exceptionally large genome contains numerous biosynthetic loci and suggested an even higher chemical richness of this sponge than previously appreciated. This study highlights the importance of complementary technologies to uncover microbiome functions, reveals remarkable parallels between distantly related symbionts of the same host, and adds functional support for diverse chemically prolific lineages being present in microbial dark matter.
Collapse
Affiliation(s)
| | | | | | - Masahiro Ando
- Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162–0041, Japan
| | - Kei Yura
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162–8480, Japan,Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162–0041, Japan,Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Keigo Ide
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162–8480, Japan,Computational Bio Big-Data Open Innovation Laboratory, AIST-Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169–0072, Japan
| | - Yohei Nishikawa
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162–8480, Japan,Computational Bio Big-Data Open Innovation Laboratory, AIST-Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169–0072, Japan
| | - Masahito Hosokawa
- Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162–8480, Japan,Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162–0041, Japan
| | - Yuji Ise
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, 3422 Sesoko, Motobu, Kunigami, Okinawa 905-0227, Japan
| | - Jackson K B Cahn
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
| | - Kentaro Takada
- School of Marine Biosciences, Kitasato University, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Shigeki Matsunaga
- Laboratory of Aquatic Natural Products Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Tetsushi Mori
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Jörn Piel
- To whom correspondence should be addressed: (JP)
| | | |
Collapse
|
15
|
First Observation of Unicellular Organisms Concentrating Arsenic in ACC Intracellular Inclusions in Lake Waters. GEOSCIENCES 2022. [DOI: 10.3390/geosciences12010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In unicellular organisms, intracellular inclusions of amorphous calcium carbonate (ACC) were initially described in cyanobacteria and, later, in unicellular eukaryotes from Lake Geneva (Switzerland/France). Inclusions in unicellular eukaryotes, named micropearls, consist of hydrated ACCs, frequently enriched in Sr or Ba, and displaying internal oscillatory zonations, due to variations in the Ba:Ca or Sr:Ca ratios. An analysis of our database, consisting of 1597 micropearl analyses from Lake Geneva and 34 from Lake Titicaca (Bolivia/Peru), showed that a certain number of Sr- and Ba-enriched micropearls from these lakes contain As in amounts measurable by EDXS. A Q-mode statistical analysis confirmed the existence of five chemically distinct morpho-chemical groups of As-bearing micropearls, among which was a new category identified in Lake Geneva, where As is often associated with Mg. This new type of micropearl is possibly produced in a small (7–12 μm size) bi-flagellated organism. Micropearls from Lake Titicaca, which contain Sr, were found in an organism very similar to Tetraselmis cordiformis, which was observed earlier in Lake Geneva. Lake Titicaca micropearls contain larger As amounts, which can be explained by the high As concentration in the water of this lake. The ubiquity of this observed biomineralization process points to the need for a better understanding of the role of amorphous or crystalline calcium carbonates in As cycling in surface waters.
Collapse
|
16
|
Hasin O, Shoham S, Kashman Y, Ilan M, Carmeli S. Theonellamides J and K and 5- cis-Apoa-theopalauamide, Bicyclic Glycopeptides of the Red Sea Sponge Theonella swinhoei. Mar Drugs 2021; 20:md20010031. [PMID: 35049886 PMCID: PMC8779245 DOI: 10.3390/md20010031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 11/16/2022] Open
Abstract
Theonella swinhoei is a fairly common inhabitant of reefs throughout the Indian and Pacific Oceans. Metabolomic analyses of samples of T. swinhoei collected in different depths in the Gulf of Aqaba revealed two chemotypes differing in the profiles of the theonellamides they produce, some of which seem to be unknown. Driven by this finding, we examined a sample of T. swinhoei collected more than 40 years ago in the southern part of the Gulf of Aqaba. Large-scale extract of this sample yielded four theonellamides, the known theopalauamide (4), as the major component, and three new metabolites, theonellamide J (1), 5-cis-Apoa-theopalauamide (2), and theonellamide K (3), as the minor components. The planar structure of these complex cyclic glycopeptides was elucidated by combination of 1D and 2D NMR techniques and HRESIMS. The absolute configuration of the amino acids was established by Marfey's and advanced Marfey's methods, and the absolute configuration of its galactose unit using "Tanaka's method" for monosaccharides. The biological activity of the pure compounds was tested for antibacterial activity and for cytotoxicity to HTC-116 cell line. The compounds presented significant cytotoxicity against the HTC-116 cell line, illuminating the importance of the Apoa subunit for the activity.
Collapse
Affiliation(s)
- Ohad Hasin
- Raymond and Beverly Sackler School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv 6997801, Israel; (O.H.); (Y.K.)
| | - Shani Shoham
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 6997801, Israel; (S.S.); (M.I.)
| | - Yoel Kashman
- Raymond and Beverly Sackler School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv 6997801, Israel; (O.H.); (Y.K.)
| | - Micha Ilan
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 6997801, Israel; (S.S.); (M.I.)
| | - Shmuel Carmeli
- Raymond and Beverly Sackler School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Ramat Aviv 6997801, Israel; (O.H.); (Y.K.)
- Correspondence: ; Tel.: +972-54-3117290 or +972-3-6408550
| |
Collapse
|
17
|
Burgsdorf I, Sizikov S, Squatrito V, Britstein M, Slaby BM, Cerrano C, Handley KM, Steindler L. Lineage-specific energy and carbon metabolism of sponge symbionts and contributions to the host carbon pool. THE ISME JOURNAL 2021; 16:1163-1175. [PMID: 34876682 PMCID: PMC8941161 DOI: 10.1038/s41396-021-01165-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 10/30/2021] [Accepted: 11/24/2021] [Indexed: 01/19/2023]
Abstract
Marine sponges host a wide diversity of microorganisms, which have versatile modes of carbon and energy metabolism. In this study we describe the major lithoheterotrophic and autotrophic processes in 21 microbial sponge-associated phyla using novel and existing genomic and transcriptomic datasets. We show that the main microbial carbon fixation pathways in sponges are the Calvin–Benson–Bassham cycle (energized by light in Cyanobacteria, by sulfur compounds in two orders of Gammaproteobacteria, and by a wide range of compounds in filamentous Tectomicrobia), the reductive tricarboxylic acid cycle (used by Nitrospirota), and the 3-hydroxypropionate/4-hydroxybutyrate cycle (active in Thaumarchaeota). Further, we observed that some sponge symbionts, in particular Acidobacteria, are capable of assimilating carbon through anaplerotic processes. The lithoheterotrophic lifestyle was widespread and CO oxidation is the main energy source for sponge lithoheterotrophs. We also suggest that the molybdenum-binding subunit of dehydrogenase (encoded by coxL) likely evolved to benefit also organoheterotrophs that utilize various organic substrates. Genomic potential does not necessarily inform on actual contribution of autotrophs to light and dark carbon budgets. Radioisotope assays highlight variability in the relative contributions of photo- and chemoautotrophs to the total carbon pool across different sponge species, emphasizing the importance of validating genomic potential with physiology experimentation.
Collapse
Affiliation(s)
- I Burgsdorf
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - S Sizikov
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - V Squatrito
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - M Britstein
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel
| | - B M Slaby
- GEOMAR Helmholtz Centre for Ocean Research Kiel, RD3 Marine Ecology, RU Marine Symbioses, Kiel, Germany
| | - C Cerrano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - K M Handley
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - L Steindler
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa, Israel.
| |
Collapse
|
18
|
Shoham S, Weinberger A, Kaplan A, Avisar D, Ilan M. Arsenate reducing bacteria isolated from the marine sponge Theonella swinhoei: Bioremediation potential. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112522. [PMID: 34304132 DOI: 10.1016/j.ecoenv.2021.112522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/04/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Arsenic (As) contamination of freshwater resources constitutes a major environmental issue affecting over 200 million people worldwide. Although the use of microorganisms for the bioremediation of As has been well studied, only very few candidates have been identified to date. Here, we investigated bacteria associated with the Red Sea sponge Theonella swinhoei and their potential to reduce As in a low-salinity liquid medium. This Indo-Pacific common sponge has been shown to hyper-accumulate As, at an average concentration of 8600 mg/g-1 in an environment uncontaminated by arsenic or barium. Four isolated strains of bacteria exhibited arsenic reduction potential by transforming inorganic As in the form of arsenate (iAsV) to arsenite (iAsIII). Two of these isolates were identified as Alteromonas macleodii and Pseudovibrio ascidisceicola, and the other two isolates, both belonging to the same species, were identified as Pseudovibrio denitrificans. The four isolates were then cultured in a low-salinity iAsV-rich medium (5 mM) and As concentration was measured over time using a specifically designed high-performance liquid chromatograph coupled to a mass spectrometer (HPLC-MS). Out of the four isolates, A. macleodii and P. ascidisceicola grew successfully in a low-salinity liquid medium and reduced AsV to AsIII at an average rate of 0.094 and 0.083 mM/h, respectively, thereby demonstrating great potential for the bioremediation of As-contaminated groundwater.
Collapse
Affiliation(s)
- Shani Shoham
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Adi Weinberger
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Aviv Kaplan
- Water Research Center, Porter School for Environment and Earth Science, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Dror Avisar
- Water Research Center, Porter School for Environment and Earth Science, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Micha Ilan
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
19
|
Evolution of default genetic control mechanisms. PLoS One 2021; 16:e0251568. [PMID: 33984070 PMCID: PMC8118313 DOI: 10.1371/journal.pone.0251568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/28/2021] [Indexed: 11/19/2022] Open
Abstract
We present a model of the evolution of control systems in a genome under environmental constraints. The model conceptually follows the Jacob and Monod model of gene control. Genes contain control elements which respond to the internal state of the cell as well as the environment to control expression of a coding region. Control and coding regions evolve to maximize a fitness function between expressed coding sequences and the environment. The model was run 118 times to an average of 1.4∙106 ‘generations’ each with a range of starting parameters probed the conditions under which genomes evolved a ‘default style’ of control. Unexpectedly, the control logic that evolved was not significantly correlated to the complexity of the environment. Genetic logic was strongly correlated with genome complexity and with the fraction of genes active in the cell at any one time. More complex genomes correlated with the evolution of genetic controls in which genes were active (‘default on’), and a low fraction of genes being expressed correlated with a genetic logic in which genes were biased to being inactive unless positively activated (‘default off’ logic). We discuss how this might relate to the evolution of the complex eukaryotic genome, which operates in a ‘default off’ mode.
Collapse
|
20
|
Figueiredo C, Caetano M, Mil-Homens M, Tojeira I, Xavier JR, Rosa R, Raimundo J. Rare earth and trace elements in deep-sea sponges of the North Atlantic. MARINE POLLUTION BULLETIN 2021; 166:112217. [PMID: 33735703 DOI: 10.1016/j.marpolbul.2021.112217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/15/2021] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
The available data on trace elements (TE) of deep-sea organisms is scarce and nonexistent for rare earth elements (REE). Hence, this study characterizes REE and TE in five porifera genera (Jaspis, Geodia, Hamacantha, Leiodermatium, Poliopogon) collected in deep-sea areas (between 481 and 2656 m) of the North Atlantic. Aluminium was the most common TE while lead was the less abundant. These sponges showed an increased accumulation of TE compared with other probably influenced by volcanic activity. Poliopogon amadou sampled at the deepest location presented the highest concentration of all REE. All studied species exhibited a Light REE enrichment in comparison to Heavy REE and showed a negative Ce anomaly with a less conspicuous Eu depletion. Besides the establishment of a baseline for future comparisons, this study provides the first record of REE in a sessile deep-sea marine invertebrate group.
Collapse
Affiliation(s)
- Cátia Figueiredo
- Laboratório Marítimo da Guia, MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939, 2750-374 Cascais, Portugal; Division of Oceanography and Marine Environment, IPMA - Instituto Português do Mar e da Atmosfera, Av. Alfredo Magalhães Ramalho, 6, 1495-165 Algés, Portugal.
| | - Miguel Caetano
- Division of Oceanography and Marine Environment, IPMA - Instituto Português do Mar e da Atmosfera, Av. Alfredo Magalhães Ramalho, 6, 1495-165 Algés, Portugal; CIIMAR - Interdisciplinary Centre of Marine and Environmental Research of the University of Porto, 4450-208 Matosinhos, Portugal
| | - Mário Mil-Homens
- Division of Oceanography and Marine Environment, IPMA - Instituto Português do Mar e da Atmosfera, Av. Alfredo Magalhães Ramalho, 6, 1495-165 Algés, Portugal
| | - Inês Tojeira
- Task Group for the Extension of the Continental Shelf (EMEPC), R. Costa Pinto 165, 2770-047 Paço de Arcos, Portugal
| | - Joana R Xavier
- Task Group for the Extension of the Continental Shelf (EMEPC), R. Costa Pinto 165, 2770-047 Paço de Arcos, Portugal; University of Bergen, Department of Biological Sciences and KG Jebsen Centre for Deep-Sea Research, 5006 Bergen, Norway
| | - Rui Rosa
- Laboratório Marítimo da Guia, MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939, 2750-374 Cascais, Portugal
| | - Joana Raimundo
- Division of Oceanography and Marine Environment, IPMA - Instituto Português do Mar e da Atmosfera, Av. Alfredo Magalhães Ramalho, 6, 1495-165 Algés, Portugal; CIIMAR - Interdisciplinary Centre of Marine and Environmental Research of the University of Porto, 4450-208 Matosinhos, Portugal
| |
Collapse
|
21
|
Zilber-Rosenberg I, Rosenberg E. Microbial driven genetic variation in holobionts. FEMS Microbiol Rev 2021; 45:6261188. [PMID: 33930136 DOI: 10.1093/femsre/fuab022] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/11/2021] [Indexed: 12/11/2022] Open
Abstract
Genetic variation in holobionts, (host and microbiome), occurring by changes in both host and microbiome genomes, can be observed from two perspectives: observable variations and the processes that bring about the variation. The observable includes the enormous genetic diversity of prokaryotes, which gave rise to eukaryotic organisms. Holobionts then evolved a rich microbiome with a stable core containing essential genes, less so common taxa, and a more diverse non-core enabling considerable genetic variation. The result being that, the human gut microbiome, for example, contains 1,000 times more unique genes than are present in the human genome. Microbial driven genetic variation processes in holobionts include: (1) Acquisition of novel microbes from the environment, which bring in multiple genes in one step, (2) amplification/reduction of certain microbes in the microbiome, that contribute to holobiont` s adaptation to changing conditions, (3) horizontal gene transfer between microbes and between microbes and host, (4) mutation, which plays an important role in optimizing interactions between different microbiota and between microbiota and host. We suggest that invertebrates and plants, where microbes can live intracellularly, have a greater chance of genetic exchange between microbiota and host, thus a greater chance of vertical transmission and a greater effect of microbiome on evolution of host than vertebrates. However, even in vertebrates the microbiome can aid in environmental fluctuations by amplification/reduction and by acquisition of novel microorganisms.
Collapse
Affiliation(s)
- Ilana Zilber-Rosenberg
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv Israel
| | - Eugene Rosenberg
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv Israel
| |
Collapse
|
22
|
Hoffmann TD, Reeksting BJ, Gebhard S. Bacteria-induced mineral precipitation: a mechanistic review. MICROBIOLOGY (READING, ENGLAND) 2021; 167:001049. [PMID: 33881981 PMCID: PMC8289221 DOI: 10.1099/mic.0.001049] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/15/2021] [Indexed: 11/18/2022]
Abstract
Micro-organisms contribute to Earth's mineral deposits through a process known as bacteria-induced mineral precipitation (BIMP). It is a complex phenomenon that can occur as a result of a variety of physiological activities that influence the supersaturation state and nucleation catalysis of mineral precipitation in the environment. There is a good understanding of BIMP induced by bacterial metabolism through the control of metal redox states and enzyme-mediated reactions such as ureolysis. However, other forms of BIMP often cannot be attributed to a single pathway but rather appear to be a passive result of bacterial activity, where minerals form as a result of metabolic by-products and surface interactions within the surrounding environment. BIMP from such processes has formed the basis of many new innovative biotechnologies, such as soil consolidation, heavy metal remediation, restoration of historic buildings and even self-healing concrete. However, these applications to date have primarily incorporated BIMP-capable bacteria sampled from the environment, while detailed investigations of the underpinning mechanisms have been lagging behind. This review covers our current mechanistic understanding of bacterial activities that indirectly influence BIMP and highlights the complexity and connectivity between the different cellular and metabolic processes involved. Ultimately, detailed insights will facilitate the rational design of application-specific BIMP technologies and deepen our understanding of how bacteria are shaping our world.
Collapse
Affiliation(s)
- Timothy D. Hoffmann
- Department of Biology and Biochemistry, Milner Centre for Evolution, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Bianca J. Reeksting
- Department of Biology and Biochemistry, Milner Centre for Evolution, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Susanne Gebhard
- Department of Biology and Biochemistry, Milner Centre for Evolution, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| |
Collapse
|
23
|
Freitas-Silva J, de Oliveira BFR, Vigoder FDM, Muricy G, Dobson ADW, Laport MS. Peeling the Layers Away: The Genomic Characterization of Bacillus pumilus 64-1, an Isolate With Antimicrobial Activity From the Marine Sponge Plakina cyanorosea (Porifera, Homoscleromorpha). Front Microbiol 2021; 11:592735. [PMID: 33488540 PMCID: PMC7820076 DOI: 10.3389/fmicb.2020.592735] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/09/2020] [Indexed: 11/30/2022] Open
Abstract
Bacillus pumilus 64-1, a bacterial strain isolated from the marine sponge Plakina cyanorosea, which exhibits antimicrobial activity against both pathogenic and drug-resistant Gram-positive and Gram-negative bacteria. This study aimed to conduct an in-depth genomic analysis of this bioactive sponge-derived strain. The nearly complete genome of strain 64-1 consists of 3.6 Mbp (41.5% GC), which includes 3,705 coding sequences (CDS). An open pangenome was observed when limiting to the type strains of the B. pumilus group and aquatic-derived B. pumilus representatives. The genome appears to encode for at least 12 potential biosynthetic gene clusters (BGCs), including both types I and III polyketide synthases (PKS), non-ribosomal peptide synthetases (NRPS), and one NRPS-T1PKS hybrid, among others. In particular, bacilysin and other bacteriocin-coding genes were found and may be associated with the detected antimicrobial activity. Strain 64-1 also appears to possess a broad repertoire of genes encoding for plant cell wall-degrading carbohydrate-active enzymes (CAZymes). A myriad of genes which may be involved in various process required by the strain in its marine habitat, such as those encoding for osmoprotectory transport systems and the biosynthesis of compatible solutes were also present. Several heavy metal tolerance genes are also present, together with various mobile elements including a region encoding for a type III-B Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) region, four prophage segments and transposase elements. This is the first report on the genomic characterization of a cultivable bacterial member of the Plakina cyanorosea holobiont.
Collapse
Affiliation(s)
- Jéssyca Freitas-Silva
- Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Bruno Francesco Rodrigues de Oliveira
- Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,School of Microbiology, University College Cork, Cork, Ireland
| | - Felipe de Mello Vigoder
- Department of Genetics, Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Guilherme Muricy
- Department of Invertebrates, National Museum, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alan D W Dobson
- School of Microbiology, University College Cork, Cork, Ireland.,Environmental Research Institute, University College Cork, Cork, Ireland
| | - Marinella Silva Laport
- Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
24
|
Zhang J, Shi Q, Fan S, Zhang Y, Zhang M, Zhang J. Distinction between Cr and other heavy-metal-resistant bacteria involved in C/N cycling in contaminated soils of copper producing sites. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123454. [PMID: 32683159 DOI: 10.1016/j.jhazmat.2020.123454] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/16/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
For typical copper producing provinces of Heilongjiang, Henan, Inner Mongolia, Jiangxi, Shandong, Tibet, and Yunnan in China, 90 % of sampling sites were heavily polluted with multiple heavy metals. Soil heterogeneity and mutual interference of multimetals are obstacles to explore bacterial resistance pathways in contaminated field soils. Through analyses of contamination indices and bioindicators, combined with multivariate statistical models, the antioxidant enzyme activity, urease-induced precipitation of heavy metals, excretion of extracellular polymeric substances (EPS) were attributed to different types of heavy metals. Furthermore, through redundancy analysis combined with phylogenetic analysis of metal-resistant bacteria, we identified that Verrucomicrobia, Acidobacteria, and Planctomycetes secreted EPS-polysaccharides and EPS-proteins to detoxify Cr, a metal with lower concentrations and lower ecological risk as compared to other metals. The pathway was innovatively differentiated from the multimetal resistance pathways in urease and/or catalase-producing bacteria such as Proteobacteria, Firmicutes, BRC1, Bacteroidetes, Dadabacteria, Entotheonellaeota, Nitrospirae, and Gemmatimonadetes using field studies and high-throughput sequencing. Moreover, these metal-resistant bacteria were linked to C/N cycling processes of urea hydrolysis, nitrification, denitrification, EPS production, and calcite precipitation. It will provide new insight into soil bacterial resistance to multimetals in field studies.
Collapse
Affiliation(s)
- Juan Zhang
- State Key Laboratory of Advanced Metallurgy, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, PR China.
| | - Quan Shi
- State Key Laboratory of Advanced Metallurgy, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, PR China.
| | - Shukai Fan
- Environmental Engineering Institute, BGRIMM Technology Group, Beijing 100160, PR China.
| | - Yafei Zhang
- State Key Laboratory of Advanced Metallurgy, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, PR China.
| | - Minghua Zhang
- College of AgRicultural and Environmental Sciences, University of California, Davis, CA 95616, USA.
| | - Jianfeng Zhang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South St., Haidian District, Beijing 100081, PR China.
| |
Collapse
|
25
|
Panyushkina A, Matyushkina D, Pobeguts O. Understanding Stress Response to High-Arsenic Gold-Bearing Sulfide Concentrate in Extremely Metal-Resistant Acidophile Sulfobacillus thermotolerans. Microorganisms 2020; 8:E1076. [PMID: 32707712 PMCID: PMC7409299 DOI: 10.3390/microorganisms8071076] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 12/15/2022] Open
Abstract
Biooxidation of gold-bearing arsenopyrite concentrates, using acidophilic microbial communities, is among the largest commercial biohydrometallurgical processes. However, molecular mechanisms of microbial responses to sulfide raw materials have not been widely studied. The goal of this research was to gain insight into the defense strategies of the acidophilic bacterium Sulfobacillus thermotolerans, which dominates microbial communities functioning in industrial biooxidation processes at >35 °C, against the toxic effect of the high-arsenic gold-bearing sulfide concentrate. In addition to extreme metal resistance, this acidophile proved to be one of the most As-tolerant microorganisms. Comparative proteomic analysis indicated that 30 out of 33 differentially expressed proteins were upregulated in response to the ore concentrate, while the synthesis level of the functional proteins required for cell survival was not negatively affected. Despite a high level of cellular metal(loid) accumulation, no specific metal(loid)-resistant systems were regulated. Instead, several proteins involved in the metabolic pathways and stress response, including MBL fold metallo-hydrolase, sulfide:quinone oxidoreductase, and GroEL chaperonin, may play crucial roles in resistance to the sulfide ore concentrate and arsenic, in particular. This study provides the first data on the microbial responses to sulfide ore concentrates and advances our understanding of defense mechanisms against toxic compounds in acidophiles.
Collapse
Affiliation(s)
- Anna Panyushkina
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology of the Russian Academy of Sciences, Leninsky Ave., 33, bld. 2, Moscow 119071, Russia
| | - Daria Matyushkina
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya, 1a, Moscow 119435, Russia; (D.M.); (O.P.)
| | - Olga Pobeguts
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya, 1a, Moscow 119435, Russia; (D.M.); (O.P.)
| |
Collapse
|
26
|
Organic-mineral interfacial chemistry drives heterogeneous nucleation of Sr-rich (Ba x , Sr 1-x )SO 4 from undersaturated solution. Proc Natl Acad Sci U S A 2019; 116:13221-13226. [PMID: 31113880 DOI: 10.1073/pnas.1821065116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sr-bearing marine barite [(Ba x , Sr1-x )SO4] cycling has been widely used to reconstruct geochemical evolutions of paleoenvironments. However, an understanding of barite precipitation in the ocean, which is globally undersaturated with respect to barite, is missing. Moreover, the reason for the occurrence of higher Sr content in marine barites than expected for classical crystal growth processes remains unknown. Field data analyses suggested that organic molecules may regulate the formation and composition of marine barites; however, the specific organic-mineral interactions are unclear. Using in situ grazing incidence small-angle X-ray scattering (GISAXS), size and total volume evolutions of barite precipitates on organic films were characterized. The results show that barite forms on organic films from undersaturated solutions. Moreover, from a single supersaturated solution with respect to barite, Sr-rich barite nanoparticles formed on organics, while micrometer-size Sr-poor barites formed in bulk solutions. Ion adsorption experiments showed that organic films can enrich cation concentrations in the adjacent solution, thus increasing the local supersaturation and promoting barite nucleation on organic films, even when the bulk solution was undersaturated. The Sr enrichment in barites formed on organic films was found to be controlled by solid-solution nucleation rates; instead, the Sr-poor barite formation in bulk solution was found to be controlled by solid-solution growth rates. This study provides a mechanistic explanation for Sr-rich marine barite formation and offers insights for understanding and controlling the compositions of solid solutions by separately tuning their nucleation and growth rates via the unique chemistry of solution-organic interfaces.
Collapse
|
27
|
Gill S, Catchpole R, Forterre P. Extracellular membrane vesicles in the three domains of life and beyond. FEMS Microbiol Rev 2019; 43:273-303. [PMID: 30476045 PMCID: PMC6524685 DOI: 10.1093/femsre/fuy042] [Citation(s) in RCA: 271] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/20/2018] [Indexed: 02/06/2023] Open
Abstract
Cells from all three domains of life, Archaea, Bacteria and Eukarya, produce extracellular vesicles (EVs) which are sometimes associated with filamentous structures known as nanopods or nanotubes. The mechanisms of EV biogenesis in the three domains remain poorly understood, although studies in Bacteria and Eukarya indicate that the regulation of lipid composition plays a major role in initiating membrane curvature. EVs are increasingly recognized as important mediators of intercellular communication via transfer of a wide variety of molecular cargoes. They have been implicated in many aspects of cell physiology such as stress response, intercellular competition, lateral gene transfer (via RNA or DNA), pathogenicity and detoxification. Their role in various human pathologies and aging has aroused much interest in recent years. EVs can be used as decoys against viral attack but virus-infected cells also produce EVs that boost viral infection. Here, we review current knowledge on EVs in the three domains of life and their interactions with the viral world.
Collapse
Affiliation(s)
- Sukhvinder Gill
- Institute for Integrative Biology of the Cell (I2BC), Biologie Cellulaire des Archées (BCA), CEA, CNRS, Université Paris-Sud, 91405 Orsay cedex, France
| | - Ryan Catchpole
- Institut Pasteur, Unité de Biologie Moléculaire du Gène chez les Extrêmophiles, Département de Microbiologie, F75015 Paris, France
| | - Patrick Forterre
- Institute for Integrative Biology of the Cell (I2BC), Biologie Cellulaire des Archées (BCA), CEA, CNRS, Université Paris-Sud, 91405 Orsay cedex, France
- Institut Pasteur, Unité de Biologie Moléculaire du Gène chez les Extrêmophiles, Département de Microbiologie, F75015 Paris, France
| |
Collapse
|
28
|
Genomic blueprints of sponge-prokaryote symbiosis are shared by low abundant and cultivatable Alphaproteobacteria. Sci Rep 2019; 9:1999. [PMID: 30760820 PMCID: PMC6374434 DOI: 10.1038/s41598-019-38737-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 01/09/2019] [Indexed: 02/07/2023] Open
Abstract
Marine sponges are early-branching, filter-feeding metazoans that usually host complex microbiomes comprised of several, currently uncultivatable symbiotic lineages. Here, we use a low-carbon based strategy to cultivate low-abundance bacteria from Spongia officinalis. This approach favoured the growth of Alphaproteobacteria strains in the genera Anderseniella, Erythrobacter, Labrenzia, Loktanella, Ruegeria, Sphingorhabdus, Tateyamaria and Pseudovibrio, besides two likely new genera in the Rhodobacteraceae family. Mapping of complete genomes against the metagenomes of S. officinalis, seawater, and sediments confirmed the rare status of all the above-mentioned lineages in the marine realm. Remarkably, this community of low-abundance Alphaproteobacteria possesses several genomic attributes common to dominant, presently uncultivatable sponge symbionts, potentially contributing to host fitness through detoxification mechanisms (e.g. heavy metal and metabolic waste removal, degradation of aromatic compounds), provision of essential vitamins (e.g. B6 and B12 biosynthesis), nutritional exchange (especially regarding the processing of organic sulphur and nitrogen) and chemical defence (e.g. polyketide and terpenoid biosynthesis). None of the studied taxa displayed signs of genome reduction, indicative of obligate mutualism. Instead, versatile nutrient metabolisms along with motility, chemotaxis, and tight-adherence capacities - also known to confer environmental hardiness – were inferred, underlying dual host-associated and free-living life strategies adopted by these diverse sponge-associated Alphaproteobacteria.
Collapse
|
29
|
Wooster MK, Voigt O, Erpenbeck D, Wörheide G, Berumen ML. Sponges of the Red Sea. CORAL REEFS OF THE RED SEA 2019. [DOI: 10.1007/978-3-030-05802-9_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
30
|
Microbial diversity and biosignatures of amorphous silica deposits in orthoquartzite caves. Sci Rep 2018; 8:17569. [PMID: 30514906 PMCID: PMC6279750 DOI: 10.1038/s41598-018-35532-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/30/2018] [Indexed: 11/08/2022] Open
Abstract
Chemical mobility of crystalline and amorphous SiO2 plays a fundamental role in several geochemical and biological processes, with silicate minerals being the most abundant components of the Earth's crust. Although the oldest evidences of life on Earth are fossilized in microcrystalline silica deposits, little is known about the functional role that bacteria can exert on silica mobility at non-thermal and neutral pH conditions. Here, a microbial influence on silica mobilization event occurring in the Earth's largest orthoquartzite cave is described. Transition from the pristine orthoquartzite to amorphous silica opaline precipitates in the form of stromatolite-like structures is documented through mineralogical, microscopic and geochemical analyses showing an increase of metals and other bioessential elements accompanied by permineralized bacterial cells and ultrastructures. Illumina sequencing of the 16S rRNA gene describes the bacterial diversity characterizing the consecutive amorphization steps to provide clues on the biogeochemical factors playing a role in the silica solubilization and precipitation processes. These results show that both quartz weathering and silica mobility are affected by chemotrophic bacterial communities, providing insights for the understanding of the silica cycle in the subsurface.
Collapse
|
31
|
Knobloch S, Jóhannsson R, Marteinsson V. Bacterial diversity in the marine spongeHalichondria paniceafrom Icelandic waters and host-specificity of its dominant symbiont “CandidatusHalichondribacter symbioticus”. FEMS Microbiol Ecol 2018; 95:5173036. [DOI: 10.1093/femsec/fiy220] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/07/2018] [Indexed: 01/05/2023] Open
Affiliation(s)
- Stephen Knobloch
- Microbiology Group, Department of Research and Innovation, Matís ohf., Vinlandsleid 12, 113 Reykjavik, Iceland
- Faculty of Life and Environmental Sciences, University of Iceland, Saemundargata 2, 101 Reykjavík, Iceland
| | - Ragnar Jóhannsson
- Marine and Freshwater Research Institute, Hafrannsóknastofnun, Skúlagata 4, 101 Reykjavik, Iceland
| | - Viggó Marteinsson
- Microbiology Group, Department of Research and Innovation, Matís ohf., Vinlandsleid 12, 113 Reykjavik, Iceland
- Faculty of Food Science and Nutrition, University of Iceland, Saemundargata 2, 101 Reykjavik, Iceland
| |
Collapse
|
32
|
Orani AM, Barats A, Zitte W, Morrow C, Thomas OP. Comparative study on the bioaccumulation and biotransformation of arsenic by some northeastern Atlantic and northwestern Mediterranean sponges. CHEMOSPHERE 2018; 201:826-839. [PMID: 29554629 DOI: 10.1016/j.chemosphere.2018.03.078] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 02/18/2018] [Accepted: 03/11/2018] [Indexed: 06/08/2023]
Abstract
The bioaccumulation and biotransformation of arsenic (As) were studied in six representative marine sponges from the French Mediterranean and Irish Atlantic coasts. Methodologies were carefully optimized in one of the species on Haliclona fulva sponges for two critical steps: the sample mineralization for total As analysis by ICP-MS and the extraction of As species for HPLC-ICP-MS analysis. During the optimization, extractions performed with 0.6 mol L-1 H3PO4 were shown to be the most efficient. Extraction recovery of 81% was obtained which represents the best results obtained until now in sponge samples. Total As analyses and As speciation were performed on certified reference materials and allow confirming the measurement quality both during the sample preparation and analysis. Additionally, this study represents an environmental survey demonstrating a high variability of total As concentrations among the different species, probably related to different physiological or microbial features. As speciation results showed the predominance of arsenobetaine (AsB) regardless of the sponge species, as well as the occurrence of low amounts of dimethylarsinic acid (DMA), arsenate (As(+V)), and unknown As species in some samples. The process responsible for As transformation in sponges is most likely related to sponges metabolism itself or the action of symbiont organisms. AsB is supposed to be implied in the protection against osmolytic stress. This study demonstrates the ability of sponges to accumulate and bio-transform As, proving that sponges are relevant bio-monitors for As contamination in the marine environment, and potential tools in environmental bio-remediation.
Collapse
Affiliation(s)
- Anna Maria Orani
- Université Nice Sophia Antipolis, CNRS, IRD, Observatoire de la Côte d'Azur, Géoazur, UMR 7329, 250 rue Albert Einstein, Sophia Antipolis 06560 Valbonne, France; International Atomic Energy Agency, Environment Laboratories, 4 Quai Antoine 1er, MC 9800, Monaco.
| | - Aurélie Barats
- Université Nice Sophia Antipolis, CNRS, IRD, Observatoire de la Côte d'Azur, Géoazur, UMR 7329, 250 rue Albert Einstein, Sophia Antipolis 06560 Valbonne, France
| | - Wendy Zitte
- Université Nice Sophia Antipolis, CNRS, IRD, Observatoire de la Côte d'Azur, Géoazur, UMR 7329, 250 rue Albert Einstein, Sophia Antipolis 06560 Valbonne, France
| | - Christine Morrow
- National University of Ireland Galway, Marine Biodiscovery, School of Chemistry, University Road, Galway, Ireland
| | - Olivier P Thomas
- National University of Ireland Galway, Marine Biodiscovery, School of Chemistry, University Road, Galway, Ireland
| |
Collapse
|
33
|
Morita M, Schmidt EW. Parallel lives of symbionts and hosts: chemical mutualism in marine animals. Nat Prod Rep 2018; 35:357-378. [PMID: 29441375 PMCID: PMC6025756 DOI: 10.1039/c7np00053g] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Covering: up to 2018 Symbiotic microbes interact with animals, often by producing natural products (specialized metabolites; secondary metabolites) that exert a biological role. A major goal is to determine which microbes produce biologically important compounds, a deceptively challenging task that often rests on correlative results, rather than hypothesis testing. Here, we examine the challenges and successes from the perspective of marine animal-bacterial mutualisms. These animals have historically provided a useful model because of their technical accessibility. By comparing biological systems, we suggest a common framework for establishing chemical interactions between animals and microbes.
Collapse
Affiliation(s)
- Maho Morita
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, Utah, USA 84112.
| | | |
Collapse
|
34
|
Jackson SA, Crossman L, Almeida EL, Margassery LM, Kennedy J, Dobson ADW. Diverse and Abundant Secondary Metabolism Biosynthetic Gene Clusters in the Genomes of Marine Sponge Derived Streptomyces spp. Isolates. Mar Drugs 2018; 16:E67. [PMID: 29461500 PMCID: PMC5852495 DOI: 10.3390/md16020067] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/07/2018] [Accepted: 02/16/2018] [Indexed: 12/15/2022] Open
Abstract
The genus Streptomyces produces secondary metabolic compounds that are rich in biological activity. Many of these compounds are genetically encoded by large secondary metabolism biosynthetic gene clusters (smBGCs) such as polyketide synthases (PKS) and non-ribosomal peptide synthetases (NRPS) which are modular and can be highly repetitive. Due to the repeats, these gene clusters can be difficult to resolve using short read next generation datasets and are often quite poorly predicted using standard approaches. We have sequenced the genomes of 13 Streptomyces spp. strains isolated from shallow water and deep-sea sponges that display antimicrobial activities against a number of clinically relevant bacterial and yeast species. Draft genomes have been assembled and smBGCs have been identified using the antiSMASH (antibiotics and Secondary Metabolite Analysis Shell) web platform. We have compared the smBGCs amongst strains in the search for novel sequences conferring the potential to produce novel bioactive secondary metabolites. The strains in this study recruit to four distinct clades within the genus Streptomyces. The marine strains host abundant smBGCs which encode polyketides, NRPS, siderophores, bacteriocins and lantipeptides. The deep-sea strains appear to be enriched with gene clusters encoding NRPS. Marine adaptations are evident in the sponge-derived strains which are enriched for genes involved in the biosynthesis and transport of compatible solutes and for heat-shock proteins. Streptomyces spp. from marine environments are a promising source of novel bioactive secondary metabolites as the abundance and diversity of smBGCs show high degrees of novelty. Sponge derived Streptomyces spp. isolates appear to display genomic adaptations to marine living when compared to terrestrial strains.
Collapse
Affiliation(s)
- Stephen A Jackson
- School of Microbiology, University College Cork, National University of Ireland, Cork, T12 YN60, Ireland.
| | - Lisa Crossman
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.
- SequenceAnalysis.co.uk, NRP Innovation Centre, Norwich NR4 7UG, UK.
| | - Eduardo L Almeida
- School of Microbiology, University College Cork, National University of Ireland, Cork, T12 YN60, Ireland.
| | - Lekha Menon Margassery
- School of Microbiology, University College Cork, National University of Ireland, Cork, T12 YN60, Ireland.
| | - Jonathan Kennedy
- Invista Performance Technologies, The Wilton Centre, Wilton, Redcar, Cleveland TS10 4RF, UK.
| | - Alan D W Dobson
- School of Microbiology, University College Cork, National University of Ireland, Cork, T12 YN60, Ireland.
- Environmental Research Institute, University College Cork, National University of Ireland, Lee Road, Cork T23 XE10, Ireland.
| |
Collapse
|
35
|
Lavy A, Keren R, Yu K, Thomas BC, Alvarez-Cohen L, Banfield JF, Ilan M. A novel Chromatiales bacterium is a potential sulfide oxidizer in multiple orders of marine sponges. Environ Microbiol 2018; 20:800-814. [PMID: 29194919 PMCID: PMC5812793 DOI: 10.1111/1462-2920.14013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/23/2017] [Accepted: 11/24/2017] [Indexed: 01/09/2023]
Abstract
Sponges are benthic filter feeders that play pivotal roles in coupling benthic-pelagic processes in the oceans that involve transformation of dissolved and particulate organic carbon and nitrogen into biomass. While the contribution of sponge holobionts to the nitrogen cycle has been recognized in past years, their importance in the sulfur cycle, both oceanic and physiological, has only recently gained attention. Sponges in general, and Theonella swinhoei in particular, harbour a multitude of associated microorganisms that could affect sulfur cycling within the holobiont. We reconstructed the genome of a Chromatiales (class Gammaproteobacteria) bacterium from a metagenomic sequence dataset of a T. swinhoei-associated microbial community. This relatively abundant bacterium has the metabolic capability to oxidize sulfide yet displays reduced metabolic potential suggestive of its lifestyle as an obligatory symbiont. This bacterium was detected in multiple sponge orders, according to similarities in key genes such as 16S rRNA and polyketide synthase genes. Due to its sulfide oxidation metabolism and occurrence in many members of the Porifera phylum, we suggest naming the newly described taxon Candidatus Porisulfidus.
Collapse
Affiliation(s)
- Adi Lavy
- School of Zoology, Faculty of Life Sciences, Tel-Aviv University, Israel
- Earth and Planetary Science, 369 McCone Hall, University of California, Berkeley, USA
| | - Ray Keren
- School of Zoology, Faculty of Life Sciences, Tel-Aviv University, Israel
- Department of Civil and Environmental Engineering, University of California, Berkeley, USA
| | - Ke Yu
- Department of Civil and Environmental Engineering, University of California, Berkeley, USA
| | - Brian C. Thomas
- Earth and Planetary Science, 369 McCone Hall, University of California, Berkeley, USA
| | - Lisa Alvarez-Cohen
- Department of Civil and Environmental Engineering, University of California, Berkeley, USA
| | - Jillian F. Banfield
- Earth and Planetary Science, 369 McCone Hall, University of California, Berkeley, USA
| | - Micha Ilan
- School of Zoology, Faculty of Life Sciences, Tel-Aviv University, Israel
| |
Collapse
|